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A B S T R A C T

To account for endogeneity effects in, e.g., energy demand, modern bottom-up energy system models are
often linked to a top-down model describing the macroeconomic system. Solving such linked models involves
iteratively passing solutions from one model to the other and vice versa until convergence is reached, which
can be computationally demanding. This paper proposes a coordination algorithm that speeds up convergence
for the linkage of the two models in case the bottom-up model is a linear program and the top-down model
is a mixed-complementarity problem. The coordination algorithm uses duality theory to select optimal bases
from previous iterations to predict the solution of the bottom-up model. If the predicted solution is correct,
which is shown to be equivalent to the predicted solution vector being non-negative, the bottom-up problem
need not be solved in that iteration, resulting in a time gain. Numerical experiments on an energy system
design problem illustrate that our coordination algorithm correctly predicts the bottom-up solution in most
iterations, resulting in a significant reduction in overall computation time.
1. Introduction

Decarbonization ambitions pose important challenges to the way
society produces, distributes, and consumes energy. Transitioning to a
low-carbon system involves broad changes at national and continental
scales, with effects extending well beyond the boundaries of the energy
system. For instance, changes in the availability of fossil fuels and
gradual increase of CO2 prices will influence the price of substitute
commodities and resources, such as electricity and biofuels, and might
also influence the production costs of several industries, in particular
the energy-intensive ones. This will reflect changes in demand for
commodities and services, including energy commodities.

The interplay between the energy system and the wider economy
is a prominent topic of current research and discussion among aca-
demics and policymakers. In a broad sense, the energy system can
be defined as a combined set of energy processes. These processes,
which cover all sectors, involve the production, conversion, or uti-
lization of energy. They are interconnected through their inputs and
outputs and ultimately supply end-use energy services. In contrast, the
general economy considers a wider set of commodities and services.
Currently, energy policy studies tend to factor in effects from the wider
macroeconomic system, as well as provide feedback to it.

Typically, these studies combine a bottom-up (BU) energy system
model with a top-down (TD) economic model. In our context, BU
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models focus on the detailed representation of specific technologies,
processes, and practices within the energy system. These models are
often represented as optimization models that determine the least-
cost way to meet a particular energy demand or policy target. BU
models can assist in planning for energy infrastructure needs under
specific policy measures on technology adoption and energy use. In
contrast, TD models focus on the broader economic system and rep-
resent the energy system in a more aggregated manner. These models
capture the interactions between the energy system and the rest of the
economy, providing information about the evolution of energy prices,
GDP, employment, and other macroeconomic variables. TD models
may incorporate behavioral aspects, such as consumer preferences and
producer behavior, that go beyond simple cost-minimization.

While BU models provide detailed descriptions of the energy system,
they struggle to account for the impacts of changes in the energy
system on the wider economy, such as changes in demand patterns.
By combining a BU model with a TD model that captures the broader
economy, one can account for such endogeneities and gain insights into
the interplay between the energy system and the economy as a whole.
The most popular way to combine these two classes of models is by
linking them, which means that the models are solved in an alternating
fashion, with each model providing input to the other model, until the
solutions converge to an equilibrium [1].
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Nomenclature

Acronyms

BU bottom-up
CGE computable general equilibrium
KKT Karush–Kuhn–Tucker
LP linear program
MCP mixed-complementarity program
TD top-down
TDM top-down master

Functions

(𝑦) mapping of elements of the basic solution
into the solution vector

(𝑥) outer approximation of 𝑄(𝑥)
𝐹 (𝑥, 𝑦) mapping defining the top-down problem
𝑄(𝑥) optimal value of the bottom-up problem at

top-down solution 𝑥

Parameters

𝛼𝐾 , 𝛼𝐿 scaling factor of the capital and labor
parameter, respectively, in the top-down
model in the numerical experiments

𝐴 constraint coefficient matrix in bottom-up
model

𝑏(𝑥) constraint right-hand side vector in bottom-
up model

𝐵𝑘 𝑘th dual feasible basis matrix in the
bottom-up model

𝑐 cost vector in bottom-up model
𝑛 algorithm iteration counter

Sets

 index set of all dual feasible bases
𝐾 index set of all optimal bases found in

previous iterations

Variables

𝜂 decision vector in dual to the predicting
problem

𝜃 Auxiliary decision variable in predicting
problem

𝑢 decision vector in dual formulation of
bottom-up model

𝑥 decision vector in top-down model
𝑦, 𝑦̂ decision vector in bottom-up model and the

predicted bottom-up solution, respectively

The current iterative approaches for solving linked TD and BU
odels can be time-consuming. Many iterations may be needed to

each convergence, and in every iteration, both the TD and the BU
odels need to be solved. Usually, the BU model is quite large and takes
p the main share of the computational time. Additionally, a practical
hallenge arises when the TD and BU models are managed by different
nstitutions. Each iteration requires an exchange of results, which ne-
essitates communicating, processing, and translating results from one
nstitution’s model to the other. All of these steps can be labor and time-
onsuming and add to the burden of solving the linked TD-BU model.
2

ethods that could bypass some of these iterations could potentially
drastically reduce the computational burden of solving linked TD and
BU models.

This paper uses concepts drawn from parametric linear optimiza-
tion [2] and duality theory [3] to develop a coordination algorithm
designed to expedite the process of solving linked TD and BU models.
Our coordination algorithm is tailored to the typical setting where the
TD model is a mixed-complementarity model (MCP) [4] and the BU
model is a linear program (LP). The main idea is to predict the solution
of the BU model using a list of basis matrices that were optimal in
previous solutions of the BU model. Duality theory is used to determine
which of the previously optimal basis matrices produces the ‘‘best’’
prediction. The algorithm assigns a cut to each new basis provided by
the BU problem. It then predicts the correct basis to use by observing
which cut is active when solving the TD problem augmented with these
additional cuts. If the predicted solution is correct (which is the case
if and only if it is non-negative), one can skip solving the BU model
and hence, greatly reduce the computation time in the corresponding
iteration. If the prediction is incorrect, the BU problem is solved anew
and a new optimal basis is added to the list.

Interestingly, the procedure that predicts the BU solution can be
incorporated into the TD problem. Predicting the BU solution is equiv-
alent to solving a small-scale LP. The Karush–Kuhn–Tucker conditions
of this LP yield complementarity conditions that can be incorporated
directly into the TD problem. The resulting TD master problem (TDM)
simultaneously finds a solution to the TD problem and predicts a
basis for the BU problem. As will be shown, computing the BU solu-
tion corresponding to this predicted basis and checking its optimality
can be performed very efficiently: it is a matter of a single matrix
multiplication and checking whether a vector is non-negative.

