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Chapter 1

Introduction

Change detection is a important task in remote sensing, aimed at identifying and characterizing

changes on Earth’s surface. It plays a central role in various applications, including land use mon-

itoring, agriculture, forestry, and urban planning. In offshore area, change detection can also be used

to monitor for changes in bodies of water such as oceans, lakes, and fjords. Many traditional change

detection techniques focus on binary change detection, which are limited to determining whether

a change has occurred or not. However, there is a growing need to develop more advanced meth-

ods that can distinguish between different types of changes and relay information about detected

changes, enabling multiclass change detection.

The need for better change detection methods is driven in part by the growing availability of high

quality and frequent Earth observation data from multispectral and hyperspectral satellites. One of

these satellites, the Hyper-Spectral Small Satellite for Ocean Observation or HYPSO-1, has been de-

veloped by the Small Satellite Lab at the Norwegian University of Science and Technology (NTNU).

The objectives of HYPSO-1 include monitoring coastal waters and to identify and track harmful algal

blooms (HABs) that threaten aquaculture. Since becoming operational in 2022, HYSPO-1 has taken

many repeat observations of ocean and land targets using an onboard hyperspectral imager (HSI).

The HSI allows images to be taken with at extremely high spectral resolution. Furthermore, HYPSO-

1’s sun synchronous orbit and pointing capabilities have also enabled short target revisit times al-

lowing for frequent captures of the same locations compared to other satellites. [1] The unique ca-

pabilities of HYPSO-1 have lead to a growing dataset of hyperspectral images, many of which can be

combined into time series datasets for change detection analysis. Due to the high spectral resolu-

tion of these datasets, novel and efficient change detection techniques are needed that can evolving

phenomena present in bodies of water.

In this paper, several approaches that combine the anomaly detection capabilities of Indepen-

dent Component Analysis (ICA) with traditional change detection techniques are proposed for ana-

lyzing hyperspectral imagery. ICA is a data transformation-based method used in signal processing

that is capable of separating mixed data into statistically independent components or features. In

hyperspectral images, ICA enables efficient spectral un-mixing and extraction of features that can be

used to augment traditional change detection methods. [2] [3]. The ICA-based change detection ap-

proaches aim to provide multiclass, bitemporal, and feature-based change detection capabilities. ICA

has several advantages that makes it a suitable algorithm for use in change detection. Firstly, it has

anomaly detection capabilities and can identify and localize abnormal spectral signatures or feature

2
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in the ocean, distinguishing them from the normal background spectral signatures. The anomalous

features can indicate algal blooms or other evolving abnormal ocean phenomena which may poten-

tially experience changes over time. Another advantage of ICA is that it is unsupervised, eliminating

the need for labelled training data or prior knowledge of the features present in the hyperspectral im-

ages. Finally, ICA can recover spectral information about the data in the form of ICA weights. This

informationa can be used to identify and characterize targets obersved with ICA methods.

The development of ICA-based change detection techniques will contribute a valuable proof of

concept demonstration of tracking HABs and other ocean phenomena by location and over short

term periods of time. In the future, the work could be further developed to extract more specific

information about detected anomalies and changes such as algae species and concentration. Addi-

tionally, the work provides a foundation that could be evolved into an automated change detection

system. Information from ICA-based change detection could be used track and predict HABs, pro-

tecting aquaculture assets and monitoring water quality in both oceans and lakes. ICA-based change

detection could also be used to promote and improve sustainability within these application areas

in the future. Finally, work completed on developing ICA-based change detection methods will also

expand expertise in the utilization of hyperspectral data from current and future small satellite mis-

sions at NTNU. The knowledge gained in this area could in the future be used to contribute to joint

ocean observation systems using a combination of satellite, aerial, and aquatic monitoring agents.



Chapter 2

Background

2.1 Remote Sensing

2.1.1 Overview

Remote sensing is the practice of acquiring information about objects or phenomena from a dis-

tance, without physical contact. It involves the use of remote sensors and instruments on satellites,

aircraft, or ground-based platforms to collect data from an object or target. Remote sensing tech-

niques capture and measure electromagnetic radiation reflected or emitted by the target. Depending

on the source of the electromagnetic radiation, remote sensing techniques can either be active and

passive. Passive remote sensing relies on light or other forms of electromagnetic radiation being pro-

duced by an external source such as the sun and passively received by a sensor. Passive techniques

include RGB imaging, multispectral imaging, and hyperspectral imaging. The other class of remote

sensing techniques, active techniques, use sensors that emit and bounce radiation off of targets to

make measurements. Synthetic aperture radar (SAR) is on such example of an active remote sensing

technique.

2.1.2 Hyperspectral Remote Sensing

Hyperspectral imaging, as known as imaging spectroscopy, is a remote sensing technique that is used

for passive optical remote sensing. It involves capturing images with continuous spectral measure-

ments across a range of the electromagnetic spectrum. Typically, hyperspectral imaging operates

within the visible and near infrared (NIR) regions of the electromagnetic spectrum. The continuous

spectral measurements gives hyperspectral images a high spectral resolution. The high spectral reso-

lution of hyperspectral images enables the precise measurement of the spectral signature of a pixel or

target. Using spectral signatures, objects or regions of materials can be characterized and accurately

identified.

The spectral signatures data produced by hyperspectral imaging are generated as sets of two di-

mensional spectral images that contain information about how the target reflects light at a particular

wavelength within the measured electromagnetic spectrum. When combined, the two dimensional

spectral images form a data structure with three dimensions. These dimensions are equal to the im-

age height, width, and number of spectral bands or channels [4]. This type of data structure is known

as a datacube and is depicted in Figure 2.1.

4



CHAPTER 2. BACKGROUND 5

Figure 2.1: Spatial and spectral dimensions of a hyperspectral datacube.

Each spectral image within the datacube consists of exactly one spectral band. Together with

the other spectral images, the datacube serves as a spectral fingerprint for targets within the hyper-

spectral image. By analyzing the entirety of the hyperspectral data, it is possible to obtain information

describing the imaging target’s composition. Since hyperspectral images can be composed of spectral

signals from many different materials, the measurement of spectral signatures through hyperspectral

imaging involves many aspects of classification and anomaly detection topics.

Hyperspectral datacubes contain detailed spatial and spectral information, however they require

significant amounts of processing to manipulate and interpret the data [2]. In particular, simply han-

dling the high dimensionality of the data is a challenge since the amount of data represented in a

datacube can be many times that of a conventional multispectral or RGB image.

2.1.3 Multispectral Remote Sensing

Hyperspectral imaging is often contrasted to multispectral imaging, an imaging technique that does

not provide as high of a spectral resolution as hyperspectral imaging. Spectral signatures from multi-

spectral imaging are much more coarse and discontinuous and provide less overall information about

imaging targets. Compared to hyperspectral imaging, multispectral imaging only samples a handful

of wavelengths in the electromagnetic spectrum at discontinuous spaced intervals. Figure 2.2 offers

a visual comparison between different imaging techniques. The wavelength bands that are measured

in multispectral imaging are usually selected based on their usefulness for making observations or

alignment with atmospheric optical windows. Like hyperspectral imaging, the bands typically range

from the visible and infrared regions of the electromagnetic spectrum. Since multispectral imaging

uses fewer spectral bands, it also produces less overall data. Consequently, multispectral imaging

does not face as many challenges as hyperspectral imaging when it comes to efficiently storing, pro-

cessing, and manipulating image data.



CHAPTER 2. BACKGROUND 6

Figure 2.2: Comparison between the amount of spectral sampling in RGB, multispectral, and hyper-
spectral imaging [5].

Many previous studies about anomaly detection and change detection have used multispectral

data rather than hyperspectral data. This is because hyperspectral imaging satellites are a relatively

recent addition to satellite remote sensing compared to multispectral satellites.

2.1.4 Satellite Remote Sensing

As mentioned previously, remote sensing instruments can be carried onboard different platforms.

One type of platform are orbiting satellites. Satellite remote sensing allows the Earth’s surface and

atmosphere from space. It involves the use of satellites equipped with passive or active imaging sen-

sors to capture information about the Earth. It is frequently used to observe the Earth’s climate and

environmental conditions on land or in water. Satellite remote sensing offers several advantages over

other ground-based or airborne data remote sensing methods. Firstly, satellites allow for the observa-

tion of large areas continuously as well as observation of remote or inaccessible regions. This removes

the need to be physically present in a location to take measurements. Additionally, satellite data can

be captured repeatedly over time at the same location, enabling the analysis of changes and trends.

This is a unique advantage not possessed by airborne remote sensing instruments, which cannot re-

main airborne indefinitely.

An important factor for remote sensing satellites is effective revisit time. Effective revisit time is

the length of time between subsequent observations of the same location. Revisit time is an especially

important measure for satellite operations and scientific observations if the satellite is used to track

changes or phenomena over a period of time [6]. To maximize the frequency of observation and

shorten revisit times, some Earth observation satellites are placed into sun-synchronous polar orbits.

Polar orbits are designed in such a way that imaging satellites pass over the Earth’s poles during each

orbit. This configuration allows satellites to have visibility of the entire surface of the Earth each day,

as they traverse along these polar paths. Moreover, sun-synchronous orbits are configured such that

the satellite pass over a location during its local noon. This means that the lighting conditions will be

similar for all captures, disregarding the effects of latitude or seasonal changes.

Remote sensing satellites have carried both multispectral and hyperspectral instruments. Ini-

tially, hyperspectral remote sensing was primarily conducted through airborne imaging campaigns,

where sensors were carried onboard aircraft rather than satellite platforms. This began to change be-

ginning in the 2000s. The Earth Observation-1 (EO-1) mission by NASA’s Goddard Space Flight Center

(GSFC), also known as Hyperion, was significant since it was the first hyperspectral imaging satellite

mission with publicly accessible hyperspectral data. Hyperion launched in 2000 and operated from
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2003 until its decommissioning in 2017. [7] [8]

In recent years, there has been an increase in the number of hyperspectral satellite missions, both

in the institutional and private sectors. The Italian PRISMA (PRecursore IperSpettrale della Missione

Applicativa or Hyperspectral Precursor and Application Mission) satellite was launched in 2019 and is

in current operation monitoring land and water environments [9]. PRISMA observes in wavelengths

from 402 nm to 2371 nm and has a total of 242 spectral bands [8]. Other countries like China have also

launched and operated hyperspectral satellites. GaoFen-5, an environmental monitoring satellite,

was launched in 2018 [10]. Recently, independent companies have sought to develop their own hy-

perspectral satellites to sell and deliver data products to customers. These companies include Maxar

and Orbital Sidekick [11] [12].

Historically, the availability of multitemporal hyperspectral imagery has been limited due to the

scarcity of Earth observation satellites carrying hyperspectral imagers onboard as compared to multi-

spectral imagers. Additionally, hyperspectral satellite imagery has had long revisit times for the same

location, owing to the limited number of hyperspectral satellites and the narrow spatial coverage that

the sensors provide. However, this landscape is changing with the emergence of current and up-

coming satellite missions with new capabilities such as more frequent revisit and observation times.

With these new satellites, the amount of available satellite-based hyperspectral imagery datasets will

expand. As a result, the number of available multitemporal datasets is increasing significantly, creat-

ing a need for the development of efficient processing and change detection methods to effectively

analyze and draw meaningful information from these datasets [4]. The ability for hyperspectral spec-

tral satellites to make more frequent and repeated observations is also driving a need for improved

hyperspectral data analysis techniques such as better change detection algorithms [8].

2.2 HYPSO-1 Mission

Figure 2.3: HYPSO-1 mission logo.

2.2.1 Overview

The Hyper-Spectral Small Satellite for Ocean Observation, or HYPSO-1, is a 6U cube satellite de-

veloped and operated by the Norwegian University of Science and Technology (NTNU) Small Satel-

lite Lab to demonstrate the Earth observation abilities of small satellites, particularly for ocean and

coastal waters monitoring. The mission objectives of HYPSO-1 are to observe the Earth’s oceans with

a hyperspectral imager (HSI) and to identify and track harmful algal blooms (HABs). Launched in
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January 2022, HYPSO-1 is located in a 500 km altitude sun-synchronous orbit (SSO) that ensures con-

sistent sunlight conditions during hyperspectral observations in additional to viewing access to the

entirety of the Earth’s surface. The operation of HYPSO-1 involves using the onboard HSI to scan

swaths the Earth to generate hyperspectral images as shown in Figure 2.4. The scans of the Earth,

known as hyperspectral captures, are generated as HYPSO-1 passes over the target it is observing.

The hyperspectral captures can be processed onboard the satellite or saved to memory and down-

linked to ground stations when the satellite comes within range of a ground antenna. [13] [1]

Figure 2.4: HYPSO-1 mission concept. To generate hyperspectral images, the satellite relies on its
forward motion to image the Earth’s surface [13].

2.2.2 Hyperspectral Imager (HSI)

The main payload of HYPSO-1 is the hyperspectral imager (HSI). The HSI was developed at NTNU

and can be used to observe swaths of the Earth surface at visible wavelengths from approximately

400 nm to 800 nm [13]. It enables HYPSO-1 to produce hyperspectral images using wavelengths from

a contiguous range of narrow spectral bands. This in turn enables HYPSO-1 to provides a high spectral

imaging resolution for observing targets. [14]

The HSI utilizes a specific imaging technique called push-broom scanning. The push-broom

scanning technique operates by obtaining an image through a narrow slit and optical prism assem-

bly. The prism divides light into different contiguous wavelengths that are collected using a line of

detectors set perpendicular to the direction of travel of the HSI and satellite. With this setup, the HSI

scans the ground one pixel line at a time and relies on the satellite’s forward movement to construct

a full image as it passes over the target, as shown in Figure 2.5. [13]

The hyperspectral images that are produced using the HSI onboard HYPSO-1 have a resolution

of 956 pixels by 684 pixels and with 120 spectral bands [13]. The first dimension (956) represents

pixels in the along track direction of the capture while the second dimension (684) represents pixels

in the cross track direction. These images are stored as hyperspectral datacubes, as shown in Figure

2.6. Hyperspectral datacubes are three dimensional with the first two dimensions corresponding the

height and width of the image and the third dimensions corresponding to the spectral bands.
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Figure 2.5: Illustration of the push-broom imaging technique. The HSI scans the ground through a
small slit one line at a time in the along-track direction [13].

Figure 2.6: Hyperspectral datacube displaying the relationship between the spatial dimensions and
spectral dimension.

2.2.3 Capabilities and Advantages

HYPSO-1 has several unique design and operational advantages that set it apart from larger satel-

lites. Firstly, being a cube satellite, HYPSO-1 offers a cost-effective approach to its development and

construction, making it a more economical option compared to larger satellites. Naturally, this puts

similar satellite missions within reach for institutions and companies that are interested in the oper-

ation benefits of an Earth observing satellite.

Another advantage of HYPSO-1 is its ability to perform repeated observations of the same loca-

tions. This ability is achieved through the satellite’s sun-synchronous polar orbit and pointing capa-

bilities, which allows for controlled imaging of targets using the HSI. The pointing capability allows

HYPSO-1 to rotate and orient itself towards imaging targets, allowing for hyperspectral captures to be

taken even when the target is not directly below HYPSO-1. This built-in operational flexibility enables

HYPSO-1 to achieve shorter revisit times and to re-observe targets within a short time frame. The re-

visit ability is particularly valuable for change detection purposes since it permits the creation of time

series datasets over relatively brief periods, on the time span of days or weeks rather than months or

years. [13] [1]

Finally, the NTNU SmallSat Lab, which operates HYPSO-1, is also able to schedule captures on
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demand. In general, capture requests can be made with a lead time of a few days, depending on

weather conditions and cloud cover considerations for the specific target of interest.

2.3 Harmful Algal Blooms (HABs)

2.3.1 Overview

One of the mission objectives of HYPSO-1 is to identify and track Harmful Algal Blooms, also known

as HABs. HABs are large occurrences of algae that produce natural toxins which can appear suddenly

in a body of water. These toxins are detrimental to the surrounding environment and ecosystems

and can negatively impact aspects related to human activities such as aquaculture or drinking water

quality. A common example of toxic algae is blue-green algae or cyanobacteria which can produce

HABs in both oceans and lakes. [13]

Figure 2.7: Surface level image of a harmful algal bloom in Lake Erie in 2018 [15].

In recent years, there have been several instances of HAB-related events. One notable occurrence

took place in 2016 when the fjords in the western Patagonia region of Chile were heavily impacted by

a major algal bloom. This particular HAB was caused by a species of toxin-producing algae known

as Pseudochattonella. Chile, being a significant producer of farm-raised salmon, experienced sig-

nificant aquaculture and environmental losses as a result of this HAB. The occurrence of the 2016

bloom was linked to the El Niño–Southern Oscillation, a climatic phenomenon, which is anticipated

to happen again in 2023 [16] [17]. Similarly, in 2019, Northern Norway witnessed an outbreak of toxic

Chrysochromulina algae that led to a mass die-off of farm-produced salmon along its coasts. Much

like the HAB in Chile, this event had detrimental effects on marine ecosystems and the aquaculture

industry in the region. [18]

HABs are not only limited to marine environments and they can also occur in freshwater bodies.

One notable example is Lake Erie, situated on the border between Canada and the United States. Lake

Erie frequently experiences seasonal HABs that disrupt the quality of drinking water for residents of

the region. Consequently, the seasonal monitoring of the lake and algal blooms is necessary [19].

In the case of Lake Erie, a large contributing factor to the algal bloom is agricultural run-off. The

occurrence of HABs are also influenced by climate and aquatic conditions. [20].



CHAPTER 2. BACKGROUND 11

Figure 2.8: Satellite image of an algal bloom in Norway in 2020 captured by NASA’s Terra satellite [21].

2.3.2 Remote Sensing Detection of HABs

In order to minimize the impact of HABs, timely detection is critical. Satellite remote sensing moni-

toring can assist in this and allow for regular observations that could be used to determine if an algal

bloom is beginning to develop at a particular location. Real-time or advance notice of HABs allows

for proactive measures and the implementation of mitigation strategies to protect aquaculture assets,

water supplies, and marine ecosystems.

A commonality between species of algal is the presence of chlorophyll in the organisms. Chloro-

phyll produces a distinct spectral signature, with the absorption spectrum marked by two prominent

peaks within the visible spectrum, usually around the wavelengths 450 nm and 650 nm. This is im-

portant for remote sensing detection of HABs because it allows phytoplankton that cause HABs to be

broadly identified by two distinct spectral peaks characteristic of chlorophyll. Figure 2.9 illustrates

two types of similar absorption spectrum patterns produced by chlorophyll.

Subtle variations in the spectra and peak positions of chlorophyll spectra also have the potential

of providing insights into the specific phytoplankton species present in an algal bloom. However,

detecting HABs presents challenges due to variations in absorption spectrum of algae, which can be

influenced by environmental factors, weather, illumination conditions, growth conditions, and op-

tical properties. It is important to note that the presence of algae does not necessarily indicate the

occurrence of a HAB event, as the toxicity of algae can be dependent on specific growth conditions

and species of algae [22]. These problems delve into remote sensing problems and biology that are

outside the score of this report. Using knowledge in these areas, however, it is possible to develop

optical algorithms capable of measuring chlorophyll in terms of concentration based on satellite re-

trieval values [23] [24] [25].

Monitoring and tracking algae using optical remote sensing instruments from space is already

well-established. Algae concentration estimates are already regularly produced by the European

Space Agency’s multispectral Sentinel-3 Earth observation satellite [25]. Another example of algae

monitoring is carried out by the Geostationary Ocean Color Imager (GOCI), a Korean geostationary

satellite dedicated to ocean monitoring. Unlike the hyperspectral imaging capabilities of HYPSO-1,

GOCI is a multispectral imager. The primary advantage of GOCI lies in it being a geostationary satel-

lite, as it remains fixed over a single point on the Earth’s surface (in this case, the Korean Peninsula).
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Figure 2.9: Examples of chlorophyll-a and chlorophyll-b spectra [26].

This GOCI to provide frequent observations with a one hour temporal resolution. [27]

In one study, by Huang et al. (2015) [28], observational data from GOCI was used to estimate

and track chlorophyll-a concentrations in Lake Taihu in China over periods of several days. Using

captures taken over a span of three days, the multispectral GOCI instrument was used to calculate and

map chlorophyll-a concentrations within the lake. Algae concentrations were manually mapped and

compared in each image. The study demonstrated that satellite imagers could be used to track the

spatial and temporal evolution of algae in a body of water but did not directly apply change detection

techniques in the analysis.

One concept in the remote sensing detection of HABs, is the idea of an observational pyramid. In

an observational pyramid, HAB monitoring satellites would play a role in a much larger monitoring

system. HYPSO-1 or another similar satellite could be integrated with other ocean monitoring assets

such as aerial drones, autonomous vessels, bouys, or sensors placed at specific areas of interest. By

sharing and exchanging data, these assets could achieve a more advanced monitoring of the ocean

and HABs. [29] [1]

2.4 Anomaly Detection

Anomaly detection is a process that aims to distinguish unusual patterns and observations in a set of

data. Anomalies are defined as patterns that deviate from the normal expected behavior of the data.

The nature of anomalies depends on the context of the problem but in general a feature in a set of

data is considered an anomaly if it is important for purposes of data analysis. This makes anomaly

detection distinct from other techniques such as noise removal which aims to remove extraneous

data during analysis [30]. For remote sensing applications anomaly detection is useful to revealing

and identifying certain types of natural and artificial phenomena present in remote sensing imagery.

Popular methods of performing anomaly detection for remote sensing data include RX detectors,

Gaussian mixture models (GMM), and Principal Component Analysis (PCA). [31]
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Anomaly detection is an important tool for detecting and monitoring the occurrence of HABs in

bodies of water. Because HABs are a relatively sudden and excessive accumulations of toxic algae in

a lake or the ocean, they can be treated as an anomaly compared to the normal environment. Hyper-

spectral imaging provides a means to detect HABs, since they exhibit distinct spectral signatures that

differ from the background ocean spectra. Several challenges exist in anomaly detection, however,

including determining the number of anomalies present and interpreting or labeling the detected

anomalies. A major challenge in anomaly detection is the limited availability of hyperspectral ob-

servations of HABs. HABs are relatively rare and short lived events which has limited the amount of

satellite observations of the events. This limitation rules out the use of deep learning methods, which

require large amounts of labeled training data. Since there is a lack of training data and no prior

knowledge of the anomalies, unsupervised anomaly detection methods that can function without

labeled training data are necessary.

Previous work has demonstrated that Independent Component Analysis (ICA) is a suitable algo-

rithm for detecting spectral anomalies in hyperspectral data [3]. ICA can identify, extract, and pro-

vide relative spectral information about anomalies. By exploiting a statistical property called non-

Gaussianity, ICA can separate anomalous signals from the overall hyperspectral data and enable a

search for unusual spectra relative to the background spectrum. This is particularly useful in the con-

text of HABs because as there are various types of algae, pigments, and environmental conditions that

can influence the anomalous optical spectra.

ICA not only allows for the localization of anomalies but also anomalies to be characterized by

their relative spectral signatures. This distinguishes ICA from normal sub-pixel anomaly detectors

like Reed and Xioli (RX) detectors, which cannot retrieve both spectral and spatial information about

detected anomalous signals [32]. One notable capability of ICA is its ability to detect anomalies in

hyperspectral data without requiring any prior information about the data. This means that there is

no need to know in advance how many or what types of anomalies exist in the data. Consequently,

ICA eliminates the necessity for training or using training data, allowing ICA to be used more flexibly.

By using detected anomalies and spectral information obtained from ICA, it becomes possible to

locate potential HABs in hyperspectral images, particularly with anomalies with a spectral pattern

resembling chlorophyll spectral signatures. ICA can also identify other features appearing as anoma-

lies, such as sediments in the water. These abilities of ICA to detect anomalous signals in hyperspec-

tral data, function unsupervised, and provide both spatial and spectral information about detected

anomalies were the key motivating factors for choosing ICA for use in change detection applications.

The spectral information provided by ICA about anomalies is especially advantageous in change de-

tection, as it allows for multiclass detection opportunities.

2.5 Independent Component Analysis (ICA)

2.5.1 Overview

Hyperspectral imaging allows images to be observed at numerous contiguous spectral bands across

the visible electromagnetic spectrum at a high spectral resolution. The high spectral resolution of-

fers a more detailed characterization and analysis of the reflected or emitted light from the imaging

targets. Simply put, in hyperspectral imaging, there are more individual spectral bands that carry
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Figure 2.10: Spectrum from a hyperspectral datacube.

information than there are in RGB or multispectral imaging.

In a hyperspectral image, each pixel contains a spectrum representing the reflectance or radiance

of light at different wavelengths, as illustrated in Figure 2.10. The interaction of physical materials

with visible light varies based on their properties, composition, and chemistry. As a result, differ-

ent materials exhibit unique spectral signatures due to their distinct interactions with light. Through

analysis, these spectral signatures allows for the identification and characterization of various materi-

als captured by multispectral and hyperspectral instruments. In order to properly identification ma-

terials and extract information from hyperspectral data, understanding spectral signatures is crucial.

By comparing observed spectra to the spectra of known materials, either through a spectral library or

by analyzing distinct features like peaks or troughs, materials present in hyperspectral images can be

characterized. These spectral comparisons enable the detection of specific materials based on their

spectral patterns.

Spectral identification is conceptually simple when there is a single material present. However,

when there are two or more material present, each producing a separate spectral signature, a phe-

nomenon called spectral mixing can occur. Spectral mixing results when multiple spectral signatures

from materials located at the same pixel or neighboring pixels within a hyperspectral image are per-

ceived as a combined signal, shown in Figure 2.11. In other words, the observed spectrum at a par-

ticular pixel in a hyperspectral image may be influenced by the presence of multiple materials within

that pixel or its surrounding area. Spectral mixing heavily influenced by other factors such as the spa-

tial resolution of the hyperspectral sensor, the physical size of the target, and atmospheric conditions.

Spectral mixing undermines the direct characterization of materials based on observed spectra.

It leads to complexity in the interpretation of the hyperspectral data, because the observed spectrum

does not directly correspond to a single material but instead a combination of multiple materials. In

order to identify individual materials, the effect of spectral mixing must be reversed through a pro-

cess called spectral un-mixing. Spectral un-mixing decomposes the mixed signal back into separate

spectral sources or components that can once again be independently characterized. The spectral

un-mixing process enables the identification of multiple materials within a pixel with a mixed spec-

tral signature. The process is shown in Figure 2.12.
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Figure 2.11: Spectral mixing of four different sources, A, B, C, and D.

Fundamentally, spectral mixing and spectral un-mixing are signal processing problems. Algo-

rithms for signal un-mixing and signal decomposition specifically exist for solving similar classes of

problems. These algorithms aim to separate a mixed signal into constituent components and de-

termine the contribution or abundance of each component by treating the mixed signal as a linear

combination of multiple sources. In the context of hyperspectral imaging, the mixed signal corre-

sponds to the mixed spectrum and the components each correspond to a spectral signature from an

individual material or feature within the image.

One of the challenges of spectral un-mixing is the lack of a priori information. In the case of

mixed data, such as hyperspectral images, information regarding the spectral components present,

the specific number of spectral components, and their contributions to the mixed signal are all un-

known. It is not possible to anticipate the exact spectral components that will be present in the mixed

data. This is sometimes called a blind source separation problem. The lack of a priori information

in hyperspectral data demands that spectral un-mixing techniques can infer the constituent spectral

components by only using the observed mixed data. The inability anticipate what types of spectral

signatures or features are present in data drives spectral un-mixing techniques to use unsupervised

and data-driven approaches that can more easily adapt to previously unseen types of data.

As discussion in Section 2.4, a signal un-mixing technique that fulfills the criteria for unsupervised

operation and functioning without a priori information is Independent Component Analysis (ICA).

ICA is capable of both separating mixed signals into their constituent components as well as deter-

mining the contribution of each component. These properties make ICA suitable for solving blind

source separation problems such as analysis of mixed spectral signals in hyperspectral images. ICA
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Figure 2.12: Spectral un-mixing of three signals, A, B, C, and D. Together, the signals form a linear
combination mixture signal, shown on the left. Each signal is weighted by a value of 0.25 in the mix-
ture signal.

is based on an important principle known as the Central Limit Theorem. The Central Limit Theorem

states that the sum of random variables will be closer to a Gaussian distribution than each of the ran-

dom variables considered independently. ICA exploits the behavior of independent random variables

when they are combined with other variables. As more and more variables are combined into the

mixture, the collection begins to resemble a normal or Gaussian distribution. With the Central Limit

Theorem in mind, the source component signals in the mixture are assumed to be non-Gaussian

while noise in the mixture is assumed to be Gaussian. Under this assumption, the components are

attempted to be recovered and extracted by identifying non-Gaussian patterns in the mixture signal

[33]. There are different implementations of the ICA, however, in this work an algorithm called Fas-

tICA is used (Section 2.5.6).

2.5.2 Formulation

ICA treats hyperspectral data as a mixture signal x. This mixture data consists of a linear combination

of source signals si that each have a separate weight coefficient ai , where index i is the index of the

component source signal. In hyperspectral data, each mixture signal sample in x is represented by

a vector x with a length equal to the number of spectral bands or channels. In the case of HYPSO-1,

this quantity is 120 bands.

x =∑
i

ai si (2.1)

To simplify notation, the linear combination equation can be expressed as vectors and matrices as

is done in Equation 2.2. Using this notation, vectors are written in bold, lower case letters, while

matrices are written in bold, upper case letters.

x = As (2.2)

Once again, the mixture signal is represented by x. In the new notation, the vector s is a vector of

source signals and A is a matrix of the weight coefficients. The weight coefficients in matrix A, called
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the mixing matrix, are used to transform the source signals s to the linear combination mixture signal

x. The matrix A is an m by n dimensional matrix with m equal to the number of spectral bands and n

equal to the number of source signals or components.

To do the reverse of Equation 2.2 and transform the mixed signal x to the source signals s, the

equation can be inverted:

s = A−1x = Wx (2.3)

To further simplify notation, the inverted matrix A−1 is replaced with W, a matrix known as the un-

mixing matrix. An important thing to note is that A is not required to be a square matrix. In cases

where A is not a square matrix, then W is just the generalized left inverse of A.

At its most basic form, the expression in Equation 2.3 is the mathematical problem that ICA at-

tempts to solve. It takes a mixed signal x and attempts to decomposes it into source signals (or com-

ponents) s using W. ICA approaches this task by attempting to estimate W.

By obtaining W, it can be used to recover estimated components, labelled yi , from the mixture

signal x using Equation 2.4:

yi = wi
⊺x = wi

⊺(As) = (wi
⊺A)s (2.4)

In this equation, the vector wi is the ith row of W. Because W is estimated by ICA, the recovered

components yi are not exactly the same as the original source signals s. Instead, the recovered com-

ponents yi are an estimation of the individual source signals by ICA. These components are called

the independent components (ICs). The corresponding weights or spectra of the independent com-

ponents can be recovered from the mixing and un-mixing matrices A and W after extracting the com-

ponents.

