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Abstract

Background: Previous Mendelian randomization (MR) studies using population samples

(population MR) have provided evidence for beneficial effects of educational attainment

on health outcomes in adulthood. However, estimates from these studies may have

been susceptible to bias from population stratification, assortative mating and indirect

genetic effects due to unadjusted parental genotypes. MR using genetic association esti-

mates derived from within-sibship models (within-sibship MR) can avoid these potential

biases because genetic differences between siblings are due to random segregation at

meiosis.

Methods: Applying both population and within-sibship MR, we estimated the effects of

genetic liability to educational attainment on body mass index (BMI), cigarette smoking,

systolic blood pressure (SBP) and all-cause mortality. MR analyses used individual-level

data on 72 932 siblings from UK Biobank and the Norwegian HUNT study, and summary-

level data from a within-sibship Genome-wide Association Study including >140 000

individuals.

Results: Both population and within-sibship MR estimates provided evidence that educa-

tional attainment decreased BMI, cigarette smoking and SBP. Genetic variant–outcome

associations attenuated in the within-sibship model, but genetic variant–educational

attainment associations also attenuated to a similar extent. Thus, within-sibship and

population MR estimates were largely consistent. The within-sibship MR estimate of

education on mortality was imprecise but consistent with a putative effect.

Conclusions: These results provide evidence of beneficial individual-level effects of

education (or liability to education) on adulthood health, independently of potential

demographic and family-level confounders.

Key words: Within-sibship, Mendelian randomization, educational attainment, mortality

Key Messages

• Within-sibship Mendelian randomization can reduce bias from demographic and familial factors that may particularly

impact analyses of social and behavioural phenotypes.

• Within-sibship Mendelian randomization indicated that higher educational attainment decreased body mass index,

smoking behaviour and blood pressure.

• These findings are consistent with beneficial individual-level health effects of higher (liability to) educational

attainment.
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Introduction

Higher educational attainment is strongly associated with

better adulthood health and reduced mortality.1,2

However, whether these associations are causal remains

unclear because of inconclusive evidence from previous

quasi-experimental designs such as the raising of the school

leaving age and co-twin control or discordant-twin stud-

ies.3–11 Another source of evidence on effects of educa-

tional attainment on health are Mendelian randomization

(MR) studies,12 which have used genetic variants associ-

ated with educational attainment as instrumental variables

to provide consistent evidence for beneficial effects of edu-

cational attainment on adulthood health outcomes.13–17 A

caveat is that educational attainment as measured by years

in full-time education is a categorical exposure and so it

may be more appropriate to interpret effects in terms of li-

ability to educational attainment.16

A key assumption of MR analyses is that the genetic

variant–exposure (here: educational attainment) and ge-

netic variant–outcome (here: health outcomes) associations

represent downstream effects of inheriting the genetic vari-

ant (or a correlated variant).12,18–20 However, there is

growing evidence that genotype–phenotype associations

derived from samples of unrelated individuals can reflect

other sources of variation19–21 (Figure 1). Previous studies

have illustrated that Genome-wide Association Study

(GWAS) estimates for educational attainment from unre-

lated individuals reflect population stratification,22 assor-

tative mating18,23–25 and indirect genetic effects.18,26–29

Educational attainment is particularly distinctive amongst

complex traits because of the large magnitude of indirect

genetic effects, the high degree of assortative mating,

strong correlations with geographical features and wide-

spread genetic correlations with many phenotypes includ-

ing health outcomes.30 It follows that MR analyses of

educational attainment may be biased if using genetic asso-

ciation estimates from unrelated individuals.

Genetic association estimates from within-sibship mod-

els are largely robust against population stratification, as-

sortative mating and indirect genetic effects because

genetic differences between full siblings are due to random

segregation at meiosis.12,18–20,31 Within-sibship MR using

individual-level sibling or within-sibship GWAS data18 can

control for these sources of genetic association and so can

be used to derive less-biased MR estimates.