The numerical performance of the coordination algorithm is illus-
trated using the linked TD and BU models taken from [1], in which the
TD model is a computable general equilibrium (CGE) model and the
BU model is an energy system model. Compared to an uncoordinated
iterative scheme, our coordination approach bypasses on average 89%
of the BU models by correctly predicting their solution. This leads to
an average time gain of 75% compared to an uncoordinated approach
that simply iterates between the BU and TD model. Moreover, the
coordination algorithm performs significantly better than a procedure
using warm starts in the form of an advanced basis, which speeds up
computation times by only 12% on average. These results illustrate the
potential of our approach for significantly speeding up computations.

The remainder of the paper is structured as follows. Section 2
reviews the relevant literature. Section 3 outlines the coordination
algorithm in detail. Section 4 provides a numerical application of our
algorithm on an energy system design problem. Finally, Section 5
concludes the paper.

2. Literature review

Top-down macroeconomic models provide a holistic view of the
economy but lack sector-specific details. On the other hand, bottom-up
energy system models offer detailed insights into a specific sector. To
leverage the overlap in the energy sector, a loop can be established
where information is exchanged iteratively between the two models
until convergence is achieved. This process is known as model linking.

Although it is sometimes possible to integrate the two models
into a single model, there are advantages to considering them as
separate entities. One crucial benefit, as demonstrated in [5], is im-
proved computational efficiency when the models are solved separately
as linked models. This is particularly relevant due to the large size
of energy system models. Linking methods explored thus far involve
the mutual exchange of data between models, either manually (soft-
linking) or through automated computer programs (hard-linking) [1].
The following sections provide an overview of well-known examples of
soft- and hard-linking in the literature to emphasize their significance.
Afterwards, the advantages of our contribution compared to the current

approach are discussed.
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2.1. Examples of soft-linking

The first example of soft-linking energy and economy models is
reported in [6], which combines an econometric and a process analysis
model to evaluate the impact of energy research, development, and
demonstration policies in combination with tax and tariff policies to
reduce imports of energy resources. After this first example, several
other linking exercises have been carried out, where the transfer of
information between models was directly controlled by the user, such
as the example from [7]. Most of the early cases were focused on
the linkage between a single sector without automating the transfer of
data between models; for instance, [8] linked ETEM and GEM-E3 via
residentials, while [9] link MARKAL and EPPA via the transport sector.

The best-known examples of soft-linking between economy and en-
ergy models are the cases of MESSAGE-MACRO [10], where the energy
system model MESSAGE supplies energy costs/prices to MACRO, which
in turn provides sectoral demand for energy commodities. Another
notable example is the connection between MARKAL and EPPA [9],
with the transport sector in the CGE model EPPA modified to mimic the
behavior from the modal split in MARKAL. The modification involves
the transport sector inputs and the related elasticity of substitution.
MARKAL, in turn, receives data related to the change in fuel prices and
transport demand. A third example of soft-linking is the one between
MARKAL and MSG [11], which was used to investigate the energy
demand in the Norwegian residential sector, while [12] used the same
link to analyze the effects on Norway of a national CO2 tax and
international CO2 quota prices. Yet another example of soft linking
is the one between EMEC, a static CGE model, and the TIMES energy
system model [13]. A last example of soft-linking multi-sector bottom-
up (BU) and CGE models is the one presented by [14] where the authors
compare the outcomes of three scenarios for the Portuguese energy and
climate policy. An example of combining models via integration of the
optimality conditions of the BU into the TD is introduced by [15], and
extended by [16]. The macroeconomic model receives input for the
energy mix and provides the change in energy demand to the energy
system model.

2.2. Examples of hard-linking

Some examples of hard-linking between economic and energy sys-
tem models are the ETA–MACRO model [17], MESSAGE–MACRO [18],
which automates the soft-linking that was developed in [10], and
MARKAL–MACRO, initially developed in [19] to stress the potential of
linking procedures in facilitating the communication between policy-
makers. The models all exchange electrical and other energy demands
on one side and the structure of the cost functions on the other
side. MARKAL and MACRO are hard-linked, with MACRO supplying
energy demand and MARKAL providing supply costs. A multi-regional
version of MARKAL–MACRO was employed in [20] to study the effects
of emission reductions on international trade. MARKAL–MACRO has
been applied to analyze energy policies in China [21], Italy [22], and
the United Kingdom to study the long-term effects of a reduction in
emissions [23], and to model the effects of energy policy [24].

Another notable case of hard linking is the one between TIAM
and GEMINI-E3 [25]. GEMINI-E3 provides information about the key
macroeconomic indicators, which are used to define the energy demand
function which, in turn, feeds the TIAM energy system model. TIAM
responds by providing the energy mix, investment costs, and technical
progress on energy back to GEMINI-E3.

A more recent example of hard-linking is the one between IMACLIM–
R, a CGE model for investigating climate and energy policies, and
TIMES/POLES, two bottom-up energy system models used to study the
effects of climate agreements and the impact of electric vehicle pene-
tration in EU28 [26]. In this case, the BU model feeds the CGE model
with energy import prices, primary energy output, energy intensities of
non-energy productions, the energy consumption of households, capital
3
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intensity of energy suppliers and end-users, and energy exports while
the CGE provides the BU model with GDP level, sectoral drivers and
relative prices for capital and labor [26].

A final example of hard-linking is that between SAGE and SATIM
in [27]. The CGE model SAGE provides electricity demand and fossil
fuel prices to the energy system model SATIM, while SATIM provides
the generation mix, the final electricity price, and the construction
investment costs.

2.3. Positioning of this paper

In the studies above, the linked TD and BU models are solved by
straightforwardly iterating between the TD and BU models until con-
vergence is reached. However, this approach can be time-consuming,
particularly when dealing with large BU models. In this paper, we
propose a coordination algorithm that significantly reduces compu-
tation time for hard-linked TD and BU models. Instead of ‘‘naively’’
iterating between the TD and BU model, our algorithm utilizes previous
optimal bases of the BU model to predict the optimal basis for the next
iteration. If successful, this prediction allows us to skip the subsequent
run of the BU model. Our contribution represents the first instance of a
coordination algorithm for linked TD and BU models, offering a novel
approach to tackle the computational challenges mentioned above.

