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Abstract
Hydropower producers need to plan several months or years ahead to estimate the 
opportunity value of water stored in their reservoirs. The resulting large-scale opti-
mization problem is computationally intensive, and model simplifications are often 
needed to allow for efficient solving. Alternatively, one can look for near-optimal 
policies using heuristics that can tackle non-convexities in the production function 
and a wide range of modelling approaches for the price- and inflow dynamics. We 
undertake an extensive numerical comparison between the state-of-the-art algorithm 
stochastic dual dynamic programming (SDDP) and rolling forecast-based algo-
rithms, including a novel algorithm that we develop in this paper. We name it Sce-
nario-based Two-stage ReOptimization abbreviated as STRO. The numerical experi-
ments are based on convex stochastic dynamic programs with discretized exogenous 
state space, which makes the SDDP algorithm applicable for comparisons. We dem-
onstrate that our algorithm can handle inflow risk better than traditional forecast-
based algorithms, by reducing the optimality gap from 2.5 to 1.3% compared to the 
SDDP bound.

Keywords  Stochastic programming · Stochastic policy · Hydropower reservoir 
management

1  Introduction

Sequential decision-making in the presence of uncertainty is of relevance in many 
diverse applications, including inventory control problems, production scheduling, 
and system modelling [3]. Typically, the goal is to minimize cost or maximize prof-
its by dynamically adapting decisions to exogenous information. These problems are 
often computationally intractable because of exponential growth in the number of 
scenarios needed to evaluate future expected costs or profits. Therefore, approximate 
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dynamic programming (ADP) algorithms are often used to obtain near-optimal poli-
cies [26].

In some applications, one can utilize the problem structure in developing com-
putationally tractable algorithms, such as decomposition-based algorithms [18, 33]. 
The stochastic dual dynamic programming algorithm (SDDP), is an example [23]. 
This algorithm is state of the art for solving the seasonal hydropower production 
planning problem [12, 31]. The algorithm requires the problem formulation to be 
convex and uncertainty to be stage-wise independent [24]. Therefore, certain aspects 
of the real problem need to be approximated, to adhere to the convexity requirement. 
To handle non-convexities, some recent papers have proposed to extend the algo-
rithm [11, 17], or to approximate the problem using McCormick envelopes [6]. To 
adhere to the requirement of stage-wise independence, serial correlation is typically 
accounted for by either imposing a linear dependence structure and increasing the 
state vector, or discretizing the state space before applying the algorithm [20]. The 
first approach greatly restricts the dynamics of exogenous factors, while the latter 
approach induces a discretization error.

An alternative class of algorithms that often provide good policies is forecast-
based reoptimization heuristics, e.g. the rolling intrinsic (RI) heuristic [5]. The heu-
ristic repeatedly solve deterministic problems based on the expectation of exogenous 
factors. When averaging revenues from sufficiently many sample paths, it provides 
a feasible policy and an estimated lower bound on maximization problems. Reop-
timization heuristics are widely used by practitioners in various fields. In gas stor-
age management, numerical experiments indicate that the rolling intrinsic algorithm 
provides near-optimal policies for price- and storage-dependent injections and with-
drawals [19, 35]. Despite the ability to handle complex relationships, few works 
have assessed the performance of reoptimization-based heuristics in hydropower 
scheduling. An exception, albeit for short-term operations, is [21].

In this work, our main contributions are to provide an extensive comparison of 
the rolling intrinsic algorithm, the state-of-the-art algorithm SDDP, and a novel, 
heuristic-based, algorithm that does not impose any restrictions on the modelling of 
exogenous factors. We call this algorithm Scenario-based Two-stage ReOptimiza-
ton (STRO). The main innovative aspect is that there is inherent stochasticity in the 
algorithm, and that there is no requirement that the policy yielded by the algorithm 
is deterministic. Still, the algorithm provides an estimate of the lower bound on the 
optimal value, from which marginal water values can be derived.

STRO samples possible future outcomes and solves two-stage programs repeat-
edly to make decisions. The idea is that this will better capture the range of possible 
realizations of exogenous factors, compared to the rolling intrinsic heuristic which 
uses a deterministic forecast based on expectations. Capturing the range of possible 
realizations is crucial in applications where all risk factors cannot be hedged, e.g. a 
hydropower producer which may risk spillage. In the setting of hydropower schedul-
ing using SDDP, our algorithm allows for a more realistic representation of inflow 
dynamics, e.g. by using dynamic artificial neural networks [32], as no restrictions 
are imposed on the modelling of the exogenous factors.

Decision-making under uncertainty is also highly relevant in power system analyses 
[27, 34]. Our method is similar to the approach in [15, 16], where two-stage problems 
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are sequentially reoptimized along historical values of uncertain variables. We extend 
this method in several ways. First, we suggest to estimate the value function without 
requiring a deterministic policy. By doing so, we can sample a small subset of sce-
narios from which the two-stage problem is based on, and as such, control the degree 
of computational complexity. This makes our method capable of solving non-convex 
problems as well, as opposed to [15, 16], which is limited to the linear problems. Sec-
ond, contrary to [15, 16], we evaluate the performance against the state-of-the-art algo-
rithm SDDP, which is known to be optimal under certain restrictions. This gives us an 
upper bound on the profit maximization problem, which allows us to analyse different 
configurations of our suggested approach and provide useful insights about the repre-
sentation of uncertainty in hydropower scheduling.

Another benefit of STRO is the opportunity for highly scalable parallel processing. 
Because scenarios are generated independently, their respective policies can be com-
puted individually. The use of parallelization allows for a drastic reduction in the pro-
cessing time required. As seen in previous works, traditional parallelization schemes 
do not scale to the same extent for SDDP [1, 14]. We provide an extensive numerical 
comparison of optimality gaps and computation time of the proposed algorithm, the 
state-of-the-art algorithm SDDP, and the rolling intrinsic algorithm.

