
Ocean Engineering 278 (2023) 114428

Available online 18 April 2023
0029-8018/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

A stochastic optimization algorithm for the supply vessel planning problem 
under uncertain demand and uncertain weather conditions 

A.M.P. Santos a, K. Fagerholt b, C. Guedes Soares a,* 

a Centre for Marine Technology and Ocean Engineering (CENTEC), Instituto Superior Técnico, Universidade de Lisboa, Portugal 
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A B S T R A C T   

The Supply Vessel Planning Problem (SVPP) with stochastic demands and uncertain weather conditions is a 
transportation problem occurring in offshore oil and gas logistics. A fleet of supply vessels based at an onshore 
depot delivers supplies to a set of offshore oil platforms in a weekly sailing schedule. However, the schedules are 
frequently disrupted due to adverse weather conditions and uncertain demand for cargo from the oil platforms. 
The two sources of uncertainty are generally addressed in separate, most often through the use of two-phased 
methods, where simulation is combined with an optimization algorithm. The most common approach to 
incorporate robustness in the constructed schedules is to use a subjective penalized cost for non-robust voyages, 
with explicit modelling of recourse actions. In contrast, this paper proposes a two-stage stochastic programming 
algorithm accounting for both uncertain demand and uncertain weather conditions, allowing for the incorpo
ration of the cost of recourse in the objective function. The cost of each solution is approximated through the use 
of discrete event simulation within a genetic algorithm. For the tested problem instances, the potential benefit 
from solving the stochastic program over solving the corresponding deterministic version leads to average 
relative annual cost savings of approximately 12%.   

1. Introduction 

The supply vessel planning problem (SVPP) is a maritime trans
portation problem faced by the offshore oil and gas industry, where a 
fleet of platform supply vessels (PSVs) is used for the transport of cargo 
between an onshore depot and a set of offshore installations. Regular 
delivery of cargo to offshore installations is required for the continuous 
production of oil. For this, a sailing schedule is constructed and usually 
repeated weekly. Most commonly, the sailing schedule is changed when 
there are significant changes in demand from the installations, which 
usually corresponds to changes in oil production levels. In turn, supply 
vessels are one of the costliest resources in offshore logistics, with time 
charter rates for a single vessel reaching tens of thousands of USD. 
Therefore, offshore oil companies seek to optimize the utilization of such 
resources (Amiri et al., 2019). It should be noted that additional re
sources are required for the overall offshore logistics system, including 
helicopters for the transport of personnel (Santos et al., 2018; Silva and 
Guedes Soares, 2018), and pipelines or shuttle tankers for the transport 
of oil (Assis and Camponogara, 2016). In the SVPP, a voyage usually 
spans several days, and always starts and ends at the depot where the 

cargo to be distributed among the offshore installations is kept. In each 
voyage, a vessel may visit more than one installation. Each offshore oil 
platform may require more than one visit per week and, most often, 
supply vessel operations can take place only during the day. In situations 
where the supply vessel arrives at the oil platform when the oil platform 
is closed for the night, the vessel has to wait until the opening time the 
next day. Lastly, there is a maximum number of vessels that can be 
prepared each day at the onshore depot. 

A solution to the SVPP is a weekly schedule where voyages are 
assigned to each vessel in the fleet, and where the costs to be minimized 
are the sum of voyage costs and charter costs. In a typical scenario, 
charter costs will be much larger than voyage costs. Fig. 1 presents an 
example of a solution to the SVPP. In the example, the fleet is composed 
of two vessels with voyages being assigned so that the two vessels 
perform the required number of weekly visits for a set of eight in
stallations. Note that all voyages start and end at the onshore depot 
(labelled as 0 in Fig. 1). Moreover, note that the departures for each 
installation are evenly spread throughout the week. 

However, due to both uncertain weather conditions and uncertain 
demand, there is often the need to make changes to the planned weekly 
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schedules (Aas et al., 2009). Such changes are costly as they usually 
imply the usage of additional vessels. In turn, deterministic approaches 
in a setting characterized by high uncertainty will often lead to more 
frequent rearrangements in the visit schedule. In general, deterministic 
approaches to supply chain design are unable to increase resilience, 
thereby risking a significant increase in costs (e.g., costs from lost pro
duction) in case of unforeseen disruptive events (Fattahi et al., 2017; 
Suryawanshi and Dutta, 2022). 

If the transport capacity of the fleet is dimensioned according to 
average demand, in the face of demand fluctuations, frequent realloca
tions of cargo in time will be required. While excess capacity facilitates 
the recovery from large demand peaks, which are commonly observed 
once operations can be resumed after a period of severe weather con
ditions, excess capacity will also lead to increased charter costs (Aas 
et al., 2009). Besides demand uncertainty, adverse weather conditions 
also have a strong negative impact on weekly sailing schedules, affecting 
both sailing and loading and unloading capabilities. If the significant 
wave height (i.e., the average wave height of the one-third largest 
waves, measured trough to crest) exceeds a given threshold, loading and 
unloading operations cannot take place, and the vessel must wait until 
favourable weather conditions are met. Adverse weather conditions will 
also impact sailing speed, a key determinant of fuel costs, which 
correspond to a significant component of the operating costs. Under 
adverse weather conditions, if a decision is made to keep within the 
planned speed, higher fuel consumption will occur, thereby leading to 
increased costs. If, on the other hand, a choice is made not to compen
sate for the negative impact of adverse weather conditions on sailing 
speed, delays in meeting the demand will also occur, leading also to 
increased costs. However, it should be noted that in the definition of the 
SVPP speed is usually not included as a decision variable. While the 
exclusion of speed may, in general, lead to suboptimal solutions (Psar
aftis and Kontovas, 2013, 2014), regulations usually demand that at 
most a given percentage of the machinery power of the vessel is used for 
sailing or keeping the position alongside the installation, to ensure that 
the vessel has enough power to accommodate for any unforeseen events. 
Therefore, speed cannot be freely increased to compensate for the effect 
of adverse weather conditions. 

Mitigation of the consequences of adverse weather conditions is one 
of the most significant challenges in upstream supply chain logistics (Aas 
et al., 2009). Costly recourse actions, such as performing additional 
voyages or chartering additional vessels, will have to be taken in the 
event of schedule disruption due to either increased demand or adverse 

weather conditions. There is always a financial trade-off when planning 
a system to handle uncertainty (Aas et al., 2009). The introduction of 
robustness in the planning phase will typically increase planned costs. 
However, such robustness will also lead to less frequent recourse ac
tions, and therefore, decreased recourse costs. To enable the optimiza
tion of supply vessel utilization in a realistic setting, where uncertainty 
plays a major role, this paper considers the stochastic version of the 
SVPP, with both stochastic demands and uncertain weather conditions, 
the most important sources of uncertainty faced in practice, being 
considered. 

Published research on the SVPP under uncertainty makes use of two- 
phased methods combining simulation and optimization or chance- 
constrained methods at the voyage level to obtain robust schedules 
(Halvorsen-Weare and Fagerholt, 2017; Kisialiou et al., 2019). Pub
lished methods allow arriving at robust schedules, even if the focus is 
only on uncertain demand as in Kisialiou et al. (2019), or when both 
uncertain demand and uncertain weather conditions are considered, as 
in Halvorsen-Weare and Fagerholt (2017). However, the fact that the 
schedule construction and the assessment of the corresponding expected 
cost occur in two separate phases, may lead to the obtaining of 
sub-optimal solutions. In particular, pre-setting a given robustness level 
to be required for all voyages from which the schedule is to be con
structed or requiring the same slack between any two voyages in the 
constructed schedule may exclude solutions that might perform well 
under uncertainty (Halvorsen-Weare and Fagerholt, 2017). Addition
ally, while chance-constrained methods are particularly useful when 
costs and benefits from decisions at later stages are difficult to assess 
(Birge and Louveaux, 2011), the cost of recourse in the SVPP corre
sponds to the same type of cost assessed for first-stage decisions (i.e., 
charter costs and voyage costs). In contrast, this paper follows the 
method of Santos et al. (2022), making use of a two-stage stochastic 
program, with the cost of recourse being considered explicitly in the 
objective function. Therefore, the expected schedule cost, including the 
cost of recourse, is minimized in the search procedure, while allowing 
for a larger solution space to be explored. Therefore, obtained solutions 
may potentially be less costly than those obtained from the referred 
two-phased methods, in particular, when compared to alternative ap
proaches proposed to account for both uncertain demand and uncertain 
weather conditions. However, while in Santos et al. (2022) only un
certain demand is considered, the method proposed in this paper ac
counts for both uncertain demand and uncertain weather conditions. 