In the process of estimating the un-mixing matrix W, two important assumptions are used [34][33]:

1. Independence: The source signals s are assumed to be completely statistically independent

from one another.

2. Non-Gaussinity: The individual source signals s are less Gaussian than the overall mixture sig-

nal x (postulated by the Central Limit Theorem). Put plainly, source or component signals are

assumed to be non-Gaussian whereas noise is assumed to be Gaussian.

Using these two assumptions, Independent Component Analysis (ICA) estimates the mixing ma-

trix W to transform the mixed signal into independent components s that exhibit maximum non-

Gaussianity. Non-Gaussianity is a statistical property referring to the deviation of a dataset distri-

bution from a Gaussian distribution. In order to assess and quantify the level of non-Gaussianity in

the independent components, an quantifiable measure is needed in the form of an objective func-

tion. A commonly used measure is negentropy, denoted as J (y) (Equation 2.5), which is based on the

continuous form of Shannon entropy H(y) (Equation 2.6):

J (y) = H(ygaussian)−H(y) (2.5)

H(y) =−
∫

p(y) logb p(y)dy (2.6)

In Equation 2.5 and Equation 2.6, y is a random variable and ygaussian is a Gaussian random vari-

able with an identical covariance matrix as y.
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Negentropy quantifies the deviation of a given random variable from a Gaussian distribution. By

maximizing negentropy, ICA can identify the components that are the most statistically independent

and non-Gaussian. It functions by using the inherent property that a Gaussian random variable will

have higher entropy H(y) than a non-Gaussian random variable. The difference in entropy values

between a Gaussian and non-Gaussian random variable can be used to construct the objective func-

tion for ICA in Equation 2.5. The values produced by negentropy always range between zero (if y is

purely Gaussian) to a positive value (if y is non-Gaussian), enabling the function to be maximized in

an iterative process. In this manner, the objective function can be used by ICA to find independent

components.

One of the disadvantages of negentropy is that is not straightforward to compute since it requires

pre-existing knowledge of the probability distribution functions of the data. Often, ICA implementa-

tions replace negentropy with an approximation or an alternative objective function function entirely.

This is the approach taken to the objective function in FastICA (Section 2.5.6), which opts for an ap-

proximation of negentropy. [34][35]

2.5.3 Preprocessing

ICA has two main preprocessing requirements. These ensure that ICA can accurately and properly

extract independent components from the mixture data. [34]

1. Centering: The ICA mixed input data x is required to have a sample mean equal to zero. The

process of subtracting the sample mean from the data such that it will have a mean of zero is

called centering. Centering ensures that the resulting independent components s will all have

zero mean.

2. Whitening: The ICA mixed input data x must be modified such that the elements within the

data are uncorrelated from one another. This step is known as data whitening and is performed

after data centering. Whitening helps meet the requirement of uncorrelated data by transform-

ing the data so that the variances of the elements are all equal to one. Following this, the co-

variance matrix of x becomes equal to the identity matrix, shown in Equation 2.7:

Cov(x) = E[xx⊺] = I (2.7)

2.5.4 Initialization

In some implementations of ICA, the un-mixing matrix W can be initialized using various methods.

A common approach is to use a random initialization, where the matrix elements are set to random

values. The choice of initialization method can influence the convergence and performance of the

ICA algorithm. The initial un-mixing matrix effectively sets the starting point of ICA and where it

begins to search for independent components the data.

2.5.5 Limitations

ICA has two notable limitations. Firstly, ICA is unable to provide information regarding the magnitude

or sign (+1 or -1) of the components s. This ambiguity arises from the unknown nature of both the

components s and the scalar coefficients within the mixing matrix A. Dividing a component s by
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a scalar value would correspondingly multiply the weight of the component by the same value in

A. The result of this limitation is that some identifiable independent components have their signs

reversed. Fortunately, the effect of this ambiguity is easy to remove by simply changing the sign of the

component. Another constraint of ICA is its inability to impose a specific ordering of the components.

This is due to the linear combination of weighted sources described in Equation 2.1. Because the

terms in the linear summation are commutative, there is no specific order among the independent

components (ICs) [34]. Both of these limitations arise directly from the assumptions and formulation

of ICA and reflect the nature of working with an unsupervised signal un-mixing technique.

2.5.6 FastICA

FastICA is an commonly used algorithm implementing ICA that was developed by A. Hyvärinen and

E. Oja at the Helsinki University of Technology [34]. FastICA is based on a fixed point iteration method

for estimating W and approximates negentropy rather than measuring non-Gaussinity using the for-

mula in Equation 2.5. The approximation replaces the expression in Equation 2.5 as a more efficient

means of computing negentropy. In its simplified form, the negentropy approximation is:

J (y) ∝ (E {G(y)}−E {G(ygaussian})2 (2.8)

The function G(y) is one of two non-quadratic functions proposed by Hyvärinen and Oja [34] in Equa-

tion 2.9 or Equation 2.10:

G1(y) = 1

a
logcosh(ay) (2.9)

G2(y) =−e
−y2

2 (2.10)

The coefficient a in Equation 2.9 is an arbitrary coefficient that can be selected in order to modify

the objective function. In FastICA implementation its value defaults to 1.

The function in Equation 2.8 can serve as an objective function for ICA. Much like the exact form

of negentropy, the approximation is equal to zero for Gaussian random variables and is a positive

non-zero value for non-Gaussian random variables. As a result, it can be maximized and used to find

maximally non-Gaussian independent components using FastICA’s fixed point iterative method.

The non-quadratic functions can also be replaced entirely allowing for the FastICA algorithm to

be modified or optimized [34]. By default, the Python implementation of FastICA from SciKit-Learn

[36] uses Equation 2.9 as part of its approximation of negentropy. For the rest of this work it can be

assumed that FastICA is run with this approximation function.

2.6 Dimensionality Reduction

2.6.1 Overview

As discussed in the limitations of ICA (Setion 2.5.5), ICA does not automatically generate indepen-

dent components (ICs) in a fixed order. This has two effects on the results. Firstly, ICA does not order

independent components in terms of their contribution or abundance in the mixed data. Unsurpris-

ingly, the lack of an inherent order in the components leads to computational resources and time

spent on extracting independent components contribute little to the mixture instead of more signifi-
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cant independent components. Secondly, the absence of a fixed order means that by default ICA will

will produce a set of independent components in a different order each time the algorithm is run.

This is heavily influenced by the values that the un-mixing matrix W is initialized (i.e. the algorithm’s

initial conditions). In a sense, these values dictate the starting point where ICA begins searching for

independent components within the mixed data.

Having the ability to detect components by significance helps to ensure that most informative

independent components are prioritized. This can be used to highlight potentially relevant features

in the mixed data. The ordered generation of components is also useful for locating the same spectral

signatures or features in two distinct hyperspectral images, such as multiple hyperspectral images

in a time series. It allows the same sets of spectral features to be tracked across multiple images in

applications like change detection. Finally, fixed order components also enables the repeatability

of running ICA on sets data, which in turn can be used to develop and evaluate performance and

reliability aspects of ICA-based anomaly detection.

2.6.2 ICA-DR

A combination of two techniques called Principal Component Analysis (PCA) and ICA dimensional-

ity reduction (ICA-DR) was used to enhance ICA and enable the algorithm to produce independent

components in a fixed order. ICA-DR is based on the ICA-DR3 algorithm developed in [37] and has

been adapted to successfully process hyperspectral imagery [3]. At a high level, ICA-DR3 operates by

selecting and initializing the values of the un-mixing matrix W so that the ICs are generated in order of

their significance. This is achieved in hyperspectral data by leveraging an algorithm called Automatic

Target Generation Procedure (ATGP) [37] [38]. ATGP is a procedure for automatic target recognition

in hyperspectral images.

The process of selecting the un-mixing matrix values consists of several steps. First, a dimen-

sionality reduction technique called Principal Component Analysis (PCA) is run on the hyperspectral

data. PCA reduces the dimensionality of the hyperspectral data and transforms it in to a smaller data

representation consisting of principal components. The principal components generated by PCA are

ordered in their significance to the dataset based on variance. Next, the principal components are

used as input to the ATGP algorithm. The ATGP attempts to construct a initial un-mixing matrix that

incorporates information about the principal component features produced by PCA and their order

of significance. The un-mixing matrix is then used to initialize ICA to process the original hyperspec-

tral data. Since PCA consistently generates identical principal components when given the same set

of data, ATGP will similarly yield the same initial un-mixing matrix when provided with the same set

of principal components. This enables the ICA initial conditions to be consistently set each time and

to extract the same independent components in a fixed order of significance. The PCA and ATGP

algorithms are discussed in detail in Section 2.6.3 and Section 2.6.4.

2.6.3 Principal Component Analysis (PCA)

PCA serves as a dimensionality reduction technique by linearly transforming the data into a new co-

ordinate system. In the PCA transformed space, the data is represented with a reduced number of

newly created and uncorrelated variables. The objective of PCA is to find the new variables as linear

combinations of the original variables that maximize variance [39].
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PCA begins by describing each sample x consisting of p variables as a linear combination. The

values a j represent weights in the linear combination. The sum of the samples and their weights can

be rewritten as matrices:
p∑

j=1
a j x j = Xa (2.11)

The variance of the linear combination can be calculated and derived into a formula incorporating

the covariance matrix S:

Var(Xa) = ∥Xa∥2 = aTXTXa = aTSa (2.12)

PCA optimizes to maximize variance so the problem is written as a Lagrange multiplier where aTa = 1:

aTSa−λ(aTa−1) (2.13)

Taking the derivative of 2.13 and the equation equal to zero, the expression becomes:

Sa−λa = 0 (2.14)

Note that Equation 2.14 is an eigenequation can be solved for the eigenvalue λ. From this, the largest

eigenvalue λk can be used to determine a linear combination that maximizes variance:

Var(Xak ) = aT
k (Sak ) = aT

k (λak ) =λaT
k ak (2.15)

The linear combination Xak is denoted as the kth principal component, which corresponds to the kth

eigenvalue. If S is a square covariance matrix and all vectors ak are orthogonal, then there can be up

to p eigenvalues and principal components. For processing hyperspectral images with ICA and ATGP,

the principal components generated using this process are used as input for the ATGP algorithm.

2.6.4 Automatic Target Generation Process (ATGP)

Automatic Target Generation Process (ATGP) implements an automatic procedure for identifying

spectral targets in hyperspectral images [38]. It was developed alongside the ICA-DR3 algorithm, a

method that iteratively generates the initial un-mixing matrix W used by ICA. The ATGP starts with

a set of initial projection vectors. The initial projection vectors are used as input for ATGP and are

generated and selected from the PCA-transformed hyperspectral data.

The first projection vector t0 is selected by searching for the vector r with the maximum orthogo-

nal projection:

t0 = arg{max
r

(rTr)} (2.16)

The resulting vector t0 is added to a matrix U of undesired spectral signatures. This has the eventual

effect of hiding the undesired spectral signatures from the un-mixing matrix and ICA. The matrix U

is used to transform the remaining data and remove the undesired spectral signatures from the data.

This removal is performed by computing an undesired spectral signature annihilator using U and the

identity matrix I:

P⊥
U = I−U(UTU)−1UT = I−UU+ (2.17)

With the annihilator expression calculated, it can be applied to the data and used to remove spectral
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signatures that have already been detected by ATGP and the maximum orthogonal projection search.

The removal of the detected spectral signatures allows the process to continue searching for other

significant spectral signatures present in the data. Equation 2.16 is used again, this time with the

annihilator from Equation 2.17 applied to the data:

ti = arg{max
r

(P⊥
Ui

r)T(P⊥
Ui

r)} (2.18)

As more and more projection vectors are found, the matrix U is continuously expanded, as seen in

Equation 2.19.

Ui = [t0,t1,t2, ...ti ] (2.19)

Alongside this, P⊥
Ui

is also updated using Ui and Equation 2.17. The entire iterative process continues

until it yields n spectral targets, where n corresponds to the number of components selected for the

PCA transformation. The final output matrix, denoted as Un , consists of n targets represented by

[t0,t1,t2, ...,tn]. Finally, the matrix Un is returned and used as the initialization matrix W for ICA [38].

2.7 Change Detection

2.7.1 Overview

Change detection is the process of comparing data from different times drawn from a time series

dataset. The purpose and aim of change detection is to detect and analyze differences in data over

time. For remote sensing applications, the data comes in the form of aerial or satellite imagery.

Change detection can be applied to hyperspectral and multispectral images as well as RGB or monochrome

images. Change detection techniques are applied to sets of images called time series datasets which

are composed of images acquired at different points of time. Using change detection approaches, the

images drawn from time series datasets are analyzed to identify and map pixels, objects, other fea-

tures that have undergone a change, revealing information about natural and human-made phenom-

ena that have occurred within the region of interest. Typically this application of change detection is

used to identify patterns of change in land use, agriculture, forestry, and urban planning. However,

HYPSO-1 is an ocean color observing satellite. In this case, HYPSO-1 captures are used to monitor for

changes such as algae growth seen in bodies of water such as oceans, lakes, and fjords. [4]

Hyperspectral change detection is an area of significant interest, because of the higher spectral

resolution in hyperspectral imagery. This form of imaging provides more extensive spectral infor-

mation about targets than conventional multispectral and RGB imaging. As a result, hyperspectral

change detection has the potential to detect and observe much more subtle changes with enhanced

detail. Historically, there have been more multispectral and RGB datasets so research and develop-

ment have focused on change detection using data from those remote sensing techniques rather than

hyperspectral imaging. Recently, however, new hyperspectral imaging satellites including HYPSO-1

have entered into operations and are expanding the amount of hyperspectral data. [4] [8]

2.7.2 Challenges

For hyperspectral change detection, there are several unique challenges. One of the most significant

is the high dimensionality of the data, due to the many spectral bands present in hyperspectral data.
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The problem of efficiently generating, manipulating, and processing high dimensional hyperspectral

data is magnified when a sequence of images in involved, such as in a time series dataset. Hyperspec-

tral datacubes require large amounts of storage space compared to conventional RGB or multispectral

images and are also slow to distribute due to the large file size.

Another difficulty is high redundancy of the data. In hyperspectral data with a high spectral reso-

lution, neighboring spectral bands may share much of the same information and as a result introduce

unneeded redundancy to the data. This further contributes to the problem of high dimensionality

without contributing additional useful spectral information. The large raw amount of data makes

identifying changes difficult and complex. For example, HYPSO has 120 spectral bands and a 956

pixel by 684 pixel spatial resolution. Depending on the detection problem, some of the spectral bands

may be unnecessary and as a result contribute to processing inefficiencies.

The large amount of data contained in hyperspectral images becomes even more significant when

the data spans across multiple captures as multitemporal dataset. In some applications the problem

of the large amount of data and spectral bands can be solved by simply dropping spectral bands bands

and keeping only a subset of useful wavelengths. The difference comparison-based spectral change

vector (SCV) method is one possible approach to the high dimensionality issues of hyperspectral

data. Multitemporal data is used to construct change vectors thereby reducing the total amount of

data handled by the change detection algorithm. [4]

Other problems associated with hyperspectral data include low signal-to-noise ratio (SNR) and

atmospheric effects. These problems arise from the noise and artifacts caused hyperspectral sensor

itself as well as the influence of weather and atmospheric conditions such as water vapor and cloud

cover. Consequently, these factors can complicate the task of detecting and distinguishing the desired

spectral patterns from the rest of the hyperspectral data. [8]

While not unique to hyperspectral imaging specifically, spectral variability is another challenge

present. This poses a problem if a specific change is targeted for detection and observation. Various

environmental factors and materials can alter absorption and reflectance spectra picked up by imag-

ing sensors. For example, during the detection of phytoplankton from satellite-based multispectral

sensors, dissolved sediments, organic materials, as well as simple environmental conditions can sig-

nificantly influence the ocean-color and spectral shape of spectral signals indicating phytoplankton

and algal blooms. [22]

2.7.3 Binary and Multiclass Change Detection

Change detection can be categorized into two main categories: binary change detection and multi-

class change detection. Binary change detection is the simplest change detection category and at-

tempts to identify any kind of change, regardless of its source or location. Binary change detection

effectively classifies the change in every pixel as either true (a change is detected) or false (a change is

not detected). In some literature, changed pixels are sometimes referred to as the "foreground" and

unchanged pixels are referred to as the "background".

In contrast, the other category of change detection is multiclass change detection. It extents bi-

nary change detection to use more than two classes. Instead of deciding simply if a change occurred

and labelling it as true or false, multiclass change detection attempts to separate different types of

change into three or more classes which can correspond to different causes of change. Overall, mul-

ticlass change detection is an extension of binary class change detection where binary change de-
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tection is a special case of multiclass change detection with only two classes. In multiclass change

detection, it is difficult to have a complete multiclass temporal ground reference dataset. As a conse-

quence, multiclass change detection methods that require supervised training are ruled out, leaving

unsupervised or semi-supervised methods as the preferable option. [4]

2.7.4 Supervised and Unsupervised Change Detection

Supervised and unsupervised change detection techniques are distinguished from each other by the

need for training data in order to perform change detection analysis. Supervised change detection

refers to change detection algorithms that rely on label training data. Training data can be important

for multiclass change detection techniques since it can provide accurate information about the na-

ture of an pixel location or object in terms of the material, composition, and spectral signature. One

of the problems with supervised techniques is the difficulty of assembling a ground truth dataset. As

is the case for hyperspectral images of HAB, it can be difficult to construct a training dataset of im-

ages featuring a specific type of feature that is under investigation. This is magnified by the limited

number of hyperspectral image datasets and the spatial and temporal localization of the images that

do exist. [4]

In contrast to supervised change detection, unsupervised change detection does not require train-

ing data. Unsupervised change detection techniques can directly perform change detection analysis

without needing to be trained on labelled training data. Depending on the technique used, it can be

difficult to use unsupervised change detection for multiclass problems since the number of distinct

types of changes in a dataset is unknown at the beginning. Consequently, not only do unsupervised

methods need to identify the location and amount of change, they also need to determine the num-

ber of types of change and distinguish between them without intervention [4]. The topic of this paper,

ICA-based change detection methods, are unsupervised techniques meaning that they do not require

training data or labelled data to train the ICA algorithm.

The degree of automation in change detection is somewhat related to the supervised and unsu-

pervised distinction. The degree of automation can be classified as fully automatic, semi-automatic,

or manual change detection, Automatic change detection is ideal since it requires the least amount

of human intervention. As a result, automatic change detection is desirable for automated ocean

monitoring systems. [4]

2.7.5 Bitemporal and Multitemporal Change Detection

Change detection approaches can vary based on the span of time considered as well as the number

of time series images used in the analysis. This provides the basis for separating change detection

into two categories: bitemporal change detection and temporal trajectory analysis or multitemporal

change detection [40]. In this report, temporal trajectory analysis is referred to as multi-temporal

change detection. This is done to reflect that it performs change detection across a continuous series

of images (multitemporal) rather than pairs of images (bitemporal).

Bitemporal change detection performs change detection on pairs of temporally separated images.

This is the simplest of the two categories since it is comparing only two images at once. Most previ-

ous works deal with bitemporal change detection, only trying to determine if a change as occurred

between two images. In comparison, multitemporal change detection performs change detection on
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a series of temporal images. Multitemporal change detection aims to identify changes as well as track

the progression of changes over time. Multitemporal change detection can be achieved by process-

ing all the images together or by processing the images in pairs using a bitemporal technique and

repeating the change detection until all the images have been processed. The latter method for mul-

titemporal change detection is simpler since it simplifies and breaks the change detection process

into manageable steps which can leverage bitemporal change detection methods. [4] [40]

Multitemporal change detection attempts to characterize the progression and trend of changes

in the data. Naturally, this requires more images than bitemporal change detection. One current

challenge for the HYPSO-1 project is to generate time series datasets that consist of more than two or

three images while still maintaining good spatial overlap. HYPSO-1 captures cover a narrow swath so

multiple captures must align closely to achieve good spatial overlap. As a result of this, bitemporal

datasets were utilized with the ICA-based change detection techniques.

2.7.6 Preprocessing

Correct preprocessing is a vital component of hyperspectral change detection. When working with

multitemporal datasets, it is essential to process all hyperspectral images uniformly. Processing data

for use in change detection has several different angles. Among these, spectral calibration ensures

accurate alignment of spectral sensor bands with their respective spectral wavelengths. Radiometric

and geometric corrections are equally important. These corrections address sensor artifacts and at-

tempt to remove noisy bands and striping, preventing their interference with the change detection

algorithm where they can show up as detectable changes and reduce accuracy. Geocoding, the pro-

cess of adding geospatial information and context to the images, is also necessary. It ensures proper

geographic alignment and georeferencing among the hyperspectral images. Finally, atmospheric cor-

rection minimizes the influence of atmospheric effects on the data, further enhancing the accuracy

of the change detection process. [4]

2.7.7 Change Detection Categories

Change detection techniques can be categorized in multiple ways based on various criteria and char-

acteristics. In Jianya et al. (2008) [40], the authors categorize change detection methods into seven

categories: direct comparison, classification methods, object oriented methods, model methods,

time-series analysis, visual analysis, and hybrid methods. In a much simpler categorization, the au-

thors in Zhou et al. (2018) [41] separated change detection methods into two categories, pixel-based

and object-based CD methods. Finally, in Lu et al. (2004) [42], a set of seven categories were used:

algebraic, transformation, classification, advanced models, geographic information system (GIS), vi-

sual analysis, and other methods. These varying methods of categorization highlight that there is no

real consensus for categorizing change detection techniques.

In this report, change detection is categorized into three different paradigms: pixel-based change

detection, feature-based change detection, and object-based change detection. These paradigms are

distinguished by the level at which they analyze the data; for instance, there is a significant distinc-

tion between analyzing changing features or objects seen in an image versus analyzing changing the

individually changing pixels.

This report also categorizes change detection by approach. The categorizes discussed here are
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broadly based around the categories introduced in Jianya et al. (2008) [40], Zhou et al. (2018) [41],

and Lu et al. (2004) [42]. These approaches include algebraic, transformation, classification, and

hybrid techniques.

Pixel-based Techniques

Pixel-based change detection are techniques that analyze changes at the pixel level in imagery. At

each pixel, the spectral values from two or more images are compared to locate and identify changes

in the images. Since pixel-based change detection operates at the pixel level and does not consider

neighboring pixels, it lacks spatial context that is sometimes useful for detecting changes. A common

method of pixel-based change detection is Change Vector Analysis (CVA) in which spectral change

vectors (SCVs) are used to quantify the magnitude and direction of change at each pixel location.

Another much simpler technique is image difference, where values in the first image are subtracted

from the second image, yielding a change map.

Pixel-based change detection usually operates on the raw data and does not attempt to clas-

sify or transform parts of the image before attempting to find changes. Techniques such as post-

classification comparison (PCC) where pixels from each image are first classified into different classes

and then compared are not inherently pixel-based but may incorporate pixel-based comparison strate-

gies such as differencing. [42] [41]

Feature-based Techniques

Feature-based change detection is another class of techniques. Rather than directly analyzing and

comparing the pixels in each image individually, feature-based change detection extracts relevant

features and characteristics from the images and then performs a comparison of the features. The

change map resulting from this procedure is associated only with the specific feature that was used

to create it. [4]

In general feature-based change detection operates on a model of transforming images from the

image domain to a feature domain. Feature-based techniques include transformation methods such

as the K-T transformation, multivariate alteration detection (MAD), principal component analysis

(PCA), and independent component analysis (ICA). [8] [43] [42] [44]

Feature-based change detection is a more complex approach compared to pixel-based change

detection. However, it provides the capability to distinguish and separate different types of changes.

This characteristic makes feature-based change detection well-suited for applications that require

multiclass change detection.

Object-based Techniques

Object-based change detection are methods used to analyze changes in specific objects or spatial re-

gions of interest within images. Instead of focusing on individual pixels, object-based change detec-

tion operates on groups of pixels which form objects or continuous spatial units. These objects form

the underlying units used in the change detection process instead of pixels. Object-based change

detection can identify objects through processes such as clustering or image segmentation. By ana-

lyzing the spectral properties and spatial relationships of identified objects, changes can be detected.

[41]
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Object-based change detection offers advantages such as the ability to incorporate spatial contex-

tual information which is lacked in pixel-based change detection. This is important for applications

such as land cover analysis where changes at a regional spatial level are of interest. Like feature-based

change detection, object-based change detection is suitable for multiclass change detection applica-

tions. Different types of changes can be distinguished by analyzing the properties of different objects

identified in the images. The objects can be classified into different types of changes, either before or

after the image segmentation or clustering process. [45] [41]

Algebraic Techniques

Algebraic change detection techniques refer to the use of mathematical equations and statistical

methods to directly compare and analyze pixel values or transformed components with the goal of

detecting and characterizing changes between multiple images. Algebraic change detection methods

encompass techniques such as image differencing, image regression, image ratioing, and change vec-

tor analysis (CVA). Algebraic change detection approaches also include direct comparison methods

when applied directly to the original untransformed or unclassified dataset. In some cases, algebraic

change detection can be a component of other types of change detection. For example, in change de-

tection using a transformation method, such as principal component analysis (PCA), algebraic meth-

ods are used to analyze changes in the resulting components. [42]

Changes are typically identified by comparing the results of the comparison to a predetermined

threshold value. Algebraic change detection methods are well-suited for bitemporal change detection

applications that involve comparing two images. One limitation of algebraic methods however is the

challenge of determining appropriate threshold values that accurately indicate whether a change has

occurred. [42] [40]

Transformation Techniques

Transformation techniques offer an alternative to algebraic change detection approaches. Transfor-

mation techniques focus on extracting features from images, making them inherently feature-based

in nature. Transformation techniques include change detection algorithms incorporating methods

such as K-T transformations, multivariate alteration detection (MAD), principal component analysis

(PCA), and independent component analysis (ICA) [42] [4]. Algebraic methods may be incorporated

and combined with transformation techniques. After extracting features from the data, the resulting

features can subsequently be utilized in an algebraic-based post-analysis comparison approach to

identify and highlight areas where various types of changes are taking place. Through these steps, a

change map indicating changed regions of the images can be produced. [42]

Transformation techniques serve as a means of dimensionality reduction. They operate within

the feature domain and on feature components rather than on a pixel level. By taking advantage

of transformation techniques, the amount of data needed to capture and represent changes can be

significantly reduced. Ultimately, the purpose of transformation methods is to transform high di-

mensionality data into a compressed set of components.

Although transformation techniques have advantages in dimensionality reduction, there are some

drawbacks to the approach. Interpreting the transformed components is a challenge with transfor-

mation approaches. Depending on the number of changes and number of components, identifying



CHAPTER 2. BACKGROUND 28

and labelling the most significant components is time consuming and may require user interaction.

This becomes a major problem for applications where change detection is required to be capable of

identifying anomalous changes as well as operate unsupervised and automatically [42] [4]. Another

major disadvantage of transformation methods is that transformation-based change detection can

not determine the number of multiclass changes. Additionally, depending on the method of post-

analysis comparison, a threshold value to identify changes is still required [4]. Despite these prob-

lems, transformation methods remain a powerful approach due to their dimensionality reduction

abilities.

Transformation techniques include both PCA and ICA [39]. PCA-based transformation change

detection for satellite imagery is an already established use case. Fung and LeDrew (1987) [46] utilized

PCA to study land-cover changes using Landsat multispectral images [46]. More recently, Ortiz-Rivera

et al. (2006) used a variation of PCA, temporal PCA (TPCA), to processes pairs of hyperspectral im-

agery. In their approach, the pairs hyperspectral images were stacked spatially, processed with PCA,

and a decision rule applied to detect changes [47]. Another transformation technique uses indepen-

dent component analysis (ICA). One of the advantages of ICA is that it is an unsupervised technique.

ICA does not require training data and can be performed on new captures without having to change

or modify the algorithm. Because of the unsupervised change detection techniques are of interest

due to their suitability for automatic change detection. [8] [43]

Classification Techniques

Classification techniques encompass change detection techniques that use classification algorithms

to identify and categorize changes in features of interest. There are various classification techniques

available, such as Post-Classification Comparison (PCC), which is also known as independent image

analysis, expectation-maximization (EM) methods, and methods utilizing classification neural net-

works or support vector machines (SVM). Post-Classification Comparison (PCC) is a commonly used

method for change detection, involving the classification of each image independently, followed by

a comparison to identify changes. An alternative approach to PCC is direct multidate classification,

which involves stacking the images or datacubes and applying a classification algorithm directly on

the combined multitemporal dataset to detect and highlight various classes of change. Direct multi-

date classification enables for some spatial context and information to be preserved. [42] [48]

Classification techniques can be categorized as either supervised or unsupervised, depending on

the specific classification method. Unsupervised techniques are important for hyperspectral change

detection due to the challenge of having a sufficient ground truth dataset to train classification mod-

els on. [42] [4]

Hybrid and Other Techniques

Some change detection methods cannot be accurately categorized, either because they combine el-

ements from multiple techniques, or because the approach does not neatly match any of the pre-

defined categories. These techniques exhibit characteristics that make them challenging to classify.

Hybrid approaches refer to instances where multiple change detection techniques are combined to

create a distinct new technique incorporating elements from the original techniques. This allows for

different strengths and characteristics of techniques to be selected and combined in order to create
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novel approaches to change detection. [42]

2.7.8 Change Detection Methods

Overview

This section provided a description of several common or relevant change detection methods. Each

method is categorized based on the change detection paradigm it uses (pixel, feature, or object-

based) and by its technique (algebraic, transformation, classification, hybrid, or other).

Data Differencing

• Techniques: Pixel-based; Algebraic

Differencing is a widely used technique for change detection. It involves subtracting the pixel values

from two hyperspectral images acquired at different times to identify areas of significant change. The

resulting difference image shows the spectral variations between the two time points, making it easier

to detect changes in the scene. Differencing can be combined with other techniques such as PCA and

ICA [49] [4]

Change Vector Analysis (CVA)

• Techniques: Pixel-based; Algebraic

CVA involves computing a spectral change vector (SCV) for each pixel in the hyperspectral image. For

each pixel, a vector consisting of values equal to the difference of each spectral band between the two

images is constructed. The SCVs are used by the change detection algorithm rather than the images

themselves. [4]

Image Stacking

• Techniques: Pixel-based or Feature-based; Algebraic, Transformation, or Hybrid

Another change detection technique is image stacking. In image stacking, multitemporal hyper-

spectral images are combined or stacked in an additional dimension. The stacking process creates a

new composite hyperspectral datacube that extends the dimensionality of the data. The dimension

in which the images are stacked can be in a spatial, spectral, or even a new temporal dimension. [4]

Post-Classification Comparison (PCC) or Independent Image Analysis

• Techniques: Pixel-based or Object-based; Classification

In independent image analysis, pixels in images are classified based on their spectral signatures. For

this step, each image is processed independently from each other. After making the classifications,

the differences between the various classes are compared across time bitemporally. This method

is also known as Post-Classification Comparison (PCC). PCC can rely on classification truth data to

develop a classification algorithm. In some cases this is a disadvantage if classification truth data does

not exist for the hyperspectral dataset. In this case, the PCC method must be capable for determining
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the number of classes if it is being used for a multiclass change detection problem [4]. Due to the

reliance on ground truth data, PCC is not the most common of hyperspectral image change detection.