The most important findings are that both the RI and STRO methods achieve rev-
enues that are less than 3% from the estimate of the upper bound on optimal revenue 
based on several trial runs of the SDDP algorithm. Furthermore, by increasing the 
number of samples per decision for the STRO method, the performance of the algo-
rithm increases substantially. When using 2 or more samples per decision, STRO out-
performs RI by a decent margin and achieves revenues less than 2% from the estimated 
upper bound. The benefit of increasing the number of samples for the STRO heuristic 
is largest when moving from 1 to 2 samples, and the benefit from increasing the num-
ber of samples further was found to diminish quickly.

The paper is structured as follows. First, a detailed mathematical formulation of 
the problem is given, along with an in-depth problem description, in Sect. 2. Then the 
novel heuristic is presented in Sect. 3. We then give an illustrative example of how this 
heuristic works in Sect. 4. In Sect. 5 we give an overview of the specific case the algo-
rithms were tested on, as well as the software and hardware used. Finally, the results of 
our experiments are outlined in Sect. 6 before we give our final remarks in Sect. 7.

2 � Mathematical formulation

In this section, we provide a problem description and describe the stochastic processes 
and a mathematical model for the seasonal hydropower planning problem.

2.1 � Problem description

We consider the medium-term reservoir management problem, where the objec-
tive is to value-maximize production over 1–2 years. The production decisions 
for medium-term reservoir management are typically of a weekly granularity. 
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Modern hydropower plants commonly consist of multiple interconnected reser-
voirs, that allow for coordinated water release that maximizes profit for the sys-
tem as a whole. The state of the system at a given time is given by the amount of 
water that is stored in the different reservoirs. Furthermore, as regulations can put 
constraints on the water stored on a seasonal basis, these constraints can vary for 
different times t.

Several simplifications and assumptions are often made when modelling the res-
ervoir management problem. This includes ignoring operating costs, as these vari-
able costs are usually negligible compared to the revenue. This makes the problem 
a revenue-maximizing one. Another common simplification is to make the energy 
coefficient constant, to keep the problem convex. This coefficient is the factor that 
gives how much energy a production facility can get from a single unit of water. 
In reality, this factor is dependent on the head (the height difference between the 
turbine and the variable water level), as well as the intensity of the flow through the 
turbine. The head can vary substantially with the amount of water in the reservoir. In 
the sample system, the variations represented between 4.0% and 6.5% of the overall 
head for the different reservoirs, but these variations can be substantially higher or 
lower depending on the system. Since potential energy increases linearly with the 
head, this incentivizes producers to keep their reservoir levels high, thereby generat-
ing more electricity per unit of water. This poses an interesting dynamic, as the risk 
of spillage increases with higher water levels. To capture this dynamic, head varia-
tions are implemented in the model with a variable energy coefficient. This leads to 
bi-linearity which is accounted for using McCormick envelopes, similarly to [6].

2.2 � Marginal water values

The main goal of the medium-term reservoir management problem is to estimate 
marginal water values. These values naturally depend on the amount of water in 
the system. To illustrate this, one can compare the additional value of an extra 
unit of water in a full reservoir and an empty reservoir. In the case of a full res-
ervoir, one would have to discharge the unit immediately, independently of price, 
to avoid spillage. If the full reservoir is already producing at full capacity, the 
additional unit would naturally be spilled, and the marginal value would be 0. For 
the other extreme case where the reservoir is empty, the marginal value would be 
much higher as the producer could wait until the prices are high to discharge the 
unit, without having to worry about spillage. In practice, that means that the mar-
ginal value of water decreases, as the water level in the reservoir increases.

The marginal water value represents the current alternative cost of discharging 
a unit and is therefore used to make short-term production decisions. The way 
the medium-term reservoir management problem relates to this is that one can 
calculate the expected discounted revenue over a 1–2 year horizon starting with 
different water levels. If one plots the expected revenue against the starting water 
level, the slope of the curve would represent the current marginal water value for 
different water levels.
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2.3 � Nomenclature

Before formally defining the optimization model, we provide the notation used 
in the following section. Some of the notation is only used for the additional 
constraints seen in the appendix.

Sets and indices  

R Reservoirs, indexed by i and j
RP Reservoirs with electricity production
RDis
i

Upstream reservoirs releasing water into reservoir i

R
Spill

i
Upstream reservoirs spilling water into reservoir i

Mi Set of points on the piecewise linear curve representing the relation between 
head and water level for reservoir with electricity production i, indexed by k

Π Set of feasible policies
S Set of level 1 scenarios, indexed by s
N Set of level 2 scenarios, indexed by n
Tt Set of stages from stage t to and including the end of the horizon, indexed by �

Decision variables  

xi,t Discharge from reservoir i in period t (m3)
ri,t Slack variable for water spillage from reservoir i in period t (m3)
li,t Water level in reservoir i at the beginning of time period t (m3)
l
avg

i,t
Average water level in reservoir i through time period t (m3)

hi,t Water head of reservoir i in period t (m)
wi,t Substitution variable for the bi-linear term hi,txi,t (m)
�i,t,k Weight of point k on the piece-wise linear graph describing the relation 

between water level and head in reservoir i at time t

Parameters  

T Stages (time periods) in planning horizon
S Number of level 1 (outer) scenarios
N Number of level 2 (inner) scenarios
� Discount factor
�i Constant factor describing the efficiency of the turbine of reservoir 

i
(MWh/m3)

g Gravitational acceleration constant (m/s2)
� Density of water (Kg/m3)
Pt Power price in stage t (€/MWh)
Ii,t Water inflow intensity for reservoir i in period t (m3)
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2.4 � Stochastic processes

Restructured energy markets have uncertain prices, denoted Pt , which means that 
operators have to optimize over stochastic prices. Furthermore, as weather cannot 
be forecasted perfectly, the inflow to reservoirs is also uncertain. The set of all res-
ervoirs is denoted by R = {1, 2,… , |R|} . We denote inflow to reservoir i ∈ R at time 
t by Ii,t.

For prices, we apply the Schwartz-Smith two-factor approach [28]. This assumes 
that the logarithm of the price can be cast as the sum of a short-term factor, a long-
term factor, and finally a seasonal factor, as the energy price typically follows a sea-
sonal pattern. The parameters are estimated using Kalman filtering and maximum 
likelihood estimation [13]. Data points are obtained from synthetic futures curves 
[9] using the approach in [2]; see also [9].

