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A B S T R A C T

As regulatory constraints limit energy communities’ (ECs) participation in wholesale markets, these might rely
on retailers’ supply when local generation falls short. As balancing responsible parties, retailers are financially
responsible for matching the volumes traded in the market with customers’ actual needs. However, inadequate
information about ECs’ operations may complicate this task. This paper explores the interactions and financial
implications for retailers under contractual agreements with ECs. We design a novel modelling framework,
consisting of: (1) a stochastic model of a strategic retailer participating in the day ahead market considering
imbalance costs, (2) a community model optimising its operations based on the agreed tariff subscription
with the retailer, and (3) a simulation of the imbalance settlement process. The frameworks’ applicability is
demonstrated via a case study in London (UK). Results indicate that retailers’ primary source of profit loss
arises from the increased self-sufficiency of customers belonging to EC. On the other hand, deviations from the
market commitments exerts limited effects on retailers financial outcomes. This is explained by the earnings
obtained by providing passive balancing services to system operators. Also, the paper underscores retailers’
need to reassess their business models, looking beyond merely establishing operational data exchange with
ECs.
1. Introduction

The simultaneous adoption of distributed energy resources (DERs)
and advancements in information technologies have triggered increased
interest to promote more active participation of consumers in the power
sector. This shift towards a consumer-centric power system has stimu-
lated the emergence of energy communities (ECs). The European Union
has provided legislative frameworks for these citizen-led initiatives
in two directives: Renewable Energy Directive (2018/2001/EU) [1]
and Internal Electricity Market Directive (2019/944/EU) [2]. Both
documents agree on defining energy communities as non-commercial
groups of end users (i.e., households, public authorities, and small and
medium-sized enterprises) who come together to achieve environmen-
tal, economic and social benefits.

While the definitions presented in the regulation establish an overall
idea of ECs, these provide room for interpretation of how ECs might
perform and interact in specific contexts. This has fostered diverse
business model ideas, exploring how ECs create value and interact
with other agents of the energy system [3]. Nevertheless, current
regulations place some limitations on the activities ECs can undertake.
For example, they are not allowed to participate directly in whole-
sale markets [4,5]. Therefore, within the scope of this work, energy
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communities are defined as organised groups of consumers who utilise
their assets to enhance their self-sufficiency, but maintain contractual
agreements with power retailers to receive electricity supply from
upstream generation when local production is insufficient.

Energy retailers are the intermediaries between the electricity mar-
kets and consumers. They purchase power from the wholesale market
or through bilateral contracts and resell it to their customers at a
subscription rate. Retailers, whether they act as balancing responsible
parties (BRPs) or are part of one, are liable to face penalties if their
customers’ actual demand deviates from the power purchased from the
market. The difference between the power purchases and the actual
demand is known as deviation. Through penalisation, system operators
incentivise retailers to make accurate forecasts of their customers’
expected demand to procure adequate power volumes from the market.

Given that ECs rely on power retailers to meet their net loads, the
suppliers participate in the power market to cover the predicted load
of ECs as accurately as possible, thereby minimising potential penal-
ties. However, this task might become complex if the retailer is not
informed of real-time changes in the operations of ECs. The discrepancy
between the actual needs of the ECs and the market position of retailers
could induce balancing penalties and increase financial uncertainty on
retailers.
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Therefore, this paper aims to shed light on the potential financial
consequences that power retailers may encounter due to the operations
of ECs, particularly when there is a lack of coordination or data
exchange between them. To delve into this subject, we propose the
following research questions:

• What are the financial repercussions on retailers resulting from
the formation of ECs by their customers?

• How does the net load of ECs impact the balancing outcomes for
retailers with and without operational data exchange?

• Can the design of ECs (e.g., technologies and tariffs) influence
the financial outcome experienced by retailers, and if so, to what
extent?

Exploring these questions is an important factor for the forthcom-
ng evolution of the power system, and the consumer-centric policies
irected by the EU. Understanding the interactions between ECs with
ther system actors is crucial for their successful integration and for
nticipating potential side-effects arising from their implementation.
or example, if non-flexible customers might be subjected to increased
ariff as retailers attempt to mitigate additional market risks from
alancing penalties.

The following section provides a background summary of the bal-
ncing system and retailers’ roles and responsibilities as BRPs. Particu-
ar attention is paid to the adoption of the single price mechanism which

is the new protocol pricing the deviations charged to BRPs in Europe.
Then, Section 2 provides a literature review to identify the research
gaps and contributions of the paper. Sections 4 and 5 describe the
methodology and the case study. The results for both the retailer and
the community are discussed in Section 6. Lastly, Section 7 presents
final remarks and conclusion.

2. Background: The balancing system

The European balancing system in Europe, managed by transmission
system operators (TSOs), is structured to ensure a constant equilib-
rium between production and consumption, which is crucial for the
stable operation of the power grid. Three chronological stages in the
electricity balancing process can be identified [6]: balancing plan-
ning (pre-delivery), balancing service provision (during delivery), and
balancing settlement (post-delivery).

During the balancing planning phase, BRPs participate in the day-
ahead market, buying/selling power according to their forecasted
load/production for the following day. The volume of electricity traded
in the market by a BRP is known as the contracted position and indi-
cates the amount of power they have committed to consume/produce.
Throughout the day of delivery, BRPs’ forecasts may deviate from
the contracted volumes agreed upon the day before. The difference
between the contracted position and the actual withdrawal from the
grid results in imbalances, which are often penalised. BRPs can trade
volumes in the intraday market or active their internal balancing assets
to manage these deviations. The final contracted positions are com-
municated to the TSO before the gate closure time, typically minutes
before the actual physical delivery begins.

Despite the mechanisms in place during the planning phase, BRPs
may fail to align their contracted position with their actual power
needs/deliveries. If this occurs, the BRP could have surplus volumes if
their contracted position exceeds their real electricity need, or deficit
volumes if it falls short. The sum of the imbalance volumes of all BRPs
within a region constitutes what is known as the system imbalance.
During the balancing service provision stage, it is the TSO’s respon-
sibility to restore system balance, achieved through the activation
of balancing reserves (e.g. fast-start power plants, demand response
programmes). TSOs incur costs operating and managing these reserves,
which are recovered by imposing charges on BRPs. These charges are
proportionate to the imbalance price and the deviation volumes caused
by each BRP.
2

Table 1
BRP economic outcome relative to its position and the position of the system.