Two main characteristics of the SVPP under uncertain demand and 

Fig. 1. Example of a solution to the Supply Vessel Planning Problem for an instance with two vessels and eight offshore installations [adapted from Halvorsen-Weare 
et al. (2012)]. 
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uncertain weather conditions impact the choice of the solution method. 
First, the SVPP generalizes the Periodic Vehicle Routing Problem 
(PVRP). Therefore, the SVPP is an NP-hard problem. Second, consid
ering uncertain demand and uncertain weather conditions simulta
neously poses a considerable challenge resulting from the intractability 
of full scenario enumeration. Therefore, as a solution method, a genetic 
search procedure based on the heuristic originally proposed Vidal et al. 
(2012) for the PVRP and adapted by Borthen et al. (2018) for the 
deterministic version of the SVPP is modified through the use of a 
discrete-event simulation engine to sample scenarios for demand and 
weather conditions. 

Performing simulation at each step of the optimization procedure 
will inevitably lead to large computational times. However, it should be 
noted that the decisions to be made in the SVPP are not at the opera
tional level where computational time to arrive at a solution would be 
critical. Instead, decisions in the SVPP are at the strategic/tactical level, 
with a schedule typically being in use for some months. Therefore, 
benefits in terms of cost savings from arriving at better solutions should 
largely surpass the drawbacks from the increased computational effort. 

As the main scientific contribution of this paper, a two-stage sto
chastic programming method is proposed, accommodating the two 
major sources of uncertainty in offshore logistics: uncertain demand and 
uncertain weather conditions. By including the cost of recourse in the 
objective function, the proposed methodology allows for the minimi
zation of the most significant costs faced by offshore oil and gas com
panies in the operation of offshore supply vessels. To compute the 
savings from solving the stochastic program (i.e. the value of the sto
chastic solution), the deterministic version of the problem is also solved, 
and the corresponding costs under uncertainty are computed. As an 
additional contribution, the proposed methodology is tested on a set of 
realistic instances where it is shown to produce high-quality solutions. 
Note that, as mentioned in Santos et al. (2022), the SVPP under uncer
tainty corresponds to a sequential (multi-stage) stochastic optimization 
problem, where a sequence of scenario realizations (e.g., demand and 
weather condition) is observed, with the required recourse action being 
implemented only after the observation of each specific scenario 
outcome. Such a sequence of scenario realizations and implementation 
of the corresponding required recourse actions is repeated throughout 
the planning horizon. However, in general, the multi-stage versions of 
sequential stochastic optimization problems are completely intractable 
(Shapiro, 2003; Powell, 2014). Therefore, this paper adopts the 
commonly used approach of using a two-stage approximation, where 
second-stage decisions are implemented assuming complete knowledge 
of the uncertainty describing each specific scenario at the start of each 
week, therefore enabling the construction of a weekly sailing schedule 
accommodating for any required recourse actions. In turn, the simula
tion of uncertain demand and weather conditions for a complete year 
allows the identification of weekly sailing schedules minimizing the 
expected cost for the complete year. 

This paper is structured in the following manner: Section 2 presents 
the literature; Section 3 presents the mathematical models for the 
deterministic version of the problem and the two-stage stochastic pro
gram with recourse; Section 4 presents the algorithm for the computa
tion of the cost of each solution; Section 5 presents the computational 
experiments; and Section 6 concludes the paper. 

2. Literature review 

Research on the SVPP under uncertainty includes papers addressing 
uncertain weather conditions (Halvorsen-Weare et al., 2012), uncertain 
demand (Kisialiou et al., 2019), and both uncertain demand and un
certain weather conditions (Halvorsen-Weare and Fagerholt, 2017). 
While commonly making use of two-phased methods combining simu
lation and optimization, the referred papers can be broadly classified 
into two main groups. In the first group, a deterministic approach is used 
to arrive at robust schedules, with robustness being introduced through 

the use of probabilistic constraints at the voyage level to accommodate 
for uncertain demand (Kisialiou et al., 2019), or the use of time slacks to 
accommodate for stochastic travel and service times resulting from 
weather uncertainty (Halvorsen-Weare et al., 2012). In the second 
group, simulation is used to determine the average undelivered demand 
for each voyage (Halvorsen-Weare and Fagerholt, 2017). Average un
delivered demand is then used to set a penalized cost to be applied to 
each voyage in a deterministic optimization procedure. A method 
similar to that of Kisialiou et al. (2019) is used by Cruz et al. (2023), who 
first generate a set of voyages by considering both uncertain demand and 
uncertain travel times and then use the corresponding voyage reliability 
level as input to an optimization model to obtain robust weekly sched
ules. In turn, Ksciuk et al. (2023) review the literature focusing on 
methods to accommodate for uncertainty in maritime routing and 
scheduling in general, including supply vessel scheduling. 

Adverse weather conditions constitute the most frequent cause for 
schedule disruption (Aas et al., 2009; Kondratenko and Тarovik, 2020; 
Rahman et al., 2019). To obtain robust schedules, Halvorsen-Weare 
et al. (2012) propose a set-covering model where a minimum time slack 
is required between the arrival at the depot and the departure for the 
next planned voyage. However, the actual robustness of the constructed 
schedules is not tested, for instance, through the use of a simulation 
model. Halvorsen-Weare and Fagerholt (2017) extend the work of 
Halvorsen-Weare et al. (2012) by using a discrete-event simulation 
model to determine the average undelivered demand for each voyage. A 
penalized cost is applied to each voyage in proportion to the average 
undelivered demand for that voyage and added to the set-covering 
model of Halvorsen-Weare et al. (2012). The authors use historical 
weather data for the winter season in the North Sea to model weather 
conditions as a stochastic process. The expected cost of the obtained 
solution is computed through the use of discrete event simulation. 
However, the authors do not consider the possibility of any recourse 
action. Note that the use of recourse is an intrinsic feature of the real 
problem faced daily by logistics planners at offshore oil and gas 
companies. 

In turn, methods to handle uncertain demand make use of probabi
listic constraints at the voyage level to ensure that the probability of 
each voyage being capable of accommodating the corresponding de
mand is above a user-defined threshold (Kisialiou et al., 2019) or upscale 
demand to allow for some variation (Halvorsen-Weare and Fagerholt, 
2017). It should be noted that Halvorsen-Weare and Fagerholt (2017) 
considers both uncertain demand and uncertain weather conditions 
through the simultaneous use of upscaled demand and the introduction 
of time slacks in the constructed schedule. 

The referred methods allow for obtaining robust solutions. However, 
the proposed methods rely on two-phased algorithms, ignoring the cost 
of recourse, or require the same reliability level for all voyages, irre
spective of their duration, number of visits or other individual features. 
Such a procedure may lead to a significant reduction of the search space 
and a sharp increase in costs, particularly as robustness is increased 
essentially through an increase in fleet size. Moreover, the expected 
schedule cost, which is the cost logistics planners at offshore oil and gas 
companies seek to minimize and which includes the cost of any recourse 
action that may be necessary in case of schedule disruption, is ignored in 
the objective function for all the referred methodologies. Therefore, 
taking into account that the aim of logistics planners at offshore com
panies is to minimize the overall schedule cost, including the cost of 
recourse, rather than maximizing robustness per se, the proposed 
methodologies can potentially lead to sub-optimal solutions. In contrast, 
a two-stage stochastic program with recourse allows the minimization of 
the expected schedule cost, including costs from any recourse actions 
that may become necessary. 