The inflow specification is primarily based on the one seen in [12], where the 
inflow is modelled according to AR-1 processes. To reduce dimensionality and cap-
ture the covariance of inflow to different reservoirs, a PCA transformation of the 
inflow data is performed to project it to a lower dimensionality, as seen in [8]. The 
original inflow data is normalized to follow a standard normal distribution, before 
being transformed using PCA. After fitting AR-1 models to the lower dimension 
data, one can produce scenarios using the model for every dimension k in the pro-
jected space. After generating the low-dimensional scenarios, we can transform the 
generated scenario back to the original dimensionality, using the PCA matrix. We 
then denormalize this data, to ensure that the generated scenarios follow the distri-
bution of the historical observations. To circumvent the issue of negative inflows 
generated by the AR model, negative values are converted to 0 according to Eq. (1).

2.5 � Actions and transition function

We present here stage-t actions and transition functions. As only a subset of these 
reservoirs have connected turbines allowing for energy production, we denote this 
by subset RP = {1, 2,… , |RP|} . These sets are both indexed by i and j, for the mod-
elling of interconnections between reservoirs. Every reservoir i, has two sets of res-
ervoirs, RDis

i
 and RSpill

i
 , that represent the reservoirs whose discharged and spilled 

water flows directly into reservoir i, respectively.
The vector of decisions in stage t includes discharge xi,t and spillage ri,t for 

each station and reservoir, where Πt(lt, It) is the feasible stage-t action set and 
(xi,t, ri,t, i ∈ R) ∈ Πt(lt, It) . The discharge variable has both upper and lower bounds 
depending on physical limitations and regulations that can be seasonal. The spillage 
and the discharge can naturally not be negative.

The transition function consists of three components (lt,Pt, It) . The exogenous 
components, includes price Pt and the vector of inflows, It = (Ii,t, i ∈ R) . These 
factors get updated according to the stochastic processes discussed in the previous 

(1)Ii,t = max(Ii,t, 0)



1 3

A stochastic policy algorithm for seasonal hydropower planning﻿	

section, independently of the stage-t action. The endogenous component is the vec-
tor of reservoir volumes in the watercourse, lt = (li,t, i ∈ R) . Executing an action 
(xt, rt) at stage t and state (lt,Pt, It) leads to the following update of the endogenous 
state,

This function ensures water balance in time and the topology of the watercourse. 
It gives the relationship between the inflow, production decisions, spillage, and 
the water level of a given reservoir i. It ensures that spillage happens when the net 
inflow is higher than the reservoir capacity. Due to the longer time steps taken with 
medium-term reservoir management, water delay is not taken into account, and it is 
assumed that water can flow through the entire system within a single time step.

2.6 � Immediate reward and policy

At each stage, the immediate reward is given by electricity production and electric-
ity price (3)

where g(li,t, xi,t) is the energy output from discharge xi,t at reservoir level li,t . We 
denote the set of feasible policies by Π . A policy � is a collection of stage-dependent 
actions, mapping states at time t to feasible actions. We let l�

i,t
 and x�

i,t
 respectively 

denote the endogenous state reached at, and action made in, stage t for reservoir i, 
when following policy � . We aim to find a policy that maximizes the expected accu-
mulated discounted reward,

where � is the discount factor and Φ(li,T ) is the end of horizon value for each reser-
voir, given by how much water is remaining.

2.7 � Relaxation and approximations

The reward function contains the term g(li,t, xi,t) . This function is typically con-
cave in li,t and xi,t . The higher the reservoir, the higher the generation output. 
Similarly, as a function of discharge, the efficiency of a turbine is first increasing 
and then possibly decreasing. Piece-wise linear approximations of the discharge 
function can handle the latter feature. In our model, we assume it to be a con-
stant factor for each reservoir i denoted �i ∈ [0, 1] , i.e. g(li,t, xi,t) = g(li,t)xi,t�i . The 
dependency of reservoir volume, i.e. head variations, is complicated since it leads 

(2)
li,t+1 = li,t + Ii,t − ri,t − xi,t +

∑

j∈R
Spill

i

rj,t +
∑

j∈RDis
i

xj,t,

i ∈ R t = 0,… , T − 1

(3)Pt

∑

i∈RP

g(li,t, xi,t),

(4)

V0(l0, I0,P0) = max�∈Π �

�
∑T−1

t=0
� tPt

∑
i∈RP g(l

�
i,t
, x�

i,t
) + �T

∑
i∈R Φi(l

�
i,T
)
����
I0,P0

�
,
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to a bi-linear objective and thereby non-convexity. This makes it challenging to 
optimize with conventional methods such as SDDP, which we use as a baseline. 
To deal with this issue, we relax the problem using McCormick envelopes. We 
start by modifying the reward in (3) to

The functions hi(⋅) represent the head in reservoir i, while g is the gravitational 
acceleration constant and � is the density of water. The hi(⋅) functions depend on 
li,t and are calculated using piece-wise linear approximations for the individual res-
ervoirs. These piece-wise linear graphs are represented as sets of points, where the 
x-coordinate represents the water level and the y-coordinate represents the head. 
These sets are denoted Mi , for every reservoir i. To find the head hi,t given any fea-
sible water level li,t , we introduce the variables �i,t,k representing the weight of every 
point k ∈ Mi at time t. By ensuring that all these weights are non-negative and sum 
to 1, and that at most two points adjacent to each other can be non-zero, we can find 
the exact point on the y-axis on the piece-wise linear graph, given the value on the 
x-axis.

The restriction requiring that at most two weights can be non-zero, and that 
these must represent points adjacent to each other, is called a special ordered set 
of type 2 (SOS2) restriction. This restriction can be ignored in cases where the 
piece-wise linear function is concave, as the head hi,t would be the same with or 
without the SOS2 constraint. The approximated graphs for the energy-producing 
reservoirs in the Matre Haugsdal system can be seen in Fig. 1. It can be seen that 
these are all concave, ensuring that the SOS2 constraints are unnecessary.