BRP imbalance volumes System position BRP outcome

Surplus Surplus Net profit: loss
Deficit Net profit: gain

Deficit Surplus Net profit: gain
Deficit Net profit: loss

During the balancing settlement stage post-delivery, BRPs are
charged an imbalance price whose value is a function of the system
imbalance. Set by system operators, this price encourages BRPs to align
their contractual positions with their actual power needs/delivery.
Depending on the imbalance direction, a BRP might be charged either
the long or short imbalance prices. Long imbalance prices apply to BRPs
with surplus volumes in their imbalance position, while short imbal-
ance prices are levied on those with power deficits. If the two prices
have different values, the system applies the dual pricing mechanism.
Conversely, if they are equal, it denotes a single pricing mechanism.

Since July 2020, the European Union’s Agency for the Cooperation
of Energy Regulators (ACER) established the harmonisation of the im-
balance settlement protocols and selected the single pricing mechanism
as the default mechanism across Europe [7]. This system is highly
regarded for its efficiency in balancing costs recovery, as it is cost-
neutral for TSOs and rewards the passive balancing service, contrary
to double pricing schemes [8].

Passive balancing services are provided by a BRP when it indirectly
assists the TSO in reducing system imbalances. This service occurs
when a BRP’s deviations counteract the system imbalance. In such
scenarios, the BRP is compensated because its actions are interpreted
as providing service to the TSO. Conversely, if the system and a BRP
have matching positions – such as both being in surplus or deficit – the
BRP is penalised.

Specifically, in instances when a BRP has surplus deviations, the
system compensates for these volumes at the single imbalance price,
henceforth referred to simply as the imbalance price. If the imbal-
ance price surpasses the day-ahead price, the BRP profits from larger
earnings than expenses. However, if the imbalance price is lower
and despite receiving revenues from the balancing system, the BRP
losses the difference. For BRPs in deficits, deviation volumes are pur-
chased at the imbalance price. If these deviations are valued lower
than in the day-ahead market, the BRP benefits from reduced costs,
while if they are priced higher, the BRP incurs higher costs. As a re-
sult, the single pricing mechanism incentivises arbitrage by rewarding
over/undercontracting in wholesale markets to diverge from the system
imbalance position. Table 1 provides the economic outcome of BRPs
relative to its imbalance and the system imbalance positions when the
single price mechanism is applied.

3. Literature review

In recent years, ECs have received academic and political attention,
given the multiple advantages for consumers such as reducing opera-
tional costs, increasing self-sufficiency, increasing democracy and con-
sumer empowerment, among others [9]. The broad scope of the concept
has led to the proposition of multiple governance structures within the
literature. These structures outline the interactions among the commu-
nity members, as well as their potential engagements with other agents
from the power system [3,10,11]. Regarding the internal operations of
ECs, scholars generally agree on dividing ECs into two main categories:
centralised and decentralised communities. Centralised communities
are governed by a central manager who is responsible for optimising
the utilisation of the resources [12], while decentralised communities
allow users to act as strategic agents, interacting with each other on
trading platforms [13].
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Furthermore, adopting DERs within ECs might bring technical chal-
lenges that may compromise the security and quality of the energy
supply [14]. To alleviate grid-related issues, end-user flexibility can
support the operations of distribution system operators (DSOs) by pro-
viding services like voltage control and congestion management [15–
17].

Despite the extensive research focusing on ECs and their conse-
quences in the network, limited attention has been given to their
potential consequences on electricity retailers and BRPs, along with the
potential interactions between them [18].

One area of research aims to mitigate the financial stress expe-
rienced by retailers due to price fluctuations in wholesale markets
by examining the potential of prosumers delivering demand response
services [19,20]. As an example, [21] present a dynamic programming
model to optimise the scheduling of demand response events from
retailers’ customers. Building upon this work, Chanpiwat et al. [22]
propose a clustering algorithm that selects and categorises customers
based on the assumption that households with peak loads during high-
price timesteps are likely to generate more profits. An alternative
approach is presented in [23], where a bi-level optimisation technique
decides the dynamic price tariff that incentivises consumers to shift
their load to better align with wind and PV output. All in all, adopt-
ing demand response programmes at the prosumer level, potentially
extendable to ECs, has demonstrated value creation for end-users and
retailers. However, these studies primarily focus on the risks associated
with price dynamics in wholesale markets, frequently overlooking the
balancing responsibilities of retailers.

Alternatively, other studies have proposed adopting aggregator-
based business models within ECs. These models involve individual
consumers engaging in contractual agreements with a central entity
(e.g., a retailer) to pool their flexibility in the market, particularly in
the balancing market [24,25]. For instance, [26] propose a stochastic
optimisation model for an aggregator to find the best bidding strategy
for the day-ahead market by aggregating DER flexibility. Nevertheless,
a significant driver behind the success of ECs among citizens is the
possibility of minimising the involvement of third parties in internal
decisions [27]. Accordingly, although these aggregator-based business
models are viable in practical settings, some customers might still
prefer to avoid participating in aggregators. In such cases, ECs typically
assume that they are subscribed to retailers who ensure electricity
supply during periods of low local production [12]. These business
proposals may appeal customers preferring to avoid the involvement
of external actors, but they often neglect the implications for retailers
who continue to supply ECs.

To our knowledge, no study has provided a comprehensive anal-
ysis of the effect of ECs on retailers considering the whole market
value chain from the day-ahead market to the imbalance settlement
process. In their study, [28] examines possible cooperation between a
prosumer and a retailer susceptible to penalties for deviations using
cooperative game theory approaches. Although [28] set the founda-
tional idea and extend the knowledge in this area, the authors simplify
the imbalance settlement process using a double-pricing mechanism
and not considering the passive balancing effect of the single-pricing
mechanism.