Lastly, Monte-Carlo sampling-based methods have been successfully 
applied to discrete stochastic optimization problems where explicit 
enumeration of scenarios becomes impractical. Examples of the appli
cation of such methods include vehicle routing (Dalgic et al., 2015; 
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Kenyon and Morton, 2003; Schrotenboer et al., 2019; Verweij et al., 
2003), and supply chain network design (Salehi Sadghiani et al., 2015; 
Santoso et al., 2005). Monte-Carlo simulation has also been used for the 
evaluation of solutions within heuristic optimization frameworks for 
discrete stochastic optimization problems to cope with the difficulties 
posed by simultaneous NP-hardness and intractability of full scenario 
enumeration (Alrefaei and Andradóttir, 1999; Gutjahr, 2004). The same 
general procedure is adopted in this paper through the use of a 
discrete-event simulation model within a genetic search algorithm, 
which allows coping with both the NP-hard nature of the SVPP, and the 
intractability of explicitly enumerating the combined scenarios for de
mand from the offshore installations and weather conditions. 

3. Mathematical models 

The set-covering model described in this section is an extension of 
the voyage-based model proposed by Borthen et al. (2018) for the 
deterministic version of the SVPP. In turn, Borthen et al. (2018) extend 
the formulation of Halvorsen-Weare et al. (2012) and Shyshou et al. 
(2012). A set of constraints to prevent simultaneous visits to an offshore 
installation are introduced, which are not considered by the referred 
authors. This is an important characteristic of the real problem, for both 
operational and safety reasons. The deterministic version of the problem 
termed the Expected Value Problem, ignores all sources of uncertainty. 
Afterwards, the deterministic model is extended into a stochastic setting 
to consider both demand uncertainty and uncertain weather conditions. 
A two-stage stochastic program is presented to account for the referred 
uncertainties. 

3.1. Expected value problem 

Table 1 presents the mathematical notation for the Expected Value 
Problem (EVP). R is the set of all pre-generated candidate voyages, V is 

the set of time-chartered vessels, and I is the set of all installations to 
visit, including the depot. T is the set of days in the planning horizon 
(one week), L is the set of possible voyage durations (in days), and F is 
the set of all possible visit frequencies. Additionally, I f ⊆ I is the set of 
installations with weekly visit frequency f , R v is the set of candidate 
voyages that PSV v can sail, R vi is the set of candidate voyages that 
vessel v can sail and that visit platform i and R vl is the set of candidate 
voyages of vessel v that have duration l. 

The binary decision variable δv takes the value one if vessel v is 
chartered, and zero otherwise. Binary decision variable xvrt takes the 
value one if vessel v sails voyage r starting on day, and zero otherwise. 
Parameter CTC

v is the weekly charter cost for vessel v, CSC
vr is the sailing 

cost of vessel v when sailing voyage r. Si is the number of weekly visits 
required by offshore installation i; Fv is the number of days vessel v is 
available during the planning horizon; and Bt is the maximum number of 
vessels that may be serviced at the depot on day t. Avrtid is a parameter 
that takes the value one if vessel v visits installation i on day d when 
starting voyage r on day t, and zero otherwise. The inclusion of a 
parameter Avrtid, together with the corresponding constraint, constitutes 
the major extension to the formulation proposed by Borthen et al. (2018) 
and serves to prevent multiple visits to a given offshore installation from 
occurring on the same day. Similarly to Shyshou et al. (2012), the 
spreading of departures is ensured through the use of sub-horizons of 
length hf, defined for installations requiring f visits per week, and where 
0 ≤ hf ≤ |T |. Within each sub-horizon, a minimum of Pf and a 

maximum of Pf departures from the depot is required for each instal
lation. To help make the connection between the notation and the 
problem description, and referring to Fig. 1, note that, for the particular 
solution shown in Fig. 1, the chosen candidate voyages for vessel 1 are 
the voyages visiting installations 1, 2, and 3 (voyage 1), and installations 
2 and 6 (voyage 2), while the candidate voyages chosen for vessel 2 are 
the voyages visiting installations 5, 6, and 4 (voyage 1), and installations 
7 and 8 (voyage 2). Suppose, for instance, that the set of candidate 
voyages is available and that the voyage visiting installations 1, 2, and 3 
is identified as voyage 6 in the complete set of candidate voyages (before 
choosing the voyages to be part of the optimal schedule). Then, for the 
solution shown in Fig. 1, the decision variable x1,6,1 will take the value 1, 
since, according to Fig. 1, the voyage visiting installations 1, 2, and 3 
(which would be voyage 6 in the complete set of candidate voyages) is 
chosen for vessel 1 on day 1 (Monday). 

The mathematical formulation for the deterministic version of the 
problem is: 

EVP: 
Minimize: 

∑

v∈V

CTC
v δv +

∑

v∈V

∑

r∈R v

∑

t∈T

CSC
vr xvrt (1) 

subject to: 
∑

v∈V

∑

r∈R vi

∑

t∈T

xvrt ≥ Si, i ∈ I (2)  

∑

l∈L

∑

r∈R vl

∑

t∈T

lxvrt − Fvδv ≤ 0, v ∈ V (3)  

∑

v∈V

∑

r∈R v

xvrt ≤Bt, t ∈ T (4)  

∑

v∈V

∑

r∈R v

∑

t∈T

Avrtidxvrt ≤ 1, i ∈ I , d ∈ T (5)  

∑

r∈Rvl

xvrt +
∑

r∈Rv

∑l− 1

τ=1
xvr,(t+τ)mod|T | ≤ δv, v∈V , t∈T , l ∈ L (6)  

Table 1 
Notation for the expected value problem (EVP).  

sets: 
I set of offshore installations 
V set of vessels 
R set of pre-generated candidate voyages 
T set of days in the planning horizon 
L set of possible voyage durations 
F set of possible visit frequencies 
I f set of installations with weekly visit frequency f , f ∈ F ,I f ⊆ I 

R v set of candidate voyages vessel v can sail , v ∈ V ,R v ⊆ R 

R vi set of candidate voyages vessel v can sail and which visit offshore 
installation i, i ∈ I ,v ∈ V ,R vi ⊆ R 

R vl set of candidate voyages vessel v can sail and which have duration l,
l ∈ L , v ∈ V ,R vi ⊆ R 

decision variables: 
δv ∈ {0,1} takes the value one if vessel v is chartered, and zero otherwise, v ∈

V 

xvrt ∈ {0, 1} takes the value one if vessel v sails voyage r on day t, and zero 
otherwise, v ∈ V , r ∈ R , t ∈ T 

parameters: 
CTC

v weekly time charter cost for vessel v, v ∈ V 

CSC
vr sailing cost of vessel v when sailing voyage r,v ∈ V , r ∈ R 

Si number of weekly visits required by offshore installation i, i ∈ I 

Fv number of days vessel v is available during the planning horizon, v ∈

V 

Bt maximum number of vessels that may be loaded at the supply depot 
on day t, t ∈ T 

Avrtid ∈ {0, 1} takes the value one if vessel v visits installation i on day d when 
starting voyage r on day t, and zero otherwise, v ∈ V , r ∈ R, i ∈ I ,

d ∈ T 

hf length of sub-horizons for installations requiring f visits per week, 
f ∈ F 

Pf maximum number of departures within each sub-horizon hf for each 
considered offshore installation 

Pf minimum number of departures within each sub-horizon hf for each 
considered offshore installation  
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Pf ≤
∑

v∈V

∑

r∈Rvi

∑hf

τ=0
xvr,(t+τ)mod|T | ≤Pf , i∈ J f , f ∈F , t ∈ T (7)  

δv ∈{0, 1}, v ∈ V (8)  

xvrt ∈{0, 1}, v ∈ V , r ∈ R , t ∈ T (9) 