The piece-wise linear approximation of the head function hi(li,t) is explained in 
further detail in Appendix A. This approximation leads to bi-linear terms in (5). 
To approximate these terms, we introduce the substitution variable wi,t = hi(li,t)xi,t 
and use McCormick envelope constraints. This gives us the modified linear 
reward

which leads to a convex and linear multistage optimization problem, satisfying the 
requirements of SDDP. For additional constraints associated with the McCormick 
relaxation, see Appendix B.

(5)Pt

∑

i∈RP

hi(li,t)xi,tg��i

(6)Pt

∑

i∈RP

wi,tg��i,

(a) Svartevatn (b) Storevatn (c) Gobotvatn

Fig. 1   Volume-head relations for reservoirs with production



1 3

A stochastic policy algorithm for seasonal hydropower planning﻿	

3 � Scenario‑based two‑stage re‑optimization heuristic

One of the main ideas behind rolling horizon methods, such as RI, is that a finite 
number of sampled scenarios can be used to approximate the sample space of a con-
tinuous-state problem. The RI heuristic has shown promising performance in vari-
ous applications and is simple and intuitive. We utilize a similar concept as the RI 
heuristic in developing a novel Scenario-based Two-stage Re-Optimization heuristic 
(STRO). Instead of using expectations of exogenous variables as forecasts from any 
given state, we propose to generate possible scenarios from the stochastic model and 
repeatedly solve two-stage problems based on these scenarios.

To distinguish between the outer scenarios that are the realizations of the envi-
ronment that are unknown to the heuristic, and the inner scenarios that are generated 
to build the two-stage stochastic programs that the heuristic solves to find the first-
stage decision. We refer to the outer scenarios as level 1 scenarios and the inner ones 
as level 2 scenarios.

We introduce the following notation for formulating the two-stage problem used 
by the STRO scheme. Let (Is

t
,Ps

t
) denote the realization of stochastic variables in 

stage t of level 1 scenario s. Let ls
t
 denote the endogenous state reached at time t by 

following the STRO scheme along level 1 scenario s. We denote the decision vari-
ables for discharge and spillage from reservoir i in stage t and level 1 scenario s as 
xs
i,t

 and rn
i,t

 respectively. Then, let (Īn
t
, P̄

n

t
) = {(Īn

t
, P̄n

t
), (Īn

t+1
, P̄n

t+1
),… , (Īn

T
, P̄n

T
)} denote 

a realization of level 2 scenario n generated according to the stochastic processes, 
from time t + 1 to end of horizon T, conditional on the level 1 realization at time t. 
Further, let the variables l̄n

i,t
, x̄n

i,t
, r̄n

i,t
 represent the decision variables for the endog-

enous state, water discharge and spill for reservoir i at time t in level 2 scenario n. 
Let Tt = {t, t + 1,… , T} be the set of remaining periods from time t to time T. For 
each stage t and each level 1 scenario s, the two-stage problem that is being solved 
can be formulated as

The objective of the two-stage problem is to maximize expected future profits in 
the discrete set of (level 2) scenarios N  . In this formulation, every scenario in N  is 
considered equally likely, but it is also possible to introduce a separate weighting for 
each scenario if they have different likelihoods. The first constraint ensures that the 
initial condition is set to the realized time t level 1 scenario s and the endogenous 
state reached in that scenario by following the STRO scheme. The next constraint 
is the reservoir balance in level 2 scenario n, which is equivalent to (2). The last 2 
constraints ensure that the first-stage decisions are the same in all level 2 scenarios 
n ∈ N  and that the production decisions that will be used in level 1 scenario s are 
the same as the first-stage decisions in the LP.

(7)

max{(l̄
n

𝜏
,x̄n

𝜏
,r̄n
𝜏
),n∈N,𝜏∈Tt}

1

N

∑
n∈N

�∑
𝜏∈Tt⧵{T}

𝛽𝜏 P̄n
𝜏

∑
i∈RP g(l̄

n
i,𝜏
, x̄n

i,𝜏
) + 𝛽T

∑
i∈R Φi(l̄

n
i,T
)

�
,

s.t. (ls
i,t
,Ps

t
, Is

t
) = (l̄n

i,t
, P̄n

t
, Īn

t
), n ∈ N, i ∈ R

l̄n
i,𝜏+1

= l̄n
i,𝜏
+ Īn

i,𝜏
− r̄n

i,𝜏
− x̄n

i,𝜏
+
∑

j∈R
Spill

i

r̄n
j,𝜏

+
∑

j∈RDis
i

x̄n
j,𝜏
, 𝜏∈Tt⧵{T}, i∈R, n∈N

xs
i,t
= x̄n

i,t
, n ∈ N, i ∈ R

rs
i,t
= r̄n

i,t
, n ∈ N, i ∈ R
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Each time this problem is being solved, the time t decisions, i.e. first-stage 
decisions, (xs

i,t
, rs

i,t
) are used to update ls

i,t
 along the level 1 scenario s according 

to Eq. (2). This updated state then serves as an initial condition for the next two-
stage problem.

By generating S level 1 scenarios, the total expected profits from the STRO 
scheme can be computed as the sample average

A visualization of how a two-stage stochastic program is built from generated level 
2 scenarios to explore the underlying sample space can be seen in Fig. 2. Starting in 
a state in stage � , one can generate N possible realizations of the future, starting in 
the current state. Then, these scenarios can be combined into a two-stage stochastic 
program, which can be solved to find the first-stage decision.

Given that stochastic programs are built for every state in every level 1 sce-
nario, the idea is to approximate the continuous sample space of the exogenous 
variable from each state. The higher number of level 2 scenarios N the more 
accurate this approximation will be. This approximation is illustrated in Fig.  3. 
The main difference compared to RI is that STRO makes multiple explorations 
(level 2 scenarios) from every state in every underlying level 1 scenario and uses 
these to approximate the sample space from that point. The red nodes in the fig-
ure represent the level 2 scenarios. New information about the underlying level 1 
scenario is revealed with each step of the horizon. Thus, new two-stage stochastic 
programs must be built for every state by generating new level 2 scenarios.

