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A B S T R A C T

In this paper we study the decision of a firm to undertake a one-time proactive preventive investment to
limit the occurrence of future disruptions. The firm is operating in a market with uncertain demand, and its
products are subject to a risk of malfunction. Malfunctions lead to direct costs, consisting of, e.g. legal fees,
fines and additional costs. But they also make the product less attractive, affecting product demand. Moreover,
the firm may be strictly or partially liable for these malfunctions. In order to take into account different
levels of liability, we introduce a liability parameter. Our model takes these features into consideration, and
we determine the optimal time and size of the preventive investment, depending on the liability rule, that
maximize the value of a firm that is already in the market and has the option to invest in a preventive
infrastructure. We then determine the liability rule that steers this investment decision in such a way that
malfunction damage is minimized.
1. Introduction

In many manufacturing industries, digital transformation and tech-
nological progress have led to increased R&D activity and product
improvements. At the same time it also brought safety and security
concerns to the forefront (Marucheck et al., 2011). This issue is espe-
cially important when the consequences of accidents or safety failures
are large, the so called low likelihood but high impact catastrophic events,
which can severely affect firm’s profitability.

Knemeyer et al. (2009) emphasize the increasing need for managers
to address resilience of their products, systems or supply chains with
respect to such failures by undertaking proactive investments, which
leads to the following questions: when should these investments be
made and how much should the firm invest? These are precisely the
questions that we address in this paper. More specifically, we study
the decision of a firm to undertake a pro-active preventive investment
in order to lower the likelihood of future disruptions where both the
timing and consequences of these disruptions are uncertain. Preventive
investment is broadly defined as it includes not only R&D invest-
ment but also human investment (as receiving preventive training, for
instance).

✩ The authors gratefully acknowledge support from the Portuguese Science Foundation (FCT) through the project CEMAPRE/REM - UIDB/05069/2020,
PTDC/EGE-ECO/30535/2017 and CE- MAT - UIDB/04621/2020.
∗ Corresponding author.
E-mail address: cnunes@math.tecnico.ulisboa.pt (C. Nunes).

This decision concerns not only the optimal time to invest but
also its optimal size. A larger preventive investment reduces accident
probability to a larger extent, but it requires a larger investment cost.

In general, such failures/disruptions may negatively affect the
project’s revenues for different reasons. These include direct negative
effects on demand due to loss of consumers, loss of suppliers, loss of
reputation and competitive foothold in the market, as well as additional
non-anticipated costs associated with law suits and insurance payments.
To address this in our model, product failures affect firm’s profitability
in two ways. First, there is a direct cost to the firm, having a one-time
effect. Upon the occurrence of a malfunction, the firm faces immediate
legal or financial repercussions related to the firm’s liability for the
damages. Second, the occurrence of failures reduces demand for the
product now and in the future. This is thus a long-term reduction in
demand. the firm should take into account that a larger preventive
investment will reduce accident probability to a larger extent.

The topic of investment in safety is particularly relevant in view of
growing market penetration of smart products, which become increas-
ingly autonomous and less reliant on human decision-making (Dawid
and Muehlheusser, 2022; Sassone et al., 2016). A prominent example
is the industry for automated vehicles (AVs) that have the potential
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to reduce road accidents in the future. However, today the technology
is not fully matured. For example, even the established technology
providers, such as Google, still experience malfunctions (?). Due to the
ability of malfunctions in AVs to cause crashes and potential casualties,
more R&D investments are needed to improve their safety.

But the question of safety is also relevant in other areas besides the
industry of smart products. One of such examples is the airline industry.
In July 2000, an Air France Concorde airplane crashed in Charles de
Gaulle airport, just after take-off. After many months of investigation,
it was concluded that the accident was caused by a tyre failure. But
even after a $17M (2001 values) safety improvement, Concorde flights
were ended in 2003. The investment was decided too late and Concorde
was unable to overcome its consequences.1

More recently, Boeing has faced devastating effects on the projects’
evenues as consequence of two major plane crashes (in 2018, in
ndonesia, and in 2019, in Ethiopia, both with the Boeing 737 MAX
assenger airliner). Both crashes were caused by malfunctioning of the
light-software system. As it later transpired, the disasters were to some
egree preventable, had the pilots been trained to regain control of the
lane under this type of malfunction.2

When one is dealing with such decisions, especially large invest-
ments that also may lead to human losses, the question of liability is
important. This is especially relevant in connection with smart products
like automated vehicles. If an accident occurs with a self-driving car,
the big difference with an ordinary car accident is that the behavior of
the ‘‘driver’’ is much less influential, if at all, with respect to accident
occurrence. Then the question is who is responsible: the car owner
or the manufacturer. A similar question arise in airplane crashes, for
instance.

The question of liability is far from being trivial, even in terms of
its definition. Following Dawid and Muehlheusser (2022), we explicitly
introduce a liability parameter, the value of which denotes to what
extent either of the involved parties, consumer and firm, are liable. And
we consider both strict and partial firm liability. Moreover, we go one
step further than Dawid and Muehlheusser (2022), where we determine
which liability rule will minimize future malfunction damage. Hence,
our liability rule is endogenously determined, as it is the result of an
optimization problem. Therefore, it is not intended to describe how
it presently occurs in reality, but instead it shows how it should be
established to reduce the expected damage from malfunctions.

In a nutshell, our paper presents a full characterization of several
decisions that the firm and the regulator need to undertake in order to
reduce losses concerning malfunctions. To do so, we first determine, for
a given liability level, when the firm should undertake the preventive
investment and how large should it be. Second, given this information,
which liability rule should the regulator choose to stimulate the firm
to act such that expected damages from accidents are minimized.

The main results that we obtain in this paper can be summarized as
follows.

• The characterization of the optimal preventive investment de-
pends on which effect is dominant when a malfunction occurs:
if the direct-cost effect is dominant, the firm will undertake an
immediate but relatively small investment; otherwise it is optimal
to undertake a large preventive investment at a (possibly) later
point in time.

• In case of a large investment, albeit at the (possible) expense of a
late undertaking, it is optimal for the regulator to let the consumer
be liable. On the other hand, if an immediate investment action
is required, let the firm be liable, either fully liable or at least to
the extent required to let the firm invest immediately.

1 Westcott, Richard (24 October 2013). ‘‘Could Concorde ever fly again?
o, says British Airways’’. BBC News.
2 https://www.economist.com/books-and-arts/2021/11/27/a-new-book-

xplains-the-tragic-failure-of-boeings-737-max
2

• The damage-minimizing liability rule depends on the level of
demand uncertainty. If demand is very uncertain, the regulator
decides to let the consumer be liable, because then the firm
will invest late and a lot. In case of (almost) no uncertainty,
the regulator should design a liability rule such that it induces
the firm to invest immediately, which requires the firm to be
sufficiently liable.

The paper is organized as follows. Section 2 gives an overview of the
relevant literature, whereas Section 3 presents the model. Due to the
complexity of this framework, a full analytical solution is not available.
Therefore, our analysis is partly numerical. The analytical part of our
results is presented in Section 4. Based on this analysis we develop
numerical results in Section 5. Section 6 concludes the paper.

2. Related literature

The novelty of this paper is that we look at the nexus between
timing and size of the investment, and different liability rules in the
presence of both market uncertainty (demand and, thus, revenues) and
technical risks (uncertain arrival of product failures). Hence our work
is related to several strands of the literature.

Concerning optimal preventive and maintenance measures, there
exists a large number of papers that study system reliability from
an industrial engineering perspective, including maintenance strate-
gies (Wang and Pham, 2006; Garg and Deshmukh, 2006; Rivera-Gómez
et al., 2013). The operations management literature has presented
a number of different mechanisms to manage disruption risks along
the supply chain. These include mitigation strategies, e.g., inventories
and sourcing, as well as contingency strategies, e.g. demand man-
agement and rerouting (Tomlin, 2006, 2009; Babich et al., 2007;
Bakshi and Kleindorfer, 2009; Wang et al., 2010). Within this literature
stream, however, the flexibility of the firm with respect to timing the
investment decision is typically disregarded either because market un-
certainty is ignored or due to the fact that failure mitigation strategies
are not associated with a substantial irreversible capital investment.

On the contrary, in our model, we explicitly take into account
market uncertainty (as we assume that demand is stochastic, modeled
by a geometric Brownian motion), and that the time and impact of
the malfunctions are also unknown. Thus we take into consideration
a model with a much higher level of stochasticity, and that means
a higher level of uncertainty and flexibility. Allowing for demand
uncertainty, the decision must be taken based on future expectations
about demand growth. Therefore, the problem becomes analytically
more challenging but at the same time more realistic. The model is
also richer, allowing to study the impact of the demand drift and the
volatility parameters on the optimal time and size investment.