Here, using individual-level data from UK Biobank and

the Trøndelag Health Study, Norway (HUNT) and sum-

mary data from a recent within-sibship GWAS,18 we gen-

erate population and within-sibship MR estimates of the

effects of liability to educational attainment on health out-

comes and mortality. For health outcomes, we included

body mass index (BMI), pack years of cigarette smoking

and systolic blood pressure (SBP), which were investigated

in previous MR studies and are measured in the majority

of UK Biobank and HUNT study participants. We also

performed phenotypic analyses using self-reported educa-

tional attainment including a twin-based analysis using

Finnish twin cohort data.

Methods

UK Biobank

UK Biobank is a large-scale prospective cohort study that

has been described in detail previously.32,33 In total,

503 325 individuals aged between 38 and 73 years were

recruited between 2006 and 2010 from across the UK and

attended an assessment centre where they were inter-

viewed, completed a touch-screen questionnaire, and pro-

vided various measurements (e.g. height) and biological

samples (e.g. blood).

The UK Biobank study sample incidentally includes

many related individuals. In our analyses we included indi-

viduals with one or more full siblings in the study sample.

Siblings were identified in a previous study using the UK

Biobank-derived estimates of pairwise identical by state

kinships and the proportion of unshared loci (IBS0).19,34

After restricting the sample to sibships with two or more

individuals with educational attainment data, our analysis

sample included 40 734 individuals from 19 773 sibships.

Further detail on the derivation of UK Biobank siblings is

contained in the Supplementary methods (available as

Supplementary data at IJE online).

Educational attainment was defined as in a previous

study35 using the self-reported qualifications from ques-

tionnaire data (field ID: 6138–0.0) to estimate the number

of years each individual spent in full-time education. For

example, ‘College or University degree’ was mapped to

17 years whereas ‘A levels/AS levels or equivalent’ was

mapped to 14 years. Where individuals reported multiple

qualifications, the highest qualification in terms of years in

education was used. Information on health outcome phe-

notypes (BMI, smoking, SBP, mortality) and genotyping

for UK Biobank study participants is contained in the

Supplementary methods (available as Supplementary data

at IJE online).

HUNT

HUNT is a series of general health surveys of the adult

population of the Trøndelag region, Norway, as detailed in

previous publications.36–38 Every 10 years, the adult popu-

lation of this region (�90 000 adults at the start of
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HUNT2 in 1995) is invited to attend a health survey (in-

cluding comprehensive questionnaires, an interview, clini-

cal examination and detailed phenotypic measurements).

To date, four health surveys have been conducted, namely

HUNT1 (1984–86), HUNT2 (1995–97), HUNT3 (2006–

08) and HUNT4 (2017–19), and all surveys have had a

>50% participation rate.39 In this study, we used data

from 32 198 individuals from 12 578 sibships who

reported their educational attainment in the HUNT2 sur-

vey. Siblings were identified using KING software,40 with

sibling-pairs identified based on the following criteria: kin-

ship coefficient of between 0.177 and 0.355, the propor-

tion of the genomes that share two alleles identical by

descent (IBD) > 0.08 and the proportion of the genome

Figure 1 Population stratification, assortative mating and indirect genetic effects. ‘Population stratification’ occurs when ancestry is associated with

the allele frequency of the genetic variant (G) and the phenotype of interest, distorting the association between G and the phenotype. In the context

of MR, population stratification could distort the association between G and educational attainment (EA) and/or the association between G and the

outcome, both of which could lead to bias in MR. ‘Assortative mating’ occurs when a heritable phenotype influences mate choice, e.g. if individuals

are more likely to select a partner with a similar EA. Assortative mating leads to correlations for parental genotypes related to assorted phenotypes,

which in turn leads to correlations between otherwise independent genotypes in the offspring. For example, if two genetic variants G1 and G2 influ-

ence EA then assortative mating on EA will lead to correlations in offspring for the EA-increasing alleles of G1 and G2 even if the two alleles are un-

linked (linkage disequilibrium ¼ 0). ‘Indirect genetic effects’ occur when the genotypes of relatives (e.g. parents, siblings) influence the phenotypes of

the index individual. For example, parents with a higher EA polygenic score may produce an environment for their offspring that is more conducive

to learning than parents with a lower EA polygenic score. This has been previously illustrated by evidence that non-transmitted parental EA polygenic

scores also associate with offspring phenotypes
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that share zero alleles IBD > 0.04. Sibships of two or more

siblings were constructed based on the identified sibling-

pairs.