The objective function (1) minimizes the sum of time-charter costs 
and voyage costs. Constraints (2) ensure that each installation is visited 
the required number of times. Constraints (3) ensure that each vessel 
does not sail more days than the number of days for which that vessel is 
available. Constraints (4) ensure that, on any given day, the number of 
vessels that are serviced at the depot cannot be greater than the 
maximum number of vessels that can be serviced at the depot on that 
same day. Constraints (5) ensure that each installation is visited at most 
by one vessel on any given day. Note that for constraints (5) to prevent 
multiple visits from occurring on the same day for a given installation, 
time windows must also be in place for that installation. Concretely, 
time windows must be set in such a manner to prevent a visit from being 
under way at 0 h. For the problem at hand, time windows are assumed to 
be in place for all installations. Therefore, constraints (5) are sufficient 
to prevent the occurrence of multiple visits on the same day. To help 
clarify why constraints (5) can prevent multiple visits from occurring on 
the same day for a given installation only if time windows are in place, 
consider Fig. 2. For illustration purposes, a single offshore installation is 
considered together with two supply vessels. Moreover, two settings are 
considered: setting A, with no time windows in place, and setting B, with 
time windows. If no time windows are in place, constraints (5) are not 
able to prevent a situation such as that illustrated by setting A. In 
particular, constraints (5) only prevent more than one visit for a given 
installation from starting on the same day. In the figure, for setting A, the 
visit for PSV 1 starts on day 1 and the visit for PSV 2 starts on day 2. 
However, this is not sufficient for the two vessels to have some overlap, i. 
e. PSV 1 is still servicing the installation at the moment PSV 2 starts the 
visit. Constraints (5) do not prevent a situation such as that in setting A. 
However, if time windows are in place, as in setting B, then constraints 
(5) prevent the existence of overlap since visits must start on different 
days. Therefore, if time windows are in place, as in setting B, constraints 
(5) are sufficient to prevent simultaneous visits to an offshore installa
tion (i.e., prevent the existence of visit overlap). 

In turn, constraints (6) prevent a vessel from starting a new voyage 
before returning to the depot from the previous voyage. Lastly, con
straints (7) ensure the spreading of departures to a given offshore 
installation throughout the planning horizon. Note that the use of the 
modulus operator (mod) in constraints (6) and constraints (7) is 
required to handle the rolling nature of the planning horizon (i.e., end- 
of-week effects). Considering that there are seven days in one week 
(numbered zero to six), for instance, a voyage planned to start on day 
five and having a duration of three days, would end on day eight (five 
plus three), therefore outside the duration of one week (seven days). But 
to be able to model the problem in terms of weekly planning, day eight 

corresponds to day one (8 mod 7), that is, the second day of the 
following week, therefore enabling planning to be made for a rolling 
horizon of one week (i.e., for a schedule that is repeated weekly). 

3.2. Two-stage stochastic programming with recourse 

Two major changes are introduced in the expected value problem 
formulation to provide for an extension into a stochastic setting. First, a 
set of scenarios Ω is introduced, where each scenario ∈ Ω , corresponds 
to a combination of particular realizations of sea states and demands. 
Second, recourse actions are introduced to ensure feasibility upon 
realization of a given ∈ Ω . Similarly to Kisialiou et al. (2019), three 
types of recourse actions are considered: voyage completions, additional 
voyages, and emergency voyages. Recourse actions serve to ensure the 
delivery of demand from failed voyages, where a failed voyage is a 
planned voyage for which, upon realization of a specific scenario for 
demand and weather conditions, the vessel originally planned to 
perform the voyage is unable to transport all the required demand (e.g., 
the realized demand for the specific realized scenario is larger than that 
in the originally planned voyage and surpasses the capacity of the vessel 
originally assigned to perform the voyage). 

A voyage completion is defined as in Novoa et al. (2006): a vessel that 
has completed its planned voyage may, in addition, serve one or more 
installations from failed voyages before returning to the depot. The cost 
of a voyage completion is the sum of the costs from servicing the addi
tional offshore installations and returning to the depot minus the cost of 
sailing from the last visited offshore installation in the originally plan
ned voyage to the depot. A planned voyage may have more than one 
candidate voyage completion. However, at most one voyage completion 
is undertaken for each planned voyage. Note that a voyage completion 
corresponds to a sequence of visits to be performed after the visits in the 
originally planned voyage have been performed and before the vessel 
returns to the depot. Therefore, for a given voyage, a single vessel can 
perform at most one sequence of additional visits before returning to the 
depot, i.e., a vessel cannot perform two voyages in parallel at the same 
time. So, for each planned voyage, at most one voyage completion is 
undertaken. 

An additional voyage is a voyage not included in the planned schedule 
and which is performed by an idle vessel to service installations from 
failed voyages. An idle vessel is a vessel in the chartered fleet, i.e., a 
vessel assigned to perform at least one voyage in the planned schedule, 
but which is not performing any voyage on the day the additional 
voyage is started. Moreover, an additional voyage is feasible for a given 
vessel only if that vessel can return to the depot on time to perform its 
next planned voyage, so as not to disrupt the remainder of the planned 
schedule. 

Lastly, emergency voyages are voyages performed by additional ves
sels not belonging to the originally chartered fleet and which, therefore, 
are not assigned to perform any voyage in the originally planned 
schedule. Each additional vessel is assumed to perform a single 

Fig. 2. Illustration of constraints to prevent simultaneous visits to an offshore installation.  
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additional voyage, with the costs of usage of such vessels corresponding 
to the sum of chartering costs and voyage costs. Note that additional 
vessels do not belong to the long-term chartered fleet and are instead 
chartered to perform single voyages. 

Table 2 shows the set notation for the two-stage stochastic program, 
while Table 3 and 

Table 4 show, respectively, the corresponding decision variables and 
parameters. Note that some of the decision variables in the two-stage 
stochastic program are in common with the expected value formula
tion presented in the previous section. Similar to the deterministic 
formulation, the decision variable δv is equal to one if vessel v is char
tered, and zero otherwise; and decision variable xvrt is equal to one if 
vessel v sails voyage r starting on day t, and zero otherwise. Together, 
decision variables δv and xvrt correspond to the set of first stage de
cisions. Decision variable yvctω is equal to one if vessel v performs voyage 
completion c for a voyage starting on day t in scenario ω, and zero 
otherwise; zvatω is equal to one if vessel v sails additional voyage a on day 
t in scenario ω, and zero otherwise; δuω is equal to one if additional vessel 
u is chartered in scenario ω and zero otherwise; and wuetω is equal to one 
if additional vessel u sails emergency voyage e starting on day t in sce
nario ω, and zero otherwise. Note that each scenario ω corresponds to a 
particular realization of demands and weather conditions. Therefore, for 
a given voyage r visiting some set of installations, under a specific sce
nario ω1, the realization of demands may by such that the total demand 
for voyage r is larger than the capacity of vessel v, and therefore, vessel v 
cannot sail voyage r under scenario ω1. In turn, in a different scenario 
ω2, the realization of demands for the same voyage r visiting the same 
set of installations may be such that the total demand for the voyage is 
smaller than the capacity of vessel v and, therefore, vessel v can sail 
voyage r under scenario ω2. 