None of the decisions made by STRO’s heuristic are based on any knowl-
edge of the future in the underlying price-inflow scenario. Following this, the 
decisions made using the heuristic are implementable and the value of the fea-
sible policies found for every individual level 1 scenario yields lower bounds 
for the optimal revenue for that given scenario. Same as for RI, this means that 

(8)
1

S

∑

s∈S

(
T−1∑

t=0

� tPs
t

∑

i∈RP

g(ls
i,t
, xs

i,t
) + �T

∑

i∈R

Φi(l
s
i,T
)

)

Fig. 2   Two-stage stochastic program built from N level 2 scenarios. These are solved to find an imple-
mentable decision for stage t in a level 1 scenario
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with enough sampled scenarios, one will get an estimated lower bound of the 
expected revenue, subject to sampling error.

As every generated level 2 scenario represents possible realizations of the 
sample space, one would gradually get a better approximation of all possible 
realizations of the future in all possible states by generating more scenarios per 
state.

As mentioned, the STRO heuristic finds the first-stage decision by consider-
ing these realizations as a two-stage program. Using two stages is an approxi-
mation, and a more accurate method would be to solve a multistage problem 
instead. However, building and solving multistage stochastic programs is more 
computationally costly, and approximation through two stages has been shown 
to be a good solution for hydropower problems in the literature [29].

Due to the growth in complexity when increasing the number of level 2 sce-
narios per state, one can in practice only build programs based on a small num-
ber of scenarios. Therefore, the performance of STRO hinges on the assumption 
that most of the value from the approach can be achieved using a small number 
N of level 2 scenarios, e.g. N = 2 or N = 3 , which from early experiments seems 
to be the case.

4 � Complexity

Considering that the STRO heuristic is based on solving a two-stage stochastic 
program for every production decision, the amount of programs solved is quite 
large. Given S level 1 scenarios and T stages per level 1 scenario, one will have 
to solve a total of ST LPs to get an estimate of the marginal water value.

Note that the number of LPs solved is not dependent on the amount of level 
2 scenarios N. However, this instead affects the complexity of each LP, meaning 
that an increase in level 2 scenarios makes each individual LP harder to solve.

Fig. 3   Sample space approximation for STRO with N level 2 scenarios per state
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5 � Main innovations and benefits

As mentioned in Sect.  2.1, medium-term hydropower planning is mainly con-
cerned with calculating the expected discounted revenue, given different initial 
water levels, to calculate the marginal value of the water in the reservoir. Conse-
quently, there is no requirement to generate a policy that deterministically yields 
the same production decision when faced with the same state, such as RI and 
SDDP. Instead, we forego this requirement and allow the STRO heuristic to yield 
stochastic production decisions based on the level 2 scenarios drawn from the 
sample space. We refer to this as it being a stochastic policy. The benefit is that 
by not having to aggregate the possible outcomes, for instance, by taking the 
expectation such as RI, we can explore more of the sample space and consider 
more varied outcomes. As shown in the illustrative example in Sect. 4, this can 
lead to more accurate revenue estimations.

Another significant benefit of STRO and other rolling horizon methods is 
that they pose few constraints on the problem class. Unlike SDDP, which either 
requires inflow and price to be modelled linearly or with a Markov decision pro-
cess over discretized states, this allows price and inflow to be modelled using 
non-linear methods such as deep learning-based methods. There is also no strict 
constraint that requires the problem to be modelled convexly, meaning that one 
for instance, could model head variations more accurately without having to relax 
the problem with McCormick envelopes. However, a non-convex model would 
require a longer processing time.

Other significant benefits of rolling horizon methods such as STRO and RI is 
that they are significantly more straightforward to implement than SDDP and are 
more suited for parallelization since the level 1 scenarios are all solved indepen-
dently. Although SDDP is also parallelizable, it is harder to implement and does 
not lead to as linear of a speedup, as seen in previous works. One example is [1] 
which reports speedup factors of 7–11 for 10 CPUs, and 9–14 for 20 CPUs, for 
a case study of the Brazilian hydrothermal system. For this case, the speedup is 
measured using 10 forward pass scenarios for 10 CPUs vs a single forward sce-
nario for one CPU. Using a more detailed representation of the Brazilian power 
system, [22] report speedup factors of 5–6.5 for 10 CPUs and 8–11 for 20 CPUs. 
Here the speedup factor is measured using the same number of scenarios for the 
parallel and serial runs.

We leave to further work to explore the practical merits of these benefits and 
concentrate our experiments on a case where SDDP can be used as a benchmark.

6 � Illustrative example

This section illustrates the proposed heuristic using a simple three-stage exam-
ple. Consider a plant operator with a current reservoir volume of 8, maximum 
reservoir capacity of 10, and maximum generation capacity of 10. In this setting, 
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the chronology is as follows: First, inflow realizes, then the reservoir volume 
gets updated. Spillage happens if the current reservoir level plus inflowing water 
exceeds the reservoir capacity. Then the generation decision is taken before the 
new inflow arrives.

The price is deterministic and given by P0 = 10, P1 = 11, P2 = 12 , which 
incentivizes later production. Inflow, on the other hand, is stochastic and the dif-
ferent inflow scenarios can be seen in Fig. 4. From every state in this figure, there 
is an equal chance that the subsequent inflow is high or low compared to the pre-
vious inflow. This results in a binary tree and 4 different scenarios since inflow is 
deterministic in the first stage.

As an example: Since the current reservoir volume is 8 and 1 unit of inflow 
arrives deterministically in the first stage, no spillage happens at this point, as the 
reservoir can hold 10 units of water. Suppose then that the producer decides to 
generate nothing at t = 0 , and that the high inflow is realized at t = 1 (scenario 1 
or 2), meaning that 2 units arrive in addition to the 9 already in the reservoir. This 
would result in 1 unit of spillage.

To see how RI and STRO with different numbers of level 2 scenarios perform 
for this example, we compare their different decisions and revenues in Table 1. 