This paper contributes to the literature by providing a new reason-
ing and developing a novel modelling approach for the interactions
between retailers and energy communities, considering the possible
effect of passive balancing. The sequential framework developed in
this study quantifies and contributes analysing the financial outcomes
of retailers and EC interacting with each other. Firstly, we develop a
new stochastic optimisation model for a strategic retailer participating
in the day-ahead market. The decision variable in this model is the
3

volume of power to purchase in the day-ahead market, considering the
uncertainty of potential penalties (i.e., imbalance price) for incurring in
deviations. Secondly, the operations of a EC subscribed to the retailer
are modelled using a deterministic optimisation model that decides
the operations of storage technologies to minimise operational costs.
The financial outcomes from the imbalance settlement process are
computed. Four case studies are presented, each based on the type
of tariff subscription and the storage technologies available in the
community, to explore the effect of EC design. The method is applied to
a case study in London (UK) using real-life data from different sources.

Additionally, the paper adds to the state of the art by presenting
a comparative case wherein retailers have complete information on
the EC’s operations when participating in the wholesale market. This
case provides valuable insights into the degree to which collaboration
between these two entities might alleviate deviations and possible
penalties for retailers. By exploring these interactions, we are contribut-
ing to exploring the effect of ECs in retailers considering the entire
value chain of the power market, from the day-ahead market to the
imbalance settlement process.

4. Methodology

The impact of an energy community on its retailer’s balancing
position in the market is analysed using a three-step framework. This
approach, illustrated in Fig. 1, comprises a retailer model, a community
model and an ex-post analysis of the retailer’s financial outcome.

1. Retailer Commitment Model: The day before delivery, the
retailer strategically participates in the day-ahead market to
purchase electricity to meet its customers’ demand, which in
this context are the community members. The retailer aims
to maximise profit through passive balancing provision. The
stochastic model considers the uncertainties associated to the
customers’ net load due to uncertain local electricity production
and the imbalance prices. The stochastic loads considered vary
based on the information available from the community.

2. Energy Community Model: On the day of delivery, the com-
munity collaboratively operates the batteries and determines
the peer-to-peer transactions to reduce the joint electricity bill,
subsequently reducing payments to the retailer. As a determinis-
tic model, the community decides its operations with complete
information about renewable generation, load profiles, and tariff
subscription. The realised renewable generation is considered to
be within the retailer’s set of scenarios.

3. Ex post analysis: The final step involves calculating the re-
tailer’s financial outcome after its commitments in the day-ahead
deviate from the actual needs of the community.

In designing this framework and determining the interactions be-
tween agents and models, we took into account several key assump-
tions.

• The retailer is a price-taker from the day-ahead market and the
balancing market.

• The retailer’s final commitment communicated to the TSO equals
its commitment in the day-ahead market. In other words, the
retailer does not activate any balancing mechanisms on the day
of delivery.

• Any penalties for frequent deviations from market commitments
are considered.

• All community members are customers of the same retailer and
subscribe to the same tariff scheme.

• The community does not operate to provide services (e.g., con-
gestion management) to external stakeholders.
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Fig. 1. Modelling framework of the three-sequential steps and the input (in blue) and output data (in green) of each model.
4.1. Retailer commitment model

The retailer’s optimisation problem involves purchasing electricity
volumes, 𝑥∗𝑡 , at each time interval, 𝑡 ∈ 𝑇 , in the day-ahead market
on the day preceding delivery. Expected surplus, 𝑥+𝑡,𝜔, and deficit, 𝑥−𝑡,𝜔,
deviations are valued according to the imbalance price spread, 𝜆𝑧𝑡.
This price is computed as the difference between the imbalance and
day-ahead prices. If this price is positive, the TSO rewards surplus
deviations; if negative, it rewards deficits.1 Under this penalty/reward
system, the objective function (Eq. (1)), with 𝛤 = {𝑥𝑡, 𝑥+𝑡𝜔, 𝑥

−
𝑡𝜔}, seeks to

maximise the expected profit derived from providing passive balancing
services.

max
𝛤
E
[

𝜆𝑧𝑡 ⋅
(

𝑥+𝑡𝜔 − 𝑥−𝑡𝜔
)]

,∀𝑡 ∈ 𝑇 (1)

min

{

∑

ℎ∈𝐻
𝐿𝑡ℎ𝜔

}

≤ 𝑥𝑡 ≤ max

{

∑

ℎ∈𝐻
𝐿𝑡ℎ𝜔

}

, ∀𝜔 ∈ 𝛺 (2)

𝑥𝑡 −
∑

ℎ∈𝐻
𝐿𝑡ℎ𝜔 = 𝑥+𝑡𝜔 − 𝑥−𝑡𝜔, ∀𝜔 ∈ 𝛺 (3)

𝑥+𝑡𝜔, 𝑥
−
𝑡𝜔, 𝑥𝑡 ≥ 0, ∀𝜔 ∈ 𝛺 (4)

The retailer’s goal is subject to constraints to meet the net load of
each customer, ℎ ∈ 𝐻 . However, since the realised net load is unknown
at this stage, potential net loads, 𝐿𝑡ℎ𝜔, are captured in each scenario,
𝜔 ∈ 𝛺. Furthermore, the uncertainty associated with future imbalance
prices is represented by the scenarios 𝑧 ∈ 𝑍. In Eq. (2), the day-
ahead commitment is constrained between scenarios with the largest
and lower sum of net loads, limiting the retailer’s speculative behaviour
in line with market regulations.

Finally, the deviations for each scenario 𝜔 are obtained by subtract-
ing the net load in the same scenario from the day-ahead commitment,
as indicated in Eq. (3). Note that the day-ahead commitment, as a
first-stage decision variable, maintains a consistent value across all the
scenarios.

4.2. Energy community model

On the day of delivery, the EC operates with complete information
about loads, renewable generation and the state of charge of the
batteries. The realised output of renewable energy is represented by
scenario �̂�, which is unknown in the methodology. However, if we
presume �̂� belongs to the set 𝛺, we can estimate a range of potential
outcomes by initiating a run-through of all possible scenarios.

min
𝛩

∑

𝑡∈𝑇

∑

ℎ∈𝐻
𝜇𝑡 ⋅ 𝑔𝑡ℎ(𝜔), ∀𝜔 ∈ 𝛺 (5)

𝑔𝑡ℎ(𝜔) + 𝑅𝑡ℎ(𝜔) + 𝑑𝑡ℎ(𝜔) + 𝑖𝑡ℎ(𝜔) ≥

1 Note that if 𝜆 ≥ 0 the imbalance price is higher than the day-ahead price.
The surplus volumes are then rewarded by valuing them at a higher price than
during the day-ahead market. On the contrary, BRPs in deficits need to pay
a higher price to cover the demand than tje price they would have paid if
purchasing in the day-ahead market. The opposite logic applies when 𝜆 ≤ 0.
4