The mathematical formulation for the two-stage stochastic program 
is: 

SPR: 
Minimize: 

∑

v∈V

CTC
v δv +

∑

v∈V

∑

r∈R v

∑

t∈T

CSC
vr xvrt +

∑

ω∈Ω

∑

t∈T

∑

v∈V

Prω

(
∑

c∈C vϖ

CSC
vcωyvctω +

∑

a∈A vω

CSC
vaωzvatω

)

+
∑

ω∈Ω

∑

t∈T

∑

u∈U

Prω

(
∑

e∈E uω

CSC
ueωwuetω +CTC

u δuω

)

(10) 

subject to:  

set covering (EVP): (2),(3),(6),(7),(8),(9)                                           (11) 

∑

v∈V

(
∑

r∈R v

xvrt +
∑

a∈A vω

zvatω

)

+
∑

u∈U

∑

e∈E uω

wuetω ≤Bt, t∈T ,ω ∈ Ω (12)  

∑

t∈T

∑

v∈V

(
∑

r∈R vω

Avrtidωxvrt +
∑

c∈C vω

Avctidωyvctω +
∑

a∈A vω

Avatidωzvatω

)

+
∑

t∈T

∑

u∈U

∑

e∈εuω

Auetidωwuetω ≤ 1, i∈I , d ∈T ,ω ∈ Ω
(13)  

∑

e∈E uω

∑

t∈T

wuetω ≤ δuω, u∈U ,ω ∈ Ω (14)  

Table 2 
Set notation for the two-stage stochastic program with recourse.  

sets: 
Ω set of scenarios 
R vω set of planned voyages vessel v can sail in scenario ω,v ∈ V ,ω ∈ Ω 
R viω set of planned voyages vessel v can sail and which visit installation i in 

scenario ω,v ∈ V ,ω ∈ Ω, i ∈ I 

R vlω set of planned voyages vessel v can sail in scenario ω and which have duration 
l, v ∈ V , l ∈ L ,ω ∈ Ω 

Cω set of voyage completions in scenario ω,ω ∈ Ω 
Crω set of voyage completions for planned voyage r in scenario ω, r ∈ R ,ω ∈ Ω 
Crvω set of voyage completions for planned voyage r vessel v can sail in scenario ω,

r ∈ R , v ∈ V ,ω ∈ Ω 
Cviω set of voyage completions vessel v can sail and which visit installation i in 

scenario ω,v ∈ V , i ∈ I ,ω ∈ Ω 
Crviω set of voyage completions for planned voyage r vessel v can sail and which 

visit installation i in scenario ω, r ∈ R ,v ∈ V , i ∈ I ,ω ∈ Ω,Crviω ∈ Cviω 
A ω set of additional voyages for vessels in the planned schedule in scenario ω,ω ∈

Ω 
A vω set of additional voyages vessel v can sail in scenario ω,v ∈ V ,ω ∈ Ω 
A viω set of additional voyages vessel v can sail and which visit installation i in 

scenario ω,v ∈ V , i ∈ I ,ω ∈ Ω 
L a set of possible additional voyage durations 
U set of additional vessels 
E ω set of emergency voyages in scenario ω,ω ∈ Ω 
E uω set of emergency voyages additional vessel u can sail in scenario ω,u ∈ U ,ω ∈

Ω 
E uiω set of emergency voyages additional vessel u can sail and which visit 

installation i in scenario ω,u ∈ U , i ∈ I ,ω ∈ Ω  

Table 3 
Second stage decision variables for the two-stage stochastic program with 
recourse.  

decision variables: 
yvctω ∈ {0, 1} takes the value one if vessel v sails voyage completion c for a voyage 

starting on day t in scenario ω, and zero otherwise, v ∈ V ,c ∈ C vω,

t ∈ T ,ω ∈ Ω 
zvatω ∈ {0, 1} takes the value one if vessel v sails additional voyage a on day t in 

scenario ω, and zero otherwise, v ∈ V ,a ∈ A vω, t ∈ T ,ω ∈ Ω 
wuetω ∈ {0, 1} takes the value one if additional vessel u sails emergency voyage e 

starting on day t in scenario ω, and zero otherwise, u ∈ U ,e ∈ E uω,

t ∈ T ,ω ∈ Ω 
δuω ∈ {0, 1} takes the value one if additional vessel u is chartered in scenario ω, 

and zero otherwise, u ∈ U ,ω ∈ Ω  

Table 4 
Parameters for the two-stage stochastic program with recourse.  

parameters: 
Prω Probability of scenario ω,ω ∈ Ω 
Siω number of visits required by installation i in scenario ω, i ∈ I ,ω ∈

Ω 
CSC

vr expected value of the sailing cost of vessel v when sailing voyage 
v ∈ V , r ∈ R v 

CSC
vcω sailing cost of vessel v when sailing voyage completion c in scenario 

ω, v ∈ V , c ∈ C vω,ω ∈ Ω 
CSC

vaω sailing cost of vessel v when sailing additional voyage a in scenario 
ω, v ∈ V ,a ∈ A vϖ ,ϖ ∈ Ω 

CSC
ueω sailing cost of additional vessel u when sailing emergency voyage e 

in scenario ω,u ∈ U ,e ∈ E uω,ω ∈ Ω 
CTC

u weekly chartering costs of additional vessel u,u ∈ U 

Avrtidω ∈ {0, 1} takes the value one if vessel v visits installation i on day d when 
starting voyage r on day t in scenario ω, and zero otherwise, v ∈ V ,

r ∈ R , i ∈ I , t,d ∈ T ,ω ∈ Ω 
Avctidω ∈ {0, 1} takes the value one if vessel v visits installation i on day d when 

sailing voyage completion c for a voyage starting on day t in 
scenario ω, and zero otherwise, v ∈ V ,c ∈ C vω,i ∈ I ,t,d ∈ T ,ω ∈

Ω 
Avatidω ∈ {0, 1} takes the value one if vessel v visits installation i on day d when 

starting additional voyage a on day t in scenario ω, and zero 
otherwise, v ∈ V ,a ∈ A vω, i ∈ I , t,d ∈ T ,ω ∈ Ω 

Auetidω ∈ {0, 1} takes the value one if vessel v visits installation i on day d when 
starting emergency voyage e on day t in scenario ω, and zero 
otherwise, u ∈ U ,e ∈ E uω, i ∈ I , t,d ∈ T ,ω ∈ Ω  
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∑

t∈T

∑

v∈V

(
∑

r∈R viω

xvrt +
∑

c∈C viω

yvctω +
∑

a∈A viω

zvatω

)

+
∑

t∈T

∑

u∈U

∑

e∈E uiω

wuetω ≥ Siω, i∈I ,ω ∈ Ω
(15)  

xvrt −
∑

c∈C rvω

yvctω ≥ 0, v ∈ V , r ∈ R , t ∈ T ,ω ∈ Ω (16)  

∑

a∈A vωl

zvatω +
∑la − 1

τ=1

(
∑

r∈R vω

xvr,(t+τ)mod|T | +
∑

a∈A vω

zva,(t+τ)mod|T |ω

)

≤ δv, v∈V , t∈T , la ∈L a,ω ∈ Ω

(17)  

∑

r∈R vl

xvrt +
∑l− 1

τ=1

(
∑

r∈R vω

xvr,(t+τ)mod|T | +
∑

a∈A vω

zva,(t+τ)mod|T |ω

)

≤ δv, v∈V , t∈T , l∈L ,ω ∈ Ω

(18)  

yvctω ∈{0, 1}, v ∈ V , c ∈ C ϖ , t ∈ T ,ω ∈ Ω (19)  

zvatω ∈{0, 1}, v ∈ V , a ∈ A ϖ , t ∈ T ,ω ∈ Ω (20)  

wuetω ∈{0, 1}, u ∈ U , e ∈ E , t ∈ T ,ω ∈ Ω (21)  

δuω ∈{0, 1}, u ∈ U ,ω ∈ Ω (22) 

The objective function (10) minimizes the sum of chartering costs 
and voyage costs. Chartering costs include those from vessels in the 
planned fleet and those from using additional vessels. Voyage costs 
include costs from planned voyages, voyage completions, additional 
voyages, and emergency voyages. Constraints (12) ensure that the 
number of departures from the depot does not exceed the maximum 
number of vessels that can be serviced at the depot each day; constraints 

(13) prevent multiple visits to the same offshore installation on the same 
day, where visits can result from planned voyages, voyage completions, 
additional voyages, and emergency voyages; constraints (14) ensure 
that each additional vessel performs a single voyage; constraints (15) 
ensure that each offshore installation is visited the required number of 
times under all scenarios; constraints (16) ensure that at most one 
voyage completion is used for each planned voyage; and constraints (17) 
ensure that a vessel cannot start a planned voyage or an additional 
voyage before returning to the depot from an additional voyage, and 
constraints (18) ensure that a vessel cannot start a planned voyage or an 
additional voyage before returning to the depot from a planned voyage. 