3. Coordination algorithm

Consider a linked TD-BU model, in which the TD model is a mixed-
complementarity problem (MCP) of the form

[TD(𝑦)] 0 ≤ 𝐹 (𝑥, 𝑦) ⟂ 𝑥 ≥ 0, (1)

typically representing the broad economy, and the BU model is a linear
program (LP) of the form

[BU(𝑥)] min
𝑦∈R𝑛

+

{

𝑐𝑇 𝑦 | 𝐴𝑦 = 𝑏(𝑥)
}

, (2)

ypically representing a specific sector of the economy, e.g., the energy
ystem in power generation and transmission expansion problems [15].
raditionally, these BU models are solved stand-alone, taking macroe-
onomic data such as energy demand as exogenous parameters to the
U model. However, in reality, the solution to the BU model (e.g., deci-
ions on the energy transmission network) affects these macroeconomic
ata. Hence, the parameters are endogenous. To explicitly account for
his endogeneity, one can link the BU model to a TD model describing
he full economy. A popular choice for the TD model are CGE models,
hich can be written in MCP form [28]. The resulting linked TD-BU
odel solves the BU model while taking the effects of the resulting TD

olution into account.
When solving a linked TD-BU model, the aim is to find an equi-

ibrium solution pair (𝑥∗, 𝑦∗) that solves both models simultaneously.
ypically, this is achieved by solving the TD and BU in an alternating
ashion [29]. Given some starting value for 𝑥 provided by the TD model,
he BU model is solved, yielding a solution 𝑦. This solution is fed into
he TD model, yielding a new solution 𝑥, which is fed into the BU model
gain. The process is repeated until some measure of convergence
s satisfied, typically when the ∞ norm of the difference between
ata passed from one model to another in two subsequent iterations
alls below a given threshold. As mentioned in the introduction, this
terative process can be slow, especially when the BU model is large.

The remainder of this section presents our coordination algorithm
or linked TD-BU models, aimed at expediting the solving process.
he main idea, explained in Section 3.1, is to predict the BU solution
sing previously visited basis matrices. Section 3.2 describes how the
rediction procedure can be incorporated into the TD problem. Finally,

ection 3.3 outlines the coordination algorithm.
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3.1. Main idea

To understand the main idea underlying our coordination algo-
rithm, consider the BU model at a given solution 𝑥̄ to the TD model:

min
𝑦∈R𝑛

+

{

𝑐𝑇 𝑦 | 𝐴𝑦 = 𝑏(𝑥̄)
}

. (3)

Assuming that the BU model has an optimal solution, it always has a
basic optimal solution. That is, there exists a basis 𝐵 (a submatrix of
𝐴) such that 𝑦 with 𝑦𝐵 = 𝐵−1𝑏(𝑥̄) and 𝑦𝑁 = 0, is optimal, with subscript

and 𝑁 referring to the basic and non-basic variables, respectively.
ow, as one iterates with the TD problem, the value of 𝑥̄ will change.
ince the TD problems in subsequent iterations are typically similar, it
s reasonable to expect that 𝑥̄ will be close to its value in the previous
teration. If the right-hand side 𝑏(𝑥̄) is well-behaved (e.g., Lipschitz
ontinuous in 𝑥̄), one expects 𝑏(𝑥̄) to be close to its previous value, too.
ence, by a sensitivity argument, a reasonable prediction for the new
U solution 𝑦̄ is given by 𝑦̃, defined by 𝑦̃𝐵 = 𝐵−1𝑏(𝑥̄) and 𝑦̃𝑁 = 0. That is,
he prediction states the optimal basis for the BU problem with 𝑥 = 𝑥̄ is
he same as for the old value for 𝑥. This is the main idea underlying our
oordination algorithm: it uses an optimal basis from a previous iteration
o predict the optimal basis in the current iteration and thus, the optimal
olution to the current BU problem.

One can do a better job at predicting, though, by making use of
ll previously encountered optimal bases and picking the best basis to
onstruct a prediction. To understand how to find the best one, consider
he dual of the BU problem (3) at the current TD solution 𝑥̄, given by

max
∈R𝑚

+

{

𝑢𝑇 𝑏(𝑥̄) | 𝑢𝑇𝐴 ≤ 𝑐𝑇
}

. (4)

et 𝐵𝑘, 𝑘 ∈  be the collection of all dual feasible bases, i.e., the set
f all bases for which the corresponding dual solution 𝑢𝑇𝑘 ∶= 𝑐𝑇𝐵𝑘

𝐵−1
𝑘 is

easible. Then the dual problem (4) can be written as

ax
𝑘∈

{

𝑢𝑇𝑘 𝑏(𝑥̄)
}

. (5)

ow suppose only a subset 𝐾 ⊆  of the dual feasible bases is available.
n particular, suppose that 𝐾 is the index set of all optimal bases found
n previous iterations. Then, clearly, our best prediction among these
ases is the basis that maximizes

ax
𝑘∈𝐾

{

𝑢𝑇𝑘 𝑏(𝑥̄)
}

. (6)

et 𝑘∗ denote the optimal argument in (6). Then, define the best
rediction to the BU problem as 𝑦̂ with 𝑦̂𝐵𝑘∗

= 𝐵−1
𝑘∗ 𝑏(𝑥̄) and 𝑦̂𝑁𝑘∗

= 0.
An important question is whether this prediction 𝑦̂ is correct. It turns

ut that checking the correctness of our prediction boils down to the
imple check that the vector 𝑦̂ is non-negative.

heorem 1. Consider the BU problem (3) with 𝑥 = 𝑥̄ and let 𝑦̂ be the
rimal solution corresponding to the dual feasible basis 𝐵𝑘, i.e., 𝑦̂𝐵𝑘

=
−1
𝑘 𝑏(𝑥̄) and 𝑦̂𝑁𝑘

= 0, where the index 𝑘 ∈  is given arbitrarily. Then,
𝑦̂ is an optimal solution to the BU problem if and only if 𝑦̂ ≥ 0.

roof. If any element of 𝑦̂ is negative, then 𝑦̂ is infeasible and hence,
ot optimal. It remains to prove that 𝑦̂ is optimal if 𝑦̂ ≥ 0. Suppose
hat 𝑦̂ ≥ 0 holds true. Then, 𝑦̂ is feasible, as it satisfies both the non-
egativity constraints and, by construction, the constraint 𝐴𝑦̂ = 𝑏(𝑥̄).
ext, consider the dual solution 𝑢̂ ∶= 𝑐𝑇