This is a novelty in the sense that it extends papers as Kim and
Tomlin (2013), which explicitly consider capital investment decisions
but uncertainty about the firm’s demand and revenue is disregarded;
or Jin et al. (2009), where demand is uncertain but random failures
are not taken into account.

Closer to our setting in terms of uncertainty is Xu et al. (2020). But
they consider continuous control rather than a lump sum capital invest-
ment in preventive measures. In our model a firm has the opportunity
to undertake a lump sum preventive investment in the presence of both
failure risks and revenue uncertainty.

Regarding the liability rule, the closest contribution to our paper
is Dawid and Muehlheusser (2022), that study the interplay between
product liability, safety investment and the timing of market intro-
duction with regard to the application to smart products, particularly
AVs. In their model, the firm chooses the safety stock investment that
reduces the accident rate, which is similar to preventive investment in
our model. However, we differ from Dawid and Muehlheusser (2022)
in two crucial ways. Firstly, in their model, demand is assumed de-

terministic. Secondly, they consider incremental investments in safety

https://www.economist.com/books-and-arts/2021/11/27/a-new-book-explains-the-tragic-failure-of-boeings-737-max
https://www.economist.com/books-and-arts/2021/11/27/a-new-book-explains-the-tragic-failure-of-boeings-737-max
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stock, whereas we consider one lumpy preventive investment. When
setting up an infrastructure designed for preventing malfunctions, it
seems more reasonable to indeed model such investments as lumpy, as
in many cases they require a one-time large capital expenditure. More-
over, considering just one lumpy investment is not very restrictive, as
long as it is reasonable to assume that subsequent investments intend to
occur at a (much) later point in time so that their effects are discounted
away. The advantage is that the model becomes more tractable, so
that we can focus on the interplay between undertaking preventive
investments, demand uncertainty, uncertain arrival of malfunctions,
and liability rules.

Since we consider a lumpy investment under uncertainty, our paper
contributes to the literature of real options, where Dixit and Pindyck
(1994) is a seminal work. As we are considering not only the time but
also the size of the investment, we refer to Dangl (1999), Huisman
and Kort (2015), Huberts et al. (2015), where it is recognized that
investment decisions are not only about timing but also about size.
Moreover, Kort et al. (2021) develops a real options model of preven-
tive investment to avoid environmental incidents. Unlike our model,
however, that paper disregards the issue of liability related to such
incidents. Another difference is that in Kort et al. (2021) the effect
of a malfunction is multiplicative with respect to the firm’s revenues,
implying that every new incident has the same relative negative effect
on revenue. On the contrary, in our model every repeated product
failure leads to a relatively larger negative effect on the revenue, due
to the loss of the firm’s reputation. Here it is taken into account that
reputation loss increases with every new failure: one malfunction can
be an unfortunate accident, but with every additional one it becomes
more clear that there is a structural problem.

Another methodological novelty of this paper is that it brings to
the arena of real options the possibility to optimize not only with
respect to time and capacity of the investment, but also with respect
to the intensity of the Poisson process, representing in our case the
arrival of product failures. In our model undertaking the preventive
investment reduces the Poisson arrival probability and thus also the
malfunction probability. The idea of controlling the intensity of the
point process that affects the outcome of a project is not new. For
instance, Araman and Caldentey (2009) study a model with dynamic
pricing policies for nonperishable products in the context of a retail
operation with uncertain demand. Also Defourny (2018) considers a
problem of controlling the intensity of a point process in order to
maximize the probability that a target number of arrivals is met exactly
by a deadline. But in these papers the objective is different from ours,
as well as the model and assumptions used.

Lastly, we contribute to the debate in the legal literature concerning
the ability to reduce accident risks by imposing strict liability on
AV producers (Hay and Spier, 2005; Shavell, 2020). We provide an
extensive analysis in which we determine the liability rule that reduces
future accidental risks by providing the maximal incentive for the firms
to invest in safety.

3. The model

Consider a firm operating in a market with uncertain demand and,
thus, its future revenue is also uncertain. More specifically, we assume
that the firm’s revenue evolves according to a geometric Brownian
motion process

𝑑𝑋𝑡 = 𝜇𝑋𝑡𝑑𝑡 + 𝜎𝑋𝑡𝑑𝑊𝑡,

in which 𝜇 and 𝜎 are the constants representing the drift and the
volatility parameters, respectively, and {𝑊𝑡, 𝑡 ≥ 0} is the Brownian
motion. As usual, (e.g. Dixit and Pindyck, 1994) it also holds that 𝜇 < 𝑟,
where 𝑟 denotes the discount rate.

In our model, the products produced by the firm are subject to the
ccurrence of random accidents, or malfunctions. Let {𝑍𝑖, 𝑖 ∈ N0} be a
3

sequence of independent and identically distributed random variables,
where 𝑍𝑖 stands for the damage due to the 𝑖th malfunction. The exam-
les here include the failure of product components, software bugs, or
perational failures that can potentially lead to accidents (e.g., airplane
ccidents, road accidents of automated vehicles, etc.).

The accountability for such malfunctions can either be placed on the
irm or the consumers, where our model allows to incorporate different
iability rules. In particular, we assume that 𝛼 ∈ [0, 1] represents the
art of the damage for which the firm is liable. This implies that in
he case of 𝛼 = 0 the firm does not face any direct costs related to
he malfunctions and the burden is borne by the consumers. On the
ontrary, in the case of 𝛼 = 1 the firm is fully liable. We also take into

account partial liability where 0 < 𝛼 < 1.
In general, when a malfunction occurs, the firm faces two negative

consequences. First, a malfunction results into a direct one time cost
to the firm, consisting of, for instance, paying a fine, compensations to
buyers/suppliers, costs related to insurance and investigation, or legal
fees. It makes sense that this direct cost is related to the damage of this
malfunction, and therefore we assume that it is equal to 𝛼𝐾𝑍𝑖, where
𝐾 is a constant.

Second, every malfunction has a negative effect on current and
future demand for the product, as it discourages the consumers to buy
the product. This effect will be bigger the more the consumer is held
liable for the damage caused by the malfunction. In particular, the part
of the demand, and thus of the revenue, that is lost due to malfunction
is

(1 − 𝛼 + 𝜖)
𝑍𝑖

1 +𝑍𝑖
.

Intuitively, consumers may experience negative utility from the occur-
rence of a malfunction also if they are not liable at all. The parameter
𝜖 > 0 accounts for this effect. The larger is the damage, the more the
consumer is discouraged from buying the product. The fraction 𝑍𝑖

1+𝑍𝑖
,

being increasing in 𝑍𝑖, captures that the negative demand effect is
bigger in case of a larger damage due to the malfunction.

If 𝑁𝑡 is the number of malfunctions that have occurred until time
𝑡, the total return of the firm until time 𝑡, given all the information
oncerning the occurrence of malfunctions until that time, is given by

𝑡

0
𝑒−𝑟𝑠

(

𝑋𝑠

(

1 − (1 − 𝛼 + 𝜖)
𝑁𝑠
∑

𝑖=1

𝑍𝑖
1 +𝑍𝑖

)

− 𝑐

)

𝑑𝑠 − 𝛼𝐾
𝑁𝑡
∑

𝑖=1
𝑒−𝑟𝑇𝑖𝑍𝑖,

where 𝑇𝑖 denotes the time of the occurrence of the 𝑖th malfunction, and
𝑐 is a fixed production cost.

In this formulation, every new malfunction has a larger (relative)
negative effect on demand (and, thus, on revenue). This is intuitive,
as the first malfunction can be accidental. However, every repeated
malfunction in the absence of mitigating measures by the firm leads
to more serious reputational damage.

The firm holds an option to invest in safety or a preventive in-
frastructure, where the investment accomplishes that it reduces the
probability that malfunctions occur. Upon investment the firm incurs a
sunk cost 𝑅. The occurrence of malfunctions follows a Poisson process.
Before the preventive investment it is denoted by

{

𝑁𝐵
𝑡 , 𝑡 ≥ 0

}

, with in-
tensity rate 𝜆𝐵 (the subscript 𝐵 denotes ‘‘before’’). After the preventive
investment is undertaken, the intensity rate of malfunctions is reduced
from 𝜆𝐵 to 𝜆𝐴 (the subscript 𝐴 denotes ‘‘after’’). In addition, we assume
that a larger preventive investment leads to a larger decrease in the
malfunctions’ arrival rate. In order to emphasize the dependence of 𝜆𝐴
on 𝑅, we use the notation 𝜆𝐴 (𝑅). We assume that 𝜆𝐴 (𝑅) satisfies the
following conditions.