Fig. 4   Illustrative example 
inflow tree

1
1

0

0

2

3

0 1 2

1 2 3Scen 1

1 2 1Scen 2

1 0 1Scen 3

1 0 0Scen 4

Table 1   Solutions and objective values

Note that STRO does not yield a deterministic policy since there are several decisions at the first stage

Optimal Rolling intrinsic STRO(1) STRO(2) STRO(3) STRO(4)

x0 1 0 {0, 0, 1, 1} {0, 1, 1, 1, 1, 1} {1, 1, 1, 1} 1
x1,1 3 2 – – 3 3
x1,3 0 0 – – 3 0
x2,1 10 10 – - 10 10
x2,2 8 9 – – 8 8
x2,3 9 10 – – 9 9
x2,4 8 9 – – 8 8
Mean spill 0 3

4

1

2

1

12
0 0

Mean profit 131.5 125.0 127.0 130.83 131.5 131.5
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We also compare them to the optimal strategy. Here we use xi,j to denote the pro-
duction decision at time i and state j, numbered according to the scenarios in 
Fig. 4. The scenario index for stage 0 is omitted, as all these decisions need to 
be identical. Similarly, in stage 1, we only use scenario indices {1, 3} since there 
only are 2 possible inflow realizations at t = 1 . Index 3 is used to stay consistent 
with the indices in stage 2.

We observe that it is optimal to produce 1 unit in stage 0 to avoid spillage in 
the future. Rolling intrinsic, which bases decisions on expectations of the stochastic 
variables, ignores that there is a 50% chance of 2 units of inflow getting realized 
in the next stage and only considers the expected inflow, which is 0+2

2
= 1 , thereby 

deciding to produce 0 at t = 0.
The notation STRO(N) is used in the table to indicate that N level 2 scenarios 

are used per state for the STRO heuristic. Since there are only 4 possible realiza-
tions of the future, we use a maximum N of 4. For STRO(1), STRO(2) and STRO(3) 
the production decision naturally depends on which of the 4 scenarios are sampled. 
Since we sample the scenarios without replacement, the number of combinations of 
level 2 scenarios is 

(
4

N

)
 , which results in 4, 6, 4 and 1 combinations for N = 1, 2, 3 

and 4 respectively. The production decisions in the first stage are given in the table 
for all different combinations of level 2 scenarios in curly brackets. To deal with 
uncertain production decisions, we list the production decisions in the first stage for 
each combination of level 2 scenarios for every STRO(N) in curly brackets. Since 
the production decision at t = 0 is uncertain for N = 1 and N = 2 , the next state is 
also uncertain (STRO(3) yields the same production decision at t = 0 independent 
of the combination of level 2 scenarios). For this reason, the production decisions 
at t = 1 and t = 2 are not listed for these, as these decisions naturally will depend on 
the previous decision, which is not deterministic. This relates to the discussed idea 
of the policy being stochastic.

The table shows that STRO(4) and STRO(3) both find the optimal strategy. This 
is unsurprising for STRO(4) as it considers all 4 possible scenarios when making 
decisions. STRO(3) does not have this privilege, but since it only omits a single 
possible level 2 scenario at t = 0 , it will always sample at least one of the 2 scenar-
ios with high inflow at t = 1 . This allows it to see that there is a chance of spillage 
occurring and thereby plan its production accordingly.

It can further be seen that STRO(1) and STRO(2) both outperform RI, despite 
not necessarily seeing that there is a chance of high inflow at t = 1 . As STRO(2) will 
sample 2 level 2 scenarios per state it will not consider the chance of high inflow 
only in the case that the 2 level 2 scenarios are both low inflow scenarios. There 
is only a 1

6
 chance that this happens, making it unlikely that the wrong production 

decision is made. When making a decision at t = 1 there are only 2 possible future 
inflow realizations, depending on the previously observed inflow. As a consequence 
of this, STRO(2) will make the optimal decisions at t = 1 since it can consider both 
possible future realizations from that point. STRO(1) only samples a single level 
2 scenario per state. At t = 0 it is only a 50% chance that it samples a high inflow 
scenario and adjusts production to avoid risking spillage. However, it still outper-
forms RI, because RI will only consider the expected inflow of 1, meaning that it 
will always make the wrong production decision at t = 0 . The same effect would 
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be seen if a high inflow scenario was realized at t = 1 . Then RI would not take the 
fact that a high inflow of 3 could occur at t = 2 into account and only consider the 
expected inflow of 2. This results in a higher chance of spillage.

Although STRO(1) outperforms RI in this illustrative example, it must be stressed 
that this is not the case in general, and under different circumstances RI has been 
found to outperform the simplest version of STRO, as we will demonstrate in the 
next section.

7 � Hydropower case and implementation

7.1 � Implementation environments

7.1.1 � Software

All code is implemented and run in Python 3.8, except the parameter estimation of 
the price model, which is done in MATLAB2020b [13]. In Python, the gurobipy 
package is used for the optimization models. A previous Python implementation of 
SDDP was also used [10].

7.1.2 � Hardware

The computational tests are conducted on a system that allows for running up to 40 
processes in parallel per node. In Table 2, the relevant technical aspects of the hard-
ware are given.

7.2 � Matre Haugsdal and Vemundsbotn

This paper is written in cooperation with a major Norwegian hydropower producer. 
They have provided data for one of their hydropower systems. Matre Haugsdal and 
Vemundsbotn are power plants in western Norway. The plants are parts of the more 
extensive system of interconnected reservoirs built around the Matre watercourse. 
Together they produce enough electricity to cover the needs of more than 50k 
households. An overview of the system’s layout as modelled can be seen in Fig. 5, 
and the publicly available technical specifications for the two production plants are 
given in Table 3.