Educational attainment was measured using the follow-

ing question: ‘What is your highest level of education?’

Participants answered one of five categories: (i) primary

school, (ii) high school for 1 or 2 years, (iii) complete high

school, (iv) college or university for <4 years and (v) college

or university for �4 years. Participants with university

degrees were assigned to 16 years of education, those who

completed high school were assigned to 13 years, those who

attended high school for 1 or 2 years were assigned to

12 years and those who only attended primary school were

assigned to 10 years. Information on health outcome pheno-

types (BMI, smoking, SBP, mortality) and genotyping for

HUNT study participants is contained in the Supplementary

methods (available as Supplementary data at IJE online).

Finnish twin cohort

Overview

The older part of the Finnish twin cohort was established in

1974 by identifying pairs of persons born on the same day,

in the same local community, of the same sex and with the

same surname at birth from the population registers of

Finland. The selection was restricted to twin pairs born be-

fore 1958 and the baseline analysis cohort consists of 16 282

pairs (32 564 twins). A baseline questionnaire was mailed in

the autumn of 1975 with some data collection in early 1976.

It contained questions relating to the assignment of zygosity

as well as questions on various phenotypes including smok-

ing behaviour, weight and height.41 All twins in the cohort

were asked to participate in a second survey in 1981.

Data on educational attainment were collected in both

the 1975 and 1981 questionnaires using the following

questions: ‘What kind of education have you had, and

what courses have you taken?’ The 1975 information was

updated by the 1981 response if additional educational at-

tainment was reported. Eight response categories ranging

from less than primary school (4 years) to university educa-

tion (17 years) provided by study participants were con-

verted into years of education. The ninth response

alternative was ‘Other’ and coded as missing (n¼587,

2.1% of participants). Years of education were then stan-

dardized to a mean of 0 and standard deviation of 1.

Further information on Finnish twin cohort phenotypes is

contained in the Supplementary methods (available as

Supplementary data at IJE online).

A validated algorithm classified respondent pairs as

monozygotic (MZ), dizygotic (DZ) or of unknown zygos-

ity (XZ) (excluded from all analyses).42 Data on

educational attainment and mortality were available for

27 229 individual twins living in Finland, which included

2779 individual twins (co-twin did not reply), 989 pairs of

uncertain zygosity, 3518 MZ pairs and 7718 DZ pairs.

Statistical analysis

Population and within-sibship models

The population model is a standard regression model in

which the outcome is regressed (e.g. linear) on the expo-

sure (educational attainment or educational attainment

polygenic score: PGS). The within-sibship model is an ex-

tension to the population model including the mean sibship

exposure value in the model, e.g. mean educational attain-

ment value of each sibship. Each sibling’s exposure value is

centred on the mean sibship exposure value. To account

for relatedness between siblings, standard errors are clus-

tered by sibship in both models using a sandwich estima-

tor. More information on these models is contained in

previous publications.18,19

Using individual-level data on 72 932 individuals from

32 351 sibships of European ancestry from UK Biobank

(n¼ 40 734) and HUNT (n¼32 198) we estimated the as-

sociation between measured educational attainment and

outcomes (BMI, pack years of smoking, SBP, mortality) us-

ing population and within-sibship models. In population

models, the outcome was regressed on educational attain-

ment including relevant covariates. In within-sibship mod-

els, the mean educational attainment of each sibship was

included as a covariate to account for variation in educa-

tional attainment between sibships. The continuous out-

comes were chosen because they have previously been

shown to be associated with educational attainment and

because they were measured in the majority of UK

Biobank and HUNT study participants. Linear regression

models were used for BMI, pack years and SBP. Cox-

proportional hazards models were used for mortality using

date of birth as the baseline in UK Biobank and HUNT.

Educational attainment, BMI, pack years and SBP were

standardized after residualizing on birth year and sex.