Assumption 1. The function 𝜆𝐴 ∶ 𝑅+
0 → 𝑅+ is such that 𝜆𝐴 ∈ 𝐶∞ (

𝑅+
0
)

,
𝜆′𝐴 (𝑅) < 0, 𝜆′′𝐴 (𝑅) > 0, 𝜆𝐴 (0) = 𝜆𝐵 , and 𝜆′′′𝐴 (𝑅) ∕

(

𝜆′′𝐴 (𝑅)
)2 > −2∕𝜆′(𝑅).

The condition 𝜆′′′𝐴 (𝑅) ∕
(

𝜆′′𝐴 (𝑅)
)2 > −2∕𝜆′(𝑅) is hard to interpret,

but it holds for a very large class of functional forms. Examples here
are 𝜆 𝑅 = 1 and 𝜆 𝑅 = 𝑒−𝑎𝑅+𝑏.
𝐴 ( ) (𝑎+𝑏𝑅)𝑘 𝐴 ( )
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Finally, we let
{

𝑁𝐴
𝑡 , 𝑡 ≥ 0

}

denote the Poisson process with intensity
ate 𝜆𝐴, where we assume it to be independent of

{

𝑁𝐵
𝑡 , 𝑡 ≥ 0

}

, and both
Poisson processes are independent of

{

𝑊𝑡, 𝑡 ≥ 0
}

.
Considering the situation that the firm is already in the market,

we want to find (1) the optimal preventive investment time and (2)
the optimal preventive investment size. Hence, given that the current
revenue is 𝑥 and that 𝑛 malfunctions have already occurred, we arrive
at the following optimization problem:

𝑉𝛼 (𝑥, 𝑛) = sup
𝜏,𝑅≥0

𝐸𝑥,𝑛

⎡

⎢

⎢

⎣

∫

𝜏

0
𝑒−𝑟𝑡

⎛

⎜

⎜

⎝

𝑋𝑡

⎛

⎜

⎜

⎝

1 − (1 − 𝛼 + 𝜖)
𝑁𝐵

𝑡
∑

𝑖=1
𝑈𝑖

⎞

⎟

⎟

⎠

− 𝑐
⎞

⎟

⎟

⎠

𝑑𝑡

− 𝑒−𝑟𝜏𝑅 − 𝛼𝐾
𝑁𝐵

𝜏
∑

𝑖=1
𝑒−𝑟𝑇

𝐵
𝑖 𝑍𝑖

+ ∫

∞

𝜏
𝑒−𝑟𝑡

⎛

⎜

⎜

⎝

𝑋𝑡

⎛

⎜

⎜

⎝

1 − (1 − 𝛼 + 𝜖)
⎛

⎜

⎜

⎝

𝑁𝐵
𝜏

∑

𝑖=1
𝑈𝑖 +

𝑁𝐴
𝑡−𝜏+𝑁

𝐵
𝜏 +1

∑

𝑖=𝑁𝐵
𝜏 +1

𝑈𝑖

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

− 𝑐
⎞

⎟

⎟

⎠

𝑑𝑡

− 𝛼𝐾
∞
∑

𝑖=1
𝑒−𝑟

(

𝜏+𝑇𝐴
𝑖
)

𝑍𝑁𝐵
𝜏 +𝑖

]

= sup
𝜏,𝑅≥0

𝐽 (𝜏, 𝑥, 𝑛|𝛼) , (1)

here 𝐸𝑥,𝑛 is the conditional expectation, given that 𝑋0 = 𝑥 and
𝐵
0 = 𝑛.3 Moreover, we let 𝑈𝑖 = 𝑍𝑖

1+𝑍𝑖
. Furthermore, 𝑇 𝐵

𝑖 (resp., 𝑇𝐴
𝑖 )

enotes the time of the 𝑖th malfunction before (resp., after) the timing
f the preventive investment.

Based on the optimal preventive investment decision of the firm,
hich, according to (1), depends on the liability parameter 𝛼, the gov-

rnment, or the regulator, can determine which liability rule minimizes
he expected discounted total damage as a result of malfunctions. We
enote the corresponding level of 𝛼 by 𝛼∗. The insights regarding 𝛼∗ can
e useful for policy makers, regulators and legislators when developing
legal framework related to the liability rules for different industries
here malfunctions could eventually occur.

The regulator can determine 𝛼∗ by solving the following minimiza-
ion problem:

∗ (𝑥) = arg min
𝛼∈[0,1]

𝐸𝑥,0

⎡

⎢

⎢

⎣

𝑁𝐵
𝜏∗

∑

𝑖=1
𝑒−𝑟𝑇

𝐵
𝑖 𝑍𝑖 +

∞
∑

𝑖=1
𝑒−𝑟

(

𝜏∗+𝑇𝐴
𝑖
)

𝑍𝑁𝐵
𝜏∗+𝑖

⎤

⎥

⎥

⎦

, (2)

here 𝜏∗ denotes the time at which the firm undertakes the preventive
nvestment. Since a malfunction affects demand and thus revenue, the
ptimal value, 𝛼∗, depends on the firm’s current instantaneous revenue,
.

. Analytical results

The following proposition rewrites the optimal stopping problem
1), where the expected value of 𝑈𝑖 is denoted by 𝑢.

roposition 1. The optimal stopping problem (1) can be written as

𝛼 (𝑥, 𝑛) =
𝑥

𝑟 − 𝜇

(

1 − 𝑛 (1 − 𝛼 + 𝜖) 𝑢 −
(1 − 𝛼 + 𝜖) 𝑢𝜆𝐵

𝑟 − 𝜇

)

− 𝑐
𝑟

+ sup
𝜏,𝑅≥0

𝐸𝑥,𝑛

[

𝑒−𝑟𝜏𝑔𝛼
(

𝑋𝜏 ;𝑅
)

− 𝛼𝐾𝐸 [𝑍]
𝜆𝐵
𝑟

(

1 −
(

𝜆𝐵
𝑟 + 𝜆𝐵

)𝑁𝐵
𝜏
)]

,

(3)

here

𝛼 (𝑥;𝑅) =
(1 − 𝛼 + 𝜖) 𝑢𝑥

𝑟 − 𝜇

(

𝜆𝐵
𝑟 − 𝜇

−
𝜆𝐴 (𝑅)
𝑟 − 𝜇

)

− 𝑅 − 𝛼𝐾𝐸 [𝑍]
𝜆𝐴 (𝑅)

𝑟
.

3 Similarly, 𝐸𝑥 (resp., 𝐸𝑛) represents the conditional expectation, given that
= 𝑥 (resp., 𝑁𝐵 = 𝑛).
4

0 0
In order to find the optimal investment decision, one needs to
consider the function 𝑔𝛼

(

𝑋𝜏 ;𝑅
)

and the final term in 𝑉𝛼 (𝑥, 𝑛). The first
term in 𝑔𝛼 indicates the expected reduction in demand losses due to the
fact that the malfunction intensity rate decreases from 𝜆𝐵 to 𝜆𝐴 (𝑅) at
the moment of investment. The second term is the investment expense,
and the third term is the expected direct cost due to malfunctions after
having undertaken the preventive investment.

Hence, from Proposition 1 we obtain that finding the value function
(3), and obtaining the optimal investment decision of the firm, relies
on solving the optimization problem

𝑣𝛼 (𝑥, 𝑛)

= sup
𝜏,𝑅≥0

𝐸𝑥,𝑛

[

𝑒−𝑟𝜏𝑔𝛼
(

𝑋𝜏 ;𝑅
)

− 𝛼𝐾𝐸 [𝑍]
𝜆𝐵
𝑟

(

1 −
(

𝜆𝐵
𝑟 + 𝜆𝐵

)𝑁𝐵
𝜏
)]

.

(4)

We note that the function 𝑣𝛼 depends on 𝑛 because 𝑁𝐵
0 = 𝑛. However,

this dependency no longer exists when 𝛼 = 0. Then, in this situation
we will use the notation 𝑣0(𝑥). Another implication of 𝛼 = 0 is that all
hanges in the firm’s cash flow as a result of the preventive investment
re contained in 𝑔0(𝑥;𝑅). Therefore, 𝑔0(𝑥;𝑅) can be denoted as the net
resent value of the firm’s preventive investment.