𝐵𝑘𝐵
−1
𝑘 . By definition of 𝑘 ∈ ,

t follows that 𝑢̂ is a dual feasible solution. Hence, (𝑦̂, 𝑢̂) is a feasible
rimal/dual solution pair. Comparing the primal and dual objective at

𝑦̂ and 𝑢̂, respectively,
𝑇 𝑦̂ = 𝑐𝑇𝐵𝑘

𝑦̂𝐵𝑘
+ 𝑐𝑇𝑁𝑘

0 (7)

= 𝑐𝑇𝐵𝑘
𝐵−1
𝑘 𝑏(𝑥̄) (8)

= 𝑢̂𝑇 𝑏(𝑥̄), (9)

.e., the primal and dual objective values are equal. By weak LP duality,
t follows that 𝑦̂ and 𝑢̂ are optimal in the primal and dual problem,
4

espectively. □
.2. Incorporating predictions into the top-down problem

Interestingly, the predicting problem (6) can be incorporated into
he TD problem. First, recognize that (6) can be written as an LP, whose
ptimal solution is characterized by the Karush–Kuhn–Tucker (KKT)
onditions. Second, observe that these KKT conditions form an MCP.
ombining this MCP with the MCP that constitutes the TD problem, a

arge MCP can be formed, called the top-down master (TDM) problem.
he TDM problem simultaneously solves the TD problem and finds a
rediction for the BU problem. This eliminates the need for solving the
redicting problem (6) separately.

To specify this integration in more detail, first reformulate the
redicting problem (6) as a linear program:

in
𝜃

{

𝜃 | 𝜃 ≥ 𝑢𝑇𝑘 𝑏(𝑥̄), ∀𝑘 ∈ 𝐾
}

. (10)

he dual is given by

ax
𝜂≥0

{

∑

𝑘∈𝐾
𝜂𝑘𝑢

𝑇
𝑘 𝑏(𝑥̄) |

∑

𝑘∈𝐾
𝜂𝑘 = 1

}

. (11)

he KKT conditions of this primal/dual pair, which are necessary and
ufficient, are given by the MCP

0 ≤ 𝜂𝑘 ⟂ 𝜃 − 𝑢𝑇𝑘 𝑏(𝑥̄) ≥ 0, ∀𝑘 ∈ 𝐾,
∑

𝑘∈𝐾 𝜂𝑘 = 1.
(12)

ntegrating these KKT conditions into the TD problem yields our TDM
roblem at the current BU solution 𝑦̄:

TDM𝐾 (𝑦̄)]

⎧

⎪

⎨

⎪

⎩

0 ≤ 𝐹 (𝑥, 𝑦̄) ⟂ 𝑥 ≥ 0,
0 ≤ 𝜂𝑘 ⟂ 𝜃 − 𝑢𝑇𝑘 𝑏(𝑥) ≥ 0, ∀𝑘 ∈ 𝐾,
∑

𝑘∈𝐾 𝜂𝑘 = 1.
(13)

ny positive 𝜂𝑘 in a solution to this problem corresponds to a best-guess
asis 𝐵𝑘. In the non-degenerate case, 𝜂𝑘 = 1 for a single 𝑘 ∈ 𝐾.

.3. Algorithm outline

The stage has now been set to outline the full coordination algo-
ithm. Pseudocode is provided in Algorithm 1. Initialize with an initial
D solution 𝑥0 and an empty index set 𝐾 = ∅ for previously visited
ases. Next, the outer loop starts. In each outer iteration 𝑛, the BU
roblem is solved explicitly, yielding primal/dual solutions (𝑦, 𝑢) and
corresponding optimal basis 𝐵𝑛 that are added to the list indexed by
. The 𝑇𝐷𝑀𝐾 (𝑦̄) problem is assumed to automatically incorporate the
ew dual solution.

Next, an inner loop is started. In each inner iteration, the TDM
roblem is solved, yielding a new TD solution 𝑥, which is used to
pdate 𝑥̄, and a solution 𝜂, indicating the active basis. If convergence
s reached, the algorithm is stopped and the current TD-BU solution
𝑥̄, 𝑦̄) is output. If not, the algorithm continues by computing the next
U prediction 𝑦̂. If the prediction is correct (i.e., if 𝑦̂ ≥ 0), a new inner

teration is started. Otherwise, jump out of the inner loop and start a
ew outer iteration. We denote by (𝑦̂𝐵𝑘

) the mapping reallocating the
lements of the basic solution into the vector of the overall solution 𝑦̂.

.4. Extension: endogenous cost vector

In our definition of the BU model in (2), the TD solution 𝑥 is linked
o the BU model through the endogenous right-hand-side vector 𝑏(𝑥) in
he BU model. However, our coordination approach can be extended to
setting where instead the cost vector 𝑐 of the BU model is endogenous,

.e., to BU models of the form

BU(𝑥)] min
𝑦∈R𝑛

+

{

𝑐(𝑥)𝑇 𝑦 | 𝐴𝑦 = 𝑏
}

. (14)

he main idea is that by taking the dual of this BU problem, one obtains
dual problem that depends on 𝑥 through its right-hand side vector:

ax
{

𝑢𝑇 𝑏 | 𝑢𝑇𝐴 ≤ 𝑐(𝑥)𝑇
}

. (15)

𝑢
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Algorithm 1: TD-BU Coordination Algorithm
𝑛 ← 0
𝐾 ← ∅
̄ ← 𝑥0
while true do // outer loop

𝑛 ← 𝑛 + 1
Solve BU(𝑥̄) → (𝑦;𝐵; 𝑢)
𝑦̄ ← 𝑦, 𝐵𝑛 ← 𝐵, 𝑢𝑛 ← 𝑢, 𝐾 ← 𝐾 ∪ {𝑛}
while true do // inner loop

Solve TDM𝐾 (𝑦̄) → (𝑥, 𝜂)
𝑥̄ ← 𝑥
if convergence reached then

terminate. Output (𝑥̄, 𝑦̄).
end
𝑘 ← argmax𝑘∈𝐾 𝜂𝑘 // get active basis
𝑦̂ ← (𝐵−1

𝑘 𝑏(𝑥̄)) // BU prediction
if 𝑦̂ ≥ 0 then

𝑦̄ ← 𝑦̂ // prediction correct
else

break // back to outer loop
end

end
end

Introducing slack variables 𝑧, ‘‘splitting’’ the dual variables 𝑢 into
heir positive and negative part, and changing the maximization to
inimization, this can be reformulated as

min
𝑢+ ,𝑢−
𝑧≥0

{

(𝑢− − 𝑢+)𝑇 𝑏 | (𝑢+ − 𝑢−)𝑇𝐴 + 𝑧𝑇 = 𝑐(𝑥)𝑇
}

, (16)

hich has the same structure as (2). Hence, the coordination algorithm
an be applied to this reformulated BU problem.