4. Algorithm 

The expected value problem and the two-stage stochastic program 
are solved using a modified version of the hybrid genetic search with 
adaptive diversity control (HGSADC) proposed by Vidal et al. (2012) for 
the Periodic Vehicle Routing Problem and adapted by Borthen et al. 
(2018) for the Supply Vessel Planning Problem. In the HGSADC, the 
fitness function accounts for the cost of an individual and its contribu
tion to population diversity. Algorithm 1 provides an overview of the 
HGSADC algorithm. The modifications introduced in the HGSADC when 
compared to Borthen et al. (2018) correspond essentially to the fitness 
evaluation phase (line 7 in Algorithm 1). While Borthen et al. (2018) 
consider only a deterministic setting, here, Monte Carlo simulation is 
used to simulate each schedule and compute the corresponding expected 
cost. Additionally, time-windows are considered here, as well as the 
prevention of simultaneous visits to each offshore installation. Both of 
these aspects are absent from Borthen et al. (2018). 

Algorithm 1. hybrid genetic search with adaptive diversity control  
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Concretely, when adapting the HGSADC for a two-stage stochastic 
programming algorithm, the cost of each solution is computed through 
the use of a discrete-event simulation engine. The discrete-event simu
lation engine considers both uncertain demand and uncertain weather 
conditions. Recourse actions which are required upon schedule disrup
tion are also accounted for in the simulation procedure. Algorithm 2 
provides an overview of the schedule simulation procedure used to 
compute the fitness function, where U corresponds to total undelivered 
demand. Note that a schedule s in Algorithm 2 corresponds to a solution 
s (snew) in Algorithm 1. Moreover, the aim of Algorithm 2 is to compute 
the fitness for each individual (i.e., the expected cost for each schedule), 
which is used in the HGSADC to select individuals for the crossover 
operation. 

Algorithm 2. schedule simulation 

In turn, it should be noted that the simulation procedure described in 
Algorithm 2 corresponds to sampling of the scenarios described in sec
tion 3, i.e., demand and weather conditions are simulated and the cost 
for each sampled scenario is computed according to Algorithm 2. In 
particular, if some demand cannot be met by the corresponding planned 
voyage, an attempt is made to allocate that demand to a voyage 
completion. Voyage completions are considered for planned voyages 
departing on the same day as the failed voyage. If no voyage completion 
is feasible, then an attempt is made to allocate the undelivered demand 
to an idle vessel, i.e., to an additional voyage for a vessel in the planned 
schedule but which is not undertaking any voyage on the departure day 
for the failed planned voyage. Lastly, if additional voyages are also not 
feasible for the undelivered demand, an additional vessel is used for the 
transport using an emergency voyage. Note that it is assumed that there 
is no limit to the number of additional vessels which may be chartered to 
ensure the delivery of demand. In case there is a limit to the number of 
additional vessels that may be chartered in a realistic setting, the cost for 
the demand handled by additional vessels can be interpreted as the cost 
of unserviced cargo. Nonetheless, and regardless of the interpretation of 
such costs, when the procedure terminates, all demand will have been 
assigned to either some planned voyage or delivered through some 
recourse action. 

Recourse actions are attempted in a sequence corresponding to 
sorting the corresponding costs by ascending order. The least cost 

recourse action corresponds to reallocating demand from a given failed 
voyage to another voyage that is already planned to occur, i.e., a voyage 
completion. The next in order least cost recourse action corresponds to 
allocating the demand from failed voyages to another vessel that has 
already been chartered but which is not currently being used, i.e., an 
additional voyage assigned to an idle vessel. Lastly, the recourse action 
corresponding to a steeper increase in costs corresponds to the use of an 
additional vessel, requiring not only voyage costs but also additional 
charter costs to be incurred in. 

4.1. Weather uncertainty 

Weather conditions are the most significant source of uncertainty 
and schedule disruption in the SVPP (Aas et al., 2009). Such uncertainty 
is accounted for in the simulation engine by modelling sea states as a 
stochastic process. Similarly to Halvorsen-Weare and Fagerholt (2017), 
sea states are modelled through the use of a discrete-time Markov chain. 
However, Halvorsen-Weare & Fagerholt (2017) consider weather con
ditions only for the winter season as the aim is to directly increase 
schedule robustness. In contrast, the method presented here aims at 
minimizing the expected schedule cost while taking into account the 
variability in weather conditions observed throughout the year, 
including any seasonality effects. Seasonality effects are captured 
through the use of a state transition probability matrix specific to each 
month. The initial state is randomly selected by considering the limiting 
distribution for the Markov chain for the first month. Once the sea states 
corresponding to the first month have been determined, the initial state 
for the second month is set to correspond to the last visited state in the 
first month. The procedure continues until sea states for a complete year 
have been obtained through the sequential use of transition probability 
matrices for the corresponding months. Note that while the procedure is 
illustrated here by planning for a complete year, a different number of 
months may be used depending on the specifics of each planning sce
nario and the foreseen need to make changes to the planned schedule, 
which are usually the result of changes in demand from the offshore 
installations. 

Once a particular realization of sea states has been obtained for a 
complete year, the values of such sea states are used for the computation 
of both voyage and service times. In particular, sea states are considered 
to have the same impacts on sailing speed and service time as those 
considered in Halvorsen-Weare and Fagerholt (2017) shown in Table 5. 

4.2. Simulation of planned voyages, voyage completions and emergency 
voyages 

The simulation procedure for planned voyages is detailed in Algo
rithm 3 and Algorithm 4. All vessels in the planned schedule are required 
to return to the depot on time for the next planned voyage. Therefore, 
planned voyages may be simulated for a complete year to determine the 
need for any recourse action to be implemented. Furthermore, a pro
cedure is used to ensure the feasibility of planned voyages in terms of 
vessel capacity, where the smallest simulated demands are removed 
until the total remaining cargo for the planned voyage is smaller than or 
equal to the capacity of the vessel assigned to perform that voyage. In 
Algorithm 3, as in Algorithm 2, U corresponds to total undelivered 

Table 5 
Impact of sea states on sailing speed and service time [adapted from Halvor
sen-Weare and Fagerholt (2017)].  

sea 
state 

significant wave 
height [m] 

change in sailing 
speed [kn] 

change in service 
time [%] 

1 ≤ 2.5 0 0% 
2 (2.5, 3.5] 0 +20% 
3 (3.5, 4.5] − 2 +30% 
4 > 4.5 − 3 waiting on weather  
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demand. To keep track of the corresponding installation and day for 
which there is undelivered demand (and allow a subsequent application 
of some recourse action) information on the installation i and the day t 
for which there is undelivered demand is kept in U. 

Algorithm 3. simulation of planned voyages 

Note that Algorithm 3 is embedded in Algorithm 2 and serves only to 
simulate the planned voyages and obtain the corresponding undelivered 
demand, as signalled in Algorithm 2. No recourse actions are mentioned 
or outlined in Algorithm 3. All recourse actions are outlined in Algo
rithm 2. 