Note that, depending on the value of 𝑥, the net present value,
0(𝑥;𝑅), can be negative for all values of 𝑅. In this case, the solution is
rivial, since the firm will not make a preventive investment. Otherwise,
he firm will invest the amount 𝑅∗, which in general, for 𝛼 ∈ [0, 1], is
iven by
∗
𝛼 (𝑥) = argmax

𝑅≥0
𝑔𝛼 (𝑥;𝑅) . (5)

ere, 𝑅∗
𝛼(𝑥) is the value of 𝑅 that maximizes the expected return of the

nvestment, given that the investment decision is undertaken when the
nstantaneous revenue is given by 𝑥. Proposition 2 presents the function
∗
𝛼(𝑥).

roposition 2. The optimal size of the preventive investment, 𝑅∗
𝛼 , when

he firm’s instantaneous revenue is equal to 𝑥, is given by

∗
𝛼 (𝑥) =

{

0, 𝑥 ∈
[

0, �̂�𝛼
]

(

𝜆′𝐴
)−1

(

− (𝑟−𝜇)2𝑟
𝑟(1−𝛼+𝜖)𝑢𝑥+(𝑟−𝜇)2𝛼𝐾𝐸(𝑍)

)

, 𝑥 ∈
[

�̂�𝛼 ,∞
] ,

where �̂�𝛼 = −
(

1 +
𝜆′𝐴(0)𝛼𝐾𝐸(𝑍)

𝑟

)

(𝑟−𝜇)2𝑟
(1−𝛼+𝜖)𝑢𝜆′𝐴(0)

.

Proposition 2 states that the revenue needs to be large enough for
a preventive investment to be optimal. This makes sense, because the
effect of a malfunction is that a fixed part of the demand, and thus
also revenue, will be lost, and this loss can only be large when demand
itself is large. The next proposition confirms this logic, i.e., given that
an investment takes place, its size is increasing with the firm’s revenue.

Proposition 3. For fixed 𝛼, the function 𝑅∗
𝛼 is increasing and concave in

𝑥, with

lim
𝑥→+∞

𝑅∗
𝛼 (𝑥) = +∞,

and it is increasing with 𝜇, and constant with 𝜎 and 𝑛. Moreover, 𝑅∗
𝛼

decreases in 𝛼 for values of 𝑥 larger than 𝐾𝐸[𝑍](𝑟−𝜇)2

𝑟𝜇 , and increases
otherwise.

From Proposition 3 we obtain that preventive investment increases
with the trend parameter 𝜇. A large preventive investment considerably
reduces the probability of malfunction occurrence. This is especially
worthwhile when 𝜇 is large, because the latter implies that revenue is
expected to be large in the long run, while a malfunction would result
in losing part of this revenue. On the other hand, Proposition 3 learns
that the size of the preventive investment is not influenced by the un-
certainty parameter 𝜎. This is at first sight surprising because we know

from the literature (Dangl, 1999) that more uncertainty results into
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a later and larger investment. The point here is that we consider the
preventive investment size for a given value of 𝑥. Would we also have
allowed for a change in the investment threshold, being the minimal
value of 𝑥 at which investing is optimal, then most likely we would
have obtained that an increase of 𝜎 would have resulted in a larger
investment threshold, and since 𝑅∗

𝛼 is increasing in 𝑥 (Proposition 3), a
larger investment size.

If the value of the liability share 𝛼 is larger, the firm has to incur
a larger part of the direct costs upon malfunction occurrence. On the
other hand, since the consumer will then be held less liable, the long
term demand effect will be smaller. In this light it is understandable
that when direct costs are expected to be large, i.e. 𝐾E (𝑍) is large,
an increase of 𝛼 triggers the firm to increase its preventive investment
size. However, if the direct cost is expected to be small, it is the long
term demand effect that is more important for the firm. If 𝛼 increases,
the long term demand effect will be smaller, and this explains why the
preventive investment size is decreasing in 𝛼 when 𝐾E (𝑍) is small.

We finalize this section presenting an equivalent expression to the
inimization problem presented in (2).

roposition 4. Given that the current firm’s revenue is 𝑥 and 𝑛 mal-
functions have already occurred, the liability parameter 𝛼 that minimizes
the discounted total damage as a result of accidents is implicitly defined as
follows:

𝛼∗ = inf
𝛼∈(0,1)

{

𝜆𝐴
( 𝑥
𝑥∗

)𝛽+(𝑟)
− 𝜆𝐵

( 𝑥
𝑥∗

)𝛽+
( 𝑟𝜆𝐵
𝑟+𝜆𝐵

)}

, (6)

𝛼∗(𝑥, 𝑛) = arg min
𝛼∈(0,1)

{

𝜆𝐴(𝑅∗
𝛼(𝑥))E𝑥,𝑛

[

𝑒−𝑟𝜏
∗
]

− 𝜆𝐵E𝑥,𝑛

[

𝑒
−𝑟 𝜆𝐵

𝑟+𝜆𝐵
𝜏∗
]}

, (7)

where 𝜏∗ is the investment time, with 𝜆𝐴 and 𝜏∗ depending on 𝛼, 𝑥 and 𝑛,
and

𝛽+(𝜁 ) =
(𝜇 − 𝜎2∕2) +

√

(𝜇 − 𝜎2∕2)2 + 2𝜎2𝜁
𝜎2

.

4.1. Consumers are fully liable

Note that in between Propositions 1 and 2 we explained that the
optimization problem (4) becomes simpler in case 𝛼 = 0. This allows
us to obtain some additional analytical results for this scenario. Note
that consumers being fully liable would for sure apply to ordinary cars.
However, in the case of automated vehicles this is less clear: when an
automated vehicle is involved in an accident, why should the ‘‘driver’’
be fully blamed for something the car did itself?

In the special case of 𝛼 = 0, the optimization problem simplifies into

𝑉0 (𝑥, 𝑛) =
𝑥

𝑟 − 𝜇

(

1 − 𝑛 (1 + 𝜖) 𝑢 −
(1 + 𝜖) 𝑢𝜆𝐵

𝑟 − 𝜇

)

− 𝑐
𝑟
+ 𝑣0 (𝑥) , (8)

in which

𝑣0 (𝑥) = sup
𝜏,𝑅≥0

𝐸𝑥
[

𝑒−𝑟𝜏𝑔0
(

𝑋𝜏 ;𝑅
)]

,

nd

0 (𝑥;𝑅) =
(1 + 𝜖) 𝑢𝑥
𝑟 − 𝜇

(

𝜆𝐵
𝑟 − 𝜇

−
𝜆𝐴 (𝑅)
𝑟 − 𝜇

)

− 𝑅.

The following corollary to Proposition 2 specifies the optimal preven-
tive investment size.

Corollary 1. The optimal size of the preventive investment is given by

𝑅∗
0 (𝑥) =

{

0, 𝑥 ∈ [0, �̂�]
(

𝜆′𝐴
)−1

(

− (𝑟−𝜇)2

(1+𝜖)𝑢𝑥

)

, 𝑥 ∈ [�̂�,∞]
,

here �̂� = − (𝑟−𝜇)2 .
5

(1+𝜖)𝑢𝜆′𝐴(0)
From the next proposition it can be derived when it is optimal for
the firm to undertake the preventive investment. In this proposition 𝑥∗

s the investment threshold, meaning that it is optimal for the firm to
nvest when the firm’s instantaneous revenue is at least as large as 𝑥∗.
n case the initial instantaneous revenue level falls below the threshold,
he firm will invest in size 𝑅∗

0 (𝑥
∗) at the moment the process 𝑋𝑡 reaches

he level 𝑥∗ for the first time.

roposition 5. The value of the project is given by

0 (𝑥, 𝑛)

=

⎧

⎪

⎨

⎪

⎩

𝑥
𝑟−𝜇

(

1 − 𝑛 (1 + 𝜖) 𝑢 − (1+𝜖)𝑢𝜆𝐵
𝑟−𝜇

)

− 𝑐
𝑟 + 𝐴𝑥𝛽1 𝑥 < 𝑥∗

𝑥
𝑟−𝜇

(

1 − 𝑛 (1 + 𝜖) 𝑢 −
(1+𝜖)𝑢𝜆𝐴

(

𝑅∗
0 (𝑥)

)

𝑟−𝜇

)

− 𝑐
𝑟 − 𝑅∗

0 (𝑥) 𝑥 ≥ 𝑥∗
,

here 𝛽1 =
𝜎2
2 −𝜇+

√

(

𝜎2
2 −𝜇

)2
+2𝜎2𝑟

𝜎2
, and

𝐴 =
(

𝑥∗
)−𝛽1 𝑔0

(

𝑥∗;𝑅∗
0
(

𝑥∗
))

,

with 𝑥∗ being the value of the revenue that triggers the preventive investment,
implicitly given by

𝛽1𝑔0
(

𝑥∗;𝑅∗
0
(

𝑥∗
))

− 𝑔′0
(

𝑥∗;𝑅∗
0
(

𝑥∗
))

𝑥∗ = 0,

where it holds that 𝑥∗ > �̂�.