𝐿𝑡ℎ(𝜔) + 𝑐𝑡ℎ(𝜔) + 𝑒𝑡ℎ(𝜔), ∀𝑡 ∈ 𝑇 ,∀ℎ ∈ 𝐻 (6)

The total operational cost of the community for a given day is
formed by the volumes purchased to the retailer in each household and
timestep, denoted by 𝑔𝑡ℎ, priced at the subscribed retail tariff 𝜇𝑡. This
goal is captured in Eq. (5), where 𝛩 = {𝑔𝑡ℎ, 𝑑𝑡ℎ, 𝑑𝐸𝑉𝑡ℎ 𝑐𝑡ℎ, 𝑐𝐸𝑉𝑡ℎ , 𝑖𝑡ℎ, 𝑒𝑡ℎ}. A
balance of power demand and supply is essential for each member, as
expressed in Eq. (6). The supply at each household stems from self-
consuming their renewable production, 𝑅𝑡ℎ, discharging power from
their storage technologies 𝑑𝑡ℎ, importing from other members 𝑖𝑡ℎ or
purchasing from the retailer 𝑔𝑡ℎ. Conversely, each household’s power
demand comprises the load 𝐿𝑡ℎ, the charging of the storage technology
𝑐ℎ, and power exports to neighbours 𝑒𝑡ℎ.

As outlined earlier, the EC has the option to decide on peer-to-
peer exchanges of power. Each member is allowed to supply, 𝑒𝑝𝑒𝑒𝑟𝑡ℎ𝑝 , and
receive, 𝑖𝑝𝑒𝑒𝑟𝑡ℎ𝑝 power from a peer house 𝑝 ∈ 𝐻 ⧵ {ℎ}. Eqs. (7) through
(10) ensure the total electricity traded remains within the community
and the losses, 𝜓 , are accounted for.

𝑒𝑡ℎ(𝜔) =
∑

𝑝∈𝐻⧵{ℎ}
𝑒𝑝𝑒𝑒𝑟𝑡ℎ𝑝 (𝜔), ∀𝑡 ∈ 𝑇 ,∀ℎ ∈ 𝐻 (7)

𝑖𝑡ℎ(𝜔) =
∑

𝑝∈𝐻⧵{ℎ}
𝑖𝑝𝑒𝑒𝑟𝑡ℎ𝑝 (𝜔), ∀𝑡 ∈ 𝑇 ,∀ℎ ∈ 𝐻 (8)

∑

ℎ
𝑖𝑡ℎ = 𝜓

∑

ℎ
𝑒𝑡ℎ(𝜔), ∀𝑡 ∈ 𝑇 (9)

∑

ℎ
𝑖𝑝𝑒𝑒𝑟𝑡ℎ𝑝 (𝜔) = 𝜓

∑

ℎ
𝑒𝑝𝑒𝑒𝑟𝑡𝑝ℎ (𝜔), ∀𝑡 ∈ 𝑇 ,∀𝑝 ∈ 𝐻 ⧵ {ℎ} (10)

The storage technologies of the houses, ℎ ∈ 𝐻𝑏𝑎𝑡 are operated
following Eqs. (11) to (15). The state of charge 𝑠𝑡ℎ in the last period
is constrained by a minimum state given as the percentage of the
maximum capacity, 𝑆, (Eq. (14)). This lower bound is adopted to
ensure the availability of electricity for the next day. In addition, to
help extend the longevity of the batteries, an additional lower limit
is incorporated for the remaining periods (Eq. (15)). Moreover, the
battery model determines the maximum discharge, 𝐷, and charge, 𝐶.

𝑠𝑡ℎ(𝜔) ≤ 𝑆, ∀𝑡 ∈ 𝑇 ,∀ℎ ∈ 𝐻𝑏𝑎𝑡 (11)
𝑠𝑡ℎ(𝜔) = 𝑠(𝑡−1)ℎ(𝜔)

+ 𝜀𝑐𝑐𝑡ℎ(𝜔) −
1
𝜀𝑑 𝑑𝑡ℎ(𝜔),

∀𝑡 ∈ 𝑇 ⧵ {1},∀ℎ ∈ 𝐶𝑏𝑎𝑡 (12)

𝑠𝑡ℎ(𝜔) = 𝐼 + 𝜀𝑐𝑐𝑡ℎ(𝜔)
− 1

𝜀𝑑 𝑑𝑡ℎ(𝜔),
𝑡 = 1,∀ℎ ∈ 𝐶𝑏𝑎𝑡 (13)

𝑠𝑡ℎ(𝜔) ≥ 𝛿𝑆, 𝑡 = |𝑇 |,∀ℎ ∈ 𝐻𝑏𝑎𝑡 (14)

𝑠𝑡ℎ(𝜔) ≥ 𝛾𝑆, ∀𝑡 ∈ 𝑇 ⧵ {|𝑇 |},∀ℎ ∈ 𝐻𝑏𝑎𝑡 (15)

𝑐𝑡ℎ(𝜔) ≤ 𝐶, ∀𝑡 ∈ 𝑇 ,∀ℎ ∈ 𝐻𝑏𝑎𝑡 (16)

𝑑𝑡ℎ(𝜔) ≤ 𝐷, ∀𝑡 ∈ 𝑇 ,∀ℎ ∈ 𝐻𝑏𝑎𝑡 (17)

Additional constraints become pertinent when the storage technolo-
gies are EVs. Specifically, the usage patterns of EV owners determine
when these vehicles are connected to the community’s grid. At the time
of departure 𝑡 ∈ 𝑇 𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒ℎ , the EVs belonging to households ℎ ∈ 𝐻𝐸𝑉
need to be fully charged, as in Eq. (18). Meanwhile, the state of charge
at the time of arrival 𝑡 ∈ 𝑇 𝑎𝑟𝑟𝑖𝑣𝑎𝑙ℎ is defined by the parameter 𝑆𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑡ℎ , as
outlined in Eq. (19). The value of this parameter depends on factors
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such as the distance travelled and charging carried out outside the
community.