We performed population and within-sibship PGS analy-

ses using the UK Biobank and HUNT sibship data. The edu-

cational attainment PGS was constructed using weightings

and directions of effect of independent variants identified at

genome-wide significance (P< 5�10–8) in a BOLT-LMM43

GWAS of educational attainment in UK Biobank with the

siblings excluded, as in a previous publication.18 The sum-

mary data were linkage disequilibrium clumped (r2 < 0.001,

physical distance threshold¼ 10 000 kb, P<5� 10–8) in

PLINK44 to generate 350 independent genetic variants. We

regressed the resulting PGS on age and sex, and the
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standardized residuals (mean 0, SD¼ 1) were used in the

analysis. In the population model, the outcome was regressed

on the PGS. In the within-sibship model, the mean sibship

PGS was included as a covariate to account for variation in

parental genotypes. The PGS approach is equivalent to an

inverse-variance weighted estimator from a summary-based

two-sample MR analysis.45

UK Biobank and HUNT meta-analyses

Population and within-sibship models were fitted sepa-

rately in UK Biobank and HUNT, and the estimates were

meta-analysed using a fixed-effects model in the metafor R

package. Shrinkage in estimates from the population to the

within-sibship model was estimated as follows, with stan-

dard errors estimated using the delta method:

bPop � bWS

bPop

UK Biobank and HUNT MR

MR estimates of the effects of educational attainment on the

outcomes (BMI, pack years, SBP, mortality) were derived

from the meta-analysis PGS association estimates (i.e. PGS–

educational attainment, PGS–outcome). The point estimate

was calculated using the Wald ratio of the PGS–outcome

and PGS–educational attainment associations. Wald ratio

standard errors were estimated using the delta method.

MR analyses require three core assumptions. First, ge-

netic variants are strongly associated with the exposure

(relevance); second, no unmeasured confounders of the as-

sociation between the genetic variants and the outcome (in-

dependence); and third, genetic variants only influence the

outcome via the exposure (exclusion–restriction).46–48 As

discussed in previous work,17 MR estimates of categorical

exposures such as educational attainment should generally

be interpreted in terms of liability (e.g. liability to educa-

tional attainment) rather than effects of the categorical

phenotype (e.g. years of schooling).

Within-sibship meta-analysis GWAS MR

We also performed two-sample MR analyses using within-

sibship GWAS summary data from a recent within-sibship

meta-analysis GWAS of 25 phenotypes.18 This study in-

cluded data from UK Biobank, HUNT and an additional

16 cohorts (each with between N¼ 618 and 13 856).

GWAS data were available for educational attainment

(N¼ 128 777) as well as BMI (N¼ 140 883), SBP

(N¼ 109 588), ever smoking (N¼ 124 791) and cigarettes

per day in ever smokers (N¼ 28 134). These GWASs were

conducted in the same studies so there is near-complete

sample overlap between the different GWASs.

As genetic instruments, we used the same 350 genetic

variants as in the UK Biobank and HUNT analyses de-

scribed above, which were derived from a BOLT-LMM

GWAS of educational attainment in UK Biobank with the

siblings excluded (P< 5� 10–8, r2 < 0.001, physical dis-

tance threshold¼ 10 000 kb). Using the within-sibship

meta-analysis GWAS data we then derived MR effect esti-

mates (bMR) of educational attainment on the four health

outcomes in both population and within-sibship models

using an inverse-variance weighted approach18 as follows:

bMR ¼
Xn

1

bk
EA �bk

OUT

ðrk
OutÞ

2
=
Xn

1

ðbk
EAÞ

2

ðrk
OutÞ

2

where bEA represents the association estimate from educa-

tional attainment GWAS, bOut represents the association

estimate from outcome GWAS, rOut represents the stan-

dard error from outcome GWAS, n represents the number

of genetic variants and k represents the k-th variant.

The standard error of bMR was estimated as follows:

SE bMRð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
Pn

1
ðbk

EAÞ
2

ðrk
Out
Þ2

vuut

where n represents the number of genetic variants and k

represents the k-th variant.

Finnish twin cohort analysis

UK Biobank and HUNT analyses included both twin and

non-twin siblings, with the vast majority (>95%) being non-

twin siblings of different ages—a potential concern with edu-

cational attainment trends changing over time. We investi-

gated whether the observed inverse association between

educational attainment and mortality persisted in twin-only

analyses using data on 27 229 individuals from the Finnish

twin cohort that included 3518 MZ and 7718 DZ twin pairs.