From Corollary 1 we get that the firm will not acquire any preven-
tive equipment as long as 𝑥 ≤ �̂�. It automatically follows that for a
meaningful investment to take place it should hold that 𝑥 > �̂�. This
explains why for the investment threshold we have that 𝑥∗ > �̂�.

5. Numerical results

In this section we provide a numerical illustration of the preventive
investment decision, regarding both the optimal investment threshold
and its size. We also present results concerning the dependence of the
firm’s investment decision on the liability rule. Lastly, we determine
the liability policy that minimizes the discounted stream of accidental
damages.

When choosing the values for model parameters, we base ourselves
on studies that analyze aviation accidents (Squalli and Saad, 2006;
Čokorilo et al., 2010; Akyildirim et al., 2021). As previously referred,
one application of our model is safety investments in airline industry.
The examples from Concorde and Boeing show that the financial and
human costs of aviation accidents are enormous, but fortunately such
accidents are rare. Furthermore, sometimes these accidents can be pre-
vented by undertaking proper investments. This motivates the design
of models and studies as in this paper.

One of the most important parameters in our model is the (average)
intensity of aviation accidents. Akyildirim et al. (2021) collect infor-
mation about aviation accidents between the period June 1, 1995 and
May 31, 2019, concluding that the number of accidents company-by-
company in their sample varied between 1 and 8 (Table 3 of Akyildirim
et al., 2021). In terms of Poisson intensity, this means a rate between
0,04–0,33(3). In order to satisfy Assumption 1 regarding the functional
form for the arrival rates of malfunctions, we assume

𝜆𝐴(𝑅) = 𝑒−𝑎−𝑏𝑅, 𝜆𝐵 = 𝑒−𝑎,

with 𝑎 = 2 and 𝑏 = 1, which means that 𝜆𝐵 is equal to 𝑒−2 = 0.1353,
which is in the range of suggested values. Moreover, setting 𝑏 = 1 means
that a preventive investment of size 1 has the effect that the number of
malfunctions occur once every 20 years on average, as 1

𝜆𝐴(1)
= 𝑒2+1 ≈ 20.

Among the studies that investigate the direct costs of aviation
accidents is according to Čokorilo et al. (2010) (see Section 7, in
particular Table 3). They find that the costs directly related with

aviation accidents (from minor to catastrofic) can vary between 0,04
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Fig. 1. Optimal investment threshold and optimal preventive investment size as functions of 𝛼 for different values of 𝐾𝑚. [Parameter values: 𝑋0 = 0.05, 𝑛 = 0, 𝑟 = 0.05, 𝜇 = 0.02,
= 0.2, 𝑎 = 2, 𝑢 = 0.2, and 𝜖 = 0.1].
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Table 1
Values of the parameters regarding the impact of aviation accidents.

Parameters Values Real/estimated
values

𝜆𝐵 𝑒−2 ≈ 0.1353 0.04–0.33

𝐾𝑚 0.5 0.12–0.65

Reputational
losses
𝑢(1 − 𝜖 − 𝛼)

𝑢 0.2
≈ 0.03𝜖 0.1

𝛼 𝛼

and 0,21 billion EUR, in 1999 prices, according to the severity of the
accident. Using an increasing rate of 5%, as suggested by the authors,
we obtain costs (in 2022 prices) between 0,12 and 0,65 billion EUR.
In order to focus on more severe accidents when liability issues are
particularly important, we choose 𝐾𝐸[𝑍𝑖] (hereby denoted by 𝐾𝑚) to
be equal to 0.5 billion EUR. Note that if the company is partially liable,
i.e. 𝛼 ∈ (0, 1), the expected direct cost equals 0.5𝛼, whereas there are
no direct costs in case 𝛼 = 0.

Čokorilo et al. (2010) suggest that the reputation costs of an avia-
ion accident can vary between 0 and 0.921457 billion EUR in 2022
rices (0–0.3 billion EUR, in 1999 prices). These values are also sup-
orted by Squalli and Saad (2006), that estimates the revenue losses
hen there are accidents with serious injuries around 0.3 billion EUR,

he maximum value presented by Čokorilo et al. (2010). According
o Squalli and Saad (2006), perceptions about accidents resulting in
erious injuries significantly decrease enplanement by 3 percent.

In our model, the reputation costs can be interpreted as the reduc-
ion in the revenue due to the accident. The revenue is reduced by
(1 − 𝜖 − 𝛼) × 100% every time we have an accident. Hence, fixing
𝑢 = 0.2, 𝜖 = 0.1, and 𝛼 = 0.75, we get the reduction of 3% estimated
in Squalli and Saad (2006).

In Table 1 we show the values that we define for these parameters
in the baseline case, and the range of values estimated by the above
mentioned works.

Finally, we fix the following values for the other parameters:

𝑟 = 0.05, 𝑐 = 0.01, 𝑋0 = 0.05, 𝑛 = 0, 𝜇 = 0.02, 𝜎 = 0.2

With the values for the baseline case fixed, in the remainder of the
section we study the impact of changes of one parameter at a time on
the optimal decisions.

We start by determining the liability rule that minimizes (expected)
damage from accidents. For that it is crucial to know how the firm’s
6

i

preventive investment decision depends on 𝛼. Fig. 1 shows the invest-
ment timing, represented by the threshold, and the investment size as
function of 𝛼, for different values of the direct accident cost 𝐾𝐸

(

𝑍𝑖
)

=
𝑚.

If 𝛼 = 0, consumers are fully liable and the firm faces no direct cost.
his explains why the threshold and the investment size are the same
or different values of 𝐾𝑚. In general it holds that the effect of 𝐾𝑚 on
he firm’s investment decision becomes bigger when 𝛼 increases.

Intuitively, an increase in 𝛼 has two consequences for the firm. A
arge 𝛼 implies that the effect of direct costs is important for the firm, as
t is liable to a considerable extent. At the same time, it means that the
ffect of demand reduction is small, as it also implies limited liability
or the consumers The opposite holds when 𝛼 is small. With this in
ind, consider first the small value of 𝐾𝑚, i.e. 𝐾𝑚 = 0.3. If 𝛼 increases,

his small direct cost starts playing a bigger role, while at the same time
he firm becomes less affected by the demand reduction. Thus, the firm
n general is less affected by the occurrence of an accident. Then it feels
ess need to protect itself against accident occurrence, implying that for
𝑚 = 0.3 the firm will invest later, the threshold increases, and less
hen 𝛼 goes up.

The opposite happens when the direct cost 𝐾𝑚 is large, i.e. when
𝑚 = 0.7. Then the firm is more eager to invest preventively when 𝛼

ncreases, translating in a decreasing investment threshold. The invest-
ent threshold keeps on decreasing until it reaches the initial value
0 = 0.05. Then the firm invests at the initial point in time, which

hus happens for 𝛼 ≥ 0.7. If the firm invests at a lower threshold,
t such a moment in time revenue is lower so then the fraction of
he revenue lost upon a malfunction due to demand reduction, is also
ower. This explains why the investment size also decreases with 𝛼,
ntil 𝛼 reaches the value 0.7. Then we are in the situation that the
irm invests immediately, and we see that from then on the investment
ize is increasing in 𝛼 while its liability increases until it becomes fully
iable, in order to protect the firm against the large direct cost it can
xpect.

For the intermediate direct cost level, 𝐾𝑚 = 0.38 or 𝐾𝑚 = 0.5, we
bserve a combination of the above two developments. The investment
hreshold first slightly increases with 𝛼, and then decreases until it is
ptimal to invest immediately at 𝑋0 = 0.05. The investment size is
ecreasing all along with 𝛼, either because the threshold is decreasing
s well, or because the direct cost is not large enough to let the
irm undertake a larger preventive investment when the firm’s liability
ncreases.

In general, from the perspective of damage minimization, it is
esirable that the firm undertakes the preventive investment early and
o let the firm invest a lot. It then follows, and Fig. 2 confirms it, that

n the case of a small direct cost level, 𝐾𝑚 = 0.3, it is optimal to have
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Fig. 2. Discounted total damage as a result of the accidents as a function of 𝛼 for
different values of 𝐾𝑚. [Parameter values: 𝑋0 = 0.05, 𝑛 = 0, 𝑟 = 0.05, 𝜎 = 0.2, 𝜇 = 0.02,
= 2, 𝑏 = 1, 𝑢 = 0.2, and 𝜖 = 0.1].

Fig. 3. Optimal liability rule a function of 𝐾𝑚. [Parameter values: 𝑋0 = 0.05, 𝑛 = 0,
𝑟 = 0.05, 𝜎 = 0.2, 𝜇 = 0.02, 𝑎 = 2, 𝑏 = 1, 𝑢 = 0.2, and 𝜖 = 0.1].