It should be noted that our approach does not apply if the TD
olution 𝑥 is linked to the BU model through the right-hand-side vector

and the cost vector 𝑐 simultaneously. The reason is that the dual
easible region of the BU model should remain the same for every 𝑥.
his cannot be achieved if both 𝑏 and 𝑐 depend on 𝑥. Moreover, linking
hrough the constraint matrix 𝐷 is not possible either, since this would
hange the bases themselves.

.5. Benders interpretation and graphical illustration

This section is concluded with an interpretation of our algorithm
n terms of an analog of Benders’ decomposition [3] of the combined
D-BU model (1)–(2). This interpretation has two benefits. First, it
acilitates understanding of our coordination algorithm by framing it
n terms of a well-known algorithm from the literature. Second, it
llows us to illustrate the progression of our algorithm graphically,
hich is especially useful for understanding patterns of progression
xpressed in our numerical experiments. First, a short summary of
enders decomposition for linear programs is provided, followed by an
xplanation of how the coordination algorithm fits in this framework.

Benders’ decomposition [3] was developed as a solution algorithm
or linear programs. The outline of the algorithm is as follows. First,
plit the decision variables into two vectors, say, 𝑥 and 𝑦. Let 𝑄(𝑥)
enote the optimal value of the subproblem in 𝑦 if 𝑥 is fixed. The
ain idea in Benders’ decomposition is to iteratively construct an outer
pproximation  of the function 𝑄, by means of so-called optimality cuts.
hat is,  is the maximum of a finite number of affine functions in 𝑥,
ach of which corresponds to an optimality cut. In every iteration, an
ptimality cut is generated by solving the dual of the subproblem in 𝑦
t the current candidate solution of 𝑥. The master problem then consists
f solving the original linear program but with the role of 𝑦 replaced by
5

he outer approximation (𝑥) of 𝑄(𝑥). Whenever (𝑥̄) and 𝑄(𝑥̄) coincide c
t a solution 𝑥̄ to the master problem, the outer approximation  of 𝑄
s ‘‘good enough’’ and convergence is reached: an optimal solution to
he original linear program has been found.

Our coordination algorithm can be interpreted as an extension of
enders’ decomposition to linked TD-BU models. To see this, start out
ith the combined TD-BU model (1)–(2). Denote by 𝑄(𝑥) the optimal
alue of the ‘‘subproblem’’ BU(𝑥), i.e.,

(𝑥) = min
𝑦∈R𝑛

+

{

𝑐𝑇 𝑦 | 𝐴𝑦 = 𝑏(𝑥)
}

. (17)

y the analysis in Section 3.1, it follows that

(𝑥) = max
𝑘∈

{

𝑢𝑇𝑘 𝑏(𝑥)
}

. (18)

he prediction step in our coordination algorithm replaces this by the
uter approximation

(𝑥) ∶= max
𝑘∈𝐾

{

𝑢𝑇𝑘 𝑏(𝑥)
}

, (19)

here the index set 𝐾 corresponds to all previously visited bases. This
uter approximation is the maximum over all ‘‘optimality cuts’’, which
re represented by the functions 𝑢𝑇𝑘 𝑏(𝑥)

1 in 𝑥, and which are iteratively
enerated by solving the dual of the subproblem BU(𝑥̄) if the predicted
U solution at a candidate TD solution 𝑥 = 𝑥̄ is incorrect.

One major difference between our coordination algorithm and tra-
itional Benders’ decomposition is that while traditional Benders’ de-
omposition minimizes over the outer approximation (𝑥) (jointly with
he direct costs associated with 𝑥), the coordination algorithm merely
ses (𝑥) to predict the BU solution 𝑦. That is, it evaluates (𝑥) at the
urrent TD solution 𝑥̄ and uses the resulting optimal index 𝑘∗ ∈ 𝐾 in
19) to generate the prediction 𝑦̂ ∶= 𝐵−1

𝑘∗ 𝑏(𝑥̄) for the BU solution.
The interpretation above allows us to illustrate our coordination

lgorithm in terms of 𝑄(𝑥) and (𝑥). Fig. 1 illustrates two runs of
he coordination algorithm with different convergence patterns. In the
pper figure, the first iteration starts with some initial value 𝑥1. The
U model BU(𝑥1) is solved, yielding a BU solution 𝑦1 and an optimal
asis, which is added to the list. This optimal basis is represented in
he figure by the downward-sloping dashed line. Solving TD(𝑦1) yields
second TD solution 𝑥2. In the second iteration, the algorithm predicts

he solution to BU(𝑥2) using the previously found basis. The prediction
s incorrect, as is illustrated by the red dot and the fact that this dot
s below the true value of 𝑄(𝑥2). Thus, BU(𝑥2) is solved explicitly,
ielding a solution 𝑦2 and a new basis, illustrated by the upward-sloping
ashed line. Solving TD(𝑦2) yields a new TD solution 𝑥3. In the third
teration, the prediction to BU(𝑥3) is based on the best basis out of the

two that have previously been visited. This best guess is the basis that
corresponds to the dashed line that achieves the maximum at 𝑥3. As
an be seen from the green dot in the figure, the prediction is correct
nd BU(𝑥3) need not be solved explicitly. The algorithm continues in
his manner until convergence has been reached.

Note that the convergence pattern in the top image in Fig. 1 is
‘monotone’’, i.e., subsequent candidate solutions for 𝑥 move in the
ame direction. This pattern guarantees that in every iteration, either
he most recently visited basis is optimal or a new basis must be
omputed. In contrast, the lower figure shows an ‘‘oscillating’’ con-
ergence pattern, in which case not only the most recent basis but
lso previously visited bases can be optimal. A priori, it cannot be
xcluded that an oscillating convergence pattern will arise. This is
orroborated by Helgesen et al. [1], who indeed observe oscillating
onvergence patterns in some instances. This is also the reason why,
n our algorithm, all previously visited basis matrices are stored, rather
han only the most recent one.