The association between educational attainment and mor-

tality was estimated in the whole sample (N¼ 27 229) using

Cox-proportional hazards models with adjustment for sex

and smoking (population model). Stratified Cox-proportional

hazard models were applied to MZ and DZ twins separately

with baseline hazards stratified by twin pair, with adjustment

for smoking. All twin pairs included were of the same sex. All

analyses were performed in Stata using the stcox package.

Results

Phenotypic educational attainment, health

outcomes and mortality in UK Biobank and HUNT

Higher educational attainment was strongly associated

with lower BMI, pack years of smoking, SBP and mortality
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in both population and within-sibship models. In within-

sibship models, a 1-SD higher educational attainment (cor-

responding to an additional 2.3 years in UK Biobank and

1.2 years in HUNT) was associated with lower BMI (0.04

SD; 95% CI 0.03, 0.05), fewer pack years of cigarette

smoking (0.10 SD; 95% CI 0.08, 0.12), lower SBP (0.06

SD; 95% CI 0.04, 0.07) and lower mortality [hazard ratio

(HR) 0.90; 95% CI 0.86, 0.93]. Population estimates that

did not account for family-level confounding were in the

same direction but substantially larger (34% for mortality to

146% for BMI) than the within-sibship point estimates

(Figure 2 and Supplementary Table S1, available as

Supplementary data at IJE online).

Phenotypic educational attainment and mortality

in the Finnish twin cohort

In non-twin population regression models, using data from

the whole sample, 1-SD higher educational attainment was

strongly associated with lower mortality (HR 0.95; 95% CI

0.93, 0.97) after adjusting for sex and smoking. Estimates

from the within DZ twin pair (HR 0.91; 95% CI 0.83, 1.01)

and within MZ twin pair (HR 0.87; 95% CI 0.70, 1.08)

analyses were broadly consistent with the Finnish twin cohort

population estimate as well as the UK Biobank and HUNT

within-sibship estimate (HR 0.90; 95% CI 0.86, 0.93) but

confidence intervals overlap with the null hypothesis. In sex-

stratified twin analyses, point estimates were larger in magni-

tude for males than for females (Supplementary Table S2,

available as Supplementary data at IJE online).

Educational attainment PGS, educational

attainment, health outcomes and mortality in

UK Biobank and HUNT

The educational attainment PGS was strongly associated

with educational attainment in both population and within-

sibship models. Consistently with previous studies,27,29,49 the

population PGS association estimate attenuated by 49%

(95% CI 40%, 58%) in the within-sibship model. In the pop-

ulation model, a higher educational attainment PGS was as-

sociated with lower BMI, fewer pack years of cigarette

smoking, lower SBP and lower mortality. In the within-

sibship model, the PGS was associated with BMI, cigarette

Figure 2 Phenotypic educational attainment and health outcomes. Figure 2 shows associations between phenotypic educational attainment (years in

full-time education derived using qualifications) and body mass index, smoking (cigarettes, measured in pack years), systolic blood pressure and

mortality in the population and within-sibship models in UK Biobank and HUNT. Estimates for mortality are presented as hazard ratios with the rest

of the estimates presented in standard deviation units. BMI, body mass index; SBP, systolic blood pressure
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smoking and SBP in the same direction but there was limited

evidence for an association with mortality, likely because of

lower statistical power. The within-sibship PGS association

estimates for BMI and cigarette smoking were 49% (95% CI

16%, 82%) and 52% (95% CI 26%, 79%) smaller than the

population PGS estimates, respectively, consistently with the

within-sibship attenuations for educational attainment

(Figure 3 and Supplementary Tables S3 and S4, available as

Supplementary data at IJE online).

MR of educational attainment on health outcomes

and mortality using UK Biobank and HUNT PGS

estimates

Population MR estimates indicated that a 1-SD increase in

liability to educational attainment reduced BMI by 0.24

SD units (95% CI 0.19, 0.29), pack years of cigarette

smoking by 0.33 SD (95% CI 0.28, 0.39) and SBP by 0.22

SD (95% CI 0.17, 0.27) (Figure 4). Within-sibship MR

estimates were consistent with the population MR esti-

mates for BMI (0.24; 95% CI 0.09, 0.39), cigarette smok-

ing (0.31; 95% CI 0.14, 0.48) and SBP (0.35; 95% CI

0.18, 0.52). The population and within-sibship MR point

estimates for mortality were also consistent (HR per SD in-

crease in educational attainment; population 0.76; 95% CI

0.67, 0.88; within-sibship 0.76; 95% CI 0.48, 1.20) but

the imprecision of the within-sibship estimate prevented

stronger conclusions.