Comparison operator and image stacking approaches are more widely used for hyperspectral image

change detection [4].

Principal Component Analysis (PCA)

• Techniques: Feature-based; Transformation

PCA is an unsupervised method of dimensionality reduction which changes the data by linearly trans-

forming it to a new coordinate system. After transforming the data, the newly transformed data is can

be represented with a reduced set of variables. PCA achieves dimensionality reduction by finding new

variables as linear combinations of the untransformed variables while simultaneously maximizing

variance [39]. The principal components generated by PCA can be used in change detection algo-

rithms. This can be done by applying PCA to hyperspectral images individually and producing com-

ponents for comparison or by stacking multiple hyperspectral images and processing them together

with PCA. Both methods can support multiclass change detection. [49]

Independent Component Analysis (ICA)

• Techniques: Feature-based; Transformation

ICA is an unsupervised method that transforms mixed data into independent components. It con-

verts data from the image domain to a feature domain. ICA can be used in a similar manner as PCA

and be combined with other change detection techniques [43]. One interesting ICA-based approach

proposed in S. Liu et al. (2012) [50]. It combines ICA with a hierarchical spectral dimensionality re-

duction algorithm. ICA is used to extract and detect changes in pairs of images at varying spectral

resolutions by merging neighboring spectral bands. Another approach is spatio-temporal ICA [51]

which attempts to find temporal and spatial components in hyperspectral data. Despite its potential

for change detection, ICA is not as popular or widespread as PCA. ICA is described in detail in Section

2.5.

2.8 Sustainable Development Goals

The 2030 Agenda for Sustainable Development is a framework adopted by the United Nations (UN)

in 2015 that seeks to address global social, economic, and environmental challenges. It consists of 17

Sustainable Development Goals (SDGs) that encompass interconnected objectives including erad-

icating poverty, climate action, and promoting social equality, listed in Figure 2.13. The SDGs are

intended to serve as a guideline for global development by countries over the next decade through

2030. [52]
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Figure 2.13: The 17 Sustainable Development Goals [52].

Environmental monitoring satellites like HYPSO-1 and others play a significant role in Earth ob-

servation, and their application aligns closely with several Sustainable Development Goals (SDGs).

The SDGs include SDG 6: Clean Water and Sanitation; SDG 9: Industry, Innovation, and Infrastruc-

ture; SDG 13: Climate Action; SDG 14: Life Below Water; and SDG 17: Partnership for the Goals.

2.8.1 SDG 6: Clean Water and Sanitation

The Clean Water and Sanitation development goal aims to ensure access to clean drinking water for

all and to protect water-based ecosystems. One area where satellite observation and change detection

play important roles is the detection and monitoring of Harmful Algal Blooms (HABs) in oceans and

lakes. In fresh water lakes, HABs can pose serious threats to drinking water quality. Improved change

detection techniques that can identify and track the progression of HABs near drinking water supplies

could be used to help mitigate the effects and ensure access to safe drinking water.

2.8.2 SDG 9: Industry, Innovation, and Infrastructure

The Industry, Innovation, and Infrastructure goal promotes sustainability in industry activities and

the development of sustainable infrastructure. Better satellite monitoring capabilities can provide

information to help established industries such as fishing, aquaculture, and transportation to transi-

tion to more sustainable practices and avoid negative environmental impacts.

2.8.3 SDG 13: Climate Action

The Climate Action development goal seeks to promote changes to prepare and mitigate climate

change. Satellite observation and processing algorithms enable more comprehensive monitoring and

understanding of the effects of climate change. Additionally, they can help to strengthen surveillance
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of natural hazards and natural disasters such as HABs. They can also add to the ability to plan and set

policy for responding to the effects of climate change.

2.8.4 SDG 14: Life Below Water

The Life Below Water sustainable development promotes sustainable fishing, reducing pollution, and

protecting marine ecosystems. It also strives to increase knowledge of ocean health and biodiversity.

Satellite observation and hyperspectral image change detection improves the management and en-

vironmental monitoring of marine resources. It can lead to a better understanding of aquatic ecosys-

tems. Furthermore, detection of hazards like HABs can help protect marine food stocks and aquacul-

ture assets such as fisheries.

2.8.5 SDG 17: Partnership for the Goals

The Partnership for the Goals development goal seeks to encourage international cooperation and the

sharing of science, technology, and other knowledge. The efforts made in developing hyperspectral

change detection algorithms, along with the broader work carried out at NTNU and the Small Satellite

Lab, can play a significant role in encouraging international collaboration and facilitating the transfer

of knowledge. An essential aspect of achieving this objective involves ensuring open data access and

promoting the transparent sharing of work.
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Implementation

3.1 Overview

The implementation of ICA-based change detection consisted of several components. In the first

component, HYPSO-1 hyperspectral data was calibrated, processed, and combined using a process-

ing pipeline to form multitemporal time series datasets. The processing pipeline ensured that all

data was aligned and resampled to the same spatial resolution, resulting in time-indexed datasets

that could be used for bitemporal change detection. A second component of the implementation

was composed of development done on FastICA to prepare it to be used with change detection algo-

rithms. Following this, a third implementation component consisted of tasks related to the change

detection processing itself, included loading desired pairs of bitemporal imaging, data reshaping and

preprocessing, generating ICA components, and applying different change detection methods to the

data. The final component dealt with validation data. It involved obtaining suitable data for compar-

ison and analysis with the HYPSO-1 change detection results. The following sections in this chapter

provide more detail about each part of the implementation along with a summary about the software

environment and HYPSO-1 data.

3.2 Software Environment

The code written to perform the tasks in this project were developed and run using a software envi-

ronment based around Python version 3.9.13. The software environment included several additional

Python libraries which provided additional functionality. This included mathematical function li-

braries such as NumPy [53] and SciPy [54]. Matrix and data manipulation operations were performed

using the Numpy, xarray [55], and Pandas [56] libraries. The masked array module in NumPy was also

used [57], primarily for applying land masks to hyperspectral data.

A variety of packages were also utilized to handle geospatial tasks, such as georeferencing, ge-

ometric transformation, and resampling. These libraries included GeoPandas [58], Rasterio [59],

pyproj [60], skimage [61], and GeoCube [62]. In tasks involving ESRI shapefiles and geospatial data,

Shapely [63] and GDAL/Fiona [64] were also used. SatPy [65] was used in a limited capacity to pro-

vide an efficient resampling solution with pyresample [66] for the validation data. To implement the

ICA algorithm, the SciKit-Learn library was used. It provided the necessary preprocessing functions

for data centering and whitening in addition to a well-supported implementation of the FastICA al-

33
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gorithm [36] [67]. Plotting capabilities were handled with the Matplotlib and Basemap libraries used

together. The combination of Matplotlib and Basemap allowed for the inclusion of geospatial data,

such as latitude and longitude lines, in plots of ICA components and change maps. [68] [69]

The code written for this project was uploaded and hosted on NTNU SmallSat Lab’s internal

GitHub software repository. Code written for specifically for time series dataset processing and change

detection uses was committed to the hs-time-series GitHub repository. Within this repository, the

code was integrated into a custom Python package named hsts which provided a set of functions

for generating time series datasets that could be invoked from a Python script or Jupyter notebook.

Accompanying the hs-time-series project was a separate repository for georeferencing ground

control points (GCPs) called hypso1-qgis-gcps. The GCPs were manually generated and uploaded

to hypso1-qgis-gcps to support adding geospatial information to HYPSO-1 captures used in the

datasets. Finally, calibration data and Python code was reused from the cal-char-corr software

repository. Some parts of the calibration code were integrated into the hsts package in order to sim-

plify and automate calls to the calibration code.

In addition to Python, a geographic information system (GIS) program called QGIS was also used

in this project [70]. QGIS provided a manual georeferencing tool to generate sets of ground control

points (GCPs) for HYPSO-1 captures as well as a graphical environment for displaying and examin-

ing processed datasets [71]. These QGIS features were used to supplement the Python code and for

visualization and analysis purposes. QGIS was used in a limited capacity for plotting some of the

validation data.

3.3 HYPSO-1 Data

3.3.1 Overview

A variety of HYPSO-1 capture data from different geographic sites was selected to form the time series

datasets. These sites, spread across locations in Europe and North America, were selected based on

the amount of HYPSO-1 captures available, number of different dates, and the occurrence or pres-

ence of algal blooms or other coastal phenomena known to be common in the region. The following

geographic sites were used to generate time series datasets: the Danube River delta on the border

between Romania and Ukraine, Lake Erie on the border between the US and Canada, Frohavet off

the coast of Norway, and the Salish Sea on the border between the US and Canada. The locations are

shown on a map in Figure 3.1.

The HYPSO-1 capture data is stored as hyperspectral datacubes that are contained in a binary file

format known as "band interleaved by pixel" (BIP). These binary files use the file extension ".bip" [72].

The BIP files do not contain geospatial information about the hyperspectral data, meaning that the

geospatial information must be added at a later stage of processing. These data files were obtained

directly from an internal NTNU Small Satellite Lab repository of captures from HYPOS-1.
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Figure 3.1: Locations of the HYPSO-1 observation targets used in this project.

3.3.2 Observation Times

The HYPSO-1 captures used in the time series datasets were primarily selected based on the amount

of clouds visible in the visible (RGB) images of the captures. The datasets were created from HYPSO-1

captures that were free or mostly free of cloud cover. Captures with minimal cloud cover provided the

best viewing conditions of ocean or lake regions, a factor important for change detection and ICA.

Additionally, some of the captures were selected based on the season they were taken. In sites like

Lake Erie, algal blooms vary based on the season and typically occur during the warmer months of

the year (northern hemisphere summer) [19].

3.3.3 Lake Erie

Lake Erie, one of the Great Lakes of North America, is situated on the border between the United

States and Canada. Lake Erie is a freshwater lake and is characterized by its proximity to urban areas

and agricultural land. Because of its geographical location and being the outflow basin of rivers such

as the Maumee River, Lake Erie is susceptible to excessive nutrient loading, made more severe by

agricultural fertilizer use. The influx of nutrients encourages the growth of species of algae in the

lake. Depending on the season and weather conditions, the algae growth can develop into harmful

algal blooms (HABs), negatively impacting the water quality of the region. One particularly affected

area is the western Lake Erie basin, which receives direct run-off from the Maumee River. [73]
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Figure 3.2: Google Maps image of the western Lake Erie basin in the Great Lakes complex of North
America.

Because of its role as a major water source of residents in the region, Lake Erie is the subject of

studies and monitoring campaigns. In the US, the National Oceanic and Atmospheric Administration

(NOAA) produces algal bloom forecasts for Lake Erie. The forecasts are generated using a combina-

tion of Sentinel-3 satellite imagery, in-situ measurements, and water current computer models. [74]

Figure 3.3: Google Maps image of Lake Erie in the Great Lakes complex of North America. A NOAA
HAB chlorophyll-a forecast product from 19 July 2022. The forecast data is derived from Sentinel 3
imagery and is overlaid on the map. [74]

For this project, the Lake Erie site was selected because of the availability of HYPSO-1 captures

taken during the northern hemisphere summer in 2022, at the height of the algal bloom season in

Lake Erie. Additionally, Lake Erie is well studied and monitored, making the identification of algal

blooms possible through the use of the European Space Agency’s Sentinel-3 satellite data and Na-

tional Oceanic and Atmospheric Administration’s (NOAA) HAB forecast products serving as valida-

tion data for qualitative comparison purposes. The Sentinel-3 data was made available as separate

chlorophyll concentration (Chl-a) and total suspended matter (TSM) concentration data products.

An example of the chlorophyll concentration product is showin in Figure 3.3. The NOAA HAB prod-
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ucts are produced from measurements taken by the Ocean and Land Colour Instrument (OLCI) on-

board the Sentinel 3 satellites [75]. The NOAA HAB forecast products are discussed in further detail

in Section 3.7.

The Lake Erie dataset was processed from six separate HYPSO-1 captures. The capture dates and

filenames are listed in Table 3.1.

Table 3.1: List of captures used for the Lake Erie dataset.

Lake Erie Dataset

Date HYPSO-1 Capture Filename

19 July 2022 15:50 UTC erie_2022-07-19_1550Z.bip

20 July 2022 15:39 UTC erie_2022-07-20_1539Z.bip

29 July 2022 15:28 UTC erie_2022-07-29_1528Z.bip

27 August 2022 16:05 UTC erie_2022-08-27_1605Z.bip

04 March 2023 15:17 UTC erie_2023-03-04_1517Z.bip

07 March 2023 16:09 UTC erie_2023-03-07_1609Z.bip

For running the ICA-based change detection techniques, a bitemporal pair consisting of two cap-

tures was selected from the Lake Erie dataset. The capture dates and filenames for the bitemporal

pair are listed in Table 3.2. The RGB images of the captures are shown in Figure 3.4.

Table 3.2: List of captures used for the bitemporal Lake Erie dataset.

Bitemporal Lake Erie Dataset

Date HYPSO-1 Capture Filename

19 July 2022 15:50 UTC erie_2022-07-19_1550Z.bip

27 August 2022 16:05 UTC erie_2022-08-27_1605Z.bip
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(a) 19 July 2022 15:50 UTC (b) 27 August 2022 16:05 UTC

Figure 3.4: HYPSO-1 captures of Lake Erie in RGB true color.

3.3.4 Salish Sea

The Salish Sea is a body of water connected to the Pacific Ocean and located in the Pacific Northwest

of North America. It spans across the coastal regions along the border of the United States and Canada

and encompasses parts of British Columbia and Washington state. The major urban center of Van-

couver, British Columbia is positioned along the Salish Sea along with the mouth of the Fraser River.

The Salish Sea features numerous waterways including several straits and fjord-like areas containing

fisheries and other aquaculture assets. The presence of these commercial facilities highlights the im-

portance of monitoring algal blooms in the area and was the primary motivating factor in selecting

the Salish Sea as one of the locations used in this project. Unlike Lake Erie, there are no dedicated

NOAA HAB forecast products however Sentinel-3 OLCI products were available to be used as valida-

tion data. [75]
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Figure 3.5: Google Maps image of the Salish Sea situated in the Pacific Northwest region of North
America.

Table 3.3 lists the three separate HYPSO-1 captures included in the Salish Sea dataset, along with

their respective capture dates and filenames. All of the captures were taken during the span of three

days in July 2022. During the processing of the Salish Sea dataset, the capture target name was

"griegBC" shortened from Grieg, British Columbia. This name was taken from the name of fisheries

located within the region.

Table 3.3: List of captures used for the Salish Sea dataset.

Salish Sea Dataset

Date HYPSO-1 Capture Filename

12 July 2022 18:46 UTC griegBC_2022-07-12_1846Z.bip

13 July 2022 18:34 UTC griegBC_2022-07-13_1834Z.bip

14 July 2022 18:22 UTC griegBC_2022-07-14_1822Z.bip

For running the ICA-based change detection techniques, a bitemporal pair consisting of two cap-

tures was selected from the Salish Sea dataset. The capture dates and filenames for the bitemporal

pair are listed in Table 3.4. The RGB images of the captures are shown in Figure 3.6.

Table 3.4: List of captures used for the bitemporal Salish Sea dataset.

Bitemporal Salish Sea Dataset

Date HYPSO-1 Capture Filename

12 July 2022 18:46 UTC griegBC_2022-07-12_1846Z.bip

13 July 2022 18:34 UTC griegBC_2022-07-13_1834Z.bip
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(a) 12 July 2022 18:46 UTC (b) 13 July 2022 18:34 UTC

Figure 3.6: HYPSO-1 captures of the Salish Sea in RGB true color.

3.3.5 Danube River Delta

The Danube River Delta is a region located at the confluence of the Danube River and the Black Sea in

Southeastern Europe along the border of Ukraine and Romania. The area is composed of numerous

river distributaries, lakes, and wetlands. Because of its unique geography with many different bodies

of water and location on the Black Sea, it was selected as one of the observational sites of HYPSO-1.

One of the major features of the site is a large fresh water lagoon called Lake Razim located directly

along the southern extent of the delta in Romania, shown in Figure 3.8. Lake Razim is connected to a

complex of smaller lakes called Lake Golovita and Lake Zmeica. Adjacent and south of these lakes is

Lake Sinoe. These four lakes provide a distinct point of comparison against the salt water in the Black

Sea and are heavily influenced by human activity in the region including from agriculture, irrigation,

and pollution. Seasonal algal growth has also been confirmed in Lake Razim [76]. For the Danube

River Delta site, Sentinel-3 OLCI products are available as validation data. The Danube River Delta

dataset consists of three overlapping images near the Danube River delta in the Black Sea.
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Figure 3.7: Google Maps image of Lake Razim and the Danube River Delta located on the coast of the
Black Sea. Lake Razim is positioned in the center of the image.

Figure 3.8: Annotated map of the lakes near the Danube River Delta.

Table 3.5 lists the three HYPSO-1 captures included in the Danube River Delta dataset, along

with their respective capture dates and filenames. During the processing of the Danube River Delta

dataset, the chosen capture target name was "gloria," which corresponds to an offshore ocean color

calibration site located within the area [77].
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Table 3.5: List of captures used for the Danube River Delta dataset.

Danube River Delta Dataset

Date HYPSO-1 Capture Filename

13 February 2023 08:35 UTC gloria_2023-02-13_0835Z.bip

05 March 2023 08:41 UTC gloria_2023-03-05_0841Z.bip

08 April 2023 08:22 UTC gloria_2023-04-08_0822Z.bip

For running the ICA-based change detection techniques, a bitemporal pair consisting of two cap-

tures was selected from the Danube River Delta dataset. The capture dates and filenames for the

bitemporal pair are listed in Table 3.6. The RGB images of the captures are shown in Figure 3.9.

Table 3.6: List of captures used for the bitemporal Danube River Delta dataset.

Bitemporal Danube River Delta Dataset

Date HYPSO-1 Capture Filename

05 March 2023 08:41 UTC gloria_2023-03-05_0841Z.bip

08 April 2023 08:22 UTC gloria_2023-04-08_0822Z.bip
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(a) 05 March 2023 08:41 UTC (b) 08 April 2023 08:22 UTC

Figure 3.9: HYPSO-1 captures of the Danube River Delta in RGB true color.

3.3.6 Frohavet

The final observation site that was chosen was Frohavet, a coastal region along the Norwegian coast-

line in Northern Europe. The region encompasses a wide range of geographic features including

fjords, archipelagos, and open sea areas, as seen in Figure 3.10. These varied features are good for

evaluating the performance of the ICA-based change detection techniques and land mask in narrow

channels as well as in open water. Trondheim Fjord is a major geographic feature in the area and

extents into the interior of Norway. Owing to its proximity to Trondheim and NTNU, the Frohavet is

the most familiar and studied observation site. The close location makes the region a prime candi-

date in the future for potential in-situ water sampling or observations with other mobile assets such

as boats or drones. These activities would be performed with the intent to develop a observational

pyramid for oceans, incorporating a hyperspectral satellite such as HYPSO-1 [1]. Ongoing research in

the region also opens the possibility for future collaboration.
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Figure 3.10: Google Maps image of Frohavet and Trondheim Fjord.

The dataset for Frohavet included six HYPSO-1 captures. The captures were taken during periods

in November 2022 and March 2023, providing hyperspectral data of the same area from two different

seasons. The HYPSO-1 captures for Frohavet are listed in Table 3.7.

Table 3.7: List of captures used for the Frohavet dataset.

Frohavet Dataset

Date HYPSO-1 Capture Filename

17 November 2022 10:21 UTC frohavet_2022-11-17_1021Z.bip

18 November 2022 10:08 UTC frohavet_2022-11-18_1008Z.bip

10 December 2022 10:12 UTC frohavet_2022-12-10_1012Z.bip

16 March 2023 10:44 UTC frohavet_2023-03-16_1044Z.bip

28 March 2023 10:59 UTC frohavet_2023-03-28_1059Z.bip

29 March 2023 10:44 UTC frohavet_2023-03-29_1044Z.bip

For running the ICA-based change detection techniques, a bitemporal pair consisting of two cap-

tures was selected from the Frohavet dataset. The capture dates and filenames for the bitemporal pair

are listed in Table 3.8. The RGB images of the captures are shown in Figure 3.11.

Table 3.8: List of captures used for the bitemporal Frohavet dataset.

Bitemporal Frohavet Dataset

Date HYPSO-1 Capture Filename

28 March 2023 10:59 UTC frohavet_2023-03-28_1059Z.bip

29 March 2023 10:44 UTC frohavet_2023-03-29_1044Z.bip
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(a) 28 March 2023 10:59 UTC (b) 29 March 2023 10:44 UTC

Figure 3.11: HYPSO-1 captures of Frohavet in RGB true color.

3.4 Time Series Processing

3.4.1 Overview

A data processing pipeline was created to generate multitemporal time series datasets from the raw,

unprocessed HYPSO-1 data. This task required steps such as spectral and radiometric calibration of

the data, georeferencing of the data, and resampling the data to the same spatial resolution. Addi-

tionally, the processing pipeline included applying a preexisting land mask to the data, simplifying

the process of separating land and water regions of the captures. The following sections describe the

steps involved in the data processing pipeline.

3.4.2 Loading Data

The first step of the processing pipeline was to load the raw HYPSO-1 data. The HYPSO-1 hyper-

spectral datacubes are encoded in .BIP binary files [78]. These files contain the raw sensor data that

is uncalibrated and ungeocoded. The .BIP extension used by these binary files is an abbreviation

for band-interleaved-by-pixel and describes how the data is structured and organized within the file.

Each .BIP file contains exactly one HYPSO-1 datacube requiring multiple .BIP to be loaded individ-

ually in sequence in order to create a complete time series dataset. The process of reading the files

involved utilizing the np.fromfile function from NumPy, which resulted in the creation of a three-

dimensional NumPy matrix containing a datacube for each capture [79]. The resulting matrices had

the dimensions of 956 by 684 by 120, the standard HYPSO-1 capture resolution. As a final step, the
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cross track dimension of each capture was binned by a factor of 3 to obtain an image with the correct

aspect ratio. This reduced the cross track dimension from 684 down to 228, yielding NumPy matrices

with final dimensions of 956 by 228 by 120 pixels.

3.4.3 Calibration

The second stage of the dataset processing pipeline was data calibration. This stage included the im-

portant steps of spectral and radiometric calibration of the raw HYPSO-1 data. Spectral calibration

aims to create a correspondence between the spectral bands in the datacube to the physical wave-

lengths that the bands represent. This type of calibration is vital to accurately interpret spectral pat-

terns in the hyperspectral components. In contrast, radiometric calibration is used ensure radiance

values measured by the HSI accurately represent the actual radiance values of the source. [80] [1]

During the calibration process, values in the hyperspectral datacubes were also converted from

their original radiance values to reflectance values. The purpose of this conversion is to attempt to

minimize and remove the effects of viewing and illumination angles (solar zenith angles) of the tar-

get. Reflectance values are more easily compared between captures than radiance values [1]. Noise

removal was also performed on the data in the form of spatial destriping. The noise removal step is

attempts to remove sensor artifacts introduced in the data by the push-broom scanning technique

used by HYPSO-1’s HSI.

The spectral and radiometric calibration of the hyperspectral data was done using calibration

data from the NTNU SmallSat Lab’s cal-char-corr internal software repository hosted on GitHub.

This repository contains sets of calibration constants information to map bands in the hyperspectral

to their corresponding wavelengths [81]. The cal-char-corr repository included a set of spectral

calibration coefficients and a set of radiometric calibration coefficients, each stored in a comma sep-

arated variable (CSV) text file. The code used to perform calibration tasks was largely based on Python

code from [1]. The Python code handled most of the tasks for spectral calibration, radiometric cali-

bration, conversion from radiance to reflectance, and spatial destriping. It was used in conjunction

with the most recent calibration constants from the cal-char-corr repository and was responsible

for loading and reading the CSV calibration files. The end result of the calibration stage of the pipeline

were spectral- and radiometric-calibrated NumPy matrices for each HYPSO-1 capture.

3.4.4 Georeferencing

An important aspect of satellite imagery and data is the ability to map image pixels to geographic

coordinates. This allows features or objects in the images to be spatially located on Earth’s surface.

At the time of writing, HYPSO-1 data does not have reliable geospatial information that can be as-

sociated with the images. Direct methods of generating geospatial information from the orbit and

orientation of HYPSO-1 are under development however they are currently not accurate enough for

the purpose of time series dataset processing. As a work around to this shortcoming, an indirect al-

ternative approach involving ground control points (GCPs) was utilized. GCPs are a series of defined

points in images that are mapped to known geographical coordinates. By using the GCPs, geospatial

information can be derived from the rest of image through a process known as georeferencing.

Georeferencing is a multi-step process. First, GCPs must be selected and generated. For the

HYPSO-1 data used in this project, the associated GCPs were manually generating using the Geo-
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referencer tool in QGIS [71]. Second, following the selection of GCPs, a geometric transformation

must be derived from the GCPs to calculate the geospatial information (i.e. geographic coordinates)

for the rest of the image. The Python libraries skimage [61] and rasterio [59] were used for this step of

georeferencing.

Selecting GCPs

The Georeferencer tool in QGIS was used to select and generate a list of GCPs [71]. Using the Geo-

referencer tool, RGB images generated from the HYPSO-1 captures were compared to a map product

based on Google Maps imagery. Static features in the RGB images such as mountains, islands, lakes,

and rivers were used as landmarks. When a landmark was identified, a pixel coordinate close to the

landmark was selected in the RGB image of the capture. The exact geographical coordinates were

then obtained by selecting the corresponding point in the Google Maps imagery. Using this process,

a one-to-one corresponding list of GCPs was slowly created. For each capture, a minimum of ten

GCPs were selected and emphasis was made on selecting GCPs from throughout the image rather

than focusing on one area. By selecting GCPs spread evenly throughout the image, the geospatial

information becomes more accurate in all parts of the image. The GCPs were saved to .points files,

one for each HYPSO-1 capture included in the datasets. The .points files are formatted as standard

comma separated variable (CSV) files allowing the GCP data to be easily read into Python scripts and

used to assign geospatial information for the rest of the pixels in the corresponding HYPSO-1 capture.

When working with GCPs, a geographic coordinate reference system (CRS) must be chosen. The

CRS is used to define the map projection and coordinate system used by QGIS and Python geospatial

libraries. In this project, a standard called EPSG:3857, also known as psuedo-Mercator, was used.

EPSG:3857 was selected as the CRS because it handles severe mapping projection distortions near

the Earth’s poles better than the default EPSG:4326 CRS used in QGIS. The pyproj Transformer Python

library was used in the dataset pipeline code for converting CRSs as well as a way to add support for

additional CRSs in the code in the future. [60]

Geometric Transformation

After generating the GCPs for each capture using the Georeferencer tool in QGIS, the GCPs were used

to calculate geographic coordinates for the rest of the pixels in the captures. In this step, the HYSPO-1

captures were treated as raster data, a type of data that consists of a grid of cells (i.e. pixels). The GCPs

were used to align the cell data to a predefined geospatial coordinate system in a process known as

a geometric transformation. The result of this process is that each cell or pixel in the raster data will

have an associated geographic coordinate. The latitude and longitude values can be used later for

resampling the captures and constructing a time series dataset from multiple spatially overlapping

captures.

There are multiple software approaches for performing geometric transforms. QGIS has built-in

support for geometric transforms using GCPs as input however QGIS only supports transformations

for single channel or RGB image data and not hyperspectral datacubes. The inability of QGIS to trans-

form hyperspectral data ruled out using QGIS for performing geometric transform in this project. An-

other common software tool that provides geometric transforms is the Python library Rasterio [59].

Using a set of GCPs and the Rasterio functions



CHAPTER 3. IMPLEMENTATION 48

(a) QGIS georeferencing tool being used to add GCPs to a HYPSO-1 capture of
the Danube River delta. The GCP table displays a list of pixel coordinates and
the corresponding EPSG:3857 geospatial coordinates.

(b) GCPs overlaid on Google Maps reference imagery.

Figure 3.12: QGIS georeferencing tool.
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rasterio.transform.from_gcps and rasterio.transform.xy, hyperspectral data can be geo-

metrically transformed and georeferenced. One of the major issues with Rasterio, however, is that

Rasterio only supports a single type of transformation known as an affine transformation. Affine

transforms preserve lines and parallel features in images but cannot handle non-linear distortions.

In the case of HYPSO-1 imagery, non-linear distortions are present due to a combination of viewing

angles, movement of the sensor, and the Earth’s curved geometry. As a result, some HYPSO-1 captures

processed using an affine transformation display severe distortions which reduce spatial accuracy of

the data.

To better handle non-linear distortions in the captures, the Rasterio-based affine transforma-

tion was replaced with a custom developed polynomial transformation approach. In the polynomial

transform approach, pixel and geographic coordinate pairs were used to estimate the coefficients for

second-order multivariate polynomials used to calculate latitude and longitude coordinate values.

The polynomials used pixel indices used as inputs and could be fit to the non-linear distortions in the

images.

The polynomial transformation approach was implemented in the software using the skimage

Python library. This library was utilized to estimate the coefficients for the latitude and longitude

multivariate polynomials. For each HYPSO-1 capture, the polynomials were fit to image and geo-

graphic coordinate data from the capture’s GCPs using the

skimage.transform.estimate_transform function [82]. The resulting coefficients corresponded

to second-order multivariate polynomial equations. Since GCPs are specific to each capture, unique

sets of polynomial coefficients were obtained. By placing the coefficients into their respective posi-

tions, transformation equations were derived for each capture. These equations enabled the accu-

rate conversion of image coordinates (x and y) to geographic coordinates (latitude and longitude).

The calculated latitude and longitude values for each capture were then written into NumPy matri-

ces. Following their calculation, the latitude and longitude NumPy matrices were incorporated into

the hyperspectral data by converting and combining the data into a GeoDataFrame object using the

Pandas Python library. The GeoDataFrame object provided efficient data storage and querying capa-

bilities while maintaining spatial information. Within the GeoDataFrames, the data from each spec-

tral band, latitude values, and longitude values were stored in separate DataSeries data structures.

The Python code written for the polynomial transformations was integrated into the hsts Python

package.

3.4.5 Resampling and Interpolation

Following the georeferencing and transformation of the data, the spatial resolution of the captures

can deviate from the original 956 pixels by 684 pixels (or 956 pixels by 684 pixels, if binned) resolution

of HYPSO-1 captures [13]. When a geometric polynomial transformation is applied to raster data, the

original pixel locations and sizes change, resulting in a mismatch between the transformed data and

the desired grid of pixels. Because each capture is transformed different set of polynomial transforms,

the captures do not share a common grid of pixels. As a consequence, it becomes necessary to apply

a resampling procedure to the data to ensure that the transformed raster data aligns properly to a

common grid or pixel resolution shared across all of the captures.

Resampling consists of calculating new pixel values for the transformed raster data using the orig-

inal data. The overall goal of resampling is to maintain an accurate and complete representation of
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(a) Single channel capture image transformed using an affine transformation.