𝑠𝐸𝑉𝑡ℎ (𝜔) = 𝑆, ∀𝑡 ∈ 𝑇 𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒ℎ ,∀ℎ ∈ 𝐻𝐸𝑉 (18)

𝑠𝐸𝑉𝑡ℎ (𝜔) = 𝑆𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑡ℎ , ∀𝑡 ∈ 𝑇 𝑎𝑟𝑟𝑖𝑣𝑎𝑙ℎ ,∀ℎ ∈ 𝐻𝐸𝑉 (19)

4.3. Ex-post financial analysis

Post-delivery, a mismatch between the power sold to the community
and the retailer’s day-ahead commitment might result in an imbalance.
This situation is represented in Eq. (20), where 𝑑𝑒𝑣𝑡(𝜔) represents the
deviation from the day-ahead commitment. The retailer’s profit for each
potentially realised scenario 𝜔 is denoted by 𝑃 (𝜔), as shown in Eq. (21).
The profit is computed as the difference between the cost from the day-
ahead market – where its price is represented by 𝜉𝑡 – and the sum of two
components. The first component is the revenue obtained from selling
power to the community. The second represents the repercussions –
either revenues or penalty – resulting from the deviation from the day-
ahead commitment valued at the imbalance price 𝜁𝑡. This part of the
equation ensures that passive balancing services are rewarded, while
deviations exacerbating system imbalances are penalised.

𝑑𝑒𝑣𝑡(𝜔) = 𝑥𝑡 −
∑

ℎ

∑

𝑡
𝜇𝑡 𝑔ℎ𝑡(𝜔) (20)

𝑃 (𝜔) =
∑

ℎ

∑

𝑡
𝜇𝑡 𝑔ℎ𝑡(𝜔)−

∑

𝑡
𝜉𝑡𝑥𝑡 +

∑

𝑡
𝜁𝑡 𝑑𝑒𝑣𝑡(𝜔),

∀𝜔 ∈ 𝛺 (21)

5. Case study and data collection

The modelling framework outlined in the previous section is applied
to an EC composed of 50 neighbouring households located in London
(UK). Using the Energy Community model, the central manager of
the community optimises the operations of the storage technologies
(i.e., electric vehicles (EVs) and stationary batteries) as well as the
peer-to-peer power transactions (with 7.6% grid losses [29]) among
community members. The main goal is to minimise the total commu-
nity costs of purchasing power from the retailer at a subscription rate
(i.e., fixed tariff or real-time tariff).

On the other side of the arrangement, the retailer has a contractual
obligation to supply power to consumers to cover their net loads.
The retailer assess the load information for all households and predict
possible scenarios for the renewable production of PV panels and wind
turbines. However, the retailer does not have information about the
peer-to-peer and battery operations; thus, the retailer only consid-
ers the net load from members who can self-consumption their own
generation. Following the Retailer Commitment model (Section 4.1),
the retailer purchases electricity in the day-ahead market using the
predicted net load and considering the possibility of providing passive
balancing services to the TSO. To mitigate the effect of price forecasting
errors on the retailer’s financial outcome, the retailer is assumed to
have full knowledge of imbalance prices. This approach facilitates iden-
tifying and understanding the impact solely attributed to community
operations.

The framework was applied for a time horizon of one year and was
implemented in Python 3.8. The optimisation problems were solved
using Pyomo [30,31] and the Gurobi Solver v9.5.2 [32] on a computer
with CPU 1.10 GHz Intel Core i7 and 32 Gb RAM. The data and models
are publicly available in GitHub.2

Six cases are defined to assess the financial results for a retailer
under different community configurations. Each case is based on the
potential storage technology integrated, and the tariff agreement with
the retailer. The storage technology options considered are stationary

2 https://github.com/raquelal/retailer-community.
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Table 2
Cases definition based on the community storage assets and the subscribed tariff.

Cases Storage technology P2P Tariff subscription

Baseline - FT – – Flat-rate tariff
Baseline - RT – – Real-time tariff
HomeBat - FT Stationary batteries Yes Flat-rate tariff
HomeBat - RT Stationary batteries Yes Real-time tariff
EVs - FT EVs Yes Flat-rate tariff
EVs - RT EVs Yes Real-time tariff

batteries and EVs. The subscription rates are either flat-rate or real-
time tariffs. The baseline cases assume that there are no peer-to-peer
transactions and no storage technologies. Table 2 provides an overview
of all the cases with their technical and price signal considerations.

The retail tariffs are based on the costs of electricity consumption in
England. According to the UK statistics for 2019 [33], the mean yearly
bill for residential users consuming 3 600 kWh was £637. Subtracting
the standing charge costs of 0.2 pence/day and the VAT of 5%, the
unit rate cost for a standard consumer in 2019 was 15 pence/kWh. This
value is set as the flat-rate tariff. Given that the energy component of
real-time tariffs follows the seasonal and hourly fluctuations of the day-
ahead price, we set the real-time tariff such that its yearly average price
per kWh equals the flat-rate tariff. The day-ahead and imbalance prices
for London in 2019 were retrieved from the ENTSOE-Transparency
platform3 and the Elexon platform,4 respectively.

The half-hourly load profiles for the households were obtained from
the Low Carbon London project.5 The 50 load profiles were selected
based on a pool of high-income end users as they are more likely to
own DERs and exhibit a higher electricity demand [34]. As such, the
average annual consumption of the chosen households is 6270 kWh. To
ensure data integrity, only load profiles that had complete data entries
without any missing information or outliers were included.

The EC has two sources of distributed generation: solar power and
wind power.

Solar Power: The PV panels have a peak power of 4 kW and an
efficiency of 2.4%. The panels are installed with a tilt angle of 35%
to optimise solar exposure. To obtain a half-hourly generation profile,
we utilised the technical specifications of the PV panels,6 in combina-
tion with Global Horizontal Irradiation (GHI) and meteorological data
specific to London in 2019 from the Open Power System Data (OPSD)
portal.7

Wind power: The power supply of the small wind turbines, each
with a nominal capacity of 2.4 kW, was generated using the wind speed
time series from Renewables.ninja8 along with the polynomial power
curve of the turbine model defined and used by [12,35].