For additional visits inserted into planned voyages through voyage 
completions, the least insertion cost criteria are adopted, followed by the 
application of a best feasible 2-OPT exchange heuristic. Note that the 
referred heuristic is applied only for additional visits inserted into 
voyage completions, and not to the visits in the originally planned 
voyage. Visits in the originally planned voyage are kept in the same 
order as in the planned schedule, as schedule regularity is favoured over 
cost minimization. Moreover, the same heuristic procedure is applied to 
both additional voyages and emergency voyages. The use of the greedy 
procedure allows for a decrease in the computational effort when 
compared to an exact solution approach, enabling the simulation pro
cedure to be embedded within the genetic search algorithm. However, 
taking into account that, on the one hand, in a typical setting, chartering 
costs are significantly higher than voyage costs, and on the other hand, 
recourse actions are attempted in order of increasing costs, the adopted 
general greedy procedure should provide for a good approximation to an 
exact solution approach. Lastly, to approximate the expected cost of 
each solution, 30 simulation runs are performed for each schedule, with 
each run corresponding to a complete year. While in Algorithms 2 and 3, 
U corresponds to the set of all undelivered demands, in Algorithm 4 u is 
the set of undelivered demands for a single planned voyage (i.e., the set 
of all u is the set U). In line 4, the value of the smallest simulated demand 
for a given voyage is assigned to ui. where the subscript i refers to the 
installation having the demand ui. While the criterion in the iteration is 
always choosing the smallest demand when total demand is still larger 
than the capacity of the vessel, keeping track of the information on the 
corresponding installation (i) is required to enable subsequent recourse 
actions to be applied, i.e., to have information on which installations to 
visit through voyage completions, additional voyages, or emergency 
voyages. If the installation information i is not recorded, then it would 
not be possible to know which installations require recourse and which 
do not. Additionally, Algorithm 4 simulates each planned voyage in two 
steps. First (steps 1 to 7 in Algorithm 4), installations are removed from 
the voyage until feasibility is achieved in terms of the capacity of the 
vessel. Afterwards (steps 8 to 16 in Algorithm 4), and considering the 
impact of weather conditions on sailing speed, feasibility in terms of 
travel time is also ensured by removing each installation if performing 

the corresponding visit would prevent the vessel from returning to the 
depot on time for the next planned voyage. 

Algorithm 4. simulation of a single planned voyage 

5. Computational experiments 

The proposed two-stage stochastic programming algorithm was 
tested on problem instances constructed from data for the Santos Basin 
in Brazil. In particular, problem instances with five, 10, 15, 20, and 25 
offshore installations were generated, with the average distance from 
the onshore depot being 250 km. In a realistic setting for Santos Basin, in 
Brazil, a fleet of PSVs harboured at a single port is planned to serve 
approximately 20 offshore installations. The majority of the offshore 
installations require two weekly visits, while the smaller installations 
require only one visit per week. Moreover, historical data was used for 
both the modelling of weather conditions and for the construction of 
probabilistic models for the simulation of demand. Demand for each 
visit is modelled as a random variable following a negative binomial 
distribution (r,p), where r is the number of successes and p is the prob
ability of success, with r = 3 and p = 0.05. 

Two types of costs are computed for each solution: the planned cost, 
and the expected cost. Planned schedule cost is computed by assuming 
all random variables to take a value equal to the corresponding expected 
value, i.e., by solving the expected value problem presented in Section 
3.1. Planned cost includes both voyage costs and charter costs for vessels 
in the planned schedule. In turn, the expected schedule cost is computed 
by considering the probabilistic models for each random variable. Ex
pected schedule cost includes costs computed from the simulation of 
voyages as well as charter costs. In particular, voyage costs included in 
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the expected schedule cost are costs computed from the simulation of 
planned voyages, voyage completions, additional voyages, and emer
gency voyages. In turn, charter costs included in the expected schedule 
cost are charter costs for vessels in the planned schedule and charter 
costs for additional vessels used for emergency voyages. To compute the 
expected schedule cost for the solution from the deterministic approach, 
simulation is applied as a last step in the algorithm for the Expected 
Value Problem, while for the two-stage stochastic program, simulation is 
applied at each iteration of the algorithm. While in Brazil no functioning 
spot market exists allowing for the hiring of vessels on short notice, the 
computed recourse cost should be interpreted as an approximation to 
the investment cost that would be required for chartering vessels 
through long-term charters to be able to fulfil the demand from the 
required emergency voyages. 

The algorithms were coded in Java programming language and 
compiled with JavaSE-1.8.0_231. The computational experiments were 
conducted on a computer with 8 GB of RAM and a 1.80 GHz processor. 

Both Table 6 and Fig. 3 show that the two-stage stochastic program 
with recourse provides for an expected cost which is lower than that 
obtained through the use of the deterministic approach commonly used 
by logistics planners at offshore oil and gas companies. In particular, 
savings from the application of the stochastic program range from 
approximately 55 thousand USD per week for the problem instance with 
five installations, thereby leading to annual savings of approximately 
three million USD, to 154 thousand USD per week for the problem 
instance with 25 installations, thereby leading to annual savings of 
approximately 8 million USD. In relative terms, savings from using the 
stochastic program over the deterministic algorithm correspond to an 
average decrease in costs of approximately 12%. Table 6 also shows that 
there is a steep increase in the computational effort required for the 
stochastic programming approach. Note that each method was run 20 
times, and the reported results correspond to an average of such runs. In 
particular, note that the fractional result for the size of the chartered 
fleet reported in Table 6 for the problem instance with 25 installations 
(EVP) results from the fact that for some runs of the HGSADC (i.e., with 
some particular seeds for the genetic algorithm), the output fleet size 
was 5, whereas for others the output fleet size was 4, and averaging over 
the 20 runs resulted in an average fleet size of 4.67 vessels. 

In turn, such a steep increase in computational effort may seem to 
defeat one of the main purposes of using a heuristic approach, which is 
to provide a good solution in a relatively short computational time. 
However, the magnitude of the savings obtained from using the sto
chastic programming approach should largely compensate for the in
crease in required computational time. Moreover, since the SVPP is not 
an operational planning problem, but rather a problem in which de
cisions pertaining to the long term, i.e. the SVPP is a strategic planning 
problem, computational times shown in Table 6 should not prevent the 
practical application of the proposed methodology given the magnitude 
of the obtained costs savings. 

To investigate the relative impact of uncertain weather conditions 

and uncertain demand, Table 7 shows the results from optimizing 
against demand uncertainty only, against weather uncertainty, and 
against both demand uncertainty and weather uncertainty. For the three 
approaches, in the last iteration of the algorithm, the simulation ac
counts for both demand uncertainty and weather uncertainty. For 
instance, when assessing the expected cost from optimizing against de
mand uncertainty only (referred to in Table 7 as SPR, demand), at every 
iteration of the algorithm, simulation accounts for only demand uncer
tainty, whereas weather is modelled to take a value equal to the corre
sponding expected value. However, in the last iteration, the simulation 
also incorporates weather uncertainty. Therefore, for the three tested 
approaches, simulation is performed in the same manner in the last 
iteration, i.e., including both demand uncertainty and weather 
uncertainty. 

Table 7 shows that, for the tested problem instances, weather un
certainty plays a minor role. Solutions obtained from solving the sto
chastic program accounting only for weather uncertainty approximate 
those obtained from solving the expected value problem, which is seen 
when comparing results from Table 7 to those in Table 6. Therefore, 
demand accounts, by far, for most of the uncertainty in the tested 
problem instances. This falls in line with empirical observation of 
offshore logistics in Brazil, where a considerable variation in demand is 
observed between offshore installations and also from week to week for 
a single offshore installation (Leite, 2012). In contrast, weather condi
tions in Santos Basin are seldom adverse. Table 8 shows the observed 
frequency for each sea state, where sea states are defined as in Table 5, 
from historical data for Santos Basin in Brazil. 

From Table 8 it can be seen that sea states 1 and 2 account for 
approximately 96% of the observed sea states throughout the year. 
Recall from Table 5 that sea states 1 and 2 have no impact on the sailing 
speed of the vessel, and that sea state 1 has no impact on service time. 
Furthermore, even when considering the worse month, where worse is 
defined as the month having the highest frequency for the most severe 
sea states, i.e., the month of May, sea states 1 and 2 still account for 
approximately 92% of the observed sea states. Therefore, the impact of 
simulated sea states will, for the vast majority of cases, be essentially 
equivalent to that observed if instead a sea state equal to the expected 
value is used, i.e., sea state 1. Therefore optimizing against weather 
uncertainty only leads to solutions which are similar to those obtained 
from solving the expected value problem. This can be seen from the fact 
that costs for the expected value problem (shown in Table 6) are of the 
same order of magnitude as those shown in Table 7 for the stochastic 
program accounting for weather uncertainty only. As a result, opti
mizing against weather uncertainty only essentially adds no robustness 
when compared to that observed when using the expected value 
approach. In contrast, optimizing against uncertain demand provides, 
by far, most of the added robustness when compared to that from the 
expected value problem, a situation which agrees with previous 
empirical analysis of offshore logistics in Brazil. Note that this situation 
is in sharp contrast with that observed, for instance, in the North Sea, 

Table 6 
Summary results from solving the expected value problem (EVP), and the two-stage stochastic program with recourse (SPR) (results averaged over 20 runs for each 
methodology).  