(b) Single channel capture image transformed using a second order polynomial
transformation. Non-linearity is accurately preserved at the bottom or southern-
most extent of the capture.

Figure 3.13: Visual comparison of an image transformed using affine and polynomial transforma-
tions.
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the data while obtaining a common spatial resolution for all the captures. The resampling process

changes the spatial resolution and pixel sizes of the raster data and results in a different arrange-

ment of pixels for the data. In some cases, it is necessary to calculate values at new locations falling

between the resampled pixels though the use of interpolation. This is often necessary when resam-

pling raster data to a higher resolution than the original data. Interpolation fills in the gaps between

the new pixel locations by estimating values based on neighboring pixels. Applying interpolation to

resampled raster data ensures that there are no gaps or holes present in the data.

Resampling

For this project, resampling was implemented using a rudimentary combination of the GeoCube [62],

xarray [55], and SciPy [54] Python libraries. First, the xarray datasets were iterated through to identify

the most extreme latitude and longitude values present in the data. These values were used to create

a spatial bounding box ("bbox") and define a common spatial resolution grid to be shared between

captures in the time series dataset. The x axis and y axis spatial resolutions of individual resampled

pixels was set to 0.006 degrees, the default value used by the GeoCube Python library.

Next, after computing a common resolution and grid for the dataset, the data from each cap-

ture was resampled using the make_geocube function from the GeoCube library [62]. The resam-

pling process was carried out individually for each spectral band from a given capture. Information

about the desired resolution and geometry of the resampled data was passed as arguments to the

make_geocube function. Since HYPSO-1 captures have 120 bands, the function was called 120 times

to resample each band separately. The output of each call of the make_geocube function was a raster-

ized xarray series with x and y dimensions equal to that of the common spatial resolution grid. Each

of these xarray series corresponded to a separate spectral band from the capture.

Figure 3.14 shows an example of three different single channel images resampled to a common

spatial resolution as is done GeoCube and make_geocube. A side effect of the resampling process is

that the rasterized capture data will be surrounded by NaN (Not-a-Number) values within a spatial

resolution grid that extends beyond the rasterized capture data. This is due to the fact that the com-

mon spatial resolution grid is defined using the largest and smallest latitude and longitude values

from all of the captures, not just individual ones. For individual captures, many of the pixel locations

fall outside the extent of the original image after being resampled and aligned to the common grid.

These pixel locations are undefined and are handled by assigning them a NaN value due to the lack

of original data that could be used to assign a value to them.

Interpolation

An interpolation procedure was developed using functions from the SciPy [54] library. The purpose

of the interpolation procedure was to fill any gaps or holes in the resampled raster data. This was

divided into two distinct steps. First, NaN values in the resampled raster data were located and iden-

tified. These NaN values indicated areas of the data that needed to be filled using interpolation. Fol-

lowing the identification of missing data, a second step consisting of linear interpolation was used to

compute values for the missing data using information from neighboring pixels.

A method called binary closing was used to find missing pixels. Binary closing is a mathematical

operation that used to combination of dilation and erosion operations to find and fill holes in binary
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(a) Resampled single channel capture 1.

(b) Resampled single channel capture 2.

(c) Resampled single channel capture 3.

(d) Resampled single channel captures combined and overlaid in
the same image.

Figure 3.14: Examples of resampled single channel captures from the same dataset.
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data. In each spectral band raster, the data was treated as binary data, that is, it was either marked as

valid or missing. A Python function from the SciPy library called scipy.ndimage.binary_closing

and a closing size of three pixels was used to perform the binary closing operation [83]. The out-

put of the binary closing operation was a mask indicating pixel locations that needed to be assigned

values through interpolation. One of the strengths of the binary closing method is the ability to

distinguish between small, localized gaps of missing data from the expected NaN values filling the

raster grid outside the edges of the capture data. Alternative methods such as convex hull opera-

tions fail to make this important distinction and consequently make false positives on pixel locations

not requiring interpolation. For the interpolation step, SciPy was utilized once again. The function

scipy.interpolate.griddata was used interpolate the points using the linear interpolation mode

[84]. Once values for missing points were calculated using linear interpolation, they were used to

replace the NaN values in the raster data.

Similar to the resampling procedure, the binary closing and interpolation steps were iteratively

applied to each spectral band separately and outputted a distinct xarray series for each band. After-

ward, the collections of xarray series, representing each capture, were combined to form unified xar-

ray datasets. These datasets brought together the georeferenced and resampled data for each HYPSO-

1 capture. The consolidation ensured that every capture in the time series dataset had a single data

structure containing all the relevant spectral and geospatial values associated with it.

3.4.6 Land Mask

For an ocean monitoring satellite such as HYPSO-1, the ability to separate land and water areas within

a dataset is crucial. By distinguishing between land and water, change detection analysis can focus

exclusively on properties and features in water while disregarding land-based signals and influences.

To minimize the time and work needed to distinguish between land and water pixels in HYPSO-1

hyperspectral data, binary land masks were added to the datasets. A binary land mask is a spatial

map of land and water areas in a raster format, where each pixel is assigned a binary value of true (1)

or false (0). Land pixels are indicated with true values, while water pixels are indicated with a false

value. The binary or boolean nature of land masks allow for non-water pixels to be removed easily

during analysis using simple logical operations.

There are different methods of creating land masks for satellite data. One method is to use the

satellite data itself and attempt to classify pixels as either land or water. This can be achieved us-

ing a supervised classification algorithms such as support vector machines (SVMs). An alternative

approach is to use predefined land masks created using an auxiliary data source. It is this second

approach that was used for creating land masks for the HYPSO-1 time series datasets.

The data source for the land masks was the Global Self-consistent, Hierarchical, High-resolution

Geography Database or GSHHG [85]. The GSHHG database is a widely used collection of geographic

and shoreline ESRI shapefiles compiled from public sources. GSHHG has global coverage and in-

cludes shapefiles that detail ocean, lake, river, and island shorelines. GSHHG is also available at dif-

ferent resolutions ranging from "full" to "crude". To construct the land mask for the times series

datasets, the full resolution GSHHG data was used. GSHHG consists of a series of ESRI shapefiles of

various shoreline hierarchies ranging from to islands located in inland bodies of water. To simplify

using GSHHG, the different hierarchical shapefiles were all combined and saved using QGIS to create

a single consolidated global land mask shapefile. The consolidated shapefile included the maximum
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number of shoreline hierarchies available from the GSHHG.

Figure 3.15: Land mask covering Svalbard.

In order to add the land mask to the HYPSO-1 time series dataset, it was necessary to load and

open the consolidated GSHHG shapefile. This was achieved using the Fiona Python library which

produced a fiona.collection.Collection object consisting of a list of spatial vector features from

the GSHHG shapefile [64]. Since the GSHHG has global coverage, the collection of spatial vector

features loaded by Fiona was too large to be used directly and added to the hyperspectral capture

data. Instead, the spatial vector collection was filtered by searching for any spatial intersections with

the bounding box generated during the resampling step. Recall that the bounding box was defined

by the most extreme latitude and longitude values present in the data and effectively described a

spatial region of interest for the dataset. This approach of filtering the data extracted a list of land

mask polygons for areas within the bounding box while discarding unneeded land mask data falling

outside of it. The query for spatial intersections was done using the Shapely Python library [63].

The final step in generating the land mask was to combine the list of land mask polygons and

rasterize them to the same resolutions as the resampled hyperspectral data. The Rasterio library was

a major component in the implementation [59]. The rasterization of the land mask data was imple-

mented using the rasterio.features.geometry_mask function. Several arguments were required,

including the list of polygons to be combined, the desired height and width of the final rasterized

land mask (values reused from the resampled hyperspectral data), and a transform derived from the

bounding box using the

rasterio.transform.from_bounds function. The output of this procedure was a boolean NumPy

matrix that was then added as an additional land mask variable in the xarray datasets containing the

resampled hyperspectral data.

Overall, the described process of generating a land mask for the hyperspectral data was efficient

enough for the purposes of this project. The process only needed to be repeated once per dataset

since the each resampled capture in the dataset shared the same spatial resolution. The primary

drawback with the land mask approach is the accuracy of the GSHHG database. Since the GSHHG
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database is a compilation of different shoreline sources, it does not reflect recent changes to shore-

lines, either caused by physical changes or changes in mapping practices. This was noticeable at a

Svalbard site that was processed with the Python code where changes in sea ice and receding glaciers

have resulted in discrepancies between the apparent shoreline in satellite images and the shoreline

reflected in the GSHHG dataset. In the future, robust algorithms such as SVM classifiers capable of

distinguishing between water and land pixel in hyperspectral data may improve on the current land

masking technique.

3.4.7 Cloud Mask

One step that was excluded from the dataset processing procedure was a cloud mask generation pro-

cess. The motivating factor was primarily accuracy and reliability of the cloud mask. In previous work

on ICA anomaly detection [3], a cloud mask was generated for each capture using a threshold method

based on using radiance values near 640 nm, a band commonly used for daytime cloud detection

[86]. The threshold method did not always perform well and frequently produced false positives in

captures featuring regions with visible sediments in water or snow and ice. Additionally, each cap-

ture required a different threshold value to be set manually, a process that becomes time consuming

for a dataset consisting of multiple captures. These problems along with the sufficient availability

of cloud-free captures for this project were the main motivations to exclude a cloud mask from the

dataset generation procedure. That being said, the addition of a reliable cloud mask in the future

would still be an improvement and could potentially improve the performance of ICA. SVM-based

classifier algorithms are a potential candidate for generating cloud masks for hyperspectral data.

3.4.8 Writing to NetCDF

As a final step in the dataset processing, the xarray datasets were written and saved as NetCDF files,

with each file containing data from exactly one HYPSO-1 capture. Conversion to NetCDF was done

using the built in xarray.Dataset.to_netcdf function. The NetCDF files were written to separate

directories corresponding to the dataset to which they belonged to. These files were later loaded

for use in the ICA change detection algorithms. Various pieces of metadata were also written to the

NetCDF files. This metadata included processing details, filenames, code versions, and other relevant

information. Additionally, an array containing the physical wavelength labels for the spectral bands

was written to the metadata. These labels were calculated from information provided by the spectral

calibration files and assist with interpreting and presenting the hyperspectral data.

3.4.9 Input File

During the generation of hyperspectral time series datasets, text-based input files were used to orga-

nize and simplify the management of dataset processing settings. There were several motivations for

the use of input files. Firstly, input files enhance readability and organization of processing settings.

By representing the settings in a text format, they can be easily documented and saved for future

reference. Additionally, it adds flexibility to dataset processing workflows. The text file can contain

various processing configurations, allowing for different settings to be modified without altering the

underlying dataset processing Python code. Furthermore, input files enable automation and repro-

ducibility when generating datasets. By utilizing a standardized input file format, the dataset process-
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ing pipeline can be automated, ensuring consistency and the accurate replication of results across

different runs.

Figure 3.16: Screen capture of an input file used to generate a time series dataset of the Frohavet
location.

The input file format was based around comma separated values (CSV) text files. Each CSV input

file consisted of two major sections: the processing settings and the file processing queue. In the

processing settings, information related to the processing options of a time series dataset was stored

and formatted to be parsed and interpreted by the Python code. Following the processing settings,

was the file processing queue. This section of the input file provided file paths to the hyperspectral

data files. The file processing queue consisted of a list of .bip files to be included in the dataset. In

addition to the .bip files, a list of corresponding .points files was also present to add ground control

point (GCP) information to the data files.

Each line of the input file was preceded with a binary line flag. Binary line flags are used in the

input files to enable or disable certain parameters, settings, or data files in the time series processing

Python scripts. A binary line flag is a configuration parameter that uses a binary value (0 or 1) to in-

dicate the activation or deactivation of a specific setting or capture. In the input file, the line flags are

located at the beginning of each line, where value determines whether the corresponding parameter

or capture is included/enabled (1) or excluded/disabled (0) during the dataset processing. For the file

processing queue, this allows for customization and control over which captures are to be included in

the dataset. Individual captures can be selectively added or remove from the dataset using the binary

line flags.

In Appendix A, the layout and structure of the dataset processing input files is described. In each

subsection, a different line of the input file is presented and broken down into comma separated
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variable fields that contain individual parameters or file paths. Figure 3.16 shows an example of a

dataset processing input file.

3.5 Independent Component Analysis

3.5.1 Overview

Independent Component Analysis, or ICA, is a powerful technique used to separate individual sources

from mixed data. In the case of hyperspectral data, ICA can extract valuable information such as

spectral features which each represent a particular physical property or material in the hyperspectral

image. In this work, ICA is implemented with a commonly used algorithm called FastICA [34] which

is available as a part of the decomposition module in the SciKit-Learn Python library [36]. FastICA

is combined with two additional techniques called Automatic Target Generation Process (ATGP) and

Principal Component Analysis (PCA). ATGP and PCA serve as components in a method to preinitialize

the un-mixing matrix used by FastICA [37].

In each of the change detection techniques used in this project, the use of ICA consisted of four

general steps, listed below:

1. ICA Preprocessing

2. ICA Initialization

3. ICA Data Transformation

4. ICA Postprocessing

In the first step, preprocessing, basic operations were applied to center and whiten the data. Addi-

tionally, the hyperspectral data was flattened to two dimensional matrices in preparation for FastICA.

The second step varied based on the change detection technique but in general it involved precon-

ditioning and initializing the FastICA using results generated by PCA and ATGP, run on a subset or all

of the preprocessed hyperspectral data. During the third step, the initialized FastICA aglorithm was

applied to the preprocessed data, generating a matrix of independent components or ICs. The fourth

step, postprocessing, encompassed any remaining tasks related to the reshaping, reconstruction, and

interpretation of the independent components generated by FastICA.

3.5.2 ICA Preprocessing

Before applying ICA to hyperspectral data, preprocessing steps are required to ensure the correct

application of ICA and effective source separation. Preprocessing attempts to reduce the impact of

factors such as noise, uncalibrated data, atmospheric effects, and sensor artifacts. These factors can

affect the statistical independence and non-Gaussinity of the components present in the data, of

which both properties are fundamental to ICA. Preprocessing techniques like filtering help remove

unwanted disturbances and spectral bands while spectral and radiometric calibration ensure consis-

tent measurements across different images.

The most important preprocessing steps for ICA are centering and whitening. Centering enforces

that the mean of the ICA input data is equal to zero by subtracting the mean vector from the input
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data. Whitening, on the other hand, addresses any preexisting correlations in the data by transform-

ing the data to have a covariance matrix equal to the identity matrix. [34]

Some of these preprocessing tasks, such as spectral and radiometric calibration are performed

during the generation of time series datasets. Other preprocessing tasks, such as centering and whiten-

ing, must be done immediately prior to running ICA on the data. By applying these preprocessing

steps prior to ICA, the hyperspectral data can be optimized for a more accurate decomposition into

independent components, leading to more useful results.

Calibration

The data was both spectrally and radiometrically calibrated during the generation of the hyperspec-

tral time series datasets. The implementation of the calibration procedure for the hyperspectral data

is discussed in Section 3.4.3.

Filtering

In most hyperspectral captures taken by HYPSO-1, the first four spectral bands consist of all zero

values. Because these bands contain little useful information and consume memory and processing

resources, the bands are filtered from the data before running ICA. This is done by simply discarding

the first four band indices of the NumPy matrix containing the data. After removing the four spectral

bands, the hyperspectral data was reduced from a total of 120 bands to 116 bands.

Flattening

Data flattening is the process of converting multidimensional data into a two dimensional matrix,

where each row represents a separate sample. This effectively converts each data sample or image

pixel into a vector consisting of a series of features or spectral values. Data flattening is performed

on the input data since ICA expects the data to be in a two dimensional format where the number of

rows corresponds to the number of samples and the number of columns corresponds to the number

of features in the input data.

In Python, functions from the NumPy library were used to reshape the data. The np.reshape

NumPy function was primarily used to convert the hyperspectral data from a three dimensional rep-

resentation to a two dimensional representation suitable for ICA. Similarly, the same flattening pro-

cedure was done on the land mask and the flattened mask was applied to the input data to hide

non-water samples. In order to reconstruct the data after running ICA, the original dimensions of the

input data were recorded and saved to variables.

Centering

The data centering procedure follows the filtering of spectral bands. Data centering modifies the

mean of each band in the hyperspectral data such that it is equal to zero [34]. The motivation of

centering is that when the mixture data, x, has zero mean, then the recovered components, s, will

also have zero mean. Data centering is achieved by calculating a vector containing the means for

each spectral band and subtracting it from the data. Because of its criticality to the ICA algorithm,

centering is performed automatically the FastICA algorithm as part of the SciKit-Learn signal decom-

position module [36].
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Whitening

Before running ICA and decomposing the hyperspectral data into components, it is desirable to elim-

inate any preexisting correlations in the data. By decorrelating the data, the number of parameters in

the mixing matrix that need to be estimated can be reduced, in turn reducing the amount of process-

ing required by ICA. A type of linear transformation called a whitening transform is used to decor-

relate the data after the data centering process. The whitening transform has several effects on the

hyperspectral mixture data. Firstly, it modifies the mixture data x such that the covariance matrix of x

will be equal to the identity matrix as shown in Equation 2.7. Additionally, the transform also causes

the mixture data components to each have variances equal to unity. This is done by scaling the data

so that each component has unit variance. After data whitening, the components or spectral bands

of x become statistically uncorrelated from one another. [34]

In the implementation of the data whitening step, a common data whitening method called eigen-

value decomposition (EVD) was used. Similar to data centering, EVD is also built into FastICA algo-

rithm as part of the SciKit-Learn signal decomposition module [36]. The EVD-based data whitening

process was automatically invoked and applied to the data whenever the FastICA algorithm was run.

3.5.3 ICA Initialization

One of the features of the SciKit-Learn FastICA algorithm is the optional ability to customize the val-

ues used for the initial un-mixing matrix [36]. This initialization ability allows the behavior of FastICA

to be modified to generate independent components in a predictable and repeatable manner. By de-

fault, the FastICA un-mixing matrix uses values generated from a normal distribution which produces

independent components in a random order.

Previous work on ICA and ICA initialization methods has shown that a combination of Principal

Component Analysis (PCA) and an algorithm called Automatic Target Generation Procedure (ATGP)

can be used to pre-initialize the FastICA algorithm [3]. This initialization strategy involving PCA and

ATGP is based around the concept of dimensionality reduction. PCA is used to reduce the dimen-

sionality and simplify the representation of the ICA input data through linearly transforming the data

to a new coordinate system. The simplified PCA-transformed data is then used by ATGP to generate

initial un-mixing matrix values through an iterative algorithm called Orthogonal Subspace Projection

(OSP) [37] [38]. At the end of this process, the un-mixing matrix values computed are used to initial-

ize FastICA before it is run on the ICA input data. The theory and operation of PCA and ATGP are

discussed in more detail in Section 2.6.

The initialization technique involving PCA and ATGP addresses several issues with ICA. Firstly,

it reduces the amount of computation used to find independent components contributing little to

the overall hyperspectral mixture data. PCA and ATGP allow independent components to be gener-

ated in order of their significance or contribution to the mixture data. Additionally, since the initial

un-mixing matrix values are not drawn from a normal distribution at random, the independent com-

ponents are generated by ICA in a consistent order each time ICA is run on the same set of data.

PCA

The PCA algorithm was applied to the ICA input data using the SciKit-Learn signal decomposition

module [36]. Like for the FastICA algorithm, SciKit-Learn offers built-in native support for PCA. The
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only parameter that was required to be changed by PCA was the number of PCA components to be

output. This was set to the same number of desired ICA components. For example, if five compo-

nents were to be generated using ICA, then five components would first be generated with PCA. After

running PCA on the ICA input data, a NumPy matrix containing components was created and used

as the input to ATGP.

ATGP

The ATGP algorithm was implemented from scratch in Python since there are no pre-existing Python

libraries that provide the ATGP algorithm. The ATGP algorithm Python code was partially reused from

previous work on ICA initialization techniques [3] and was integrated as a function into the custom

hsts Python module used for hyperspectral time series dataset processing. The ATGP function itera-

tively generated the un-mixing matrix W for the data. This iterative process is the part of ATGP which

is based on Orthogonal Subspace Projection (OSP). The NumPy matrix created by PCA in SciKit-Learn

and containing the PCA components was used as the source of the initial projection vectors for ATGP

and OSP. After running the ATGP algorithm, the output was a matrix Un that was then be used as the

initial un-mixing matrix W for FastICA [38].

3.5.4 ICA Data Transformation

For the change detection techniques, ICA was implemented using SciKit-Learn Python library and de-

composition module [36] and is based on the work by A. Hyvärinen on the FastICA algorithm [34]. The

SciKit-Learn FastICA implementation implements and incorporates some of the ICA preprocesssing

steps such as the the data centering and whitening preprocessing.

Arguments

The SciKit-Learn FastICA algorithm was used largely unmodified. Two important parameters that

were changed, however, were the initial un-mixing matrix w_init and the number of iterations. The

initial un-mixing matrix was set using FastICA’s w_init argument and the matrix found using the

ATGP algorithm. Setting the un-mixing matrix preconditioned FastICA to generate independent com-

ponents in order of their significance. The number of ICA iterations was also modified. By default,

SciKit-Learn FastICA uses 200 iterations which can lead to a failure of the algorithm converge in some

rare cases. This was instead set to 5000 iterations with the intent to guarantee that the FastICA algo-

rithm always converges and to reduce the amount of manual monitoring to make sure that FastICA is

converging over the course of multiple runs.

Number of Components

Prior to running ICA, the desired number of independent components needed to be configured. This

quantity was set to 10 independent components, the same number of PCA components generated

during the ICA initialization process with ATGP. The number of ICA and PCA components must always

match for this since it dictates the dimensions of the initial un-mixing matrix for FastICA. The choice

of 10 components was arbitrary. In previous work with ICA [3], five components were generated for

each HYPSO-1 capture. The reasoning to generate more independent components in this project
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was driven by an attempt to find more anomalies within the hyperspectral images as well as to make

it easier to match independent components representing the same types of spectral features between

temporally separate captures.

Objective Function

The SciKit-Learn FastICA algorithm was also run using the logcosh objective function option. This is

the default objective function used by SciKit-Learn FastICA but is nonetheless important to mention.

The the equation is shown in Equation 3.1, where the coefficient a is equal to 1.0. The equation was

used to calculate the approximation of negentropy using Equation 2.8. This objective function is one

of the proposed equations in the original FastICA paper by A. Hyvärinen [34].

G1(y) = 1

a
logcosh(ay) (3.1)

Running ICA

The FastICA algorithm was applied to the preprocessed ICA input data using the FastICA transformer’s

fit function. Depending on the specific change detection technique used, ICA was either applied to

all of the data all at once or to a subset of the data, such as each capture individually. The application

of FastICA produced ICA transformer Python objects containing values and information that were

later used to transform and recover the independent components from the data. These tasks were

handled and performed in the ICA postprocessing steps.

3.5.5 ICA Postprocessing

Output

The FastICA algorithm outputs two transformer Python objects, one from the FastICA algorithm and a

second from the PCA algorithm. These transformer objects each contain several functions, attributes,

and variables produced by the ICA and PCA algorithms. The ICA transformer object contains two ma-

trices with the names components_, mixing_, and whitening_. These matrices are the un-mixing,

mixing, and whitening matrices, respectively. The matrix components_ is equivalent to the dot prod-

uct of the un-mixing matrix and the whitening matrix. The un-mixing matrix is represented by W in

Equation 2.3. The components_ matrix is in turn equal the to the psuedo-inverse of the mixing ma-

trix which is contained in the mixing_ variable. The PCA transformer has an analogous components_

matrix which contains the set of PCA components generated by the PCA and ATGP initialization algo-

rithm. The PCA transformer, however, is not necessary for recovering independent components. [36]

[87]

The ICA transformer object provides information about the mixing and un-mixing matrices but

does not produce the independent components from ICA directly. To account for this, the indepen-

dent components were computed by transforming the ICA input data using the ICA transformer ob-

ject’s built-in fit_transform function. This function applied the ICA transformation previously fit

to the data with the ICA transformer’s fit function. The result of this process was a NumPy matrix

containing the independent components. The NumPy matrix had dimensions equal to number of

samples (or unmasked pixels in the image) by the number of independent components. In contrast,
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the original input data had dimensions equal to the number of samples by the number of features

(spectral bands). Because the independent components were flattened and combined into a single

NumPy matrix, further processing was required to prepare the independent components to be ana-

lyzed and plotted as two dimensional images. [36]

Reshaping

Because the ICA input data was flattening to two dimensions, it had to be reshaped back into mul-

tidimensional after running ICA. This process was done simply by reversing the steps taken in the

data flattening process; the original dimensions of the input data were read from variables contain-

ing them that were created when the data flattening was performed and used to reorganize the data.

In Python, functions from the NumPy library were used to reshape the data. The reshape NumPy

function was used to convert the hyperspectral data from the flattened two dimensional representa-

tion back to a three dimensional representation.

Plotting

Plotting is handled with the Matplotlib Python library. Each independent component was plotted

using the ICA transformed data returned as a NumPy array. The spectra associated with each in-

dependent component was plotted using the un-mixing matrix components_ also returned as part

of the ICA transformer object. Each row of the un-mixing matrix corresponds to the spectrum of a

different independent component.

3.6 Change Detection

3.6.1 Overview

In this project, a variety of ICA-based change detection techniques based on those identified during

in the literature review were applied to bitemporal datasets of hyperspectral data. A total five differ-

ent change detection techniques were implemented in this project. Change detection strategies were

varied in each technique used. Owing to their basis on ICA, the selected change detection techniques

could primarily be classified as transformation and featured-based change detection techniques. In

each techniques, ICA was used at some stage in the processing to extract features from the hyper-

spectral data. The data was transformed from the image domain to a feature domain that was used to

describe or analysis types of changes in the dataset. Algebraic techniques, such as differencing and

data stacking, were used too as a component in some of the methods. In these cases, the ICA-based

change detection techniques could also be categorized as hybrid change detection approaches.

3.6.2 Relation to ICA

At a high level, two general approaches to ICA-based change detection in hyperspectral imagery were

taken. The two general approaches were distinct from one another based on how ICA was applied to

the data. The first approach used ICA to find changes directly in the preprocessed bitemporal data.

This involved first manipulating the preprocessed bitemporal data in some manner such as through

multiple datacube stacking or differencing, where values from an earlier capture are subtracted from



CHAPTER 3. IMPLEMENTATION 63

values from a later capture. Typically, these data manipulation actions had the effect of combining

or compressing multiple hyperspectral captures to be processed by ICA simultaneously. After per-

forming data manipulation, ICA was run on the modified data. The independent components pro-

duced by this process were then each be interpreted as indications of different types of changes or

change features. Essentially, independent components in this approach represented non-stationary

or changing features across one or more captures. Under this approach, the independent compo-

nents served directly as change maps describing the spatial distribution.

In comparison, the second approach ran ICA directly on the preprocessed bitemporal data with-

out first modifying it. In this approach, ICA was applied to each hyperspectral capture individually,

producing sets of independent components that were temporally distinct from each other. Each set

of independent components represented a collection of spectral features from a different temporal

moments. Independent components in this approach represented stationary features within a single

capture. To produce a change maps, corresponding independent components from different tem-

poral moments were matched with each other using a statistical metric and data differencing was

applied.

For the change detection techniques, the ICA processing elements were carried out using the off-

the-shelf implementation of FastICA from SciKit-Learn [36]. FastICA was enhanced with an initializa-

tion procedure based using Automatic Target Generation Process (ATGP) and Principal Component

Analysis (PCA) [3]. All of these components were integrated with various change detection strategies.

The implementation of ICA is discussed in further detail in Section XX.

3.6.3 Properties

Multiple considerations were taken into account when selecting ICA-based change detection tech-

niques. These factors aimed to incorporate advantageous and valuable properties that could enhance

the interpretability and efficiency of change identification.

Spatial Distribution

To start with, all of the change detection techniques needed to be capable of mapping the spatial dis-

tribution of changes. This information helps in identifying regions where a change is occurring and

provides spatial context such as the geography of the area. Furthermore, spatial distribution mapping

also reveals the extent and pattern of changes in the observed area and enables integration with other

localized data sources such as in-situ measurements or satellite observations. In the change detec-

tion techniques used for this project, spatial distribution information was provided by change maps

derived from independent components. These change maps described the magnitude and direction

of changes in multitemporal hyperspectral datasets.

Multiclass Detection

Another desirable property is the ability to distinguish between different types of change. In other

words, multiclass change detection techniques are sought after. Hyperspectral imaging can reveal

multiple underlying features in a capture so it becomes advantageous to be able to separate and track

different kinds of changes individually. When monitoring for HABs, for example, it is favorable to

look at algae concentration while disregarding other features that may be present such as sediments,
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clouds, or ice. This area is one of the primary strengths of ICA-based change detection since ICA al-

lows hyperspectral data to be decomposed and isolated into signals representing individual features.

In summary, ICA augments standard change detection techniques and allows them to be expanded

from binary to multiclass change detection techniques.

Interpretable Spectra

Another important consideration is the ability to identify different types of changes. In the context of

change detection, it is valuable to not only determine the location and spatial distribution of a change

but also to understand the nature and type of the change occurring. This is especially important when

dealing with multiclass change detection. ICA fulfills the need for interpretable information about

changes by producing independent components that contain spectra information. These spectra are

based on information provided by un-mixing matrix (contained in the components_ ICA transformer

variable) and can be analyzed for spectral peaks or troughs reveal the type of material involved in

the changing feature. Like its ability to decompose hyperspectral data into individual features, the

ability to produce spectral information is another key strength of the ICA-based change detection

techniques.

Extendibility

Finally, while not a primary goal of this project, the ability of expanding the change detection tech-

niques from bitemporal to multitemporal change detection was also considered. Not all change de-

tection techniques are appropriate for multitemporal change detection or temporal trajectory anal-

ysis, primarily related to how they handle the hyperspectral data. ICA-based change detection tech-

niques that process entire bitemporal time series datasets at once (i.e. through datacube stacking)

are less suitable for use on multitemporal datasets. Conversely, techniques that split the time series

dataset and process hyperspectral captures individually to retrieve spectral features are easier to effi-

ciently adapt to multitemporal datasets.

3.6.4 Reading Data

Bitemporal pairs of HYPSO-1 hyperspectral captures covering the various observational targets (Sec-

tion 3.3) were processed by each of the ICA-based change detection techniques separately. The

bitemporal datasets consisting of exactly two captures each and always consisted of a before and

after capture, taken at two different times. The data was prepared according to the time series dataset

processing pipeline described in Section 3.4.

The hyperspectral data was read from NetCDF files using the xarray Python library [55]. Each

NetCDF file contained exactly one hyperspectral captures and were generated by the dataset process-

ing pipeline described in Section 3.4. Hyperspectral captures of the same observational target were

written and saved together into four dimensional NumPy matrices. The four dimensional matrices

could be indexed by date in order to load bitemporal capture pairs for use in the ICA-based change

detection techniques. The first dimension in the four dimensional matrices represented the time of

hyperspectral image acquisition, with lower indices indicating the oldest captures and higher indices

indicating the newest captures. The second, third, and fourth dimensions represented height, width,

and number of bands of the captures, respectively. To add include land mask information, the four
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dimensional matrices were converted to MaskedArray objects using NumPy’s masked array module

numpy.ma [57] with the land mask applied to the data.