To represent the uncertainty of the generation assets, ten solar and
wind output scenarios were generated for each technology using the
autoregressive moving average (ARMA) approach [36]. The scenarios
were randomly allocated to the 17 PV panels and 10 small wind
turbines installed in the community. The local generation of the assets
without considering grid losses covers between 39%–40% of the total
load of the community in all the scenarios.

3 Day ahead prices, see: https://transparency.entsoe.eu/.
4 Imbalance prices, see: https://www.elexonportal.co.uk/.
5 https://data.london.gov.uk/dataset/smartmeter-energy-use-data-in-

ondon-households.
6 PV technical data is based on the commercially available panel LG So-

ar LG370Q1C-A5 NeON R (see e.g. https://www.photovoltaik4all.de/lg-solar-
g370q1c-a5-neon-r).

7 OPSD is a free and open data platform for power system modelling and is
aintained jointly by Neon Neue Energie Okonomik, Technical University of
erlin, ETH Zurich and DIW Berlin. For further information, see https://open-
ower-system-data.org.

8 https://www.renewables.ninja/.

https://github.com/raquelal/retailer-community
https://transparency.entsoe.eu/
https://www.elexonportal.co.uk/
https://data.london.gov.uk/dataset/smartmeter-energy-use-data-in-london-households
https://data.london.gov.uk/dataset/smartmeter-energy-use-data-in-london-households
https://www.photovoltaik4all.de/lg-solar-lg370q1c-a5-neon-r
https://www.photovoltaik4all.de/lg-solar-lg370q1c-a5-neon-r
https://open-power-system-data.org
https://open-power-system-data.org
https://www.renewables.ninja/


Energy 283 (2023) 128384R. Alonso Pedrero and P. Crespo del Granado
Fig. 2. Day ahead commitments, grid imports, deviations and financial outcome from the ex-post imbalance analysis for two representative days for the HomeBat-FT and HomeBat-RT
cases.
Moreover, the community enhances its flexibility by installing stor-
age technologies. In the HomeBat cases, the selected stationary batter-
ies are small-scale lithium models from sonnenBaterie.9 These batteries
have a capacity of 4 kWh, one-way efficiency of 96%, and 2.5 kW of
nominal power, complemented by a maximum inverter efficiency of
96%. To ensure optimal performance and longevity, the batteries are
operated to maintain at least 20% of their capacity at all times.

For the cases with EVs, the nominal storage capacity is set to 50 kWh
on all vehicles, which corresponds to the average size of the models
Nissan Leaf, Volkswagen e-Golf and Tesla S [37]. The integration of EVs
in the community is assumed to be 28% of EVs, resulting in 14 vehicles.
This assumption is optimistic considering that the actual market share
of EVs is just 4.1% [38]. Contrarily to stationary batteries, the EVs are
connected to the community grid based on the behaviour of the owner.
The behaviours of each EV were modelled using the scripts developed
by [39], which assume that each EV disconnects and connects to the
grid once per day.

6. Results and discussion

In this section, the results of the case studies are presented and
discussed. First, we set the underlying dynamics between the retailer
and EC interaction by showing and discussing the results on two repre-
sentative days. Then, we present the yearly results for the community
to later discuss and understand the financial outcomes of the retailer.
An additional case is included where the retailer has access to full in-
formation about the operations of the community, which will represent
the upper threshold of the benefits for the retailer to collaborate with
the community.

The EC and financial results are presented for one single scenario
𝜔, which is assumed to be the realised generation output, as they were
found to not differ substantially from the results in other scenarios.

6.1. Underlying interactions

Fig. 2a illustrates the day-ahead commitment and the electric-
ity imported by the EC over two consecutive days in May. This is
demonstrated across the HomeBat-FT and HomeBat-RT cases.

9 https://saegroup.com.au/wp-content/uploads/2019/09/sonnenbatterie_
eco_8.0.pdf.
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At a specific time point – say 12:30 on the first day – the retailer’s
commitment (7.54 kWh) exceeds the actual electricity demand of the
EC, which is zero. This discrepancy arises due to the substantial local
electricity generation and trade among community members, which
the retailer did not foresee when participating in the day-ahead mar-
ket. The resulting deviations are equivalent to the entire retailer’s
commitment of 7.54 kWh, as depicted in Fig. 2b.

At this hour, the imbalance price (2.9 pence/kWh) is lower than the
day-ahead price (4.6 pence/kWh) (see Fig. 2c). The deviation volumes
are valued at a lower rate than the price at which the retailer purchased
them in the day-ahead market. Subsequently, as shown in Fig. 2d, the
retailer incurs a loss of 18 pence at this hour. The dynamics of the
profit loss and gain vary from hour to hour, given the different types
of deviations and their synergy with the imbalance price spread.

Furthermore, the deviation patterns in the HomeBat-RT and
Homebat-FT cases exhibit different characteristics. In the HomeBat-Rt
case, the storage technologies strategically leverage the price variations
between different hours. During time intervals with low prices, the bat-
teries get charged to discharge later during hours when the electricity
prices are higher. This charging of the batteries increases the total load
of the community, which, at certain hours, results in deficit deviations
for the retailer. This is depicted at midnight hours in Fig. 2b. Contrarily,
the absence of arbitrage opportunities inherent in flat-rate tariffs does
not promote this kind of strategic behaviour.

6.2. Results for the energy community

In the Baseline case, which represents the expectation of the retailer,
the community’s costs under the real-time tariff are about 2% higher
than those under the flat-rate scheme. This remains true despite the vol-
ume of electricity imported being the same in both cases, as illustrated
in Fig. 3.

The higher costs encountered by the community under the real-
time tariff are directly tied to the temporal relation between the net
load and the day-ahead price fluctuations. In months with limited
local electricity generation, when the overall net load is higher, the
prices under the real-time tariff tend to exceed the flat-rate of the
fixed scheme, as shown in Fig. 4. Consequently, when the EC relies on
imports from the retailer during months with high day-ahead prices,
the flat-rate tariff offers a financial hedge against them, making it a
more cost-effective choice for the community. In other seasons of the

year, when the flat-rate tariff exceeds the real-time tariff, the EC’s high

https://saegroup.com.au/wp-content/uploads/2019/09/sonnenbatterie_eco_8.0.pdf
https://saegroup.com.au/wp-content/uploads/2019/09/sonnenbatterie_eco_8.0.pdf
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Fig. 3. Total costs (£) and volumes of grid imports (kWh) for the EC in the different cases.
Fig. 4. Net load after self-consumption in the Baseline case compared to the retail electricity tariffs. Half-hourly resolution.
levels of self-sufficiency make the flat-rate tariff the most economical
alternative.