1 In our coordination algorithm, these functions need not be affine, in
ontrast with traditional Benders’ decomposition for linear programs.
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Fig. 1. An illustration of two runs of our coordination algorithm, with a monotone
(top) and an oscillating (bottom) convergence pattern. Green dots represent points at
which the predicted value of 𝑄(𝑥) (and thus, the predicted BU solution) is correct;
red dots represent incorrect predictions; blue dots represent points at which a new
basis 𝐵𝑘 is generated, corresponding to the optimality cut 𝑢𝑇𝑘 𝑏(𝑥) represented by the
corresponding dashed blue line.

4. Numerical illustration

To illustrate the potential of the coordination algorithm from Sec-
tion 3, this section applies it on a hard-linked TD-BU model from the
literature. First, a short description of the model is given, followed by
the numerical results. All data and code used in the work is publicly
available in [30].

4.1. Model description

Consider the numerical example taken from the TD-BU model in
Helgesen et al. [1] used to study the energy system impacts and
economic impacts of reducing greenhouse gas emissions from transport.
A concise description of the models is provided here; for more details,
see Appendix.

The BU model considered here is an adaptation from [31] of the
TIMES model in [32]. TIMES (The Integrated Markal Efom System) [33]
is a techno-economic model generator for energy systems that describes
the energy system considering resources, technologies, energy carriers,
demand sources, and demand for energy services from both production
sectors and consumption. The model is formulated as a linear program
and aims to supply energy services at minimum total cost by making
equipment decisions, as well as operating, primary energy supply, and
energy trade decisions.

The TD model is a CGE model of the wider economy, featuring
a simple nesting structure for the production functions. Capital and
labor are aggregated according to a constant elasticity of substitution
function and the result is further aggregated with intermediate goods
according to a Leontief nest. In this context, it functions to describe
6

Fig. 2. Schematic overview of the linked models. The initial shock is defined as a
change in the availability of capital and labor in the Top-Down CGE model. This shock
leads to the computation of new demand projections for energy commodities, which are
passed to the Bottom-Up energy system model which, in turn, will use this information
to compute a new projection for the energy mix.

the effects of changes in the energy system on the demand for energy
commodities.

The TD and BU models are hard-linked through the equations
described in [1] and reported in Appendix. The energy mix from the BU
solution is translated into Leontief coefficients for energy production
factors in the TD model, while the TD solution provides input for the
BU model in the form of projected demand for energy services. See
Fig. 2 for an illustration of the linking.

The reason for using the TD-BU model from [1] to test our coor-
dination algorithm is that it provides a known, published case study
as a direct benchmark to our results. Moreover, the authors present
the explicit formulas used to hard-link the TD and BU models to each
other; these formulas are needed in order to be able to implement our
coordination algorithm. Thus, testing our coordination algorithm on
this TD-BU model yields an interesting proof-of-concept that can show
the potential of our coordination algorithm.

4.2. Experiments

The coordination algorithm is tested on various instances of the
linked TD-BU model described above. Instances are created by varying
two parameters in the TD model: 𝐾 and 𝐿. The parameter 𝐾 represents
the amount of capital present in the economy, while 𝐿 represents
the amount of labor. The values used in [1], indicated by 𝐾0 and
𝐿0, are used as a benchmark and these are varied using the formula
𝐾 = 𝛼𝐾𝐾0 and 𝐿 = 𝛼𝐿𝐿0. All combinations of the scaling values
𝛼𝐾 , 𝛼𝐿 ∈ {1.0, 1.05, 1.1, 1.15, 1.2, 1.25, 1.3} are used, i.e., in total, there
are 7 × 7 = 49 experiments. (Values of 𝛼𝐾 , 𝛼𝐿 smaller than one are not
considered to avoid feasibility issues.)

To test our coordination algorithm, it is compared with a ‘‘naive’’
benchmark algorithm that simply iterates between the TD and BU
problem. Moreover, a version of this naive algorithm is included that
uses a warm start in the BU model in the form of an advanced basis
from the previous BU iteration. For each algorithm run, the following
results are stored: (1) the optimal value of the final BU model, (2) the
number of full TD models solved, (3) the number of TD (master) models
solved, and (4) the computation time.

4.3. Results

This section discusses the results of the numerical experiments. It
subsequently discusses initial sensibility checks, the algorithm’s perfor-
mance, and the algorithm’s convergence behavior.
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Table 1
Comparison of computational performance of the naive approach (‘‘Naive’’), the naive approach with warm starts in the BU
model (‘‘WS’’), and the coordination algorithm (‘‘Coord.’’). Columns with header ‘‘Impr.’’ represent the improvement (in %) of
the previous column with respect to the corresponding ‘‘Naive’’ column. Positive percentages indicate improvements; negative
percentages represent deteriorations.
𝛼𝐾 𝛼𝐿 # BU models solved Runtime (s)

Naive Coord. Impr. Naive WS Impr. Coord. Impr.