Latitude and longitude variables were separated from the data and added to auxiliary NumPy ma-

trices. The geospatial information contained in these matrices were not necessary for the purposes

of change detection or ICA but were later used for plotting the independent components and change

maps generated by the change detection algorithms. Another auxiliary vector was generated to hold

the physical wavelength values of the spectral bands. These labels were calculated from information

provided by the spectral calibration files and Python code and were loaded from metadata saved to

the NetCDF. The wavelength labels were used for plotting and analyzing reflectance spectra loaded

from the ICA un-mixing matrices.

3.6.5 Change Detection Techniques

The five different ICA-based change detection techniques developed for this project were:

1. Spatial Stacking

2. Spectral Stacking

3. Spectral Differencing

4. Hybrid Spectral Differencing and Stacking

5. Component Matching

All of the techniques are based around ICA with ATGP initialization in some form. This means that the

five techniques can be categorized as transformation-based or hybrid-based change detection. The

techniques were selected according to the properties discussed in the previous subsection. The fol-

lowing sections describe the function and implementation of the ICA-based change detection tech-

niques. In each technique, ICA produced spatial maps of independent components as well as un-

mixing matrices containing spectra values. These were interpreted differently depending on the spe-

cific ICA-based change detection technique used.

3.6.6 Spatial Stacking

Description

Spatial stacking was the first and simplest ICA-based change detection technique used in this work.

In its most basic form, spatial stacking of two hyperspectral datacubes involves combining the pix-

els from each temporally separate datacube into a single composite datacube. This results in a new

datacube with an increased spatial dimension, representing the combined spectral information of

both datacubes. In this case, the hyperspectral datacubes were stacked along a mutual vertical axis.

Figure 3.17 shows how a pair of before and after datacubes are spatially stacked to form a composite

datacube.
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Figure 3.17: Spatial stacking technique.

Once the spatial stacking is performed, ICA can be applied to the composite datacube. By running

ICA on the stacked hyperspectral datacube, it becomes possible to identify and extract the indepen-

dent components, enabling further analysis and interpretation of the combined dataset. The purpose

of spatial stacking is so that ICA will identify and generate independent components present in both

the before and after hyperspectral datacubes. In this sense, spatial stacking allows ICA to look for

features in common between two captures and entire bitemporal dataset.

After producing the independent components for the entire dataset, each independent compo-

nent can be reshaped and split into two feature maps corresponding to the feature in the before and

after capture. This process is effectively a destacking of the independent components along the spa-

tial dimension originally used for the the stacking of the bitemporal datacubes and is shown in Figure

3.18. A simple differencing operation can be applied to each set of before and after feature maps,

shown in Figure 3.19. The final result are change maps for each feature identified by ICA. The un-

mixing matrix from ICA is used to describe the spectra of the independent components.
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Figure 3.18: Flowchart for the processing of independent components (ICs) and spectra after ICA is
run on spatially stacked data.

Figure 3.19: Differencing operation on two sets of independent components (ICs) to produce a set of
change maps.

Implementation

The implementation of spatial stacking in Python was relatively straightforward. First, a pair of three

dimensional hyperspectral datacubes were written to a single four dimensional NumPy masked ar-

ray with the land mask applied to the data. Next, the two hyperspectral datacubes were reshaped

using the NumPy reshape function. The reshaping process converted the bitemporal datacube ma-

trix from dimensions of (2, 522, 308, 116) to dimensions of (1044, 308, 116), changing the

vertical dimension from 522 rows to 1044. The non-water pixels were filtered from the reshaped data

using NumPy’s masked array module numpy.ma [57]. The remaining water pixels were copied to a

separate ICA input matrix which was subsequently reshaped to two dimensions using the NumPy

reshape function. The second reshaping converted the matrix to have dimensions equal to the num-

ber of water pixels (of which the quantity was dependent on the scene and land mask) by the number

of spectral bands (116). The two dimensional input matrix was then processed with ATGP and ICA.

After processing the data with ICA, another two dimensional output matrix was produced. This

output matrix had dimensions equal to the number of water pixels by the number of independent
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components (10). Using the land mask and bitemporal datacube matrix, the ICA output data was re-

constructed to the same dimensions of the hyperspectral captures, again using the NumPy reshape

function. This was effectively the reverse of the procedure used to create the two dimensional ICA

input matrix. The data reconstruction produced a new matrix of independent components with di-

mensions of (2, 522, 308, 10) where the first dimension indicated the capture, the second and

third dimensions indicated the height and width of the capture, and the fourth dimension indicated

the ICA independent component.

Change maps were generated by applying a simple differencing operations to corresponding in-

dependent components, depicted in Figure 3.19. The differencing operation was performed by sub-

tracting the independent component from the first capture from the corresponding independent cap-

ture in the second capture. The process was repeated for all 10 pairs of independent components and

produced 10 different change maps, each for a different feature. In a final step, geospatial informa-

tion (latitude and longitude) was added to the change maps. The change maps were plotted and

saved using Matplotlib and Basemap Python libraries. [68] [69]

The spectra for the independent components were recovered from the ICA transformer’s components_

attribute. The attribute produced a transposed un-mixing matrix with dimensions of (10, 116).

Each row in the matrix was interpreted and plotted as the relative reflectance spectrum of the corre-

sponding independent component using Matplotlib [68].

3.6.7 Spectral Stacking

Description

The second ICA-based change detection technique used was spectral stacking. Spectral stacking is

closely related to spatial stacking in that it also combines two hyperspectral datacubes for processing

through a stacking operation. As its name suggests, spectral stacking joins temporally separate dat-

acubes along the spectral dimension instead of a spatial dimension as is used in spatial stacking. The

spectral stacking process results in a new composite datacube with an increased spectral dimension,

also representing the combined spectral information of both datacubes. After performing spectral

stacking, ICA can be applied to the composite datacube to extract the independent components of

the combined dataset. Spectral stacking is depicted in Figure 3.20.

The reasoning behind spectral stacking is that ICA will identify patterns in the expanded spectral

information at each pixel. Because the spectral information for each pixel in the composite datacube

includes both before and after spectral values, detectable changes will manifest directly as indepen-

dent components or features produced by ICA. These features capture the underlying spectral charac-

teristics and changes present in the combined spectral data. The spectral stacking approach offers an

efficient way to extract change information without explicitly generating change maps through data

differencing. In spatial stacking change detection, the independent components obtained from dif-

ferencing the independent components of the before and after captures are used to produce change

maps. However, by adopting spectral stacking, this intermediate step is bypassed and the need for

generating change maps through differencing the independent components is eliminated.
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Figure 3.20: Spectral stacking technique.

Following running ICA, very little processing is required to use the independent components. The

ICA output simply needs to be reshaped to the original dimensions of the HYPSO-1 captures. Individ-

ual independent components can be utilized as change maps describing variations for each feature

identified by ICA. The rows in the un-mixing matrix from ICA are divided in half to provide before

and after relative reflectance spectra for the hyperspectral captures. The post-ICA manipulation of

the independent components and spectra is shown in Figure 3.21.
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Figure 3.21: Flowchart for the processing of independent components (ICs) and spectra after ICA is
run on spectrally stacked data.

Implementation

The implementation of spectral stacking in Python started by writing a pair of three dimensional

hyperspectral datacubes to a single four dimensional NumPy masked array with the land mask ap-

plied to the data. The hyperspectral datacubes were reshaped using the NumPy reshape function,

rearranging the data from bitemporal datacube matrix from dimensions of (2, 522, 308, 116) to

dimensions of (522, 308, 232). Note that the spatial dimensions (522 pixels by 308 pixels) of the

hyperspectral captures remained unchanged while the spectral dimension doubled from 116 bands

to 232 bands.

The next step applied the land mask to the data and filtered non-water pixels from the reshaped

data. Again this was done using NumPy’s masked array module numpy.ma [57]. The filtered data

was copied to an ICA input matrix and was flattened to two dimensions with the NumPy reshape

function. The ICA input matrix dimensions were equal to the number of water pixels by the number

of spectral bands from the two captures (232). The input matrix was then processed with ATGP and

ICA.

A two dimensional output matrix containing independent components was produced by ICA. The

matrix dimensions were equal to the number of water pixels by the number of independent compo-

nents (10). The ICA output data was reconstructed to the same dimensions of the hyperspectral cap-

tures, again using the NumPy reshape function. This reversed the procedure used to create the two

dimensional ICA input matrix. The data reconstruction produced a new matrix with dimensions of

(522, 308, 10) consisting of a single set of independent components. Within the resultant matrix,

the height and width of the components were indicated by the first and second dimensions and ICA

independent components were indicated by the third dimension. Each ICA independent component
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in the matrix was interpreted as a different change map. The change maps were plotted and saved

using Matplotlib and Basemap Python libraries. [68] [69]

The spectra for the independent components were recovered from the ICA transformer’s components_

attribute. The attribute produced a transposed un-mixing matrix with dimensions of (10, 232).

Each row in the matrix was interpreted as relative reflectance spectra values for the corresponding in-

dependent component. Because each row in the components_ matrix had with twice the number of

spectral bands than standard HYPSO-1 captures (232 bands instead of 116 bands), they were each di-

vided into two smaller 116 band spectra. These 116 band spectra represented the relative reflectance

spectra of the before and after hyperspectral captures in the bitemporal dataset. The pairs of relative

reflectance spectra for each independent component were plotted using Matplotlib [68]. Analysis

of the before and after relative reflectance spectra could be utilized to reveal what and how specific

spectral values changed between the bitemporal captures.

3.6.8 Spectral Differencing

Description

Spectral differencing was the third ICA-based change detection technique. Spectral differencing tech-

nique is based on directly analyzing the differences in spectral information between two hyperspec-

tral captures using ICA. The rationale behind spectral differencing is that a differencing operation can

be applied to two captures to calculate the amount that each spectral band changed between acquisi-

tions and ICA can be used to reveal distinct types of changes present in the data. Rather than joining

two hyperspectral captures using a stacking operation along a mutual spatial or spectral dimension,

spectral differencing operates by subtracting corresponding spectral bands of the two datacubes. By

subtracting the values of the spectral bands at each pixel location in the captures, a new differential

datacube is created, consisting of difference values that highlight the changes in spectral signatures

between the two captures.

Figure 3.22: Spectral differencing technqiue.

To further the analysis of changes in the data, ICA is used to identity patterns within the differ-

ential datacube. The differential datacube is processed in the same manner as normal hyperspectral

data using ICA. In essence, the differential datacube is treated as mixed signal data and undergoes the

same ICA processing steps as any other hyperspectral capture.
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Figure 3.23: Flowchart for the processing of independent components (ICs) and spectra after ICA is
run on a differential datacube

Spectral differencing demands minimal processing to use the independent components after

running ICA, as seen in Figure 3.23. The ICA output only needs to be reshaped to the original di-

mensions of the HYPSO-1 captures. The individual independent components produced by ICA can

be utilized as change maps, each for a different category of change detected by ICA. In spectral dif-

ferencing, the un-mixing matrix produced by ICA does not represent the relative reflectance spectra

values for static features in the hyperspectral data as it does in the other ICA-based change detection

techniques. Instead, the un-mixing matrix represents the change in the relative reflectance spectra

values. This property is the main disadvantage of the spectral differencing approach. The spectra

from the spectral differencing un-mixing matrix describe how the components change but they do

not necessarily describe static spectral signatures of the changing features. As a result, it is difficult to

determine what material or physical process is changing using spectral differencing.

Implementation

The Python implementation of spectral differencing started by writing a set hyperspectral time series

captures to a four dimensional NumPy masked array with the land mask applied to the data. The

masked NumPy matrix was then indexed to obtain two hyperspectral datacubes, one representing

data from the before capture and the other representing data from the after capture. The datacubes

were contained in three dimensional NumPy matrices, each with dimensions of (522, 308, 116).

Following the loading of the datacubes, the differencing operation was applied to the before and

after datacubes. This entailed the element-wise subtraction of the before capture from the after cap-

ture, implemented using standard built-in array subtraction in NumPy. The element-wise subtrac-

tion produced a new three dimensional differential datacube matrix with the same dimensions as the

operand datacubes used in its calculation.

The final steps before running ICA were applying the land mask to the data, filtered non-water

pixels using NumPy’s masked array module numpy.ma [57], and reshaping and flattening the data

to an ICA input matrix using the NumPy reshape function. The ICA input matrix dimensions were

equal to the number of water pixels by the number of spectral bands (116). The input matrix was then
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processed with ATGP and ICA.

Once again, a two dimensional output matrix containing independent components was produced

by ICA. The matrix dimensions were equal to the number of water pixels by the number of indepen-

dent components (10). The ICA output data was reconstructed to the same dimensions of the hy-

perspectral captures, again using the NumPy reshape function. This reversed the procedure used

to create the two dimensional ICA input matrix. The data reconstruction produced a new matrix

with dimensions of (522, 308, 10) consisting of a single set of independent components. Within

the resultant matrix, the height and width of the components were indicated by the first and second

dimensions and ICA independent component were indicated by the third dimension. Each ICA inde-

pendent component in the matrix was interpreted as a different change map. The change maps were

plotted and saved using Matplotlib and Basemap Python libraries. [68] [69]

The spectra for the independent components were recovered from the ICA transformer’s components_

attribute. The attribute produced a transposed matrix with dimensions of (10, 116). Each row in

the matrix was interpreted as the change in the relative reflectance spectra values for the correspond-

ing independent component or change map. The differential relative reflectance spectra for each

independent component were plotted using Matplotlib [68].

3.6.9 Spectral Differencing and Stacking Hybrid

Description

The fourth ICA-based change detection technique developed was hybrid spectral differencing and

stacking. The hybrid spectral differencing and stacking technique was developed motivated by the

desire to have a change detection method possessing the strengths of both spectral differencing and

spectral stacking. Spectral differencing offers a computationally simple method to find and empha-

size spectral differences between two datacubes using basic subtraction operations. At the same time,

spectral differencing fails to provide easily interpretable information about the static spectral signa-

tures of features in the hyperspectral captures. In contrast, spectral stacking produces spectral sig-

natures of features within the data since ICA operates directly on non-differential hyperspectral data.

By combining the two change detection techniques, independent components are generated that

incorporate both static and changing spectral signature information.

Hybrid spectral differencing and stacking functions by first subtracting corresponding spectral

bands of two datacubes taken from a bitemporal dataset. Subtracting the values of the spectral bands

at each pixel location in the captures creates a new differential datacube, consisting of difference

values that highlight the changes in spectral signatures between the two captures. From here, the

differential datacube is treated as any typical hyperspectral datacube. The differential datacube is

combined with the initial hyperspectral datacube (i.e. the before capture) to form a composite dat-

acube. This is achieved through a stacking operation along the spectral dimension, as shown in Figure

3.24. The spectral stacking process results in a composite datacube with an increased spectral dimen-

sion that represents the combined spectral information of the initial and differential datacubes. After

performing spectral stacking on the differential and initial datacubes, ICA can be applied to the com-

posite datacube to extract the independent components of the combined hybrid dataset.
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Figure 3.24: Spectral differencing and stacking hybrid technique.

Running on ICA on hybrid spectral differencing and stacking data generates independent com-

ponents that are used directly as change maps, much as is done in the spectral stacking technique.

The independent components only need to be reshaped to the original dimensions of the HYPSO-1

captures. No differencing operation is required after running ICA since it was already performed to

create the composite datacube. Within the composite datacube, the spectral information for each

pixel includes both the initial values as well as the amount that the spectral values change between

the before and after captures. Detectable changes in the present in the composite data will manifest

directly as independent components produced by ICA, with each independent component represent-

ing a different type of detected change.
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Figure 3.25: Flowchart for the processing of independent components (ICs) and spectra after ICA is
run on spectrally differenced and stacked data.

In hybrid spectral differencing and stacking, the spectra contained in the un-mixing matrix have

twice the number of spectral bands than a standard HYPSO-1 capture since the hybrid technique par-

tially utilizes spectral stacking. The rows in the un-mixing matrix are divided in half to yield an initial

as well as a differential relative reflectance spectrum for each feature in the hyperspectral captures.

The initial relative reflectance spectrum can be used to determine what kind of physical material the

feature consists of. The differential relative reflectance spectrum describes how the feature changes

between the before and after hyperspectral captures. Both spectra assist in the interpretation of the

independent components found using the hybrid spectral differencing and stacking technique. Fig-

ure 3.25 shows how the independent components and spectra are processed after running ICA.

Implementation

The hybrid spectral differencing and stacking technique was realized in Python. It started by writing

a pair of three dimensional hyperspectral capture datacubes to a single four dimensional NumPy

masked array with the land mask applied to the data. The four dimensional matrix had dimen-

sions of (2, 522, 308, 116), where the first dimension indicated the index of the bitemporal cap-

tures. Next, a differential datacube was first calculated and written to a temporary three dimen-

sional NumPy matrix. The differential datacube was created by element-wise subtracting the values

of the first hyperspectral capture datacube from the second hyperspectral capture datacube that were

stored in the four dimensional NumPy matrix.

Spectral stacking was then applied to the initial capture datacube and differential datacube. The

stacking was done using NumPy operations and created an expanded (522, 308, 232) datacube

with 232 spectral bands. This is double the number of bands of a HYPSO-1 capture. The first 116

spectral bands were composed of data from the initial capture datacube. The second 116 spectral
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bands were composed of data from the differential datacube.

Immediately following spectral stacking the datacubes, the land mask was applied to the data

to filter non-water pixels. This was done using NumPy’s masked array module numpy.ma [57]. The

filtered data was copied to an ICA input matrix and was flattened to two dimensions with the NumPy

reshape function. The ICA input matrix dimensions were equal to the number of water pixels by the

number of spectral bands from the two captures (232). The input matrix was then processed with

ATGP and ICA.

ICA produced a two dimensional output matrix containing 10 independent components. The

output matrix dimensions were equal to the number of water pixels by the number of independent

components (10). The ICA output data was reconstructed to the same dimensions of the hyperspec-

tral captures, again using the NumPy reshape function. This reversed the procedure used to create

the two dimensional ICA input matrix. The data reconstruction produced a new matrix with dimen-

sions of (522, 308, 10) consisting of a single set of independent components. Within the resultant

matrix, the height and width of the components were indicated by the first and second dimensions

and ICA independent component were indicated by the third dimension. Each ICA independent

component in the matrix was interpreted as a different change map. The change maps were plotted

and saved using Matplotlib and Basemap Python libraries. [68] [69]

The un-mixing matrix from the hybrid spectral differencing and stacking technique was loaded

from the ICA transformer components_ attribute. The components_ attribute produced a transposed

un-mixing matrix with dimensions of (10, 232). Each row of the un-mixing matrix corresponded

one of the 10 independent components. Because the rows in the un-mixing matrix were 232 ele-

ments long, each row in the un-mixing matrix was split into two smaller arrays of 116 elements using

NumPy. In each of these rows, the first array of 116 elements was interpreted as the relative reflectance

spectrum of the feature in the initial hyperspectral capture. The second array of 116 elements was in-

terpreted as the change in the relative reflectance spectrum (or differential relative reflectance spec-

trum) of the feature between the time of the initial and final hyperspectral capture. The initial and

differential relative reflectance spectra of each independent component were plotted in separately

using Matplotlib [68]. Analysis of initial and differential relative reflectance spectra could be utilized

to reveal what and how specific spectral values changed between the bitemporal captures.

3.6.10 Component Matching

Description

Component matching is the fifth and final ICA-based change detection technique used in this project.

Component matching is the most unique approach of the five techniques since it deviates from the

approach to using ICA taken in the first four ICA-based change detection techniques. Instead of first

manipulating the hyperspectral data through stacking or differencing operation and then applying

ICA, component matching flips the order and applies ICA first to the data and then applies a differ-

encing operation to the resulting independent components. This ordering of processing steps is the

second of the two general approaches to ICA-based change detection discussed in Section 3.6.2. Ad-

ditionally, the component matching technique made several variation to how the ICA algorithm is

initialed through the initial un-mixing matrix.

During the application of ICA to the hyperspectral data, the before and after hyperspectral cap-
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tures are processed independently by ICA. The use of ICA in this manner produces two sets of inde-

pendent components, one set for the before capture and one set for the after capture. The goal of

component matching is to produce sets of corresponding independent components that represent

the same features in the before and after captures, with one component belonging to the before cap-

ture and the other belonging to the after capture. Corresponding independent components can then

be differenced to produce change maps for each feature picked up on by ICA and present in both the

before and after captures.

One of the primary challenges with this approach is the need to find and match the sets of corre-

sponding independent components. Fortunately, the un-mixing matrices produced by the indepen-

dent executions of ICA on the before and after captures provide easily comparable spectral signatures

belonging to the independent components. The matching process of the before capture independent

component spectra to the after capture independent component spectra is done using a metric called

the Pearson correlation coefficient, or PCC (not to be mistaken with Post-Classification Comparison,

also abbreviated by PCC).

The Pearson correlation coefficient is a metric used to score the similarity of two sets of data. It

measures the linear relationship between two ordered sequences of data such as arrays. The PCC as-

signs datasets scores between -1 and 1, with -1 meaning the data is reverse correlated while a score of

1 means the two sequences of data are directly correlated. A score of 0 indicates there is no correlation

between the two sequences of data. [88]

The Pearson correlation coefficient rX ,Y of two dataset, X and Y , is calculated by dividing the

sample covariance of X and Y by the product of the standard deviations of X and Y , as shown in

Equation 3.2 [88] [89]:

PCC score = rX ,Y = cov(X ,Y )

σXσY
(3.2)

In this equation, the before and after capture spectra values take the place of the X and Y data se-

quences.

The Pearson correlation coefficient is well suited for comparison of ICA-generated independent

component spectra since the signs (+ or -) of the values in independent components produced by

ICA are ambiguous. The sign of any given independent component produced by ICA can either be

positive or negative depending on the initial condition of ICA. When running ICA without ATGP ini-

tialization, the ICA algorithm can detect and generate the same independent component from the

data across multiple consecutive runs, albeit with different signs. Consequently, certain indepen-

dent components that are produced may have their signs reversed between the repeated runs of ICA

[34]. The ambiguous signed nature of independent components means that when comparing inde-

pendent component spectra from ICA using the PCC, the PCC score’s sign can be discarded. Only

the magnitude of the PCC score only needs to be considered to determine if the relative reflectance

spectra from two different independent components are correlated.

The use of the Pearson correlation coefficient to decide whether two independent components

match is straightforward. Larger unsigned PCC scores indicate a closer match between two inde-

pendent components, suggesting that they belong to the same feature in both the before and after

capture. The opposite is true for smaller unsigned PCC scores, where a smaller value indicates and

suggests that two independent components do not belong to the same feature.

Since unsigned PCC values can vary from 0 (uncorrelated) to 1 (exact linear correlation), it is use-
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ful to utilize threshold or cutoff value to definitively decide if two independent components should

be considered a match. A PCC score above the threshold would be classified as a match between

the independent components under consideration while a PCC score below the threshold would be

classified as a mismatch between the independent components. The threshold value is arbitrary set

and is dependent on the capture since the component spectra can vary greatly based on illumination

and viewing conditions of the hyperspectral captures. In this project, the cutoff value was usually set

between 0.3 and 0.7, selected through trial and error. During trial and error, if too few matches were

being found using PCC and the threshold comparison, then the threshold value was lowered.

After finding matches between before and after capture independent components using the Pear-

son correlation coefficient, change maps for matched features can be produced through simple element-

wise differencing. The change maps can be plotted and used to highlight the spatial distribution of

the features identified by ICA. Additionally, the spectra associated with the features can be analyzed to

identify features based on their spectral signatures. An important consideration is that matched pairs

of independent components do not have the exact same spectra since they are produced using data

from separate captures and by independent runs of the ICA algorithm. Still, matched independent

components should share some similarities such as spectral peaks and troughs at the same spectral

bands.

ICA Initialization

One of the unique aspects of component matching is the sequential processing of the hyperspectral

captures using ICA. Instead of processing all of the captures at once by a single invocation of ICA,

the captures are processed by ICA one by one. This starts with the first capture (before capture),

followed by the second (after capture). The sequential processing opens up opportunities to change

how each instance of ICA is configured and initialized. In this project, the initialization of the un-

mixing matrix was set by the w_init argument in the SciKit-Learn FastICA module [36]. This included

three different initialization approaches, with each employing a distinct method to initialize ICA for

running on the second capture. The first capture was always processed using ICA initialized using

PCA and ATGP. The three initialization approaches are described below:

1. Random un-mixing matrix: The first ICA initialization approach used the default behavior of

FastICA and allowed the initial un-mixing matrix values to be set using random values sourced

from a normal distribution [36]. This approach served as a baseline for comparison purposes.

Only the ICA transformer for the after capture was initialized with random values; the ICA trans-

former for the before capture was initialized with the usual PCA and ATGP setup.
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Figure 3.26: Random un-mixing matrix ICA initialization approach.

2. Previous un-mixing matrix: The second ICA initialization approach reused the un-mixing ma-

trix from ICA run on the first capture. This approach was chosen since it could reuse informa-

tion about the independent components present in the first hyperspectral captures to attempt

to find the same components in the second capture. In a sense, it allows ICA run on the second

capture to pick up where ICA run on the first capture left off and to continue looking for the

same components in the second capture.

Figure 3.27: Previous un-mixing matrix ICA initialization approach.

3. ATGP-generated un-mixing matrix: The third ICA initialization approach was the most com-

plex of the three and utilized the Automatic Target Generation Process (ATGP) algorithm [37].

In this initialization approach, the ICA independent components from the first capture were

treated the same as the PCA components generated and used in the standard PCA and ATGP
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initialization procedure. The initial ICA un-mixing matrix for the second capture was computed

by inputting the independent components from the first capture into the ATGP algorithm. The

newly calculated un-mixing matrix was then used to initialize and run ICA on the second hy-

perspectral capture. Much like the second ICA initialization approach, this approach was cho-

sen to allow information about the independent components present in the first hyperspectral

captures to be reused to find the same components in the second hyperspectral capture. It too

allows ICA run on the second capture to pick up where ICA run on the first capture left off and

to continue looking for the same components in the second capture.

Figure 3.28: ATGP-generated un-mixing matrix ICA initialization approach using previously gener-
ated independent components.

Implementation

The implementation of the component matching change detection technique began by writing a set

hyperspectral time series captures to a four dimensional NumPy masked array with the land mask

applied to the data. The masked NumPy matrix was then indexed to obtain two hyperspectral dat-

acubes, one representing data from the before capture and the other representing data from the after

capture. These two before and after datacubes were each written to a separate three dimensional

NumPy matrix, each with dimensions of (522, 308, 116).

Next, non-water pixels were filtered from the datacube using NumPy’s masked array module

numpy.ma [57]. The remaining water pixels were copied to a separate ICA input matrices which were

subsequently reshaped to two dimensions using the NumPy reshape function. The second reshap-

ing converted each input matrix to have dimensions equal to the number of water pixels (of which

the quantity was dependent on the scene and land mask) by the number of spectral bands (116).
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ICA was run two separate times since there was different ICA input matrix for each capture. The

first ICA input matrix processed was the one containing data from the first hyperspectral capture (the

before capture). This involved using ATGP and ICA to process the first capture in a process identical

to those used in the other ICA-based change detection techniques. First, PCA was run on the capture

to produce a step of PCA components. The PCA components were then fed into the ATGP algorithm

which produced an initial un-mixing matrix for FastICA. Finally, ICA was run and produced a set of

10 independent components for the first hyperspectral capture.

The 10 independent components from the first capture were contained within a two dimensional

output matrix. The output matrix dimensions were equal to the number of water pixels by the num-

ber of independent components (10). The ICA output data from the first capture was reconstructed

to the same dimensions of the hyperspectral captures, again using the NumPy reshape function.

This reversed the procedure used to create the two dimensional ICA input matrices. The data re-

construction produced a new matrix with dimensions of (522, 308, 10) consisting of a single set

of independent components. Within the resultant matrix, the height and width of the components

were indicated by the first and second dimensions and ICA independent components were indicated

by the third dimension. The un-mixing matrix containing the independent component spectra from

the first capture was contained in the ICA transformer components_ attribute. The components_

attribute produced a transposed un-mixing matrix with dimensions of (10, 116). Each row of the

un-mixing matrix corresponded one of the 10 independent components.

Processing the second hyperspectral capture (the after capture) was configured differently from

the first hyperspectral capture. The exact procedure use for decomposing the second capture into

independent components varied based on the initialization approach for FastICA. These procedures

are described individually below:

1. Random un-mixing matrix: Random un-mixing matrix initialization took took no interven-

tions to initialize the un-mixing matrix in SciKit-Learn FastICA . The w_init argument in Fas-

tICA was left empty. The empty w_init argument had the effect of initializing the un-mixing

matrix values using random values sourced from a normal distribution [36].

2. Previous un-mixing matrix: Previous un-mixing matrix initialization reused the same un-mixing

matrix computed by PCA and ATGP and used for initializing ICA for the first hyperspectral cap-

ture. The un-mixing matrix was retrieved from the first ICA transformer using the w_init at-

tribute. The NumPy matrix returned by the w_init attribute was then used for the w_init

argument in the ICA transformer for the second capture.

3. ATGP-generated un-mixing matrix: ATGP-generated un-mixing matrix initialization was based

on a variation of the Automatic Target Generation Process (ATGP) algorithm [37]. FastICA pro-

duced a NumPy matrix of independent components from the first capture with dimensions

equal to (522, 308, 10). These dimensions were the same as the NumPy matrix produced

by PCA when it is used to transform the hyperspectral captures to PCA components. Instead of

using PCA components, the NumPy matrix of independent components from the first capture

was used as the input for ATGP algorithm, callable using the hsts.ica.atgp function. The

hsts.ica.atgp function only required arguments for the matrix of independent components

and and number of ICA components (10). PCA was not run on the second hyperspectral cap-

ture and was omitted from the Python code. The hsts.ica.atgp returned an initial un-mixing
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matrix contained in a NumPy matrix. The NumPy matrix used for the w_init argument in the

ICA transformer for the second capture.

After initializing FastICA, ICA was run and produced a set of 10 independent components for the

second hyperspectral capture. Much like the independent components from the first capture, the 10

independent components from the second capture were contained within a two dimensional output

matrix. The output matrix dimensions were equal to the number of water pixels by the number of in-

dependent components (10). The ICA output data from the second capture was reconstructed to the

same dimensions of the hyperspectral captures, again using the NumPy reshape function. This re-

versed the procedure used to create the two dimensional ICA input matrices. The data reconstruction

produced a new matrix with dimensions of (522, 308, 10) consisting of a single set of independent

components. Within the resultant matrix, the height and width of the components were indicated by

the first and second dimensions and ICA independent components were indicated by the third di-

mension. The un-mixing matrix containing the independent component spectra from the second

capture was contained in the ICA transformer components_ attribute. The components_ attribute

produced a transposed un-mixing matrix with dimensions of (10, 116). Each row of the un-mixing

matrix corresponded one of the 10 independent components.