Differences between population and within-sibship MR

estimates are a function of differences in the PGS–outcome

and PGS–educational attainment estimates. If the PGS esti-

mates change by the same proportion from the population

model to the within-sibship model, then the population

and within-sibship MR estimates will be consistent

(Figure 4 and Supplementary Tables S4 and S5, available

as Supplementary data at IJE online).

MR of educational attainment on health outcomes

using within-sibship GWAS summary data

Population and within-sibship MR estimates based on the

within-sibship GWAS summary data provided further evi-

dence that higher educational attainment lowers BMI, risk

of ever smoking and SBP. Confidence intervals for

Figure 3 Educational attainment polygenic score (PGS), educational attainment and health outcomes. Figure 3 shows associations between an educa-

tional attainment PGS and education (measured educational attainment), body mass index, cigarette smoking (pack years), systolic blood pressure

and mortality in the population and within-sibship models in UK Biobank and HUNT. Estimates for mortality are presented as hazard ratios per stan-

dard deviation increase in the polygenic score with the rest of the outcome estimates presented in standard deviation units
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cigarettes per day overlapped the null in both models but

statistical power was limited because data were only col-

lected in ever smokers. There was some evidence that the

within-sibship MR estimates were smaller than the popula-

tion estimates for BMI (51%; 95% CI 19%, 83%) and

SBP (52%; 95% CI 4%, 100%), which was not observed

in the UK Biobank and HUNT analyses. The standard

errors for the within-sibship MR estimates for BMI and

SBP were 47% and 49% smaller, respectively, in the two-

sample MR analyses compared with the UK Biobank and

HUNT analyses because of the larger sample size of the

within-sibship GWAS (Figure 5 and Supplementary Table

S6, available as Supplementary data at IJE online).

Discussion

We used within-sibship MR to provide evidence that higher

liability to educational attainment reduces BMI, cigarette

smoking and SBP. These findings strengthen evidence for

beneficial effects of educational attainment, or closely corre-

lated trait, on adulthood health by illustrating that previously

observed effects persist when population stratification,

assortative mating and indirect genetic effects from parents

are controlled for in within-sibship MR.

An important consideration for MR analyses of educa-

tional attainment is that genetic variants instrument liability

to educational attainment, a latent measure of educational at-

tainment, rather than specific measured educational attain-

ment phenotypes (e.g. having a university degree)17,50 or

other related traits (e.g. cognition). Genetic variants influence

measured education phenotypes via their effect on liability to

educational attainment and so genetic association estimates

will capture all effects of liability, which may or may not act

via changes in the measured education phenotype. For exam-

ple, an educational-attainment-increasing genetic variant

may influence an outcome because the variant increases the

probability that an individual attains a measured qualifica-

tion such as a university degree, but also because the variant

influences related unmeasured characteristics such as choice

of educational track, a personality phenotype or cognitive

ability.

The distinction between measured education phenotypes

and liability to educational attainment is particularly relevant

in the within-sibship model because siblings often have

Figure 4 Mendelian randomization (MR) estimates of educational attainment on health outcomes from UK Biobank and HUNT. Figure 4 shows popu-

lation and within-sibship MR estimates of the effect of educational attainment on body mass index, smoking (pack years of cigarette smoking), sys-

tolic blood pressure and mortality. These estimates were derived using the polygenic score association estimates in Figure 3 from the UK Biobank

and HUNT studies. Estimates are presented in standard deviation units for body mass index, smoking and systolic blood pressure, and as hazard ra-

tios for mortality
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genotype differences for educational attainment variants but