1 1 27 1 96% 5.86 6.05 −3% 1.20 80%
1 1.05 24 1 96% 5.26 7.75 −47% 1.25 76%
1 1.1 21 1 95% 4.83 4.73 2% 0.98 80%
1 1.15 18 1 94% 4.75 3.97 16% 0.86 82%
1 1.2 16 2 88% 3.52 3.62 −3% 0.98 72%
1 1.25 15 2 87% 3.42 3.56 −4% 0.97 72%
1 1.3 13 2 85% 2.87 2.90 −1% 0.87 70%
1.05 1 25 2 92% 5.62 5.53 2% 1.30 77%
1.05 1.05 22 2 91% 4.88 4.87 0% 1.22 75%
1.05 1.1 18 1 94% 4.06 4.07 0% 0.89 78%
1.05 1.15 16 1 94% 3.64 3.54 3% 0.82 78%
1.05 1.2 15 2 87% 3.38 3.42 −1% 0.97 71%
1.05 1.25 14 2 86% 4.06 3.35 18% 0.92 77%
1.05 1.3 13 2 85% 2.97 3.04 −2% 0.90 70%
1.1 1 24 1 96% 5.26 5.33 −1% 1.07 80%
1.1 1.05 19 1 95% 4.72 4.23 10% 0.92 81%
1.1 1.1 17 1 94% 5.40 3.86 28% 0.82 85%
1.1 1.15 15 3 80% 4.83 3.37 30% 1.27 74%
1.1 1.2 14 2 86% 3.15 3.15 0% 0.91 71%
1.1 1.25 13 2 85% 2.92 2.95 −1% 0.88 70%
1.1 1.3 12 1 92% 2.71 2.71 0% 0.69 74%
1.15 1 22 2 91% 5.81 4.80 17% 1.20 79%
1.15 1.05 17 1 94% 5.81 3.74 36% 0.85 85%
1.15 1.1 16 3 81% 5.92 3.55 40% 1.19 80%
1.15 1.15 14 2 86% 3.59 3.05 15% 0.96 73%
1.15 1.2 13 1 92% 2.89 2.97 −3% 0.69 76%
1.15 1.25 12 1 92% 2.82 2.68 5% 0.66 77%
1.15 1.3 12 1 92% 2.67 2.72 −2% 0.67 75%
1.2 1 20 2 90% 4.43 4.73 −7% 1.16 74%
1.2 1.05 16 2 88% 3.69 3.94 −7% 0.98 74%
1.2 1.1 15 3 80% 3.51 3.65 −4% 1.14 67%
1.2 1.15 14 1 93% 4.50 3.47 23% 0.86 81%
1.2 1.2 13 1 92% 4.77 3.32 30% 0.69 86%
1.2 1.25 12 2 83% 4.37 2.92 33% 0.99 77%
1.2 1.3 11 1 91% 3.91 2.62 33% 0.61 84%
1.25 1 18 3 83% 6.60 4.34 34% 1.54 77%
1.25 1.05 15 3 80% 5.38 3.63 32% 1.26 77%
1.25 1.1 14 2 86% 5.52 3.36 39% 0.94 83%
1.25 1.15 13 2 85% 5.03 3.10 38% 0.89 82%
1.25 1.2 12 2 83% 3.05 2.95 3% 0.88 71%
1.25 1.25 12 1 92% 2.69 2.85 −6% 0.68 75%
1.25 1.3 11 2 82% 2.42 2.64 −9% 0.82 66%
1.3 1 18 18 0% 4.07 4.20 −3% 4.06 0%
1.3 1.05 14 2 86% 3.95 3.31 16% 0.97 75%
1.3 1.1 13 1 92% 4.98 3.13 37% 0.76 85%
1.3 1.15 12 1 92% 4.70 2.78 41% 0.85 82%
1.3 1.2 12 1 92% 5.32 2.93 45% 0.68 87%
1.3 1.25 11 1 91% 4.09 2.60 36% 0.64 84%

Average 15.59 1.96 87% 4.26 3.65 12% 1.00 76%
4.3.1. Sensibility checks
In all tested instances, the naive approach (with and without warm

starts) and the coordination algorithm consistently converge and achieve
the same BU optimal objective values. Additionally, the number of TD
(master) problems is identical across algorithms in each instance. These
observations confirm that all algorithms yield the same sequence of
converging solutions. The distinction lies in the method of computing
the BU solutions: solving the BU model from scratch, solving with a
warm start, or predicting the BU solution in the inner loop.

4.3.2. Performance
Results on the computational performance of the different algo-

rithms are presented in Table 1. The approaches compared are the
naive approach of iteratively solving the TD and BU model, the naive
approach with warm starts in the BU model, and the coordination
algorithm.

Using the naive approach, the linked TD-BU model needs to solve
7

15.59 BU models on average until convergence is reached. The idea
behind our coordination approach is that it can speed up computation
by skipping some of these runs by correctly predicting the BU solution
using previous optimal bases. Indeed, observe that on average, our
coordination algorithm only needs to solve 1.96 BU models to reach
convergence. In fact, in many instances merely one BU model is needed.
Hence, in the vast majority of iterations, the optimal basis for the BU
model was already observed before, and the coordination algorithm is
able to skip many of the computations. On average, in the 16 iterations
needed to reach convergence on average, only 2 different optimal bases
are used. Thus, using the coordination algorithm allows us to eliminate
87% of the BU runs.

In terms of computation times, the effects are also significantly
noticeable. Using the naive approach, the average computation time
is 4.26 s. Our coordination algorithm outperforms this approach in all
instances. On average, it solves an instance in 1.00 s, with an average
time gain of 76% compared to the naive approach. Hence, the fact

that the coordination algorithm can skip most of the BU runs indeed
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drastically reduces computation times. This shows the effectiveness of
our approach.

Next, the performance of a naive approach using warm starts in
the BU runs is analyzed. On average, this warm-start approach yields
computation times of 3.65 s. Compared with the naive approach with-
out warm starts, this constitutes an average time gain of 12%. Our
coordination algorithm is more than three times faster on average than
the warm-start approach, though. This can be explained by the fact that
the coordination algorithm does not simply leverage the optimal BU
basis of the previous iteration to warm start the BU problem in the
next iteration but uses it to provide an exact solution of the BU model
without actually summoning the BU model. Moreover, providing an
advanced basis is not always helpful as the pre-solving algorithms of
many solvers may cause the advanced basis to be ignored [34]. This
latter point is confirmed in a number of our test instances, in which
warm starts actually increase the computation time (e.g., 𝛼𝐾 = 𝛼𝐿 = 1).

hus, while the idea underlying our coordination algorithm is close
o that of using a warm start, the coordination algorithm performs
ignificantly better.

It must be noted that it cannot be guaranteed that the coordination
lgorithm always outperforms the naive approach. In particular, one
nstance has been observed (𝛼𝐾 = 1.3, 𝛼𝐿 = 1) where every iteration, a
ew basis is optimal in the BU model. Hence, the coordination approach
s not able to yield any computational gains in this instance. However,
his behavior has only been observed in a single instance; all other
nstances showed significant improvement in performance. Moreover,
he computational burden imposed by the prediction step in our co-
rdination algorithm is typically negligible, as is confirmed by the
qual computation times of the naive approach and the coordination
lgorithm in the instance mentioned above. So even if one is unlucky
nd the coordination algorithm does not yield any performance gains,
t is not expected to negatively affect computation times.

.3.3. Coordination algorithm behavior
Finally, the behavior of the coordination algorithm is investigated

n more detail. For this purpose, some (representative) runs of the
lgorithm are illustrated in Fig. 3. In the figure, the red bars denote
terations in which the BU model is solved to compute an optimal basis,
hereas the green bars denote iterations in which the optimal basis is

omputed within the inner loop (i.e., using the prediction formula).
The top graph denotes Case 0, which corresponds to a typical run

f the naive algorithm: every iteration, the BU model is solved from
cratch, regardless of whether the optimal basis has been observed
efore or not. The coordination algorithm improves upon this by skip-
ing some (hopefully many) of these iterations using the prediction
ormula. A typical case can be seen in Case 3, where only a single
asis is computed in the first iteration, which remains optimal during
ll subsequent iterations. This happens in 23 out of the 49 instances
onsidered in our experiments.