The component matching process was begun after producing sets of independent components

for both before and after captures. The un-mixing matrices from both captures were loaded from

the ICA transformer objects and components_ attribute. The rows of the un-mixing matrices were

split into individual NumPy arrays, 116 elements in length. Each NumPy array created possessed the

spectral values corresponding to one of the independent component. Due to high variability and fluc-

tuations in the spectral bands at lower wavelengths, the first 40 spectral values were ommitted from

the NumPy arrays. The cause of the fluctuations in the data at lower spectral bands is uncertain but

is likely due to sensor artifacts in HYPSO-1. The remaining spectral values contained in the NumPy

arrays were the data sequences that were compared using the Pearson correlation coefficient.

Independent component spectral values from the first and second hyperspectral captures were

compared with the Pearson correlation coefficient within a Python for-loop. First, each sequence of

spectral values was first normalized to values between -1 and 1. Then, each sequence of normalized

spectral values from the first capture was compared and scored against every sequence of normalized

spectral values from the second capture.

The scipy.stats.pearsonr Pearson correlation coefficient module from SciPy was used to cal-

culate the PCC scores. The function scipy.stats.pearsonr accepted two arrays of data, x and y ,

as input and returned a PCC score for the two array with a value between -1 and 1 [88]. The abso-

lute values of the PCC scores were taken in order to remove the sign and convert negative values to

positive values. This was done find matches between independent components that only differed by

a sign change and were still correlated. The PCC scores and pairs of before and after independent

components were recorded to a Python list. The list of PCC scores was reordered from highest PCC

scores to lowest PCC scores using a Python lambda function.

A threshold value was applied to the array of scores to cut off independent component pairs with

a PCC score below a certain value. This was done using built-in logical operators in Python. The

remaining independent component pairs were considered matched pairs of features from the first

and second hyperspectral captures. The threshold value usually set between 0.3 and 0.7 and was

selected through trial and error. If too few matches were generated by PCC and the threshold, then
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the threshold value was changed to a lower value.

After running ICA and matching the independent components from the before and after cap-

tures, all that remained was to generate change maps for the various features extracted by ICA. This

was done by applying a differencing operation to the matched independent components. The dif-

ferencing operation was performed on each matched pair of components by subtracting the first in-

dependent component in the matched pair from the second independent in the matched pair. The

process was repeated for all of the matched pairs of independent components with PCC score above

the threshold. Each differencing operation created a change map for a different spectral feature. In a

final step, geospatial information (latitude and longitude) was added to the change maps. The change

maps were plotted and saved using Matplotlib and Basemap Python libraries. [68] [69]

In addition to the change maps, each feature had a set of two relative reflectance spectra with one

taken from the first capture’s ICA un-mixing matrix and the other taken from the second capture’s ICA

un-mixing matrix. The relative reflectance spectra were plotted alongside the feature change maps

using Matplotlib [68]. Analysis of before and after relative reflectance spectra could be utilized to

reveal what and how specific spectral values changed between the bitemporal captures.

3.7 Validation Data

Validation data plays a crucial role in evaluating and improving the performance of the hyperspectral

change detection techniques. The purpose of validation data is to provide reliable reference infor-

mation about the changes that have occurred between subsequent hyperspectral captures. Valida-

tion data serves as a benchmark against which the change detection technique results are compared,

allowing for the assessment of their accuracy and effectiveness. The consistency between the fea-

tures observed in the hyperspectral data and change maps generated by HYPSO-1 and the ICA-based

change detection techniques can be confirmed by cross-validating them with features present in val-

idation data acquired at similar times by other imaging satellites.

In this work, a focus was placed on validation data that provided information about chlorophyll

and suspended matter concentrations in bodies of water. In particular, chlorophyll pigment concen-

tration can be used to indicate regions in hyperspectral images where a harmful algal bloom may be

present [90]. To this end, two data validation sources were utilized, with the first data validation data

source being the National Oceanic and Atmospheric Administration’s (NOAA) Lake Erie Harmful Al-

gal Bloom Forecast [74] and the other validation data source being the Sentinel 3 Ocean Land Colour

Instrument (OLCI) [75].

3.7.1 NOAA HAB Forecast Validation Data

The Lake Erie Harmful Algal Bloom Forecast [74] is one of several algal bloom forecast products de-

veloped and produced by the National Oceanic and Atmospheric Administration’s (NOAA) National

Centers for Coastal Ocean Science (NCCOS) in the United States. It monitors bloom conditions of a

type of blue-green algae called cyanobacteria which can cause seasonal HABs in Lake Erie, one of the

Great Lakes in the eastern United States. The Lake Erie HAB forecast is a regional product and only

has coverage of Lake Erie. Additionally, the Lake Erie HAB forecast is only produced during the north-

ern hemisphere summer when the water in Lake Erie is warm enough for algal bloom to occur. The
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(a) Cyanobacteria Index (CI).

(b) Scale.

Figure 3.29: Lake Erie NOAA HAB Forecast for 27 August 2022 15:54 UTC

Lake Erie HAB forecast products include both an observed bloom and modelled forecast bloom prod-

ucts. The information used in Lake Erie HAB forecast is a combination of data sources from in-situ

monitoring at Lake Erie as well as multispectral satellite observations from the Ocean Colour Land

Imager (OLCI) on the European Space Agency’s Sentinel-3 Earth observation satellites.

For the purposes of this project, a Lake Erie HAB product measuring a quantity called the Cyanobac-

teria Index (CI) was used as validation data. The cyanobacteria index measures the relative abun-

dance of cyanobacteria (blue-green algae) biomass present using the formula in Equation 3.3. The

variables ρ signify the top-of-atmosphere reflectance values at a certain wavelength:

CI =−1∗
(
ρλ2 −ρλ1 + (ρλ3 −ρλ1 )∗ λ2 −λ1

λ3 −λ1

)
(3.3)

The wavelengths used in calculating the index using the formula are λ1 = 665 nm, λ2 = 681 nm,

and λ3 = 709 nm [91] [92]. Because the cyanobacteria index measures the relative abundance of

cyanobacteria, the index is dimensionless and does not provide an exact quantity for the concentra-

tion of cyanobacteria or chlorophyll [92]. Despite this, the cyanobacteria index can still be used to

determine the spatial distribution or potential HABs and be used for qualitative comparisons with

independent components and change maps generated using HYPSO-1 observations.

The cyanobacteria index products are distributed as georeferenced GeoTIFF image files along

with a true color image [92]. Within the Within the GeoTIFF files, pixels such as clouds, land, or other

invalid observations are flagged, allowing them to be easily omitted. Values in the cyanobacteria

index GeoTIFFs are dimensionless and range from 0 to 250. The GeoTIFF files were downloaded

from the NOAA HAB Data Explorer website [93]. NOAA’s NCCOS produces one cyanobacteria index

GeoTIFF image covering the Lake Erie basin each day. One issue encountered while acquiring the

GeoTIFF files, is the availability of historical data. The NOAA HAB Data Explorer site only maintains a
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historical archive of GeoTIFFs extending back approximately half a year. To ensure continued access

to the files, all of the downloaded GeoTIFF file were saved locally on personal computers. Figure 5.10

shows one of the Lake Erie HAB forecast GeoTIFF images displayed next to the true color image of the

same scene.

The cyanobacteria index GeoTIFF files were not loaded into Python as was done for HYPSO-1 and

Sentinel-3 data. Instead the GeoTIFFs were opened and viewed using QGIS for qualitative compar-

ison with the independent components and change maps generated using HYPSO-1 observations.

QGIS has native support for viewing GeoTIFF as well as the ability to easily hide invalid pixels. Fur-

thermore, GeoTIFFs in QGIS can be overlaid on existing geospatial data for analysis or be exported to

other image formats.

3.7.2 Sentinel-3 OLCI Validation Data

The other validation data source was the European Space Agency’s Sentinel-3 Earth observation satel-

lites. Sentinel-3 is a satellite mission developed by the European Space Agency (ESA) as part of the

Copernicus program. It is designed to monitor Earth’s oceans, land surfaces, and atmosphere for

environmental and climate-related applications. The Sentinel-3 mission consists of two satellites,

Sentinel-3A and Sentinel-3B, which were launched in 2016 and 2018, respectively. Data is processed

and delivered from the Sentinel satellites in near-real time, allowing it to be used for operational

ocean monitoring purposes. Furthermore, the multispectral imagery data collected by Sentinel-3

is freely available to users and has global coverage. [94]

One of the key instruments aboard Sentinel-3 is the Ocean and Land Colour Instrument (OLCI).

The OLCI is a push-broom imaging spectrometer specifically designed to provide multispectral mea-

surements of ocean and land surface color. It operates in the visible and near-infrared spectral ranges,

from 0.4 to 1.02 µm, capturing data across 21 spectral bands. This multispectral capability enables the

retrieval of essential information and allows the multispectral data to be processed into useful ocean

and land measurement data products. [75]

Sentinel-3 has a collection of full resolution ocean products called OL_2_WFR [95]. It consists

of 24 separate measurement files that are primarily stored as NetCDF files. Within the collection of

Sentinel-3 data products available, three Level-2 data products were directly relevant as validation

data for the ICA-based change detection algorithms. These products were chl_oc4me, chl_NN, and

TSM_NN. The first two data products, chl_oc4me and chl_NN, provided measurements of chlorophyll-

a (Chl-a) algal pigment concentrations in water. The third data product, TSM_NN, provided measure-

ments of total suspended matter in bodies of water, such as sediments or water run-off.

The chlorophyll concentrations in the chl_oc4me and chl_NN data products were calculated us-

ing one of two methods. In the first method, used to produce the chl_oc4me data product, a Max-

imum Band Ratio (MBR) algorithm called OC4Me was used to calculate chlorophyll concentration.

The OC4Me algorithm computed algal concentration from a collection of four spectral bands col-

lected by the OLCI:

log10 Chl-a = A0 + A1(log10 R)+ A2(log10 R)2 + A3(log10 R)3 + A4(log10 R)4 (3.4)

The variable R i
j is the ratio of the reflectance at band Ri over R j , where j is 560 nm. The band i is
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either 443, 490, or 510 nm and is selected to maximize the ratio:

R i
j = max

i , j

(
Ri

R j

)
(3.5)

The remaining coefficients are A0 = 0.45027, A1 = −3.259491, A2 = 1.9743, A3 = 3.522731, and A4 =
0.949586 [96] [25].

The second method of computing algal concentration data products was a neural network based

approach called Inverse Modelling Technique (IMT). The IMT neural network used a Inverse Radia-

tive Transfer Model-Neural Network (IRTM-NN) to estimate the absorption coefficient of algal pig-

ment (indicating chlorophyll). The IMT neural network was also used to estimate the absorption

coefficient for suspended matter concentration in water. The absorption coefficients were derived

into data products for chl_NN and TSM_NN. [97]

Unlike the NOAA Lake Erie HAB data, which uses the Cyanobacteria Index (CI) to describe relative

abundance of chlorophyll in water as a dimensionless quantity, the chlorophyll and total suspended

matter concentration products from Sentinel-3 provide values with units of mass per volume. For the

chlorophyll products in chl_oc4me and chl_NN, chlorophyll concentration is provided with units of

mgm−3 (Chl-a). Total suspended matter concentration in TSM_NN is provided with units of gm−3.

The ocean data products of Sentinel-3 OLCI OL_2_WFR were obtained from the Onda Dias online

data catalog [98]. This data catalog serves as a repository for data archives from various missions,

including Sentinel-3 and other Copernicus missions. Sentinel-3 granules can be searched for through

the site’s graphical browser or by utilizing location, date, and time keywords to refine the search. The

Sentinel-3 granules that best matched the time and location of the HYPSO-1 captures used by the

change detection algorithms were obtained by downloading the corresponding data from the Onda

Dias catalog. The Sentinel-3 OL_2_WFR data was downloaded as .zip files, each generally on the order

of several hundred megabytes in size.
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Figure 3.30: The typical set of data files included in the Sentinel-3 OLCI OL_2_WFR data product.

Within each OL_2_WFR .zip file, there were individual data products and auxiliary files stored as

.nc NetCDF files. The file structure of the Sentinel-3 OLCI OL_2_WFR ocean product is shown in Fig-

ure 3.30. Some of the NetCDF files were measurement files for individual reflectance bands. Others,

like tsm_nn.nc and chl_nn.nc, were processed Level-2 data products derived from the reflectance val-

ues. The files also included auxiliary files containing georeferencing and sensor parameters. Latitude

and longitude values were stored separately from the reflectance and processed products in a NetCDF

file titled geo_coordinates.nc. [99]

The Sentinel-3 OLCI OL_2_WFR products were loaded into Python for plotting and comparison

with the HYPSO-1 data. This was done using a Python library called SatPy which maintains numerous

file readers for various sensors including for Sentinel-3 OLCI Level-2 data. SatPy was used to load

data from chl_nn.nc, tsm_nn.nc, geo_coordinates.nc. The OC4Me chlorophyll concentration product

from chl_oc4me.nc was left out because it was not available in all of the scenes used as validation

data. A geometry area was defined in SatPy using the latitude and longitude extents of the HYPSO-1

change maps. This allowed the Sentinel-3 data to be plotted and displayed in the same location and

extents as the HYSPO-1 data. SatPy automatically handled resampling of the Sentinel-3 data using

the pyresample submodule.

The Sentinel-3 OLCI OL_2_WFR products were loaded into Python for plotting and comparison

with the HYPSO-1 data. To accomplish this, the SatPy Python library [65], which supports various
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file readers for different sensors including Sentinel-3 OLCI Level-2 data, was utilized. The data from

chl_nn.nc, tsm_nn.nc, and geo_coordinates.nc were loaded using SatPy. However, the OC4Me chloro-

phyll concentration product from chl_oc4me.nc was excluded from the analysis since it was not avail-

able in all of the scenes used as validation data.

To align the Sentinel-3 data with the HYPSO-1 data, a geometry area was defined within SatPy.

This geometry area was created using the latitude and longitude extents taken from the geographic

bounding boxes of the HYPSO-1 change maps. This approach allowed the Sentinel-3 data to be plot-

ted and displayed within the same location and extents as the HYPSO-1 data. SatPy handled the

resampling of the Sentinel-3 data automatically through the pyresample submodule, ensuring accu-

rate alignment with the HYPSO-1 data. The resampled and aligned Sentinel-3 Chl-a and TSM data

was written to NumPy matrices, accompanied by matrices containing latitude and longitude values

for the pixels.

In the NetCDF files, the Sentinel-3 Chl-a and TSM data were initially stored in a logarithmic for-

mat, having undergone a logarithmic transformation. To obtain the physical concentration values

for chlorophyll and total suspended matter, the logarithmic transformation was reversed for the data.

The reversal yielded the original non-logarithmic concentration values of the variables that could be

used as validation data.

In order to generate Sentinel-3 change maps for validating the HYPSO-1 change maps, match-

ing pairs of Sentinel-3 Chl-a and TSM NumPy matrices were selected based on their closest match in

terms of their acquisition time to the HYPSO-1 captures. The difference in acquisition times of these

two sources are discussed in Chapter 5. Afterward, these pairs of matrices were subjected to a data

differencing operation to derive the change maps. Sentinel-3 change maps were produced for both

the Chl-a and TSM variables. The Sentinel-3 change maps were plotted and displayed using Mat-

plotlib and Basemap Python libraries, much like was done for the HYPSO-1 change maps [68] [69].

Matplotlib was also utilized to generate scales for the Sentinel-3 change maps, representing the mag-

nitude of change in units of ∆mgm−3 for chlorophyll (Chl-a) or ∆gm−3 for total suspended matter

concentration. These scales provided a visual representation of the extent of change in the respective

variables within the Sentinel-3 change maps.



Chapter 4

Results

4.1 Overview

The results section presents the results from the ICA-based change detection techniques applied to

the HYPSO-1 hyperspectral time series datasets. The primary objective was to visualize change of

detected anomalies over a specific bitemporal time frame using independent components from ICA.

The analysis involved five distinct ICA-based change detection techniques: Spatial Stacking, Spectral

Stacking, Spectral Differencing, Spectral Difference Stacking, and Component Matching. Addition-

ally, Component Matching used three separate ICA initialization routines to explore different strate-

gies for initialing the un-mixing matrix.

For each technique, change maps were generated to identify areas with changing detected anoma-

lies at the various observation targets. These change maps provide information regarding the loca-

tions and distributions of detected changes. The change maps were also accompanied by relative

reflectance spectra recovered from the mixing and un-mixing. The spectra allow the independent

components and change maps to be identified and characterized by their spectral signatures. For the

ICA-based change detection techniques where it is necessary, the relative reflectance spectra have

been divided and displayed as before and after spectra. For other techniques, such as Spectral Differ-

encing, a single relative reflectance spectrum exists for each change map.

Due to the volume of results, a subset of two change maps from each technique is presented

in this section. This was repeated for each of the four observational target sites (Section 3.3). The

selection of change maps was based on their resemblance to algae, sediments, or other potentially

relevant detected anomalies in terms of the spatial distribution or spectral signatures. Some of them

were selected after manually comparing them using the validation data from the NOAA HAB Forecast

and Sentinel-3 OLCI products (Section 3.7). The comparison with validation sources is covered in the

discussion chapter (Chapter 5). The approach of including a subset of the change maps ensures that

the results are concise and focused on relevant detected anomalies.
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4.2 Interpretation of Change Detection Plots

The analysis of the HYPSO-1 hyperspectral data involved the application of five unique ICA-based

change detection techniques. Each of these techniques generated sets of independent component

spatial maps and sets of relative reflectance spectra. The exact number of sets of independent com-

ponents and spectra produced by each change detection technique is summarized in Table 5.11 in

Chapter 5. The independent components were used to derive and plot change maps, indicating spa-

tial distribution of changing features. The relative reflectance spectra were plotted separately as ICA

weights, measured in ambiguous units.

It is important to acknowledge that the change maps and relative reflectance spectra plots are

interpreted with slight variations based on the change detection technique used to create them. The

following subsections elaborate on how the change maps and spectra produced by each change de-

tection technique are displayed and should be interpreted.

Spatial Stacking

The spatial stacking technique generates two sets of independent component maps, corresponding

to the before and after captures. A single set of change maps is derived from these independent com-

ponent maps through data differencing. As both the before and after captures are processed by the

same instance of ICA, their independent components (ICs) share the same relative reflectance spec-

tra. Consequently, the relative reflectance plots for both captures are identical.

In the spatial stacking technique results, the before capture independent component maps, af-

ter capture independent component maps, and change maps are plotted. Additionally, the relative

reflectance spectra are plotted alongside the before and after independent component maps.

Spectral Stacking

The spectral stacking technique generates a single set of independent component maps from the

stacked composite datacube. The independent component maps are directly interpreted as change

maps. As the stacked composite datacube has double the number of spectral bands, relative re-

flectance spectra are split in half. This produces two different sets of relative reflectance spectrum

plots, one for the independent components from the before capture and the other for the indepen-

dent components from the after capture.

In the spectral stacking technique results, only the change maps are plotted. Each change map is

accompanied by an independent component relative reflectance spectrum plot from the before cap-

ture and another independent component relative reflectance spectrum plot from the after capture.

Spectral Differencing

The spectral differencing technique generates a single set of independent component maps from the

differential datacube. The independent component maps are directly interpreted as change maps.

As the differential datacube has the standard the number of spectral bands, a single set of relative

reflectance spectra is produced. The relative reflectance spectra are interpreted as differential relative

reflectance spectra, describing the change between the before and after captures.
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In the spectral differencing technique results, only the change maps are plotted. Each change

map is accompanied by a differential independent component relative reflectance spectrum plot.

Spectral Differencing and Stacking Hybrid

The spectral differencing and stacking hybrid technique generates a single set of independent com-

ponent maps from the composite datacube, formed from stacking the before capture datacube and

a differential datacube. The independent component maps are directly interpreted as change maps.

As the composite datacube has double the number of spectral bands, relative reflectance spectra are

split in half. This produces two different sets of relative reflectance plots, one for the before capture

and the other for the differential datacube. The spectra associated with the differential datacube are

interpreted as differential relative reflectance spectra, describing the change between the before and

after captures.

In the spectral differencing and stacking hybrid technique results, only the change maps are plot-

ted. Each change map is accompanied by an independent component relative reflectance spectrum

plot from the before capture and a differential independent component relative reflectance spectrum

plot.

Component Matching

The component matching technique processes each of the before and after captures independently

by ICA. It generates two sets of independent component maps, each corresponding to the before

and after captures. Additionally, two different sets of relative reflectance spectra are also produced,

again corresponding to the before and after captures. A single set of change maps is derived from the

independent component maps through data differencing.

In the component matching technique results, the before independent component maps, after

independent component maps, and change maps are plotted. Additionally, the before and after in-

dependent component relative reflectance spectra are plotted alongside the before and after IC maps.

The Pearson correlation coefficient score used to match the independent components to create the

change map is included in the title of each component matching figure. Red vertical lines are also

added to the relative reflectance spectrum plots to indicate the range of spectral bands used in the

Pearson correlation coefficient comparison and matching procedure.
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4.3 Lake Erie Change Detection Results

Description

The Lake Erie change detection results are generated from two HYPSO-1 hyperspectral captures ac-

quired on 19 July 2022 15:50 UTC and 27 August 2022 16:05 UTC. The target and HYPSO-1 data are

discussed in Section 3.3.

Spatial Stacking Results

Figure 4.1: Spatial stacking component 3.
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Figure 4.2: Spatial stacking component 7.
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Spectral Stacking Results

Figure 4.3: Spectral stacking component 3.

Figure 4.4: Spectral stacking component 7.
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Spectral Differencing Results

Figure 4.5: Spectral differencing component 4.

Figure 4.6: Spectral differencing component 5.
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Spectral Differencing and Stacking Hybrid Results

Figure 4.7: Spectral differencing and stacking component 5.

Figure 4.8: Spectral differencing and stacking component 10.
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Component Matching Results

Random Un-mixing Matrix

Figure 4.9: Component match 3.
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Figure 4.10: Component match 11.
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Previous Un-mixing Matrix

Figure 4.11: Component match 3.
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Figure 4.12: Component match 12.
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ATGP-generated Un-mixing Matrix

Figure 4.13: Component match 1.
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Figure 4.14: Component match 4.
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4.4 Salish Sea Change Detection Results

Description

The Salish Sea change detection results are generated from two HYPSO-1 hyperspectral captures ac-

quired on 12 July 2022 18:46 UTC and 13 July 2022 18:34 UTC. The target and HYPSO-1 data are dis-

cussed in Section 3.3.

Spatial Stacking Results

Figure 4.15: Spatial stacking component 3.
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Figure 4.16: Spatial stacking component 7.
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Spectral Stacking Results

Figure 4.17: Spectral stacking component 3.

Figure 4.18: Spectral stacking component 4.
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Spectral Differencing Results

Figure 4.19: Spectral differencing component 2.

Figure 4.20: Spectral differencing component 10.
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Spectral Differencing and Stacking Hybrid Results

Figure 4.21: Spectral differencing and stacking component 5.



CHAPTER 4. RESULTS 108

Figure 4.22: Spectral differencing and stacking component 10.
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Component Matching Results

Random Un-mixing Matrix

Figure 4.23: Component match 5.
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Figure 4.24: Component match 8.
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Previous Un-mixing Matrix

Figure 4.25: Component match 5.
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Figure 4.26: Component match 10.
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ATGP-generated Un-mixing Matrix

Figure 4.27: Component match 2.
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Figure 4.28: Component match 4.
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4.5 Danube River Delta Change Detection Results

Description

The Danube River Delta change detection results are generated from two HYPSO-1 hyperspectral

captures acquired on 05 March 2023 08:41 UTC and 08 April 2023 08:22 UTC. The target and HYPSO-1

data are discussed in Section 3.3.

Spatial Stacking Results

Figure 4.29: Spatial stacking component 7.
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Figure 4.30: Spatial stacking component 8.
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Spectral Stacking Results

Figure 4.31: Spectral stacking component 6.

Figure 4.32: Spectral stacking component 9.
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Spectral Differencing Results

Figure 4.33: Spectral differencing component 3.

Figure 4.34: Spectral differencing component 10.
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Spectral Differencing and Stacking Hybrid Results

Figure 4.35: Spectral differencing and stacking component 3.

Figure 4.36: Spectral differencing and stacking component 10.
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Component Matching Results

Random Un-mixing Matrix

Figure 4.37: Component match 1.
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Figure 4.38: Component match 8.
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Previous Un-mixing Matrix

Figure 4.39: Component match 1.
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Figure 4.40: Component match 7.
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ATGP-generated Un-mixing Matrix

Figure 4.41: Component match 1.
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Figure 4.42: Component match 7.
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4.6 Frohavet Change Detection Results

Description

The Frohavet change detection results are generated from two HYPSO-1 hyperspectral captures ac-

quired on 28 March 2023 10:59 UTC and 29 March 2023 10:44 UTC. The target and HYPSO-1 data are

discussed in Section 3.3.

Spatial Stacking Results

Figure 4.43: Spatial stacking component 6.
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Figure 4.44: Spatial stacking component 8.



CHAPTER 4. RESULTS 128

Spectral Stacking Results

Figure 4.45: Spectral stacking component 2.

Figure 4.46: Spectral stacking component 3.
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Spectral Differencing Results

Figure 4.47: Spectral differencing component 1.

Figure 4.48: Spectral differencing component 5.
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Spectral Differencing and Stacking Hybrid Results

Figure 4.49: Spectral differencing and stacking component 6.

Figure 4.50: Spectral differencing and stacking component 10.
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Component Matching Results

Random Un-mixing Matrix

Figure 4.51: Component match 4.

Figure 4.52: Component match 9.
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Previous Un-mixing Matrix

Figure 4.53: Component match 2.

Figure 4.54: Component match 3.
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ATGP-generated Un-mixing Matrix

Figure 4.55: Component match 3.

Figure 4.56: Component match 5.



Chapter 5

Discussion

5.1 Overview

This section primarily focuses on the interpretation of the HYPSO-1 change detection results and the

comparison with validation data sources. Additionally, it evaluates the performance and capabilities

of the ICA-based change detection techniques. Using unsupervised detection techniques like ICA on

hyperspectral data poses challenges due to the inability to automatically identify the specific features

represented by the independent components and change maps produced by ICA. Because ICA relies

solely on data-driven analysis without the use of training data, there is no labeled truth data avail-

able for comparison with independent components or change maps. Consequently, many aspects

of evaluating unsupervised ICA-based anomaly and change detection remain reliant on qualitative

assessments.

5.2 Change Detection Techniques Comparison

One evaluation method for the ICA-based change detection techniques consists of directly compar-

ing the HYPSO-1 change map results with change maps created from the validation data. Using this

evaluation method, one can verify if there are any changing anomalies which correspond to algae or

suspended matter based on spatial distribution shown in the change maps. Two sets of validation

data were created from Sentinel-3 OLCI and NOAA HAB forecast sources and processed into change

maps using Python or QGIS. The validation data sources are discussed in Section 3.7.

An important consideration is that both the Sentinel-3 OLCI and NOAA HAB forecast data prod-

ucts are not considered true ground truth data. Rather, they are estimates derived from multispectral

observations, as opposed to algal concentrations or other physical quantities being directly measured

in the ocean. However, the Sentinel-3 OLCI and NOAA data sources still serve as valuable references,

since they were developed specifically to estimate algal and suspended matter concentrations. Us-

ing them allows verification of whether the spectral anomalies and changes detected in the HYPSO-1

data are also observed in the Sentinel-3 OLCI and NOAA data.

5.2.1 Comparison to Sentinel-3 OLCI Validation Data

The Sentinel-3 OLCI data serves as a validation dataset for all four sites due to the global coverage

offered by the Sentinel-3A and Sentinel-3B satellite. The validation data has two variable estimates:
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algal concentration (Chl-a) and total suspended matter (TSM). The validation data was processed

into plots depicting the Chl-a and TSM estimates from the first and second Sentinel-3 images as well

as a change map plot. The change map plot represented the direct difference in values between the

first and second images and can be used for comparison with the HYPSO-1 change maps. Within the

Sentinel-3 validation dataset, the Chl-a and TSM concentration estimates were both generated us-

ing the Inverse Modelling Technique neural network discussed in Section 3.7 rather than the OC4Me

algorithm. This was not a choice, rather they were the only variables available for the Sentinel-3 ob-

servations coinciding with the HYPSO-1 captures.

The Chl-a and TSM concentration products from Sentinel-3 are measured in units of mass per

volume. Chl-a is measured in mgm−3 while TSM is measured in gm−3. Changes are measured

in ∆mgm−3 and ∆gm−3 for Chl-a and TSM, respectively. The following subsections compare the

Sentinel-3 validation data change maps with HYPSO-1 change detection results for each of the obser-

vational targets.

Lake Erie

The Sentinel-3 OLCI Chl-a and TSM estimates for Lake Erie are shown in Figure 5.2.2 and 5.2, respec-

tively. The Sentinel-3 observations were made within 15 minutes of the HYPSO-1 captures, as shown

in Table 5.4.

Table 5.1: Image acquisition times comparison for Lake Erie.

HYPSO-1 Sentinel-3 Difference
19 July 2022 15:50 UTC 19 July 2022 16:03 UTC 13 minutes

27 August 2022 16:05 UTC 27 August 2022 15:51 UTC -14 minutes

The Lake Erie results are presented in Section 4.3. In the Sentinel-3 change maps, it can be seen

that spatial distributions of both the Chl-a and TSM estimates exhibit a close resemblance, indicating

that algae is likely the primary contributor to the suspended matter concentrations observed in the

Sentinel-3 data for Lake Erie. Similar spatial distributions are observed in several of the Lake Erie

change maps in Section 4.3. Notable results include:

• Spatial stacking component 7 (Figure 4.2)

• Spectral stacking component 7 (Figure 4.4)

• Spectral differencing component 4 (Figure 4.5)

• Spectral differencing and stacking component 5 (Figure 4.7)

All four of these change maps show a distinct pattern of a diminishing anomaly in the lower left of

the images (keeping in mind that some of the components may have their sign reversed). This cor-

responds to the diminishing concentration within the same area in the Sentinel-3 change maps. The

same changing anomaly is detected in the component matching techniques. The matches containing

the anomaly include:

• Random un-mixing matrix init. match 3 (Figure 4.9)

• Previous un-mixing matrix init. match 3 (Figure 4.11)
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• ATGP-generated un-mixing matrix init. match 4 (Figure 4.14)

In terms of the relative reflectance spectrum, the anomaly is harder to interpret. The component

matching result in Figure 4.14 is provides the one of clearest spectrum examples from the Lake Erie

results to analyze. The before and after components have local peaks around 700 nm. This peak

could be associated with cyanobacteria that is known to cause HABs at that location in Lake Erie.

However, there should also be a peak at 450 nm which is not present in the components extracted

from the captures. The spatial distribution of the change provides strong evidence that the changing

anomaly is algal but it cannot be confirmed without full understanding the spectra recovered from

the HYPSO-1 results.