# installations/# weekly 
visits 

solution planned cost 
[103 USD] 

expected cost 
[103 USD] 

size of chartered 
fleet 

expected number of additional 
PSVs 

CPU time [secs] 

5/9 EVP 381.17 442.98 2 0.33 56.88 
5/9 SPR 382.58 388.08 2 0.03 233.19 
10/18 EVP 388.70 665.53 2 1.52 287.94 
10/18 SPR 392.08 594.53 2 1.10 1532.23 
15/26 EVP 580.06 911.14 3 1.80 613.41 
15/26 SPR 585.82 824.62 3 1.28 3529.17 
20/36 EVP 772.76 1205.49 4 2.34 1146.15 
20/36 SPR 779.85 1075.97 4 1.57 6721.02 
25/45 EVP 909.37 1437.68 4.67 2.83 1893.28 
25/45 SPR 971.80 1283.36 5 1.57 12415.26  

A.M.P. Santos et al.                                                                                                                                                                                                                            



Ocean Engineering 278 (2023) 114428

11

where weather conditions account for most of the uncertainty in 
offshore logistics. 

Nonetheless, it can be seen from Tables 6 and 7 that, while the 
benefits from optimizing against uncertain demand greatly outweigh 
those from optimizing against uncertain weather conditions for the 
tested problem instances, there is still some benefits from optimizing 
against uncertain weather conditions. This is seen from the fact that the 
expected cost obtained from optimizing against uncertain weather 
conditions is smaller than that obtained from solving the expected value 
problem. 

Lastly, Fig. 4 shows two solutions with one being obtained through 
the use of the deterministic approach (EVP), and the other through the 
use of the two-stage stochastic programming method. In Fig. 4, the 
sailing legs for each vessel are coloured in grey, while visits to 

Fig. 3. Expected costs for the deterministic approach and the stochastic programming methodology for problem instances with five, 10, 15, 20, and 25 installations. 
EVP = expected value problem; SPR = two-stage stochastic programming with recourse. 

Table 7 
Summary results from solving the two-stage stochastic program with recourse (SPR) accommodating for only demand uncertainty, only weather uncertainty, and both 
demand and weather uncertainty simultaneously.  

# installations/# weekly 
visits 

solution planned cost 
[103 USD] 

expected cost 
[103 USD] 

size of chartered 
fleet 

expected number of additional 
PSVs 

CPU time 
[secs] 

5/9 SPR, demand 382.89 390.88 2 0.04 196.58 
5/9 SPR, weather 381.65 434.51 2 0.13 192.05 
5/9 SPR, demand +

weather 
382.58 388.08 2 0.03 233.19 

10/18 SPR, demand 393.13 604.14 2 1.14 854.73 
10/18 SPR, weather 389.42 661.48 2 1.49 932.67 
10/18 SPR, demand +

weather 
392.08 594.53 2 1.10 1532.23 

15/26 SPR, demand 586.01 837.03 3 1.35 1876.54 
15/26 SPR, weather 582.17 902.81 3 1.77 1989.24 
20/36 SPR, demand +

weather 
585.82 824.62 3 1.28 3529.17 

20/36 SPR, demand 779.14 1093.46 4 1.66 4376.92 
20/36 SPR, weather 775.64 1194.16 4 2.29 4494.29 
20/36 SPR, demand +

weather 
779.85 1075.97 4 1.57 6721.02 

25/45 SPR, demand 962.06 1291.17 4.88 1.69 7389.24 
25/45 SPR, weather 910.29 1424.23 4.57 2.98 8425.02 
25/45 SPR, demand +

weather 
971.80 1283.36 5 1.57 12415.26  

Table 8 
Observed frequency for each sea state from historical data for Santos Basin in 
Brazil, considering all year and only for the month showing the highest fre
quency for sea states three and four (month of May) (weather data collected 
from NOOA [n.d.]).  

state frequency (all year) frequency (month of May)  

1 0.727 0.680  
2 0.232 0.240  
3 0.043 0.062  
4 0.008 0.019   
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installations are in white. All voyages start from the depot, where the 
loading operations start at 8h00 and end at 19h00. 

It can be seen that the solutions are similar. However, the first voyage 
for PSV 2 has a shorter duration in the deterministic approach, which 
would contribute to a smaller planned cost. However, between the 
arrival of PSV 2 from its first voyage and the departure for the second 
planned voyage, there is relatively little slack, which makes the solution 
less robust. In contrast, the first weekly voyage for PSV 2 in the sto
chastic programming method has a longer duration, which contributes 
to the planning cost for the stochastic solution being larger than that for 
the deterministic approach. However, in the solution for the stochastic 
method, there is also slacker between the arrival of PSV 2 from the first 
voyage and the departure for the second voyage, which makes the 
schedule more robust, and therefore, it is likely to need fewer recourse 
actions to compensate for any failed voyages. 

6. Conclusion 

This paper presents a two-stage stochastic programming algorithm 
with recourse for the supply vessel planning problem under uncertain 
demand and uncertain weather conditions. Both uncertain demand and 
uncertain weather conditions are frequent causes of schedule disruption 
in offshore logistics. Such disruption makes it necessary to implement 
costly recourse actions to ensure the delivery of cargo from failed voy
ages. Recourse actions include the relocation of visits to other planned 
voyages, performing additional voyages, and the use of additional ves
sels chartered specifically to ensure the delivery of demand from failed 
voyages. Alternative methodologies accommodating both demand and 
weather uncertainty, rely on two-phased methods combining simulation 
and optimization. In the first phase, simulation is applied at the voyage 
level to compute the average undelivered demand. In the second phase, 
a deterministic optimization algorithm is used to arrive at robust 
schedules, with a penalty being applied to each voyage, where such 
penalty is computed from the average undelivered demand obtained 
from the simulation model in the first phase. While the referred method 
allows obtaining schedules which are robust against both weather and 
demand uncertainty simultaneously, the penalty to be applied to each 

voyage is essentially subjective rather than corresponding to actual costs 
faced by the offshore oil and gas companies. Moreover, schedules ob
tained without the incorporation of the referred penalties may also 
perform well under uncertainty. In contrast, a two-stage stochastic 
program with recourse allows for the direct incorporation of the real 
costs faced by offshore companies in the face of schedule disruption. 
Therefore, a two-stage stochastic programming algorithm provides for 
the minimization of the actual costs faced by offshore oil and gas com
panies. While the use of simulation to approximate the expected 
schedule cost leads to an increase in computational time, the magnitude 
of the savings obtained should largely compensate for such drawbacks. 
Moreover, taking into account that the Supply Vessel Planning Problem 
is a strategic planning problem, with a given fleet and the corresponding 
sailing schedule typically being in use for several months, the proposed 
methodology allows obtaining solutions which are robust under weather 
and demand uncertainty with the minimized cost within a reasonable 
computation time, allowing for its practical application. For the tested 
problem instances, when compared to the deterministic approach 
commonly used by logistics planners at offshore oil and gas companies, 
the application of the proposed methodology leads to annual savings 
ranging from approximately three million USD, for the test instance with 
five installations, to eight million USD, with 25 installations. A com
parison is also made of the relative importance of demand uncertainty 
and weather uncertainty in offshore logistics. For the tested problem 
instances, results suggest that uncertain demand plays a much larger 
role in offshore logistics in Brazil when compared to uncertain weather 
conditions, which is in agreement with previous empirical observations 
and is in sharp contrast with the situation observed, for instance, in the 
North Sea, where uncertain weather conditions play a much larger role 
in offshore logistics, as observed, for instance, in Halvorsen-Weare et al. 
(2012). 
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