often have the same measured educational attainment values

(e.g. both siblings attended university). A conventional MR

analysis assumes that genetic differences between siblings do

not affect the outcome if the siblings have the same value for

the measured education phenotype. This is implausible as ge-

netic variants are likely to influence unmeasured differences

between siblings such as the choice of degree. Therefore, we

interpret the within-sibship MR results as providing evidence

that an underlying liability to education has beneficial effects

on health, rather than specific educational attainment

qualifications.17,51

Consistently with previous studies,18,26,52 the associa-

tion estimate between the educational attainment PGS and

educational attainment attenuated on average by around a

half from the population model to the within-sibship

model when using weights from a GWAS of unrelated indi-

viduals. However, the association estimates of educational

attainment PGS on health outcomes were also attenuated

by a similar degree. As the attenuation was balanced, the

population and within-sibship MR effect estimates, which

are a ratio of single nucleotide polymorphism (SNP) (or

PGS)–outcome and SNP–exposure associations, were con-

sistent. These results illustrate how population stratifica-

tion, assortative mating and indirect genetic effects can

distort genetic association estimates but will not necessar-

ily affect MR estimates if the gene–exposure and gene–out-

come association estimates are affected proportionally.

A caveat of our work is that MR estimates are sensitive

to the assumption that genetic variants only influence the

outcome via their effect on (liability to) educational attain-

ment (exclusion–restriction), which could be violated by

directional pleiotropy. Previous work has illustrated that

MR with measured educational attainment is unlikely to

satisfy this assumption, despite use of pleiotropy-robust

methods.16 We presented estimates in terms of liability to

educational attainment to acknowledge the likelihood of

such effects but note that, in the context of interventions,

effects of liability to educational attainment are less useful

than effects of specific education phenotypes. Future stud-

ies could use multivariable MR and structural equation

modelling approaches to disentangle mechanisms underly-

ing our results by exploring potential pleiotropic pathways

potentially relating to both cognitive and non-cognitive

phenotypes.53,54

Our work has further limitations. First, our within-

sibship MR estimate for mortality was imprecise because

mortality data were only available in UK Biobank and

HUNT. Second, educational attainment is known to influ-

ence participation in biobanks so our study may have been

susceptible to selection bias.55 Third, the gene–exposure

and gene–outcome estimates in the within-sibship GWAS

two-sample MR analyses were from largely overlapping

samples, which could have potentially induced modest

bias.56 Fourth, there is evidence that within-sibship models

using PGS based on weights from population GWAS could

Figure 5 Mendelian randomization estimates of educational attainment on health outcomes using summary data from the within-sibship Genome-

wide Association Study (GWAS). Figure 5 shows population and within-sibship Mendelian randomization estimates (inverse-variance weighted) of

the effect of educational attainment on body mass index, cigarettes per day measured in ever smokers only, ever smoking and systolic blood pres-

sure. These estimates were derived using GWAS summary statistics from a within-sibship meta-analysis GWAS of �18 studies. Estimates are pre-

sented in standard deviation units except for ever smoking (binary) where estimates are in terms of risk difference %. BMI, body mass index; CPD,

cigarettes per day; SBP, systolic blood pressure
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introduce bias.57 This could have potentially affected our

MR estimates from the individual-level PGS approach in

UK Biobank and HUNT but not our MR estimates using

the within-sibship meta-analysis GWAS data where the

gene–exposure and gene–outcome estimates were derived

from within-sibship models. Estimates from the two differ-

ent MR approaches provided consistent qualitative evi-

dence of effects of educational attainment on the tested

outcomes suggesting that this potential limitation is un-

likely to have affected our overall conclusions. There were

some quantitative differences between the two approaches,

with evidence of within-sibship shrinkage from the

summary-based MR estimates of educational attainment

on BMI and SBP but not from the PGS approach. Fifth,

within-sibship models do not control for indirect genetic

effects of siblings. Previous studies have indicated that sib-

ling indirect genetic effects are likely to be small, suggest-

ing that they are unlikely to have impacted our findings.

We found compelling evidence that educational attain-

ment (or liability to educational attainment) influences

BMI, smoking and SBP, even after accounting for popula-

tion stratification, assortative mating and indirect genetic

effects of parents. Within-family MR more closely emu-

lates a randomized experiment because of random varia-

tion in meiotic segregation within families31 but has been

historically limited by data availability. The emerging

availability of within-family GWAS data will enable

researchers to better disentangle the effects of social and

behavioural phenotypes on health outcomes.
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