Figure 5.1: Sentinel-3 Chl-a estimates for Lake Erie.

Figure 5.2: Sentinel-3 TSM estimates for Lake Erie.
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Salish Sea

The Sentinel-3 OLCI Chl-a and TSM estimates for the Salish Sea are shown in Figure 5.3 and 5.4,

respectively. The Sentinel-3 observations were made within 20 minutes of the HYPSO-1 captures, as

shown in Table 5.2.

Table 5.2: Image acquisition times comparison for the Salish Sea.

HYPSO-1 Sentinel-3 Difference

12 July 2022 18:46 UTC 12 July 2022 19:06 UTC 20 minutes

13 July 2022 18:34 UTC 13 July 2022 18:40 UTC 6 minutes

The Salish Sea results are presented in Section 4.4. As was seen in the Lake Erie Sentinel-3 vali-

dation data, both the Chl-a and TSM estimates correspond to each other, again indicating that algae

is likely the primary contributor to the suspended matter concentrations in the Salish Sea. Several of

the HYPSO-1 Salish Sea change maps from Section 4.4 show spatial patterns similar to the Sentinel-3

Chl-a change maps:

• Spatial stacking component 3 (Figure 4.15)

• Spectral stacking component 4 (Figure 4.18)

• Spectral differencing and stacking component 5 (Figure 4.21)

• ATGP-generated un-mixing matrix init. match 4 (Figure 4.28)

Of these, the ATGP-generated un-mixing matrix match 4 result (Figure 4.28) is the most interesting.

Its change maps contains a spatial pattern in the upper right similar to the Sentinel-3 Chl-a change

map. Based solely on this though, it is not possible to conclude that the the detected change is due to

algae since there are no distinct spectral peak in the spectrum that are associated with chlorophyll.

Another interesting result from the Salish Sea results is that the spectral differencing component

2 (Figure 4.19) change map resembles the Sentinel-3 TSM change map closer than the Sentinel-3

Chl-a change map. This might be a result of suspended matter or some other feature being detected

however because the spectral differencing component spectrum only shows the change in the relative

reflectance values it is not possible to identify the feature involved in this change.
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Figure 5.3: Sentinel-3 Chl-a estimates for the Salish Sea.

Figure 5.4: Sentinel-3 TSM estimates for the Salish Sea.

Danube River Delta

The Sentinel-3 OLCI Chl-a and TSM estimates for the Danube River Delta are shown in Figure 5.5 and

5.6, respectively. The Sentinel-3 observations were made within 25 minutes of the HYPSO-1 captures,

as shown in Table 5.3. The Sentinel-3 observation of the Danube River Delta made on 05 March

2022 was captured at exactly the same time as the HYPSO-1 capture, making that particular date an

interesting point of comparison between the two data sources.
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Table 5.3: Image acquisition times comparison for the Danube River Delta.

HYPSO-1 Sentinel-3 Difference

05 March 2023 08:41 UTC 05 March 2023 08:41 UTC 0 minutes

08 April 2023 08:22 UTC 08 April 2023 07:58 UTC -24 minutes

The Danube River Delta results are presented in Section 4.5. The Danube River Delta target results

are interesting to examine because of the significant differences between the various lakes at the site.

A map of the region is shown in Figure 3.8.

For the Danube River Delta target, the Sentinel-3 Chl-a and TSM estimates exhibit larger differ-

ences from each other than the Chl-a and TSM estimates in the Lake Erie and Salish Sea sites. In

particular, the Sentinel-3 TSM estimates show that Lake Sinoe has a high concentration of suspended

matter in the water compared to the other surrounding lakes. Lake Sinoe is not connected to the

other lakes so it is possible the suspended matter is caused by non-algal sources such as sediments or

run-off from agriculture or streams flowing into Lake Sinoe. The HYPSO-1 change maps that exhibit

similarities to the Sentinel-3 TSM map include:

• Spatial stacking component 7 (Figure 4.29)

• Spectral stacking components 6 and 9 (Figure 4.31 and Figure 4.32)

• Spectral differencing component 10 (Figure 4.34)

Of these results, the spectral stacking components 6 (Figure 4.31) is the best example, showing a close

pattern to the Sentinel-3 TSM change map as well as both an before capture spectrum and an after

capture spectrum. When the signs of the spectra are reversed, the spectra closely resemble the spectra

matched in the previous un-mixing matrix initialization match 7 (Figure 4.42) and ATGP-generated

un-mixing matrix initialization match 7 (Figure 4.42) results. These three different techniques each

detect spectral features corresponding to the suspended matter concentration change in Lake Sinoe.

The HYPSO-1 change detection results also produced change maps with correspondence to the

Sentinel-3 algal concentration change map. The Sentinel-3 Chl-a estimates shows that there is an

increase of algal concentration on the northern and eastern shores of Lake Razim. The change detec-

tion results that reflect the increase in algal concentration are:

• Spatial stacking component 7 and 8 (Figure 4.29 and Figure 4.30)

• Spectral differencing component 3 (Figure 4.33)

• Spectral differencing and stacking component 10 (Figure 4.36)

The component matching techniques also had change maps featuring similar spatial distributions as

the increase in algal concentration in the Sentinel-3 data:

• Random un-mixing matrix init. match 8 (Figure 4.38)

• Previous un-mixing matrix init. match 7 (Figure 4.40)

• ATGP-generated un-mixing matrix init. match 7 (Figure 4.42)
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The results from the component matching techniques all show similar spectra in the before and after

components. The spectra have local spectral peaks near 700 nm, a feature that is associated with

chlorophyll. However, with no peak around 500 nm, it is difficult to definitively attribute the spectra

and change maps to algae.

One difficulty with analyzing the presence of a cloud formation running through Lake Golovita

in the 05 March 2023 Sentinel-3 and HYPSO-1 captures. Spectral signals from the cloud formation

appear in many of the Danube River Delta components and change maps. A clear example of in-

terference from clouds can be seen in spectral stacking component 9 (Figure 4.32). These results

demonstrate a situation where a cloud mask would improve the performance of ICA-based anomaly

and change detection by removing undesired cloud features.

Figure 5.5: Sentinel-3 Chl-a estimates for the Danube River Delta.
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Figure 5.6: Sentinel-3 TSM estimates for the Danube River Delta.

Frohavet

The Sentinel-3 OLCI Chl-a and TSM estimates for Frohavet are shown in Figure 5.2.2 and 5.2, respec-

tively. The Sentinel-3 observations were made within 15 minutes of the HYPSO-1 captures, as shown

in Table 5.4.

Table 5.4: Image acquisition times comparison for Frohavet.

HYPSO-1 Sentinel-3 Difference

28 March 2023 10:59 UTC 28 March 2023 10:20 UTC -39 minutes

29 March 2023 10:44 UTC 29 March 2023 09:54 UTC -50 minutes

The Frohavet results are presented in Section 4.6. The Frohavet target was the least active site of

the four targets in terms of Chl-a and TSM estimates from Sentinel-3. The Sentinel-3 data shows that

was chlorophyll and suspended matter in the ocean outside the coverage of the HYPSO-1 captures.

The data also shows that there was chlorophyll and suspended matter near the coast of Norway, pri-

marily close to small islands. It is unclear if these estimates are valid or misclassifications since they

lie adjacent to pixels marked as invalid in the Sentinel-3 datasets, either due to being clouds or land.

Because of the low concentrations estimated by Sentinel-3, it is hard to compare spatial features be-

tween the Sentinel-3 and HYPSO-1 maps.

Despite these issues, there are some HYPSO-1 change maps that have spectra similar to chloro-

phyll. These include:

• Spatial stacking component 6 and 8 (Figure 4.43 and Figure 4.44)

• Spectral differencing and stacking component 10 (Figure 4.50)

• ATGP-generated un-mixing matrix init. match 3 (Figure 4.55)
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Each of these results share similar spectral characteristics and have peaks (keeping in mind that some

have a reversed sign) around 450 nm and 700 nm, which are associated with the chlorophyll absorp-

tion spectrum. Based solely on these spectra, however, it is difficult to determine if algae is detected

in the Frohavet site.

The issue with cloud formations dominating many of the components and change maps also

appeared in the Frohavet site. A cloud formation at the top of the captures on frequently manifested

as an interfering signal in components or its own component in many of the results. A clear example

of the cloud formation as a change map appears in the spectral differencing component 1 (Figure

4.47).

Figure 5.7: Sentinel-3 Chl-a estimates for Frohavet.

Figure 5.8: Sentinel-3 TSM estimates for Frohavet.

5.2.2 Comparison to NOAA HAB Forecast

The NOAA HAB forecast data serves as a validation dataset for only the Lake Erie target. The NOAA

HAB forecast data is derived from Sentinel-3 OLCI observations and provides estimates of algae pres-

ence as a relative and dimensionless quantity called the chlorophyll index (CI). The NOAA HAB fore-

cast is generated daily by NOAA for Lake Erie and the western Lake Erie basin regions. The validation
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data was already processed into GeoTIFF image plots depicting the chlorophyll index. These images

were derived into a change map using QGIS. More background on the NOAA HAB forecast is provided

in Section 3.7.

Lake Erie

The NOAA HAB forecasts of Lake Erie are shown in Figure 5.10. The time difference between the data

in forecast and the HYPSO-1 captures is shown in Table 5.5. The Lake Erie results are presented in

Section 4.3.

Table 5.5: Image acquisition times of HYPSO-1 compared with the times from the NOAA Lake Erie
HAB forecasts.

HYPSO-1 NOAA HAB Forecast Difference

19 July 2022 15:50 UTC 19 July 2022 15:04 UTC -46 minutes

27 August 2022 16:05 UTC 27 August 2022 15:54 UTC -11 minutes

In the two NOAA HAB forecasts in Figure 5.10, it can be seen that the Lake Erie algal bloom ex-

panded between 19 July and 27 August 2022. This change was illustrated in Figure 5.9, created by

subtracting the chlorophyll index values from Figure 5.10b and Figure 5.10a. The change map in Fig-

ure 5.9 only depicts the western basin of Lake Erie.

Figure 5.9: Change map computed from the Lake Erie NOAA HAB forecasts dated 19 July 2022 15:04
UTC and 27 August 2022 15:54 UTC. Plotted in QGIS.

The change map in Figure 5.9 shares a similar spatial pattern with the Sentinel-3 OLCI Chl-a and

TSM change maps shown in Figure and Figure , respectively. In Figure 5.9, a reduction in the chloro-

phyll index is observed in the center of the basin while an intensification of the chlorophyll index
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is observed near the southern shore as well as further out in the lake to the east. The same general

spatial pattern is seen in the Lake Erie results in Section 4.3, including:

• Spatial stacking component 7 (Figure 4.2)

• Spectral stacking component 7 (Figure 4.4)

• Spectral differencing component 4 (Figure 4.5)

• Spectral differencing and stacking component 5 (Figure 4.7)

• Random un-mixing matrix init. match 3 (Figure 4.9)

• Previous un-mixing matrix init. match 3 (Figure 4.11)

• ATGP-generated un-mixing matrix init. match 4 (Figure 4.14)

The fact that the same spatial pattern is observed in the HYPSO-1, Sentinel-3, and NOAA HAB fore-

cast data strengthens the evidence that the anomaly in the Lake Erie scene is caused by algae. Still,

determining the exact spectrum of the algae is challenging due to the varying spectra in the differ-

ent Lake Erie change maps. The discussion related to the spectral interpretation of these HYPSO-1

change maps is covered in the Lake Erie Sentinel-3 validation data comparison in Section 5.2.1.
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(a) Lake Erie NOAA HAB Forecast for 19 July 2022 16:05 UTC

(b) Lake Erie NOAA HAB Forecast for 27 August 2022 15:54 UTC.

(c) Cyanobacteria Index (CI) scale.

Figure 5.10: Lake Erie NOAA HAB Forecasts

5.2.3 Number of Meaningful Change Maps

Overview

Another evaluation approach entails determining the number of meaningful change maps produced

by each technique. This process is somewhat subjective and based on an examination of the spatial

distribution and spectra of the independent components and change maps. If one specific technique

produces a larger number of meaningful components or change maps, then it may be an indication

that the technique is more capable for detecting relevant information and changes in hyperspectral

data.



CHAPTER 5. DISCUSSION 146

Definition

Meaningful change maps include changing spectral or spatial patterns resembling algae, suspended

matter, or other potentially relevant features. In contrast, non-meaningful change maps represent

changing features possibly related to the presence of clouds, reflections, noise, or sensor artifacts

in the hyperspectral data. Distinguishing between these two classes of features is possible through

visual examination of the spatial components or change maps and spectral plots. While counting

the number of meaningful change maps for the various observational targets, specific attention was

made to disregard change maps related to cloud changes. This was important since no cloud mask

was applied to the hyperspectral time series datasets.

The number of meaningful and non-meaningful change maps can be influenced by the initial

conditions of the ICA and the number of ICA components chosen for generation (in the case of the

paper, 10 were selected). The initial conditions of the ICA, dictated by the initial un-mixing matrix,

impact how ICA begins to search for the non-Gaussian independent components in the data. Opti-

mizing them can help ICA more efficiently and accurately pick out the components. This is why PCA

and ATGP are used to precondition the initial un-mixing matrix used by ICA. Selecting the appropri-

ate number of ICA components is also an important consideration for ICA. If too few components are

chosen, significant contributions to the mixed signal may go undetected by ICA. Conversely, opting

for too many components can result in the generation of meaningful independent components and

change maps arising from signal noise and artifacts from the hyperspectral sensor. The noise and

sensor-related independent components lack spectral information about features in lakes or oceans,

making them unhelpful and irrelevant for change detection searching for HABs.

Interpretation

Tables 5.6 to 5.9 show the number of meaningful change maps produced by the different ICA-based

change detection methods. Because different scenes or targets may have different sets of spectral

features, the number of meaningful change maps should only be compared between the ICA-based

change detection techniques for the same target.

Care should be also be taken in comparing the number of meaningful change maps produced

by the first four change detection techniques (spatial stacking, spectral stacking, spectral differenc-

ing, and spectral differencing and stacking) with the number of meaningful change maps produced

by component matching. This is because component matching is able to generate a total number

of change maps that is greater than the other techniques through different combinations of the in-

dependent components. Non-component matching ICA-based change detection techniques always

produce a fixed number of 10 change maps since the quantity is directly tied to the number of inde-

pendent components from ICA.
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Lake Erie

Table 5.6: Number of meaningful change maps for Lake Erie.

CD Technique
Total number of

change maps

Number of

meaningful

change maps

Spatial Stacking 10 5

Spectral Stacking 10 4

Spectral Differencing 10 4

Spectral Differencing and Stacking 10 5

Component Matching (Random W) 19 6

Component Matching (Previous W) 19 5

Component Matching (ATGP W) 20 6

Salish Sea

Table 5.7: Number of meaningful change maps for the Salish Sea.

CD Technique
Total number of

change maps

Number of

meaningful

change maps

Spatial Stacking 10 4

Spectral Stacking 10 4

Spectral Differencing 10 2

Spectral Differencing and Stacking 10 3

Component Matching (Random W) 19 5

Component Matching (Previous W) 19 5

Component Matching (ATGP W) 20 5

Danube River Delta

Table 5.8: Number of meaningful change maps for the Danube River Delta.

CD Technique
Total number of

change maps

Number of

meaningful

change maps

Spatial Stacking 10 3

Spectral Stacking 10 4

Spectral Differencing 10 5

Spectral Differencing and Stacking 10 4

Component Matching (Random W) 20 5

Component Matching (Previous W) 19 4

Component Matching (ATGP W) 20 4
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Frohavet

Table 5.9: Number of meaningful change maps for the Frohavet.

CD Technique
Total number of

change maps

Number of

meaningful

change maps

Spatial Stacking 10 2

Spectral Stacking 10 2

Spectral Differencing 10 2

Spectral Differencing and Stacking 10 2

Component Matching (Random W) 19 2

Component Matching (Previous W) 20 2

Component Matching (ATGP W) 20 2

5.2.4 PCC Score Distribution

Overview

Component matching presents a unique case for evaluations as it involves three distinct ICA initial-

ization approaches. This allows for a comparison not only among the ICA-based change detection

techniques but also among the different ICA initialization methods themselves. To do these compar-

isons, objective comparisons are made by utilizing scores from the Pearson correlation coefficient

(PCC) scoring process.

Interpretation

The PCC score serves as an indicator of the quality of independent component matches produced

by each ICA initialization approach. An ICA initialization approach that yields matched features

with higher PCC scores compared to other initialization approaches implies that the initialization

approach aids ICA in identifying the same sets of spectral features in both hyperspectral images. Al-

though higher PCC scores do not necessarily guarantee the relevance of the matched components

to the change detection problem, they are nonetheless valuable for evaluating how effectively each

initialization approach extracts and matches features.



CHAPTER 5. DISCUSSION 149

Table 5.10: Comparison the PCC scores by target.

Target
ICA initial-

ization

Score

threshold

Number of

matches

PCC scores

mean

PCC scores

standard

deviation

Lake Erie Random W 0.3 19 0.706 0.101

Lake Erie Previous W 0.3 19 0.716 0.09

Lake Erie ATGP W 0.3 20 0.745 0.108

Salish Sea Random W 0.3 19 0.658 0.132

Salish Sea Previous W 0.3 19 0.662 0.125

Salish Sea ATGP W 0.3 20 0.663 0.129

Danube

River Delta
Random W 0.3 20 0.769 0.115

Danube

River Delta
Previous W 0.3 19 0.79 0.117

Danube

River Delta
ATGP W 0.3 20 0.792 0.109

Frohavet Random W 0.3 19 0.778 0.149

Frohavet Previous W 0.3 20 0.773 0.16

Frohavet ATGP W 0.3 20 0.747 0.149

Table 5.10 summarized the PCC score statistics from the three different ICA initialization ap-

proaches introduced in Section 3.6.10. The values are taken from the actual component matching

technique executions used to generate the change maps for the results in Chapter 4. The scores are

divided into sections based on the observational targets used in this paper. The component matching

techniques were all run with a PCC score threshold of 0.3 to maximize the number of matches. Table

5.12 to Tables 5.14 show the distribution of PCC scores from the results in Chapter 4.

Analysis

All three initialization approaches produced 19 or 20 component matches using ICA configured to

produce 10 independent components. Across all four observational targets, the ATGP-generated un-

mixing matrix initialization approach consistently produced 20 matches. In terms of the PCC scores,

the ATGP-generated un-mixing matrix initialization approach produced the highest PCC score mean

for three of the four observational target. Interesting, for the fourth target, Frohavet, the ATGP un-

mixing matrix initialization performed the worst, with the random un-mixing matrix initialization

approach performing the best.

The under-performance of random un-mixing matrix initialization suggests there is a benefit of

using information (either in the form of an un-mixing matrix or components) from previous cap-

tures to initialize ICA for the next capture in a time series dataset, rather than initializing ICA using

randomly selected un-mixing matrix values.
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(a) Random un-mixing ICA initialization.

(b) Previous un-mixing ICA initialization.

(c) ATGP-generated un-mixing ICA initialization.

Figure 5.11: Distribution of component matching PCC scores for Lake Erie.

(a) Random un-mixing ICA initialization.

(b) Previous un-mixing ICA initialization.

(c) ATGP-generated un-mixing ICA initialization.

Figure 5.12: Distribution of component matching PCC scores for the Salish Sea.
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(a) Random un-mixing ICA initialization.

(b) Previous un-mixing ICA initialization.

(c) ATGP-generated un-mixing ICA initialization.

Figure 5.13: Distribution of component matching PCC scores for the Danube River Delta.

(a) Random un-mixing ICA initialization.

(b) Previous un-mixing ICA initialization.

(c) ATGP-generated un-mixing ICA initialization.

Figure 5.14: Distribution of component matching PCC scores for Frohavet.
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5.2.5 Interpretability

Overview

The five ICA-based change detection techniques produce distinct sets of change maps, independent

component maps, and relative reflectance spectra. Table 5.11 provides an overview of these outputs.

An important factor to consider for these ICA-based methods is the interpretability of the generated

plots. To effectively be used for detecting HABs or other changing anomalies, the ability to easily

interpret and analyze the information presented by the change maps or spectra is critical. This sec-

tion evaluates the strengths and weaknesses of each technique based on the interpretability of their

independent components, change maps, and spectra.

Table 5.11: Comparison of the number of independent component and spectrum sets produced by
the ICA-based change detection methods.

CD Technique
Number of IC

spatial map sets

Number of IC

spectrum sets

Differential

spectra?

Spatial Stacking 2 1 No

Spectral

Stacking
1 2 No

Spectral

Differencing
1 1 Yes

Spectral

Differencing and

Stacking

1 2 Yes

Component

Matching
2 2 No

Spatial Stacking

Spatial stacking produces two sets of spatial maps and one set of spectra. The primary advantage of

spatial stacking is its ability to show spatially where an anomaly is detected in the before and after im-

ages. By displaying changing anomalies on the before and after maps, it becomes easy to determine

the initial and final spatial distributions of an anomaly that changes over time. However, a signifi-

cant limitation of this method is that it specifically looks for anomalies that exist in both the before

and after images. This is why there is only a single relative reflectance spectrum for both the before

and after captures in spatial stacking. Consequently, if an anomaly is present in the first capture but

disappears before the second capture is taken, it is likely to go undetected using the spatial stacking

approach.
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Advantages Disadvantages

• Shows spatial distributions of

changes

• Shows initial and final spatial

distributions of anomalies

• Single set of spectra shared by both

captures

Spectral Stacking

Spectral stacking operates with one set of spatial maps and two sets of spectra, taking an approach

opposite to that of spatial stacking. Unlike spatial stacking, spectral stacking does not display the

initial and final spatial distributions of an anomaly in the form of before and after maps. Instead,

each component is represented by a single spatial map, which serves as a change map. The trade-off

for this difference is that spectral stacking provides less information about the before and after spatial

distributions. In exchange, spectral stacking gains information about the before and after states of

the relative reflectance spectra through two sets of spectra for each component. This enables spectral

stacking to detect anomalies that might appear or disappear in the time between the two images.

This trade-off is reflected in Table 5.11, where the spatial stacking technique has two and one sets of

spatial maps and spectra, respectively, while the opposite is true for spectral stacking.

Advantages Disadvantages

• Shows spatial distributions of

changes

• Shows initial and final spectra of

anomalies

• Does not show initial and final

spatial distributions of anomalies

Spectral Differencing

Spatial differencing generates a single set of spatial maps and spectra. Like spectral stacking, each

component is represented by a single spatial map, which functions as a change map. However, spec-

tral differencing primarily showcases the extent to which the spectral values of an anomaly have

changed, without directly displaying the before or after spectral values. This is because spectral dif-

ferencing derives its outputs from a differential datacube. As a result, identifying spectral anomalies

is challenging with spectral differencing, especially since there are no static spectral signatures avail-

able for analysis. The main advantage of spectral differencing lies in its ability to highlight changes

within the data, but it is not well-suited for the direct identification of these changes.
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Advantages Disadvantages

• Shows spatial distributions of

changes

• Shows the change in anomaly

spectra

• Does not show initial and final

spatial distributions of anomalies

• Does not show initial and final

spectra of anomalies

Spectral Differencing and Stacking

Spectral differencing and stacking aim to address identification challenges in spectral differencing

by incorporating an initial capture datacube into the analysis. As a result, the outputs generated are

similar to spectral stacking, composing of one set of spatial maps and two sets of spectra. The main

difference here is that the second set of spectra are differential, similar to the ones used in spectral

differencing. The first set of spectra originates from the initial capture, enabling the identification

of anomalies, while the second set of spectra, being differential spectra, allows for the characteriza-

tion of detected changes. The spatial maps produced by this approach are change maps, serving to

indicate the locations where changes are occurring. However, they do not depict the initial and final

spatial distributions of the anomalies themselves and anomalies must be present in the initial capture

to be identifiable by their spectra. Overall, spectral differencing and stacking attempts to overcome

the limitations of spectral differencing and allowing the identification of changes to be interpreted in

its results.

Advantages Disadvantages

• Shows spatial distributions of

changes

• Shows initial spectra of anomalies

• Shows the change in anomaly

spectra

• Does not show initial and final

spatial distributions of anomalies

• Does not show final spectra of

anomalies

Component Matching

Component matching generates two sets of spatial maps and two sets of spectra, providing the ad-

vantages of displaying both the initial and final spatial distributions and relative reflectance spec-

tra. To overcome the limitation of spatial stacking, which only detects anomalies present in both

the before and after images, component matching utilizes a two-step process by running ICA inde-

pendently for the before and after images. This approach allows for the detection of anomalies in

each image separately and produces the maximum number of separate change maps and spectra

that detail the captures. However, there is a potential risk of misleading results due to poor compo-

nent matches. Component matching may attempt to match components from different anomalies,

even if they represent different spectral features, leading to false detection and inaccurate interpreta-
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tions. Component matching also produces more overall results, which increases the work to find and

analysis relevant change maps and spectra.

Advantages Disadvantages

• Shows spatial distributions of

changes

• Shows initial and final spatial

distributions of anomalies

• Shows initial and final spectra of

anomalies

• Potential for misleading results

arising from poor matches

• Larger number of change maps and

spectra to analyze

5.2.6 Multitemporal Extendibility

Continuous captures of new hyperspectral images by HYPSO-1 contributes to the growth of the HYPSO-

1’s library of hyperspectral dataset. These hyperspectral images frequently revisit the same locations,

enabling them to be used in processed hyperspectral time series datasets. Over time, this expan-

sion ensures the necessary spatial overlap of images for multitemporal change detection. Moreover,

the growing dataset enhances the temporal coverage, offering more options for short-term and long-

term change detection. The processing pipeline for handling time series data and described in this

paper has been developed for the purpose of supporting the creation and expansion of these mul-

titemporal datasets. Bitemporal change detection using ICA and the current hyperspectral datasets

has been demonstrated. The successful use of bitemporal ICA-based change detection and growing

multitemporal datasets prompts the natural progression towards the multitemporal and trajectory

change analysis techniques

Re-purposing the current proposed ICA-based bitemporal change detection techniques to pro-

cess multitemporal datasets poses challenges. Methods utilizing datacube stacking operations, ei-

ther in the spatial or spectral dimensions, lead to increased data dimensionality for stacked compos-

ite datacubes. While manageable for two datacubes, this approach becomes unsustainable as the

number of captures or datacubes increases, demanding more memory and computational resources.

To address the issue of increasing dimensionality from data stacking in multitemporal change de-

tection, alternative strategies need to be considered. Subsampling is one such approach that may

alleviate some issues with spatial stacking, but it comes at the cost of losing spatial resolution. An-

other potential strategy is combining redundant spectral bands, similar to the approach taken in the

algorithm proposed in S. Liu et al. (2012) [50].

Another option is to avoid stacking methods altogether. The change detection techniques based

on differencing and component matching operate on two hyperspectral images at a time, as used

for bitemporal change detection. However, these techniques can be successively applied to a series

of images, allowing them to be used to perform change detection on multitemporal datasets. This

approach enables these techniques to analyze changes over multiple captures, expanding them be-

yond bitemporal datasets. In multitemporal spectral differencing, the differencing operation could

be applied to a series of hyperspectral images. Each subsequent image would be subtracted from the
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previous one, generating multiple differential datacubes. These datacubes would then processed by

ICA to produce feature change maps. However, a limitation of multitemporal spectral differencing

would be the inability to match the change maps produced from separate differential datacubes and

track the evolution of a specific change. This is because the differential datacubes provide informa-

tion on how the relative reflectance spectrum changes between two images, but they do not offer a

static relative reflectance spectrum that can be used for to identify features.

Figure 5.15: Multitemporal ATGP-generated un-mixing matrix ICA initialization approach using pre-
viously generated independent components.

Component matching represents another possible non-stacking method to process multitempo-

ral data. To achieve multitemporal component matching, a chained or staged approach could be

implemented. The hyperspectral images would be processed two at a time, as is already done for

bitemporal change detection, and would be transformed into sets of independent components. The

advantage of this approach lies in its immediate transformation of data into independent compo-

nents, avoiding potential problems related to dimensionality and stacking datacubes. The approach

would continue along the same path as the ATGP-generated un-mixing matrix ICA initialization tech-
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nique proposed in Section 3.6.10. Each capture in the multitemporal dataset would be initialized us-

ing the independent components from the previous capture and using PCA and ATGP to compute the

initial un-mixing matrix. In this way, each capture is linked to its immediate predecessor in a contin-

uous chain. The chained approach would effectively extend the original bitemporal ICA initialization

approach to a multi-step and multitemporal processing technique. The components generated dur-

ing each set and pair of images could be matched using PCC and used to produce change maps for

features. Since component matching preserves the relative reflectance spectra for the independent

component, the spectral signatures could be used to identify features and change maps. Multitem-

poral component matching is shown as a diagram in Figure 5.15.

These two techniques, spectral differencing and component matching, show that there is a path-

way to multitemporal change detection that is based in ICA and the current bitemporal techniques.

Alternatively, other dedicated temporal trajectory analysis techniques could also be explored [4]. A

notable one involving ICA is spatio-temporal ICA [51], which attempts to extract temporal and spatial

components from data.

5.3 Change Detection System

5.3.1 Anomaly Identification

Throughout the comparison between HYPSO-1 results and the validation data, a common theme is

the need for better identification of detected anomalies based on their spectral signatures. While ICA

offers the ability to identify anomalies based on spectral signatures, the most compelling evidence

supporting the detection of algae changes using the ICA-based change detection techniques is based

on the similar spatial distributions observed in the HYPOS-1, Sentinel-3, and NOAA HAB forecast

data rather than the recovered spectra. A good example of this is the Lake Erie scene. Although certain

spectra display characteristics associated with chlorophyll, the variations in spectra make it challeng-

ing to precisely pinpoint which spectrum actually represents chlorophyll. This is complicated by the

potential presence of other anomalies such as suspended matter or sediments. The inherent ability

of ICA to find unexpected anomalies or patterns in the data also contributes to the problem.

Fully understanding and accurately identifying spectra extends far beyond work on change detec-

tion. It requires deeper understanding about the biology and spectral characteristics of algae as well

as how the spectral characteristics change in different conditions. In this project, most of the iden-

tification of algae was made using the assumption that chlorophyll has the two distinct absorption

peaks at 450 nm and 700 nm. This approach is inadequate in situations where it is hard to determine

if there is a distinct peak present. Additionally, the chlorophyll spectrum can vary based on the en-

vironment and conditions, changing the overall spectrum. In the future, more robust identification

could be performed using data from in-situ samples and libraries of spectral signatures taken from

different materials and substances. Some of this important information could be sourced from other

monitoring assets such as autonomous ocean vessels or drones. Furthermore, these activities related

to spectral and anomaly identification could be done in collaboration with other groups or partners

with specific knowledge about ocean biology as well as familiarity with the needs of the aquaculture

industry.
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5.3.2 Automation

The primary motivating factor behind the development of ICA-based change detection is to create

a novel approach for automatically detecting HABs or aquatic anomalies that could be adapted for

operational use. ICA was selected for this purpose because of its unsupervised nature, enabling au-

tomatic detection of anomalous signals without the need for labeled data or prior information. Addi-

tionally, ICA can analyze hyperspectral images varying in features and conditions. These advantages

make ICA a suitable basis for an automated HAB detection system.