𝛼 = 0, or, in other words, to let the consumer be fully liable. In the
opposite case, thus when the direct cost is large, 𝐾𝑚 = 0.7, a fully
liable firm is optimally incentivized to preventively invest immediately,
and, as long as the firm invests immediately, the size of preventive
investment will increase in 𝛼. The latter makes it indeed optimal to
have 𝛼 equal to one in this case.

In the intermediate cases, total damage is minimized for the min-
imal value of 𝛼 such that the firm will invest immediately. This is
because, as long as the firm invests immediately, the firm’s investment
size is decreasing in 𝛼.

From Fig. 2, we can derive the following result.

Result 1. Three candidate optimal liability rules prevail: full liability for
the consumer, full liability for the firm, or choosing the minimal value of 𝛼
such that the firm will invest immediately.

The numerical analysis below, where we vary the value of a single
parameter while keeping the others constant to see how the firm’s
investment decision and the damage-minimizing liability rule changes,
confirms this result.

Fig. 3 shows then the optimal 𝛼, in the sense that this liability rule
leads to minimal expected total damage, as a function of the expected
7

direct cost 𝐾𝑚.
Indeed, as expected, the consumer should be fully liable when the
direct cost is small, whereas the firm should be fully liable when the
direct cost of damages for the firm is expected to be large. In the
intermediate case the optimal liability rule corresponds to the minimal
𝛼 under which the firm immediately invests. This 𝛼 is decreasing in 𝐾𝑚
because when the direct cost is expected to be larger, the firm is more
willing to invest immediately, resulting in a larger 𝛼-domain for which
this takes place.

In Fig. 4 we have the firm’s investment decision in terms of thresh-
old and size as a function of 𝐾𝑚. In this and subsequent figures, three
curves are shown: the investment decision when the consumer is fully
liable (𝛼 = 0, dashed curve), the firm is fully liable (𝛼 = 1, dotted
curve), and when the liability rule is the optimal one as in Fig. 3
(𝛼 = 𝛼∗, solid curve).

For 𝛼 = 0 the curves are horizontal, because in the case the
consumer is fully liable, the expected direct cost does not play a role.
They are incurred by the firm only when the firm is (partly) liable,
i.e. 𝛼 > 0.

In case the firm is fully liable, 𝛼 = 1, the firm is not so eager to invest
preventively when the expected direct cost from a malfunction is small.
Then, as Fig. 4a shows, the threshold triggering investment is (very)
large. When 𝐾𝑚 increases, at some point these direct costs get large
enough that the firm will invest immediately, and in a larger size as
Km increases further. This, i.e. investing preventively immediately in a
sufficiently large size, is attractive to limit the number of malfunctions,
so the optimal 𝛼∗ is equal to one for 𝐾𝑚 large enough.

On the other hand, for 𝐾𝑚 small it is better not to make the firm
liable at all, because it is not incentivized to carry out any preventive
investment in the short term. Then it is optimal to make the consumer
fully liable, i.e. the curves 𝛼 = 𝛼∗ and 𝛼 = 0 are similar there. For
intermediate values of 𝐾𝑚, both firm and consumer are partly liable.
This results in the firm investing immediately, but in a slightly larger
size than when the firm is fully liable. This is because, as we know from
Fig. 2, for intermediate values of 𝐾𝑚, the smallest 𝛼 for which the firm
invests immediately triggers the largest investment size, given that the
firm invests immediately. This leads to the following policy implication.

Result 2. To minimize the expected total malfunction damage it is sufficient
to let the firm be liable only when the expected direct cost from a malfunction
is large enough.

Figs. 5 and 6 depict the dependence of firm and regulator deci-
sions on 𝑏. The parameter 𝑏 measures the effectiveness of preventive
investment in reducing the malfunction probability.

Intuitively, if b is small the investment size needs to be large in
order to have an effect. A large investment is only profitable if it can
limit the probability of malfunction occurrence in a situation where
malfunction damage is large. Since a malfunction causes the loss of part
of the revenue, malfunction damage can only be large if the revenue,
𝑋, is large as well.

If 𝑏 is large, already a small investment is enough to substantially re-
duce the malfunction probability. This does not require a large revenue,
so such an investment could essentially be done immediately. A way to
accomplish this is to make the firm partially liable. Partially liability is
better than full liability, because, whereas in both cases the firm invests
immediately, in the case of partial liability the firm will invest more,
as Fig. 1b learns in the case of 𝐾𝑚 = 0.5. As 𝑏 increases even further,
the optimal solution in terms of damage minimization converges to the
case of full consumer liability. These observations lead to the following
result.

Result 3. When varying the level of preventive investment efficiency,
firms should be held less liable for the damages in two distinct cases. First,
when the efficiency of the preventive investment is very large, i.e. for the
well established products with known potential defects, for which the firms
can efficiently reduce the damages themselves. Second, when preventive
investment is, on the contrary, very inefficient, for example, when the

malfunction occurred due to new unsolved problems.
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Fig. 4. Optimal investment thresholds and optimal preventive investment size as functions of 𝐾𝑚. [Parameter values: 𝑋0 = 0.05, 𝑛 = 0, 𝑟 = 0.05, 𝜎 = 0.2, 𝜇 = 0.02, 𝑎 = 2, 𝑏 = 1,
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Fig. 5. Optimal liability rule a function of 𝑏. [Parameter values: 𝑋0 = 0.05, 𝑛 = 0,
= 0.05, 𝜎 = 0.2, 𝜇 = 0.02, 𝑎 = 2, 𝑢 = 0.2, 𝐾𝑚 = 0.5, and 𝜖 = 0.1].

Next we vary the parameter 𝜖, covering the non-liability related
emand reduction due to a malfunction. If 𝜖 becomes larger, a mal-
unction’s effect on demand is more disastrous, so either an earlier or a
arger preventive investment is needed. Figs. 7 and 8 present the results
n this case.

If the consumer is fully liable, the investment threshold decreases
ith 𝜖, keeping the investment size fixed. If the firm is fully liable, the

irm invests immediately, where the size increases with 𝜖. We see that to
educe total expected damage, the best thing is to invest immediately,
here, as we have seen before, partial liability dominates full firm

iability since it will give a larger investment size. When 𝜖 goes up,
larger 𝛼−domain results in immediate investment, and therefore it

s possible to have immediate investment for a lower value of 𝛼. The
olicy implications here can be summarized in the following result.

esult 4. For markets where demand is very sensitive to the occurrence
f accidents (for example, when there exists a large number of competitors
roducing a similar product and it is easy for the consumers to switch), the li-
bility rule should favor the firm. This is because the economic consequences
f malfunctions hurt the firm already enough to incentivize preventive
nvestment without needing any additional legal repercussions.

The influence of the revenue uncertainty parameter 𝜎 is analyzed
n Figs. 9 and 10. The polar cases of 𝛼 are clear. If the firm is fully
8

iable, 𝛼 = 1, a malfunction mainly causes some direct cost the firm n
eeds to incur, being independent of revenue uncertainty. Therefore, in
his case the firm’s preventive investment decision is independent from
, as Fig. 10 confirms. Then an immediate investment in a relatively
mall size occurs. If the consumer is fully liable, a malfunction results
n a considerable reduction of revenue, which depends a lot on the
ncertainty parameter 𝜎. We know from the literature (Dangl, 1999;
uisman and Kort, 2015) that the firm invests later and more in a more
ncertain economic environment, and this is what also happens here.

As can be seen in Fig. 9, in order to minimize the expected total
amage, under high uncertainty the regulator put full liability on
he consumer. This is because such a situation triggers a late and
arge preventive investment, which is preferable when 𝜎 is large. This
xplains that 𝛼 = 0 when 𝜎 is large. In the complementary case im-
ediate investment is preferred where partial liability gives the largest

nvestment size. As 𝜎 goes up, there is more incentive to invest later.
his implies that a larger 𝛼 is needed, i.e. a firm should be more liable
o let it invest immediately. Thus, in addition to the classical conclusion
hat firms invest later and more in a more uncertain environment, we
lso obtain a new result.

esult 5. From the point of view of minimizing total malfunction damage,
t holds that in highly volatile markets firms should not be held liable for the
amage, as this will substantially reduce the preventive investment amount.

. Summary of the main results

The characterization of the optimal preventive investment depends
n what is the dominant effect when a malfunction occurs: the direct
ost or the long term reduction in demand. The first effect is a one-time
ffect and deterministic while the latter effect repeats itself over time
nd is stochastic because it depends on future demand realizations. We
ind that if the direct-cost effect is dominant, the firm will undertake an
mmediate but relatively small investment.4 If the long-term-reduction-
n-demand effect prevails, it is optimal to undertake a large preventive
nvestment at a (possibly) later point in time. The investment is large
ecause the effect is repetitive and it is possibly delayed because it only
ays off to undertake such a large investment when the demand level
s large enough.