In the HomeBat case, the flexibility provided by the stationary
batteries, coupled with the trading among members, decreases the
community imports from the retailer by approximately 28%, relative
to the Baseline case. This is consistent for both real-time and flat-rate
tariff subscriptions and leads to the same percentage of cost savings for
the community.

Under the real-time tariff, the batteries’ flexibility allows for ex-
ploitation of daily price variations and the storage of surplus local
generation. In contrast, the absence of arbitrage opportunities under
the flat-rate tariff leads to the batteries being charged solely when there
is excess power. This is due to the inherent energy losses associated
with charging and discharging cycles, which make it unprofitable under
a flat-rate tariff. Despite real-time tariffs provide additional arbitrage
opportunities, the cost of the community remains more than 2% higher
than that under the flat-rate tariff, as seen in the Baseline case (Fig. 3).
This suggests that the price-responsive flexibility from the batteries did
not result in sufficient savings to offset the costs stemming from the
dependency on the retailer’s supply during seasons of high day-ahead
prices.

In regard to the cases with EVs, the electricity purchased to the
retailer increased by 4 and 5% under the flat-rate and real-time tariff
subscriptions, respectively, compared to the Baseline case. Despite the
potential of EV batteries to provide flexibility to the community as
stationary batteries, there is a mismatch between RES production and
7

the timing of the vehicles’ connection to the community. In the case
study, the EVs are typically disconnected during midday when solar
generation is at its peak. Consequently, only 14% of the charging
time coincided with available surplus electricity. This resulted in in-
creased electricity curtailment and dependency on the retailer’s supply
to ensure the EVs are fully charged before delivery time.

Despite the EVs’ inability to fully utilise local generation, they can,
under real-time tariffs, take advantage of price fluctuations. Unlike
stationary batteries, the arbitrage behaviour in EVs effectively lowered
the electricity bill for the community, despite the overall increase in
imported power compared to the flat-rate tariff case.

6.3. Results for the retailer

An analysis of the annual surplus and the deficit deviations across
all cases yields to the following insights:

• Peer-to-peer transactions lead to surplus positions for the retailer
as the EC manages to reduce its dependency on external supply.

• In the case with stationary batteries under a flat-rate tariff, only
surplus deviations are observed for the retailer. This is because
the batteries charge solely with excess local electricity and dis-
charge to minimise electricity imports.

• When the community, equipped with either stationary batteries
or EVs, subscribes to real-time tariffs, the volume of retailer’s
deviations – both surplus and deficit – increases. Under this
tariff, the storage technologies get charged not only with surplus
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Fig. 5. Cumulative passive balancing and imbalance deviations of the retailer for the HomeBat and the EVs cases.
Table 3
Retailer’s financial outcomes across all cases, measured in pounds (£). ‘‘Balancing revenues’’ refers to the earnings derived from selling surplus
volumes at the imbalance price, while ‘‘balancing costs’’ represent the expenses incurred when deficit volumes are purchased at the imbalance
price.

Baseline HomeBat EVs

FT RT FT RT FT RT

Day-ahead costs −11 242 −11 242 −11 242 −11 242 −11 242 −11 242
Balancing revenues 277 277 3150 3401 2204 4126
Balancing costs −148 −148 −34 −135 −2029 −3219
EC revenues 36 207 36 880 26 091 26 854 37 677 37 456
Total 25 127 25 800 17 965 18 115 26 610 27 121
Difference (rel. to Baseline) [%] −28.5 −29.8 +5.9 +5.12
local electricity but also from imported power during periods of
low pricing. This arbitrage behaviour increases the community’s
load, resulting in deficit volumes for the retailer. Additionally, it
encourages higher surplus volumes compared to those under flat
tariffs, as batteries have more electricity stored to discharge to
reduce importing during periods of higher prices.

• With EV, the retailer more frequently encounters deficit volumes
than surplus volumes. This outcome arises due to three factors:
an overall increase in electricity demand due to EV usage, a
common mismatch between times when EVs are plugged-in to
the community grid and the production of local electricity; and,
in case of adopting real-time tariffs, the occurrence of high peak
imports in periods with low electricity prices. Moreover, under
flat-rate tariffs, EVs exhibit minimal discharge activity due to
the limited charging from excess local power. Consequently, EVs
often act more as consumption assets than as flexibility assets
with fixed electricity prices.

These factors stress the impact of the design of the EC on retailers’
final position in the market. Nonetheless, whether the deviations are
economically beneficial or detrimental for the retailer depends on their
interrelation with the overall system’s imbalance.

The cumulative deviation volumes across all cases are illustrated in
Fig. 5. Here, we refer to imbalance volume to retailers’ deviation that
exacerbates system’s imbalances, and to passive balancing volumes to
those helping the TSO to restore the system’s balance.

For the cases with stationary batteries, the retailer’s deviations tend
to equally provide passive balancing services and imbalances to the
8

system. However, from June to October, the retailer incurs more often
in imbalance volumes, particularly with the EC under the flat-rate
tariff. These are months that result in high surplus positions due to
the increased self-sufficiency of the EC, while the overall system is
also falling in surplus. This match between the system and the retailer
balance position lead to the increase in the imbalance volumes.

Differently, the EVs charging and discharging patterns contribute
the retailer to end up with substantially higher passive balancing
volumes than imbalance volumes. This trend is constant throughout the
whole year.

Under the Baseline case, where the retailer has accurate predictions
of loads and complete information about prices, it only provides passive
balancing services (9.6 MWh) to maximise its profits.

Furthermore, Table 3 provides a detailed break down of the re-
tailer’s annual financial outcomes. These include day-ahead costs, bal-
ancing system revenues and costs, and earnings from supplying the
EC. It is important to highlight that the revenues generated from the
balancing system are not necessarily beneficial for retailers. In cases
where a retailer pays a higher price in the day-ahead market than the
one received in the imbalance price, losses occur. Conversely, balancing
costs can result in economic benefits if the price paid in the imbalance
settlement process is lower than the price required to be paid during
the day-ahead market. In this table, the Baseline case depicts the best
financial outcome expected by the retailer, as the passive balancing
services are guaranteed at all times by assuming perfect information
of real imbalance prices in the retailer’s commitment model.
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Table 4
Cost and revenue comparison between the full information case and the previous
cases.