An fully autonomous ICA-based change detection system would minimize the need for human

involvement in HAB and ocean monitoring. By doing so, resources required for continuous moni-

toring of coastal regions, such as regular in-situ sampling or sensor network maintenance, could be

reduced. The current implementation of ICA-based change detection techniques serves as a proof

of concept for this automated detection system and a demonstration of the capabilities of ICA when

applied to change detection problems. Operationally, one of the ICA-based change detection tech-

niques would be employed to process both an old and a new capture of the same location whenever

a new capture is acquired. The resulting change maps could then be presented to users or used as

input for an algorithm to identify the relative reflectance spectra. Any identified changes resembling

HABs or targeted anomalies could be flagged for further analysis or necessary actions.

However, several weaknesses still remain that need to be addressed to achieve a fully automated

change detection system. For the complete automation, the ability to process bitemporal time series

datasets in real time would be necessary. Achieving this would require the issues related to georefer-

encing, masking, and resampling to be resolved. Determining the significance of independent com-

ponents and distinguishing them from noise and sensor artifacts is another challenge. While PCA and

ATGP are helpful in reducing dimensionality and generating independent components consistently,

they do not fully resolve the issue of interpreting independent components. An automated method is

needed to differentiate between noise and sensor artifact independent components and the relevant

independent components corresponding to ocean spectral signals. This leads to another challenge,

which is accurately identifying independent components and change maps in an automated man-

ner. Although ICA-based change detection automatically generates results, their identities may not

always be known. This demands the use of either in-situ sampling or a library of spectral reflectance

patterns that used to compare and identify spectra from the anomaly and change detection results.

5.4 Improvements to ICA

In this work, FastICA was used to implement and run the ICA algorithm on hyperspectral data. Other

than the dimensionality reduction procedure, relatively few changes were made to FastICA to opti-

mize it for anomaly and change detection in hyperspectral images. As such, there still possible routes

of further work that could improve the use and functionality of ICA.

5.4.1 Algorithm

Efforts should be made towards a deeper understanding of and characterizing the behavior of ICA.

This includes investigating the impact of changing various ICA settings on the components and change

maps generated by the ICA algorithm and change detection techniques. Part of this work falls into the
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category of ICA algorithm development. Various aspects and parameters of ICA that appear worth-

while to investigate include the number of components, the number of iterations, and as well as mod-

ifying the objective function. Investigating these factors may help improve the performance and tailor

ICA for the specific task of detecting HABs or other anomalies. There are also ICA implementations

other than FastICA that could be trialled and utilized for detection methods.

5.4.2 Capabilities

Other work on ICA should attempt to enhance the capabilities of ICA-based methods. Currently, both

the ICA-based anomaly detection technique and the ICA-based change detection techniques lack the

capability to estimate algal concentration. Incorporating this capability would offer additional infor-

mation for the purposes of monitoring for HABs and ocean color analysis. The independent compo-

nents and change maps produced by ICA show the spatial distribution of anomalies or changes but

only provide relative reflectance values and ICA weight values. It would be advantageous to inter-

pret these values as physical quantities that precisely measure the abundance of a specific detected

anomaly, much like how the Sentinel-3 OLCI data provide concentrations in units of mass per vol-

ume. With these quantities determined, ICA-based change detection techniques could answer the

question of exactly how much an anomaly change over a certain period of time rather than simply

indicating if an anomalous change is occurring. Further research in this area as well as interpreting

ICA results should be pursued.

5.5 Improvements to Time Series Datasets

During the course of this project, the time series dataset generation pipeline was developed from

scratch. Although it was successfully used to process and assemble time series datasets of vari-

ous locations for the ICA-based change detection techniques, it was not necessarily implemented

in the most efficient ways. There are still many improvement and changes that could be made to the

pipeline, notably to the georeferencing, masking, and resampling steps. The following subsections

discuss some of the problems and potential solutions in these areas.

5.5.1 Georeferencing

Currently, HYPSO-1 images are processed with either no or unreliable geospatial spatial information.

Proper georeferencing is critical for change detection since the algorithms need to be able to compare

and examine the same locations over multiple capture. The dataset pipeline was implemented with

a manual georeferencing process; ground control points (GCPs) were selected by hand in QGIS and

later loaded into Python. This manual process is a major obstacle for creating time series dataset since

it takes time and effort to produced GCPs .points files in QGIS. Additionally, manually selecting GCPs

does not work if a HYPSO-1 capture lacks noticeable geographic features, such as the middle of the

ocean or a scene with large amounts of cloud cover. As a result, automating the georeferencing step

would represent a significant improve to the pipeline. Possible methods of automatic georeferencing

include algorithms that factor HYPSO-1’s orbit and sensor characteristics and Earth’s geometry to

determine the field of view and location of a capture. Another possible method is the use of tie points

to extend GCPs from one hyperspectral to another hyperspectral image that overlaps it [100].
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5.5.2 Cloud Mask

The change maps and independent components are heavily affected by spectral signals from clouds

and cloud-covered hyperspectral captures, which dominate more relevant spectral signals. This severely

hinders the performance ICA-based change detection, as numerous independent components gen-

erated by ICA represent cloud cover spectral features rather than spectral signatures from lakes or

oceans on the surface. The purpose of a cloud mask would be to remove or hide cloud cover pixels

entirely, similar to what is done in Sentinel-3 OLCI data, and allow spectral signatures from bodies of

water to be analyzed by ICA with less interference from undesired spectral signals.

In previous work on ICA anomaly detection [3], a cloud mask for each HYPSO-1 capture was gen-

erated using a crude threshold comparison with a unique radiance value selected through trial and

error for that capture. A clear weakness of this method is that it requires manual selection of thresh-

old values for each capture, making it unsuitable for an automatic processing pipeline. Furthermore,

variations observational conditions and lighting make it impossible to utilize a single threshold value

for all hyperspectral captures in a time series dataset and a growing library of images. For these rea-

sons, the development of a robust and automatic cloud mask algorithm should be a priority in order

to improve ICA performance. Potential alternatives to the current threshold comparison method in-

clude creating a sensor-specific cloud masking algorithm, where only a handful of bands are used.

Additionally, support vector machines (SVMs) or naive Bayes classification could also be considered

for more effective cloud masking.

5.5.3 Land Mask

In the existing implementation, the land mask used for the time series datasets relies on shoreline

information from a shapefile database. However, due to the large file size of the shapefile, it may

be beneficial to pursue an alternative approach, such as a dedicated land classification algorithm,

to reduce computational demands. It is important that any replacement method has the ability to

accurately identify areas in narrow channels or fjords, where fisheries and other aquaculture assets

are frequently located. Misclassifications could result in the loss of information in areas where the

detection of algae or HABs is most critical. Possible approaches for creating an alternative land mask

include methods based on support vector machines (SVMs) or naive Bayes classification.

5.5.4 Resampling

Further improvements could be made to the resampling procedure in the dataset processing pipeline.

Resampling is computationally intensive process and the need to repeat the resampling process 120

times per HYPSO-1 capture highlights a major weakness with the current implementation that uses

the Python GeoCube library. Although it can be used with hyperspectral data, GeoCube is primar-

ily developed and intended to handle single channel or RGB data where the resampling process is

repeated only a handful of times. However, when applied to hyperspectral data, GeoCube encoun-

ters performance issues due to the need to repeat the resampling procedure for tens or hundreds

of spectral bands. For example, with HYPSO-1 data, which consists of 120 spectral bands, the re-

sampling process had to be performed 120 times and the processing time for a single capture using

GeoCube on a consumer-grade laptop took approximately 10 to 15 minutes. While GeoCube can suc-

cessfully perform the resampling operation for hyperspectral data, the time required for processing
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is considerable, especially when applied to multiple captures that make up a time series dataset. This

highlights the need for more efficient resampling tools specifically designed to handle hyperspectral

data and the high dimensionality of hyperspectral datasets. Developing efficient resampling tools tai-

lored to hyperspectral data would significantly improve the practicality of processing hyperspectral

data, especially for real-time or near real-time applications. One potential solution to the inefficient

resampling process is to adapt the code to use the SatPy project’s pyresample library. Pyresample is

written specifically for satellite imagery and has the built in ability to reuse nearest neighbor calcu-

lations, enabling performance improvements where large numbers of spectral bands from the same

image are being resampled. [66]

5.5.5 Data Format

The time series data implementation is designed to produce NetCDF files, which offers a reliable

file format for handling multidimensional scientific data. However, the set of variables and meta-

data used internally by NetCDF files is currently not standardized. Standardizing the variable names,

bands, and metadata within the NetCDF files would help to maintain consistency and enable better

interoperability. The current practice of storing one capture per file proves is sufficient and simpli-

fies file transfer and also allows for flexible dataset organization, allowing captures to be added or

removed from time series datasets. For these purposes, the addition of a manifest file would be ben-

eficial, both for the organization of the captures as well as for users of the datasets.

5.5.6 Other

There is a need for better software tools for manipulating and processing hyperspectral image data.

While there are numerous Python packages available, many of them are primarily built for handling

multispectral data, leaving a gap for supporting hyperspectral datasets. Developing new or improving

existing software and tools to better support hyperspectral data requirements would be a valuable

contribution to the wider hyperspectral imaging community. This would simplify data analysis and

processing tasks but also make the use of hyperspectral imagery accessible for other research fields

such as biology or oceanography.



Chapter 6

Conclusion

6.1 Summary

During this work, the feasibility of ICA-based change detection was demonstrated as a functional

method for detecting anomalous changes in bitemporal hyperspectral data. The ICA-based change

detection enables multiclass, bitemporal, and feature-based change detection capabilities. Partic-

ularly, ICA-based change detection shows potential in identifying and tracking evolving anomalies,

such as HABs or the presence of algae in coastal waters.

The success of ICA-based change detection is attributed to several factors. Firstly, the anomaly

detection capabilities of ICA enable it to perform unsupervised source signal separation and extract

statistically independent features from hyperspectral data, all without prior information about the

contents of the data. ICA is based on a deeper level of statistics (non-Gaussinity) than other data

transformations such as PCA and can recover spectral information from sources, enabling spectral

identification of targets. Additionally, ICA-based anomaly detection is enhanced by a dimensionality

reduction method that involves PCA and ATGP, allowing for reliable feature detection within datasets.

These properties of ICA and dimensionality reduction are discussed in Chapter 2.

For change detection in bitemporal datasets, the same principles of anomaly detection in single

images are extended to more complex time series datasets. ICA is combined with traditional tech-

niques such as data differencing and direct comparison. This combination allows ICA to effectively

detect distinct types of changes at a feature level in structured bitemporal data and identify them

using the spectra derived from ICA weights, enabling mutliclass change detection. Here, the funda-

mental properties of ICA again allow it to detect changes even without prior information about the

nature or location of the changes. The ability to perform change detection automatically without

training or needing to know about what changes to expect in a series of hyperspectral images is a

valuable aspect of ICA-based change detection methods.

Another contributing factor in the successful demonstration of ICA-based change detection is the

newly available datasets of hyperspectral imagery of coastal waters produced by HYPSO-1 since it be-

gan its operations. This hyperspectral data has a higher spectral resolution than multispectral data

allowing for more subtle spectral features to be detected. Since beginning operations, HYPSO-1 has

grown the number of captures that can be used to assemble multitemporal datasets. The unique op-

erational capabilities of HYPSO-1 allow the satellite to revisit and re-observe target at different times,

allowing time series datasets covering the same target to be created. Additionally, the foundation for
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a software pipeline to create calibrated and georeferenced time series datasets from HYPSO-1 hyper-

spectral images has been developed. This lays the groundwork for continued work in both bitemporal

and multitemporal change detection analysis using HYPSO-1.

6.2 Change Detection Results

ICA-based change detection techniques were applied to bitemporal datasets from diverse locations,

including Lake Erie, the Salish Sea, the Danube River Delta, and Frohavet. The results presented

in Chapter 4 demonstrate some of the results within the hyperspectral datasets that the change de-

tection techniques produced. The results were compared using validation data from Sentinel-3 and

NOAA presented in Chapter 5.

The Lake Erie site yielded promising results, likely detecting a changing algal bloom in the western

basin of Lake Erie that was detected by multiple change detection techniques. Using the change

detection results, algal bloom was identified using the spatial distribution of the detected change. The

HYPSO-1 change maps from the Lake Erie site correlated with same spatial patterns in chlorophyll

change maps created using data from both the Sentinel-3 and the NOAA HAB forecast validation

sources. Additionally, spectra from the Lake Erie results also provided evidence that the detected

changes are algae since they exhibit a distinctive peak around 700 nm.

The Danube River Delta site was another location where a potential change related to algae. In

this case, the change was detected in Lake Razim, one of the lake located at the site. Much like the

Lake Erie results, the Danube River Delta result from several of the techniques corresponded to spatial

patterns in the chlorophyll change maps from Sentinel-3 and also had spectral peaks around 700

nm. In addition to algae, the Danube River Delta site produced results indicating the possibility of

detecting changing concentrations of suspended matter or sediments. This observation was seen in

Lake Sinoe, another one of the lakes at the site, and corresponded with the TSM change map derived

from the Sentinel-3 validation data. However, confirming this detection is challenging due to the lack

of information about the specific absorption patterns of suspended matter or sediments.

The other targets, the Salish Sea and Frohavet, produced less certain results. Result from the

Salish Sea resembled the spatial distribution of the validation change maps for chlorophyll and TSM

but did not have spectral features associated with algae. Frohavet yielded a few interesting spectra,

possibly resembling chlorophyll absorption patterns, but they could not be identified due to the lack

of chlorophyll and TSM spatial features as indicated by the Sentinel-3 data, except in small localized

areas near islands or shores.

Overall, there is evidence that ICA-based change detection techniques were able to detect and

map changes in algae. This is primarily from the Lake Erie and Danube River Delta sites where the

results corresponded closely with the validation data. There is a possibility of detection the Salish Sea

target but the spectral patterns need to be better understood.

6.3 Change Detection Techniques

Across all of the datasets, each of the five ICA-based change detection produced usable change maps

indicating where a spectral change occurred. However, not all techniques were equal, particularly

when it comes to interpretability. Spatial stacking notably, could only detect features that remained
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present in the before and after capture so it would not be suitable for monitoring for phenomena that

can suddenly appear. Because of this, it is likely not a good choice for monitoring HABs unless they

have already been detected. Other techniques such as spectral stacking or spectral differencing are

better suited for detecting unexpected changes.

Spectral differencing is not without its challenges, either. One of its major weaknesses is related

the ability to identify the spectral anomalies shown in its change maps and spectra results since they

are derived from a differential datacube. This was a problem when trying to interpret the Salish Sea

results in Section 5.2.1. Although a spectral differencing change map resembled Sentinel-3 TSM data,

the Salish Sea detection could not be analyzed for its spectrum. For accurate identification of anoma-

lies, spatial and spectral stacking as well as component matching can be more useful and provide

more interpretable results. The spectral differencing and stacking technique attempts to reconcile

the weaknesses of spectral differencing but also suffers a similar issue as spatial stacking where fea-

tures needs to be present in the first capture to be identifiable.

Component matching is a promising approach to ICA-based change detection and an alternative

to the stacking and differencing techniques. It allows spectra from detected changes to be easily ex-

amined and it also produces easily interpretable independent component and change maps. Further-

more, component matching presents unique opportunities to adjust the performance of ICA through

ATGP and the initialization of the ICA un-mixing matrix. As discussed in Section 5.2.6, component

matching also leaves an avenue toward multitemporal change detection that analyzes the change in

datasets of more than just two captures.

In summary, the each of the ICA-based change detection indicated changes spatially but there is

a clear advantage of using non-differencing techniques since the preserve important spectral infor-

mation that can be used for spectral identification.

6.4 Time Series Datasets

A major prerequisite for the work on the ICA-based change detection was the creation and processing

of HYPSO-1 hyperspectral data into usable time series datasets. Building the processing pipeline for

this data took a considerable amount of time since many new techniques and tools needed to be

learned. Of these, georeferencing and resampling were the most challenging since they had not been

done for the HYPSO-1 data. The time series processing pipeline has been developed into a usable

tool but there are still improvements to be made, namely the automatic georeferencing of captures as

well as more efficient resampling of the hyperspectral data. The development and implementation

of a reliable cloud mask is also of key importance. Despite these issues, the pipeline can serve as a

starting point for future HYPSO-1 work involving the use of multitemporal data.

6.5 HAB Detection System

In their current state, the ICA-based change detection techniques serve as a proof of concept for an

automated detection system capable of monitoring changes in coastal waters. Such a system would

have important and useful applications for environmental monitoring and in aquaculture indus-

tries. The change maps and spectra derived from hyperspectral time series datasets using ICA-based

change detection demonstrate the valuable information that can be extracted and presented using
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these techniques. Most importantly, the current implementation successfully utilizes ICA to detect

and map changes in algae and other anomalies, as confirmed through the use of validation data.

With these capabilities, ICA-based change detection techniques could in the future serve as a

component of an automated or semi-automated HAB detection system, part of a greater observa-

tional pyramid. By detecting changing anomalies, these techniques could provide valuable informa-

tion to identify the occurrence and location of HABs, along with spectral details about type of algae

involved. The resulting change maps and spectral data could be directly presented to human analysts

for interpretation or further analyzed using other software and used to direct other monitoring assets

such as drones or ocean vessels. This would help improve HAB monitoring and responses, enabling

timely and accurate detection of harmful algal blooms in coastal waters.

There are still obstacles that need to be overcome to develop such a detection system, however.

One major challenge is identifying the spectral features or anomalies involved in detectable changes.

Not all spectral features involved in a change can be easily matched to specific physical phenom-

ena or materials such as algae. This can be attributed to various factors, such as unknown spectral

signatures, environmental variations, signal noise, or simply divergent spectral patterns captured by

ICA. Possible solutions include in-situ sampling to obtain ground truth spectral signatures or cross

referencing spectral signatures to library of known spectral signatures to aid in the interpretation of

ICA components. In any case, a deeper knowledge of the biology and properties of algae and HABs is

essential.

Other efforts aimed at enhancing ICA-based change detection techniques so they could be used

operationally include ICA-specific algorithm development in the form of customizing objective func-

tions and other parameters. This could improve accuracy and efficiency of detection. Another area

worth investigating is how to derive physical quantities from ICA components such as algal concen-

tration. This would allow ICA-based change detection to determine exactly how severe and how much

a HAB is changing over time.

6.6 Final Reflections

In conclusion, ICA-based change detection proves to be a promising technique for monitoring for

changes in hyperspectral data at a feature level. It enables the detection, mapping, and analysis

of changes based on their spectral signatures. ICA-based change detection has been successfully

demonstrated to have detected algae at the Lake Erie site using hyperspectral data from HYPSO-

1, which was confirmed using validation data from two separate sources. The work on ICA-based

change detection showed five different proof of concept algorithms that could be utilized for future

automated HAB detection systems, with component matching showing potential for further devel-

opment into multitemporal change detection. Furthermore, the work also set the stage for future

work involving the use of HYPSO-1 time series data through the development of a time series dataset

processing pipeline. Given continued refinement, ICA-based change detection holds the potential

become an effective method for hyperspectral change detection, particularly in monitoring HABs

and studying changes in the ocean environment using HYPSO-1 data.
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Glossary

ATGP - Automatic Target Generation Process

BIP - Band-Interleaved-by-Pixel

CD - Change Detection

Chl-a - Chlorophyll-a

CI - Cyanobacteria Index

CRS - Coordinate Reference System

CSV - Comma Separated Variable

CVA - Change Vector Analysis

DR - Dimensionality Reduction

ESA - European Space Agency

EVD - Eigenvalue Decomposition

GCP - Ground Control Point

GIS - Geographic Information System

GOCI - Geostationary Ocean Color Imager

GSHHG - Global Self-consistent, Hierarchical, High-resolution Geography Database

HAB - Harmful Algal Bloom

HSI - Hyperspectral Imager

HSTS - HyperSpectral Time Series

HYPSO-1 - Hyper-Spectral Small Satellite for Ocean Observation

IC - Independent Component

ICA - Independent Component Analysis

IMT - Inverse Modelling Technique

IRTM-NN - Inverse Radiative Transfer Model-Neural Network

MBR - Maximum Band Ratio

NaN - Not-a-Number

NASA - National Aeronautics and Space Administration

NCCOS - National Centers for Coastal Ocean Science

NIR - Near Infrared

NOAA - National Oceanic and Atmospheric Administration

NTNU - Norwegian University of Science and Technology

OLCI - Ocean Land Colour Instrument
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OSP - Orthogonal Subspace Projection

PCA - Principal Component Analysis

PCC - Pearson Correlation Coefficient

PCC - Post-Classification Comparison

Picard - Preconditioned ICA for Real Data

PRISMA - PRecursore IperSpettrale della Missione Applicativa or Hyperspectral Precursor and Appli-

cation Mission

RGB - Red, Green, Blue

RX - Reed and Xioli detector

SCV - Spectral Change Vectors

SD - Standard deviation

SDG - Sustainable Development Goals

SNR - Signal-to-Noise Ratio

SSO - Sun Synchronous Orbit

SVM - Support Vector Machine

TSM - Total Suspended Matter

UN - United Nations
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Appendix A

Input File

A.1 Processing Settings Section

Description

The processing settings input file section provides spatial and metadata information required for pro-

cessing the time series dataset. It also includes input and output paths for data files, calibration files,

latitude and longitude spatial bounding box values, as well as file paths to auxiliary information such

as the GSHHG cloud mask ESRI shapefile.

Line 1: Time Series Name

• LINE_FLAG

– Description: Toggles whether the line is read by the hsad IO module.

– Required: Yes.

– Allowed Values: 1 or 0.

• TIME_SERIES_NAME

– Description: Name of time series. Used as part of the filename of the output file.

– Required: No.

– Allowed Values: Any string or empty.

– Default Value: "time_series".

Line 2: Target Name

• LINE_FLAG

– Description: Toggles whether the line is read by the hsad IO module.

– Required: Yes.

– Valid Inputs: 1 or 0.

• TARGET_NAME
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– Description: Name of geographic target. Used as part of the filename of the output file.

– Required: No.

– Allowed Values: Any string or empty.

– Default Value: Empty.

Line 3: Output Path

• LINE_FLAG

– Description: Toggles whether the line is read by the hsad IO module.

– Required: Yes.

– Valid Inputs: 1 or 0.

• OUTPUT_PATH

– Description: Path used as the destination for the processed NetCDF files and the output

file.

– Required: No.

– Allowed Values: Any Unix-style path.

– Default Value: "./" (working directory.)

Line 4: Spectral Coefficients Path

• LINE_FLAG

– Description: Toggles whether the line is read by the hsad IO module.

– Required: Yes.

– Valid Inputs: 1 or 0.

• SPECTRAL_COEFFS_PATH

– Description: Path to spectral calibration coefficients file.

– Required: Yes.

– Allowed Values: Any Unix-style path.

– Default Value: Empty.

Line 5: Radiometric Coefficients Path

• LINE_FLAG

– Description: Toggles whether the line is read by the hsad IO module.

– Required: Yes.

– Valid Inputs: 1 or 0.

• RAD_COEFFS_PATH
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– Description: Path to radiometric calibration coefficients file.

– Required: Yes.

– Allowed Values: Any Unix-style path.

– Default Value: Empty.

Line 6: Land Mask Path

• LINE_FLAG

– Description: Toggles whether the line is read by the hsad IO module.

– Required: Yes.

– Valid Inputs: 1 or 0.

• LAND_MASK_PATH

– Description: Path to the GSHHG global land mask ESRI shapefile.

– Required: No.

– Allowed Values: Any Unix-style path to a land mask ESIR GIS shapefile (.shp).

– Default Value: Empty. Land mask will be disabled.

Line 7: Boundary Point 1

• LINE_FLAG

– Description: Toggles whether the line is read by the hsad IO module.

– Required: Yes.

– Allowed Values: 1 or 0.

• LONGITUDE

– Description: Geographic boundary bottom-left corner longitude in degrees.

– Required: No.

– Allowed Values: -180 to 180.

– Default Value: Empty. Geographic boundary will be calculated from ground control points

and geographic extent of the time series captures.

• LATITUDE

– Description: Geographic boundary bottom-left corner latitude in degrees.

– Required: No.

– Allowed Values: -90 to 90.

– Default Value: Empty. Geographic boundary will be calculated from ground control points

and geographic extent of the time series captures.

https://www.soest.hawaii.edu/pwessel/gshhg/)
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Line 8: Boundary Point 2

• LINE_FLAG

– Description: Toggles whether the line is read by the hsad IO module.

– Required: Yes.

– Allowed Values: 1 or 0.

• LONGITUDE

– Description: Geographic boundary top-right corner longitude in degrees.

– Required: No.

– Allowed Values: -180 to 180.

– Default Value: Empty. Geographic boundary will be calculated from ground control points

and geographic extent of the time series captures.

• LATITUDE

– Description: Geographic boundary top-right corner latitude in degrees.

– Required: No.

– Allowed Values: -90 to 90.

– Default Value: Empty. Geographic boundary will be calculated from ground control points

and geographic extent of the time series captures.

Line 9: Resampling Resolution

• LINE_FLAG

– Description: Toggles whether the line is read by the hsad IO module.

– Required: Yes.

– Allowed Values: 1 or 0.

• RESAMPLING_RESOLUTION

– Description: Spatial resolution value used by Geocube to resample the hyperspectral cap-

ture data.

– Required: No.

– Allowed Values: Any float.

– Default Value: 0.006.

Line 10: Spectral Band Range

• LINE_FLAG

– Description: Toggles whether the line is read by the hsad IO module.

– Required: Yes.
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– Allowed Values: 1 or 0.

• START_BAND

– Description: Spectral band index to start processing from.

– Required: No.

– Allowed Values: Any integer.

– Default Value: Empty. Processing code will use first spectral band available in the data.

• END_BAND

– Description: Spectral band index to end processing at.

– Required: No.

– Allowed Values: Any integer.

– Default Value: Empty. Processing code will use last spectral band available in the data.

A.2 File Processing Queue Section

Description

Line N>10: Queued File

• LINE_FLAG

– Description: Toggles whether the line is read by the hsad IO module.

– Allowed Values: 1 or 0.

• BIP_FILE_PATH

– Description: Path to the .bip hyperspectral capture file.

– Required: Yes.

– Allowed Values: Any Unix-style path to a .bip file.

– Default Value: Empty.

• GCP_FILE_PATH

– Description: Path to the .points GCP file.

– Required: Yes.

– Allowed Values: Any Unix-style path to a .points GCP file.

– Default Value: Empty.

• CROSS_TRACK_FLIP_FLAG

– Description: Toggle to flip capture data across horizontal axis.

– Required: Yes.

– Allowed Values: 1 or 0.
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– Default Value: Empty or 0 (disabled).

• ALONG_TRACK_FLIP_FLAG

– Description: Toggle to flip capture data across vertical axis.

– Required: Yes.

– Allowed Values: 1 or 0.

– Default Value: Empty or 0 (disabled).
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A.3 Input File Layout

Line Field 0 Field 1 Field 2 Field 3 Field 4

1 LINE_FLAG TIME_SERIES_NAME - - -

2 LINE_FLAG TARGET_NAME - - -

3 LINE_FLAG OUTPUT_PATH - - -

4 LINE_FLAG SPECTRAL_COEFFS_PATH - - -

5 LINE_FLAG RAD_COEFFS_PATH - - -

6 LINE_FLAG LAND_MASK_PATH - - -

7 LINE_FLAG LONGITUDE LATITUDE - -

8 LINE_FLAG LONGITUDE LATITUDE - -

9 LINE_FLAG RESAMPLING_RESOLUTION - - -

10 LINE_FLAG START_BAND END_BAND - -

N>10 LINE_FLAG BIP_FILE_PATH GCP_FILE_PATH CROSS_TRACK_FLIP_FLAG ALONG_TRACK_FLIP_FLAG




	Introduction
	Background
	Remote Sensing
	Overview
	Hyperspectral Remote Sensing
	Multispectral Remote Sensing
	Satellite Remote Sensing

	HYPSO-1 Mission
	Overview
	Hyperspectral Imager (HSI)
	Capabilities and Advantages

	Harmful Algal Blooms (HABs)
	Overview
	Remote Sensing Detection of HABs

	Anomaly Detection
	Independent Component Analysis (ICA)
	Overview
	Formulation
	Preprocessing
	Initialization
	Limitations
	FastICA

	Dimensionality Reduction
	Overview
	ICA-DR
	Principal Component Analysis (PCA)
	Automatic Target Generation Process (ATGP)

	Change Detection
	Overview
	Challenges
	Binary and Multiclass Change Detection
	Supervised and Unsupervised Change Detection
	Bitemporal and Multitemporal Change Detection
	Preprocessing
	Change Detection Categories
	Change Detection Methods

	Sustainable Development Goals
	SDG 6: Clean Water and Sanitation
	SDG 9: Industry, Innovation, and Infrastructure
	SDG 13: Climate Action
	SDG 14: Life Below Water
	SDG 17: Partnership for the Goals


	Implementation
	Overview
	Software Environment
	HYPSO-1 Data
	Overview
	Observation Times
	Lake Erie
	Salish Sea
	Danube River Delta
	Frohavet

	Time Series Processing
	Overview
	Loading Data
	Calibration
	Georeferencing
	Resampling and Interpolation
	Land Mask
	Cloud Mask
	Writing to NetCDF
	Input File

	Independent Component Analysis
	Overview
	ICA Preprocessing
	ICA Initialization
	ICA Data Transformation
	ICA Postprocessing

	Change Detection
	Overview
	Relation to ICA
	Properties
	Reading Data
	Change Detection Techniques
	Spatial Stacking
	Spectral Stacking
	Spectral Differencing
	Spectral Differencing and Stacking Hybrid
	Component Matching

	Validation Data
	NOAA HAB Forecast Validation Data
	Sentinel-3 OLCI Validation Data


	Results
	Overview
	Interpretation of Change Detection Plots
	Lake Erie Change Detection Results
	Salish Sea Change Detection Results
	Danube River Delta Change Detection Results
	Frohavet Change Detection Results

	Discussion
	Overview
	Change Detection Techniques Comparison
	Comparison to Sentinel-3 OLCI Validation Data
	Comparison to NOAA HAB Forecast
	Number of Meaningful Change Maps
	PCC Score Distribution
	Interpretability
	Multitemporal Extendibility

	Change Detection System
	Anomaly Identification
	Automation

	Improvements to ICA
	Algorithm
	Capabilities

	Improvements to Time Series Datasets
	Georeferencing
	Cloud Mask
	Land Mask
	Resampling
	Data Format
	Other


	Conclusion
	Summary
	Change Detection Results
	Change Detection Techniques
	Time Series Datasets
	HAB Detection System
	Final Reflections

	Glossary
	References
	Input File
	Processing Settings Section
	File Processing Queue Section
	Input File Layout