In determining the liability rule that minimizes malfunction dam-
ge, one should realize that the regulator can influence the relative
ominance of the two just-mentioned effects. The direct-cost effect will

4 Of course, this holds under the condition that the direct accident cost is
ot too large.
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Fig. 6. Optimal investment thresholds and optimal preventive investment size as functions of 𝑏. [Parameter values: 𝑋0 = 0.05, 𝑛 = 0, 𝑟 = 0.05, 𝜎 = 0.2, 𝜇 = 0.02, 𝑎 = 2, 𝑢 = 0.2,
𝑚 = 0.5, and 𝜖 = 0.1].
Fig. 7. Optimal liability rule a function of 𝜖. [Parameter values: 𝑋0 = 0.05, 𝑛 = 0,
= 0.05, 𝜎 = 0.2, 𝜇 = 0.02, 𝑎 = 2, 𝑏 = 1, 𝑢 = 0.2, and 𝐾𝑚 = 0.5].

e dominant if the firm is liable. Demand effects depend on consumer
ehavior, so making consumers liable for the accidents will enhance
he long-term-reduction-in-demand effect. Our results show that, if the
olution of the malfunction-damage-minimization problem requires a
arge investment, albeit at the (possible) expense of a late undertaking,
t is optimal for the regulator to let the consumer be liable. On the
ther hand, if an immediate investment action is required, let the firm
e liable, either fully liable or at least to the extent required to let the
irm invest immediately. Concerning the latter, letting the firm be fully
iable is optimal in case of a large direct-cost effect, but if the direct-cost
ffect is of intermediate size then choose a firm liability level being just
ufficient to trigger an immediate preventive investment.

Another interesting finding is the impact of demand uncertainty
n the damage-minimizing liability rule. We know from the literature
for example Dangl, 1999 or Huisman and Kort, 2015) that in an
ncertain economic environment it is optimal to undertake a late and
arge investment. Therefore, if demand is very uncertain, the regulator
ecides to let the consumer be liable, because then the firm will invest
ate and a lot. In case of (almost) no uncertainty, the regulator likes
o have an immediate investment and also the firm does not have
ncentives delay investment. Therefore, the regulator can let the firm
nvest immediately, even if it puts a considerable liability weight on
he side of the consumer. Provided that the direct cost is not too large,
he latter is preferable because consumer liability raises the preventive
9

investment size as explained above. If from there on, uncertainty grad-
ually increases, the firm’s incentive to delay the preventive investment
becomes larger. So, an immediate investment then requires that the
regulator should gradually reduce the liability of the consumer.

7. Conclusion

In this paper, we study the option to undertake a preventive in-
vestment by a firm that aims to reduce the frequency of its product’s
malfunctions. In particular, we consider an active firm selling prod-
ucts on the market, while facing demand uncertainty. The negative
implication of product malfunctions is twofold. First, the firm faces
some direct costs, related to, e.g., paying legal fees, fines, additional
insurance costs. Second, malfunction occurrence makes the product less
attractive, resulting in a reduction of product demand now and in the
future.

In the current setting, the firm is already in the market, and hence
the option that we are addressing concerns solely the investment in
a preventive center. An interesting extension of this problem would be
considering that the firm has yet to enter the market. This would lead to
a sequential investment problem. First, the firm has to enter the market
and to do so it has to invest first in production capacity. Second, it has
the option to undertake the preventive investment, which can be done
either at the moment of market entry or at a later point in time. Then
besides considering future damage when designing the liability rule, the
effect of this rule on market entry should also be taken into account.
This would require our current framework to be extended to a welfare
maximization problem that the regulator should solve.

Data availability

No data was used for the research described in the article.

Appendix

Proof of Proposition 1. We start by noticing that
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⎜
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⎟
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(1 − 𝛼 + 𝜖)𝑢(𝑛 + 𝜆𝐵)

)

. (9)
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Fig. 9. Optimal liability rule a function of 𝜎. [Parameter values: 𝑋0 = 0.05, 𝑛 = 0,
= 0.05, 𝜇 = 0.02, 𝑎 = 2, 𝑢 = 0.2, 𝐾𝑚 = 0.5, and 𝜖 = 0.1].

oreover, taking into account that 𝑇 𝐵
𝑖 (resp., 𝑇𝐴

𝑖 ) is distributed accord-
ing to an Erlang distribution with parameters 𝑖 and 𝜆𝐵 (resp., 𝜆𝐴), and
𝑁𝐵

𝜏 is Poisson distributed, with parameter 𝜆𝐵𝜏, given 𝜏
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⎢
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[
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e−𝑟(𝜏+𝑇

𝐴
𝑖 )𝑍𝑖

]

= 𝛼E[𝑍]
𝜆𝐴(𝑅)

𝑟
E𝑥[e−𝑟𝜏 ]. (11)

hus, in light of the previous calculations, we can obtain (3).

roof of Proposition 2. Since the function 𝑔𝛼 is smooth, one may start
y finding the critical points of 𝑔𝛼 . Indeed, it is a matter of calculations
o see that
𝜕𝑔𝛼
𝜕𝑅

= 0 ⇔ 𝜆′𝐴(𝑅) = −
(𝑟 − 𝜇)2𝑟

𝑟(1 − 𝛼 + 𝜖)𝑢𝑥 + (𝑟 − 𝜇)2𝛼𝐾𝐸(𝑍)
. (12)

We note that 𝜆′𝐴 is continuous, negative and strictly increasing, which
mplies that lim𝑥→+∞ 𝜆′𝐴(𝑥) = 𝑎, with 𝑎 ∈ R−

0 . Since the function
𝜆𝐴 is decreasing and positive, then lim𝑥→+∞ 𝜆𝐴(𝑥) = 𝑏 with 𝑏 ∈
R+
0 . Thus, 𝑎 = 0, because, otherwise, lim𝑥→+∞

𝜆𝐴(𝑥)
𝑎𝑥 = 1, which is

contradiction. Consequently, the previous equation has no solution
hen 𝑥 ∈]0, �̂�𝛼], with �̂�𝛼 = −

(

1 +
𝜆′𝐴(0)𝛼𝐾𝐸(𝑍)

)

(𝑟−𝜇)2
′ and has a
10

𝑟 (1−𝛼𝐴+𝜖)𝑢𝜆𝐴(0)
unique solution when 𝑥 ∈]�̂�𝛼 ,+∞[. Therefore, noticing that

𝜕2𝑔𝛼
𝜕𝑅2

= −𝑟(1 − 𝛼 + 𝜖)𝑢𝑥 + (𝑟 − 𝜇)2𝛼𝐾𝐸(𝑍)𝜆′𝐴(𝑅) < 0, (13)

he optimal 𝑅 is defined as in Proposition 2.

roof of Proposition 3. For 𝑥 < �̂� the function 𝑅∗
𝛼 is constant and

qual to 0, therefore we focus our analysis on the case 𝑥 ≥ �̂�. Since
∗
𝛼(𝑥) satisfies Eq. (12), then we can use implicit differentiation to get

𝑅∗
𝛼)

′(𝑥) =
(𝑟 − 𝜇)2𝑟2(1 − 𝛼 + 𝜖)𝑢
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which proves that 𝑅∗
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(𝑟−𝜇)2 and 𝐵 = 𝛼𝐾𝐸(𝑍)

𝑟 .
Regarding the concavity of the function 𝑅∗

𝛼 , we note that
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Taking into account the definition of 𝑅∗
𝛼 one can see that

(𝑅∗
𝛼)

′′(𝑥) = − 𝐴2
⎛

⎜

⎜

⎝

2
(𝐴𝑥 + 𝐵)3

(

𝜆′′𝐴(𝑅
∗
𝛼(𝑥))

) +
𝜆′′′𝐴 (𝑅∗

𝛼(𝑥))

(𝐴𝑥 + 𝐵)4
(

𝜆′′𝐴(𝑅
∗
𝛼(𝑥))

)3

⎞

⎟

⎟

⎠

(14)

= −𝐴2

(𝐴𝑥 + 𝐵)3
(

𝜆′′𝐴(𝑅
∗
𝛼(𝑥))

)

⎛

⎜

⎜

⎝

2 +
𝜆′′′𝐴 (𝑅∗

𝛼(𝑥))

(𝐴𝑥 + 𝐵)
(

𝜆′′𝐴(𝑅
∗
𝛼(𝑥))

)2

⎞

⎟

⎟

⎠

(15)

aking into account Assumption 1, we have that
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nd, consequently, 𝑅∗
𝛼 is concave.