Table 2   Hardware specifications Specification     Details

Node system Dell PowerEdge R640
Node CPU 2x 2.4 GHz Intel Xeon 

Gold 5115 CPU - 10 
core

Node RAM 96Gb
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Table  4 shows the average annual inflows for each reservoir, along with their 
respective volumes and discharge capacities. A glance at the data shows that the res-
ervoirs are of a “fast" nature, meaning that the inflow to the reservoirs is relatively 
high compared to the storage capacity. We were not given any specified minimum 

Fig. 5   Matre Haugsdal and Vemundsbotn, with connected reservoirs

Table 3   Specifications for plants 
in the considered system

aTwo connected reservoirs (Storevatnet/Svartevatnet)

Matre Haugsdal Vemundsbotn

Build year 2016 1976
Turbines 2 1
Production capacity (MW) 180 45
Elevation (m) 537 (164/242)a

Head difference (m) 20.5 (32/48)a
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discharge for the reservoirs in question, and thus, no lower bound is set for the 
model. Furthermore, the water level regulations for the reservoirs do not vary with 
season, but are constant throughout the year.

7.3 � Price and inflow data

Our price model uses futures data, and to generate the smoothed future curves, we 
use futures price data for the trading period 2006–2018, retrieved from Montel. The 
price simulations start 1 January 2019. The data is given per trading day, with clos-
ing prices for monthly, quarterly, and annual delivery for up to 3 years ahead. To fit 
the inflow model, we use time series inflow data for the reservoirs. The inflow data 
series provided are of hourly resolution in the period 2009–2019.

8 � Computational study

To see how the STRO method with different number of level 2 scenarios per deci-
sion performs, the results are benchmarked to the SDDP method, as well as the most 
well-known rolling horizon method RI. To avoid disclosing any non-public infor-
mation about the Matre Haugsdal hydropower system, the results of the models are 
represented as percentages relative to the baseline given by SDDP.

For these studies, revenue has been used as the primary metric for performance 
comparisons between different algorithms. Seeded level 1 scenarios were used for 
the rolling horizon methods, to make the revenues as comparable as possible. This 
means that all rolling horizon methods receive the same realizations of inflow and 
price. This ensures that the objective values of the rolling horizon methods are com-
parable, as they solve the exact same scenarios. However, this was not achievable 
for SDDP due to its discretization. We address this potential source of bias by using 
a relatively large number of samples for both methods over 10 runs. The planning 
horizon for each method is 2 years with weekly stages resulting in 104 stages in 
total.

The results presented are average values from all these runs, along with relative 
standard deviations of the objective values achieved over different trials using the 

Table 4   Reservoir specifications Reservoir Volume (Mm3) Inflow (Mm3/
year)

Max. 
discharge 
(m3/s)

Gobotvatn 22.0 134.6 37.6
Storevatn 23.3 57.6 18.0
Svartevatn 60.8 66.8 23.6
Skjerjevatn 70.5 61.3 22.0
Hjortevatn 10.7 60.9 10.0
Smalevatn 13.1 96.5 19.8
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different methods. This approach should give a reasonable estimate of the difference 
in performance.

Note that since SDDP yields upper bounds while RI and STRO yield estimated 
lower bounds, there will always be some discrepancy between their results.

The discretizations are done on a sample base of 200k samples of each exoge-
nous variable, which were discretized to a Markov chain with 125 discrete states per 
stage. Each of these stages contains a combination of price and inflow. No further 
scenario reductions were applied for the SDDP method.

The results from the trial runs are presented in Table 5. It presents the expected 
revenue for the different methods, and the standard deviation over the different runs 
for each method. Every run of the Rolling Horizon methods was made using 1000 
level 1 scenarios, and reported revenue is the average over these runs.

From these results there are multiple takeaways. First, it is apparent that increas-
ing the number of samples per decision in the heuristic leads to a substantial 
improvement in the results achieved. When comparing the results of STRO for 
N = 1 to N = 7 it can be seen that the gap to the SDDP algorithm is approximately 
halved. Furthermore, it can be seen that the improvement in the results is diminish-
ing, and the most significant improvement can be seen when increasing N from 1 to 
2. However, when comparing the results for N = 6 to N = 7 , the gain has tapered 
out.

Another takeaway is that the STRO algorithm clearly outperforms the traditional 
RI algorithm for N ≥ 2 . The results of the RI algorithm were found to be within 
2.5% of the estimated optimum from SDDP, in line with previous findings from [4]. 
However, the results from the STRO(7) algorithm, is within 1.4% of the results of 
SDDP. Given that the estimated revenues from the rolling horizon methods, STRO 
and RI, are lower bounds, whereas SDDP gives an upper bound, this gap is quite 
close, and it is apparent that the STRO method is well suited for the hydropower 
planning problem.

As seen in the table, the standard deviations of the results achieved using differ-
ent methods are quite high compared to the differences in the results achieved with 

Table 5   Average objective 
values of the compared methods

Solution method Revenue

Relative value (%) Standard 
deviation 
(%)

SDDP 100.000 0.487
RI 97.546 0.489
STRO(1) 97.249 0.484
STRO(2) 98.115 0.487
STRO(3) 98.411 0.489
STRO(4) 98.548 0.486
STRO(5) 98.611 0.485
STRO(6) 98.654 0.482
STRO(7) 98.674 0.483
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the different algorithms. This implies that the true differences in revenues between 
SDDP and the other methods can be slightly higher or lower than these experiments 
indicate. Since seeded scenarios were used for RI and STRO we can be more con-
fident that the comparisons between these methods are more accurate. In future 
experiments, we will make efforts to reduce the standard deviations by using more 
level 1 scenarios to ensure more stable revenue estimates over the different trials.

8.1 � Runtime analysis

Rolling Horizon methods are well suited for parallelization and multiprocessing, as 
each level 1 scenario is processed independently. To minimize the processing time, 
our implementation runs 40 processes in parallel, which was the maximum allowed 
by our hardware. With improved hardware, a further speedup is naturally achievable. 
There exist parallel implementations of SDDP [1, 7, 25]. However, as [1] points out, 
parallel implementation of SDDP is far from straightforward. Therefore, we opt for 
a non-parallel version for benchmarking. With such parallel methods implemented, 
we would naturally have a substantially lower processing time with SDDP.