HomeBat EVs

FT RT FT RT

Day-ahead costs [%] −26.9 −28.5 −0.6 −9.3
Balancing revenues [%] −100 −100 −100 −100
Balancing costs [%] −100 −100 −100 −100
EC revenues [%] 0 0 0 0
Total [%] −0.5 +3.9 −0.4 +0.5

The retailer’s annual profit is reduced by almost 30% when the
C adopts stationary batteries. In these cases, we observe a significant
ncrease in balancing revenues due to the high volumes of surplus in-
uced by the community’s self-sufficiency. Of these revenues, 30% were
aused by imbalance volumes, meaning that the retailer’s payments
n the day-ahead were higher than the earnings from the imbalance
arket. Therefore, the retailer could reduce costs by not purchasing

hose volumes in the day-ahead market. The balancing costs in the
omeBat cases are significantly low, given that the stationary batteries

ead to insignificant deficit volumes in the retailer. As expected, the
evenues from the EC’s payments are reduced compared to the Baseline
ase.

On the other hand, EVs limited synergy with local generation in-
uces significant balancing costs. About 68 and 67% of the deficits
or the EV-FT and EV-RT cases, respectively, were incurred while the
ystem penalised this type of deviation. Therefore, the total cost for
he retailer could have been reduced if these deficit volumes were
urchased in the day-ahead market instead. Nevertheless, still the total
rofits of the retailer increased between 5 and 6% given the positive
esults from the balancing stage and the community payments.

In general, we observe that while the revenues and costs from the
alancing stage can increase or reduce profits, the largest influence on
etailers’ financial outcomes comes from customers’ payments. In the
ase of ECs with stationary batteries, the profits are substantially lower
han expected as ECs reduce their dependency on retailers’ supply. On
he contrary, the increase of net load in communities from EV charging
eads to higher profits.

.4. Additional case: full information of net loads

The retailer has the potential to improve the total profits if it gets
o know the net load of the community members. Under this scenario,
he retailer could bid in the day-ahead market the actual needs of the
ustomers and avoid potential penalisation from the balancing system.

Table 4 shows the difference in percentage of the different revenues
nd cost elements of the retailer between the full information case
nd the previous cases. Despite the retailer improving its participa-
ion in the day-ahead market and not inducing imbalances or passive
alancing services, it does not obtain substantial changes in the total
rofits compared to previous cases. This underscores that acquiring
ull information from ECs to increase the precision of the volumes
urchased may not be sufficient economically attractive for retailers.
his holds when considering that transaction and digital costs are

ncurred to settle the information exchange.

. Conclusions

Studying the impact of ECs on other stakeholders is essential to
nsure their adoption aligns with the operational requirements of the
ower system. The paper explores the interplay between electricity
etailers and ECs, considering the sequence of wholesale markets and
he imbalance settlement process. We propose a novel modelling frame-
ork that captures the operational decisions of a strategic retailer and
n energy community, and the subsequent financial outcome. Through
9

this framework, our study sheds light on retailers’ financial results
caused by ECs, and vice versa.

The findings reveal that technologies or practices leveraging local
generation induce significant surplus deviations for retailers as they
enhance the self-sufficiency of communities. This trend is particularly
noticeable in scenarios with stationary batteries and peer-to-peer trad-
ing. In contrast, EVs show a different pattern as they are often not
plugged-in when there is local generation. This lack of synergy with
renewable sources increases the net load covered by retailers’ supply
and, thereby increasing the risk of the retailer falling into deficits.
Alternative EV usage patterns matching local generation could reduce
deficits and increase surplus deviations on retailers.

Interestingly, cost stemming from these imbalance deviations (vol-
umes that aggravate the system’s imbalance) are relatively not sig-
nificant and can be offset by the revenue from passive balancing
services. The study estimates the largest retailer’s profit reduction,
approximately 30%, occurs when the EC integrates stationary batteries.
This value, however, can fluctuate based on the storage capabilities and
installed renewable sources. Consequently, the majority of the retailers’
profit reduction results from enhanced EC self-sufficiency, facilitated
by flexibility mechanisms like stationary batteries and peer-to-peer
trading, while the balancing system plays a minor role in this reduction.

Using the proposed method, we can explore the financial outcomes
for ECs under various designs and tariffs. The findings underscore
the importance of tariff selection in accordance with community de-
sign. Counterintuitively, real-time tariffs are not always the most cost-
effective option for all ECs types. In instances of low local generation,
real-time tariff rates may exceed those offered by fixed tariffs, while
the opposite occurs with high local generation. Consequently, ECs
with considerable self-sufficiency could potentially benefit from flat-
rate tariffs, as these often offer lower rates during periods of greater
reliance on external power supply. Conversely, flexible ECs with low
self-sufficiency can leverage price differences throughout the year when
adopting real-time tariffs. Nevertheless, these outcomes are contingent
on the design of real-time tariffs, which may differ from the one
employed in this study. Nonetheless, these insights emphasise the sig-
nificance of aligning the temporal synergies of tariffs with the specific
design of ECs.

Given the negligible impact of deviations on profits, our research
suggests there is a limited potential for business models seeking to
capitalise on operational data exchange to improve retailer bidding in
systems with a single imbalance pricing. This is demonstrated by the
upper threshold of limiting retailer’s profit loss by about 4%, without
accounting for the cost associated with the business model’s adoption.
These findings hint at a lack of incentives for retailers to pursue simple
data exchange collaboration with EVs, signalling a need for retailers to
rethink their business strategies to overcome the profit loss.

However, note that this study assumes that a retailer predicts load
profiles and imbalance prices. In realistic scenarios with less accurate
forecasting, deviations may be larger and could have a more substan-
tial financial impact on retailers. Future research analysing financial
outcomes under varying forecast accuracy levels could yield more
significant insights concerning the feasibility of the data exchange
business models. Additionally, penalties for recurrent deviations, not
considered in our study, may also negatively affect retailers’ finan-
cial outcomes. Additional research could also investigate retailers’ risk
aversion towards incurring imbalance costs due to uncertainty system
imbalance positions.
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