To prove that 𝑅∗
𝛼(𝑥) → +∞ as 𝑥 → +∞, one can verify that Eq. (12)

s true for every 𝑥 > �̂�𝛼 . Therefore,

lim
𝑥→+∞

(𝐴𝑥 + 𝐵)𝜆′𝐴(𝑅
∗
𝛼(𝑥)) = −1. (16)

aking into account that 𝜆′𝐴(𝑥) → 0 as 𝑥 → +∞, we have that

lim
𝑥→+∞

(1 − 𝛼 + 𝜖)𝑢𝑥
(𝑟 − 𝜇)2
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∗
𝛼(𝑥)) = −1. (17)

Therefore, Eq. (17) may be true only in case lim𝑥→+∞ 𝑅∗
𝛼(𝑥) = +∞.

Regarding the behavior of 𝑅∗
𝛼 as a function of 𝛼: let 𝑤(𝛼) =

− (𝑟−𝜇)2𝑟 , which is monotone function in 𝛼, increasing

𝑟(1−𝛼+𝜖)𝑢𝑥+(𝑟−𝜇)2𝛼𝐾𝐸(𝑍)
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Therefore, for 𝑥 > 𝐾𝐸[𝑍](𝑟−𝜇)2
𝑟𝑢 , 𝑅∗ decreases with 𝛼, and increases

therwise. Finally, one can easily see that the function 𝑅∗
𝛼 does not

epend on 𝜎 and 𝑛. Regarding 𝜇, we can use the relationship (12) to
ompute that
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Taking into account the restriction in the parameters we have, the result
follows immediately.

Proof of Proposition 4. Combining the computations in the proof of
Proposition 1 and the fact that

E

[

(

𝜆𝐵
𝜆𝐵 + 𝑟

)𝑁𝐵
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]

= E

[
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= E
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𝑒
− 𝜆𝐵𝜏∗𝑟

𝑟+𝜆𝐵

]

, (18)

the result follows immediately.

Proof of Proposition 5. We start by proving that equation 0 =
𝛽1𝑔0(𝑥;𝑅∗(𝑥)) − 𝑔′0(𝑥;𝑅

∗(𝑥))𝑥 ≡ ℎ(𝑥) has a unique solution 𝑥∗ > �̂�. To
do this, we notice that

𝑔′0(𝑥;𝑅
∗(𝑥)) =

(1 + 𝜖)𝑢𝜆𝐵
(𝑟 − 𝜇)2

−
(1 + 𝜖)𝑢𝜆𝐴(𝑅∗(𝑥))

(𝑟 − 𝜇)2
, (19)

and, consequently, lim𝑥→+∞ 𝑔′0(𝑥;𝑅
∗(𝑥)) = (1+𝜖)𝑢

(𝑟−𝜇)2 (𝜆𝐵 − 𝜆∞), where 𝜆∞ =
lim𝑥→+∞ 𝜆𝐴(𝑥). This implies that

lim
𝑥→+∞

(

𝛽1𝑔0(𝑥;𝑅∗(𝑥)) − 𝑥𝑔′0(𝑥;𝑅
∗(𝑥))

𝑥

)

= (𝛽1 − 1)
(1 + 𝜖)𝑢
(𝑟 − 𝜇)2

(𝜆𝐵 − 𝜆∞) > 0.

Therefore, lim𝑥→+∞ ℎ(𝑥) = +∞. Additionally, one can notice that the
function ℎ can be written as

ℎ(𝑥) = (𝛽1 − 1)
(1 + 𝜖)𝑢𝑥
(𝑟 − 𝜇)2

(

𝜆𝐵 − 𝜆𝐴(𝑅∗(𝑥))
)

− 𝛽1(𝑅∗)′(𝑥),

which implies that ℎ(�̂�) = 0. Additionally,

ℎ′(𝑥) = (𝛽1 − 1)
(1 + 𝜖)𝑢
(𝑟 − 𝜇)2

(

𝜆𝐵 − 𝜆𝐴(𝑅∗(𝑥))
)

− (𝑅∗)′(𝑥),

and ℎ′(�̂�) = −(𝑅∗)′(�̂�) < 0. Therefore, the result follows if ℎ′′(𝑥) > 0,
∗ ∗
11

because in this case ℎ(𝑥) < 0 for 𝑥 ∈]�̂�, 𝑥 [ and ℎ(𝑥) > 0 for 𝑥 ∈]𝑥 ,+∞[.
In fact,

ℎ′′(𝑥) = −(𝛽1 − 1)
(1 + 𝜖)𝑢
(𝑟 − 𝜇)2

𝜆′𝐴(𝑅
∗(𝑥))(𝑅∗)′(𝑥) − (𝑅∗)′′(𝑥) > 0.

To prove that 𝑉0 satisfies the HJB equation, we need to check that

𝑟𝑔0(𝑥;𝑅∗(𝑥)) − 𝜇𝑥𝑔′0(𝑥;𝑅
∗(𝑥)) − 𝜎2

2
𝑥2𝑔′′0 (𝑥;𝑅

∗(𝑥)) ≥ 0, for 𝑥 > 𝑥∗ (20)

𝐴𝑥𝛽1 − 𝑔0(𝑥;𝑅∗(𝑥)) ≥ 0, for 𝑥 < 𝑥∗. (21)

o verify (20), we notice that

𝑔0(𝑥;𝑅∗(𝑥)) − 𝜇𝑥𝑔′0(𝑥;𝑅
∗(𝑥)) − 𝜎2

2
𝑥2𝑔′′0 (𝑥;𝑅

∗(𝑥))

= (𝑟 − 𝜇)
(1 + 𝜖)𝑥𝑢
(𝑟 − 𝜇)2

(𝜆𝐵 − 𝜆𝐴(𝑅∗(𝑥)))

− 𝑟𝑅∗(𝑥) − 𝜎2

2
𝑥(𝑅∗)′(𝑥).

Taking into account that

𝑟 = −𝜎2

2
𝛽1𝛽2 and 𝜇 = 𝜎2

2
(1 − 𝛽1 − 𝛽2), (22)

where 𝛽2 =

(

𝜎2
2 −𝜇

)

−

√

(

𝜎2
2 −𝜇

)2
+2𝜎2𝑟

𝜎2
, one can check that (20) is equiva-

lent to

− (𝛽1 − 1)(𝛽2 − 1)
𝑥(1 + 𝜖)𝑢
(𝑟 − 𝜇)2

(𝜆𝐵 − 𝜆𝐴(𝑅∗(𝑥))) + 𝛽1𝛽2𝑅
∗(𝑥) − 𝑥(𝑅∗)′(𝑥) ≥ 0

− 𝛽2ℎ(𝑥) + 𝑥ℎ′(𝑥) ≥ 0,

here, in light of the arguments used to prove the uniqueness of
olution to the equation ℎ(𝑥) = 0, it follows that the previous inequality
s true for values 𝑥 > 𝑥∗.

To prove the inequality (21) one may notice that, for 0 < 𝑥 ≤ �̂�, we
ave 𝑔0(𝑥;𝑅∗(𝑥)) = 0, and, consequently,

𝑥𝛽1 − 𝑔0(𝑥;𝑅∗(𝑥)) = (𝑥∗)−𝛽1𝑔0(𝑥∗;𝑅∗(𝑥∗))𝑥𝛽1 > 0,

ecause 𝑔′0 is increasing, as one may check in Eq. (19), and 𝑔0(�̂�;𝑅∗(�̂�))
0. For �̂� < 𝑥 ≤ 𝑥∗, we have that

𝑥𝛽1 − 𝑔0(𝑥;𝑅∗(𝑥)) = 𝑥𝛽1
(

(𝑥∗)−𝛽1𝑔0(𝑥∗;𝑅∗(𝑥∗)) − 𝑥−𝛽1𝑔0(𝑥;𝑅∗(𝑥))
)

.

aking into account that

�̂�𝛽1 − 𝑔0(�̂�;𝑅∗(�̂�)) > 0, 𝐴(𝑥∗)𝛽1 − 𝑔0(𝑥∗;𝑅∗(𝑥∗)) = 0 and
(

(𝑥∗)−𝛽1𝑔0(𝑥∗;𝑅∗(𝑥∗)) − 𝑥−𝛽1𝑔0(𝑥;𝑅∗(𝑥))
)′ = 𝑥−𝛽1−1ℎ(𝑥) < 0

inequality (21) is proved.
To finalize the proof, we highlight that 𝑉0(⋅, 𝑛) ∈ 𝐶2(]0,+∞[⧵{𝑥∗})

and 𝑉0(⋅, 𝑛) is 𝐶1 at the point 𝑥∗, because the parameter 𝐴 and the
∗
threshold 𝑥 satisfy the system of equations.
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