In Table  6, the run times of SDDP and the STRO methods are presented. RI 
solves a problem of the same size as STRO(1), the computational times for these 
methods are, therefore, approximately the same. The total run time is given in hours 
(h), and the average time used to solve each level 1 scenario is given in seconds (s). 
Note that the run time of SDDP is given without the additional time required for 
sampling and discretization.

The table shows that the most significant increase in run-time comes with the 
increase from 2 to 3 level 2 scenarios per decision in STRO, followed by a nearly 
linear increase in computational time. Once the scenarios are sampled and given to 
the two-stage stochastic program, the program becomes deterministic [30]. By dou-
bling the number of scenarios for the two-stage program, the program size approxi-
mately doubles.

We stress that 2000 iterations were significantly more than what the algorithm 
needed to converge. In most cases, the upper bound only decreased by 0.2% after the 

Table 6   Run time for 1000 level 
1 scenarios of STRO(N), and 
2000 iterations of SDDP

Solution method Time

Total (h) Per sampled 
scenario (s)

SDDP 11.38
STRO(1) / RI 0.26 0.94
STRO(2) 0.73 2.63
STRO(3) 3.47 12.48
STRO(4) 5.94 21.38
STRO(5) 8.19 29.49
STRO(6) 10.58 38.10
STRO(7) 11.88 42.77
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initial 200 iterations and by 0.1% after the first 500 iterations. Admittedly, it would 
have been reasonable to terminate the algorithm after 1000 iterations as the final 
1000 iterations only yielded a ∼ 0.03% decrease of the upper bound. Our reasoning 
behind using so many iterations was that we wanted the upper bound of SDDP to get 
as low as possible to make the results as comparable to the lower bound provided by 
the rolling horizon methods as possible. However, this makes the provided runtime 
for SDDP higher than what it could have been.

It should also be noted that 125 discrete states per stage for the SDDP method is 
a relatively small amount, and with an increase in states there would have been an 
increase in processing time.

9 � Concluding remarks

We propose a new approach to solving the medium-term reservoir management 
problem. The aim is to approximate the value function as it depends on current price 
levels and current reservoir levels. When medium-term hydropower planning is used 
to support the decision-making for short-term planning, only the value function is 
passed to the short-term planning problem, not necessarily a deterministic policy. 
Thus, we do not require the algorithm to generate deterministic policies, and rather 
allow them to be stochastic while taking care not to relax information constraints. 
This ensures that the algorithm yields estimated lower bounds on the objective func-
tion value, as our method relies on possible scenarios for the future development of 
prices and inflow. The new approach, called STRO, is compared to SDDP and RI.

Although STRO can be applied to broader classes of problems compared to those 
solved by SDDP, we designed the experiments to suit SDDP well. We leave for 
future work to explore the performance on non-convex problems.

Sources of bias potentially impacting the comparisons of the implemented mod-
els include both discretization and sampling error subjected to the different methods. 
Efforts were made to mitigate this by performing multiple trial runs, averaging the 
results, and performing experiments that, for instance, aimed to bypass the discre-
tization error of SDDP. We have also used seeding to ensure that the exact sampling 
error is imposed on the rolling horizon methods.

Another factor to consider is that the methods discussed and compared were 
only tested on a single hydropower system, using only one type of inflow and price 
model. Specific properties of the case system can make the method more suitable, 
which can mean that similar results will not be achievable for other systems. These 
concerns were not explored in the interest of scope, but they should be further exam-
ined in the future.

With these points made, we emphasize that the RI algorithm has been shown to 
produce promising results when applied to the reservoir management problem by 
other authors with different stochastic models for the exogenous processes. This 
strengthens our confidence in the results.

The idea of using a sampling-based heuristic for rolling horizon methods can also 
be explored further. The STRO method only considers building two-stage stochastic 
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convex programs, but in principle, multi-stage non-convex stochastic programs could 
be built and solved instead.

A. Piece‑wise linear approximations

As the head hi,t is a function of the amount of water in a reservoir li,t this function needs 
to be approximated in a piece-wise manner. To do this, the relation between head and 
water level for a specific reservoir i can be represented by a set Mi which contains sam-
ple points ( (li,1, hi,1),… , (li,K , hi,K) ), representing the mapping between water level and 
head. Increasing the number of points naturally leads to a better approximation, but 
comes at the consequence of increased complexity.

To find the head from the water level using the piece-wise linear graph, a set of 
variables representing the weight of point k for reservoir i at time t denoted �i,t,k . By 
ensuring that no weights can be negative (9), the weights sum to 1 (10), and that only 
two adjacent points are non-zero using a special ordered set of type 2 constraint (SOS2) 
(11), one can find the head hi,t based on the water level li,t . This is done using Eqs. 
(12)–(13). Equation (12) forces the weights to correspond with the water level, and 
Eq. (13) finds the head given the weights. If the function describing the mapping from 
water level to head is concave, the SOS2 constraint (11) is redundant.

As the incoming and outgoing water levels can be quite different, the average water 
level lavg

i,t
 is used as the basis for the head for the period. This variable is given 

according to constraint (14).

(9)�i,t,k ≥ 0, k ∈ Mi i ∈ RP t = 0,… , T − 1

(10)
∑

k∈Mi

�i,t,k = 1, i ∈ RP t = 0,… , T − 1

(11)�i,t,k ∈ SOS2, k ∈ Mi i ∈ RP t = 0,… , T − 1

(12)
∑

k∈Mi

�i,t,kli,k = l
avg

i,t
, i ∈ RP t = 0,… , T − 1

(13)
∑

k∈Mi

�i,t,khi,k = hi,t, i ∈ RP t = 0,… , T − 1

(14)l
avg

i,t
=

li,t + li,t+1

2
, i ∈ RP t = 0,… , T − 1
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B. McCormick envelope constraints

In the following the constraints comprising the McCormick envelopes are shown. 
These are used to ensure that the substitution variable wi,t closely approximates the 
bi-linear term hi,txi,t . These constraints depend on the variables hi,t and xi,t , as well 
as the maximum and minimum values that these can take on. These maximum and 
minimum values are denoted Hmax

i,t
,Hmin

i,t
 , Xmax

i,t
 and Xmin

i,t
.
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