Next, consider instances in which the coordination algorithm uses
ore than one basis. From Table 2 observe that in such instances, the

econd basis is found after 2.58 iterations of the inner loop on average.
n instances with at least three bases stored, the average number of
nner iterations until the third basis is found is 3.67. The largest number
f inner iterations observed until all bases were added is merely six.
hese results show that the coordination algorithm typically needs only
few iterations to find a set of bases that contains an optimal one. The

emainder of the algorithm merely iterates between the TD model and
he BU prediction formula.

Second, it was observed that for all instances, in all iterations in
hich the predicted BU solution is correct, the optimal basis is the
ost recently added basis. That is, it has not been observed that the

oordination algorithm picks up an ‘‘old’’ basis. The reason for this
‘monotone’’ behavior is likely due to the fact that the solutions in sub-
equent iterations of the algorithm move more or less ‘‘monotonically’’
8

n a certain direction, as illustrated in the top image in Fig. 1. It is
Fig. 3. Behavior of the algorithm for a selection of the cases in Table 1. The red
bars represent the computation of a solution of the BU model, while the green bars
represent the usage of a previously visited basis.

Table 2
Computational results related to the addition of new bases in the
coordination algorithm. The first row indicates the number of instances
with the indicated number of bases added in the coordination algorithm.
The other columns indicate the average iteration in which the first,
second, or third basis was added, if applicable.

# bases ≥ 1 ≥ 2 ≥ 3

# instances 49 26 6
avg. iteration added 1 2.58 3.67

suspected that a different algorithmic behavior might be observed in
problems that converge to their solution in a less ‘‘monotone’’ way, but
exhibit an ‘‘oscillating’’ pattern, as illustrated in the bottom image in
Fig. 1.

5. Conclusion

This paper proposes a coordination algorithm for linked TD-BU
models. The main idea behind the approach is to predict BU solutions
by making use of optimal basis matrices found in previous iterations.
The prediction procedure can be written in terms of an MCP and can be
incorporated into the TD model. Checking if the prediction is correct
is very easy: it is equivalent to checking if the predicted BU solution
is non-negative. If the prediction is correct, one can skip solving the
BU model and hence, greatly reduce the computation time in the
corresponding iteration.

The coordination algorithm is tested using a numerical illustration
of an energy system design problem. The results show that the coordi-
nation algorithm reduces the number of times the BU problem needs to

be solved by 87% on average while reducing the computation time by
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76% on average. Moreover, our algorithm significantly outperforms a
procedure using warm starts in the form of an advanced basis, which
speeds up computation times by only 12% on average. These results
illustrate the potential of the coordination algorithm to significantly
speed up the time needed to solve linked TD-BU models.

Our coordination algorithm may open the door to solving larger-
scale linked TD-BU models that have thus far been computationally
intractable. Future research may be aimed at numerically testing this
claim numerically by applying our coordination algorithm on larger-
scale linked TD-BU models. An interesting question in this regard is
whether the relative time gain resulting from using the coordination
algorithm tends to become more or less significant as the size of the
problem increases.

Another direction for future research would be to investigate how
the performance of our coordination algorithm depends on the conver-
gence pattern observed in the TD-BU model at hand. In particular, it
would be interesting to investigate whether the ‘‘monotone’’ behavior
of our coordination algorithm described in Section 4.3.3 carries over
to problems that do not converge as ‘‘monotonically’’ as the problem
considered in our experiments.

Finally, future research may extend our coordination algorithm to
TD-BU models with more general linking structures. Currently, our
approach is only applicable if the TD solution 𝑥 is linked to the BU
model through either the right-hand side 𝑏 or the cost vector 𝑐, but
ot both simultaneously. Using new algorithmic ideas, it might be
ossible to extend our approach to handle simultaneously linked 𝑏 and
, or a linked coefficient matrix 𝐴. In the same vein, extensions may
e possible to settings where the BU is not a linear program, but a
ixed-integer linear program or a quadratic program, for instance.
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Appendix. Model formulation

This appendix provides the mathematical formulation of the TD and
BU models used in Section 4. The models are taken from Helgesen
et al. [1]. Below, the BU and TD models are first described in some
9

detail, followed by a description of how they are linked.
A.1. Bottom-up model

Sets
𝑇 Time periods in BU model, indexed by

𝑡 and 𝜏.
𝑃 Processes in BU model, indexed by 𝑝.
𝑃prod ⊆ 𝑃 Production processes (as opposed to

supply and demand processes).
𝑃 in
𝑐 ⊆ 𝑃 Processes with commodity 𝑐 as input

𝑃 out
𝑐 ⊆ 𝑃 Processes with commodity 𝑐 as output.

𝐶 Commodities in BU model, indexed by 𝑐.
𝐶sup ⊆ 𝐶 Naturally supplied commodities.
𝐶prod ⊆ 𝐶 Produced commodities.
Parameters
𝐶cap
𝑡,𝑝 Capacity investment cost for process 𝑝

in year 𝑡.
𝐶 fom
𝑡,𝑝 Fixed operating and maintenance cost

for process 𝑝 in year 𝑡.
𝐶act
𝑡,𝑝 Activity cost in year 𝑡 for process 𝑝.

𝐶prd
𝑡,𝑐 Production cost for commodity 𝑐 in year 𝑡.

𝐴𝑓
𝑝 Availability factor for process 𝑝.

𝛼capact
𝑝 Capacity factor in process 𝑝.

𝜙𝑝,𝑐,𝑐′ Flow conversion factor in process 𝑝 from
commodity 𝑐 to 𝑐′.

𝐷𝑡,𝑐 Demand in year 𝑡 for commodity 𝑐.
𝐼cap
𝑡0 ,𝑝

Existing capacity in base year (𝑡0) for
process 𝑝.

𝑈 cap
𝑡,𝑝 Upper bound on capacity investment for

process 𝑝 in year 𝑡.
𝑆𝑡,𝑝 Salvage value in horizon year (𝑡end) from

investment in process 𝑝 in year 𝑡.
𝐿𝑝 Technical lifetime (number of years) on

investment in process 𝑝.
𝜌𝑡,𝑝 Remaining share of capacity from base

year (𝐼cap
𝑡0 ,𝑝

) in year 𝑡 of process 𝑝.
Variables
𝑖cap
𝑡,𝑝 Capacity investment in year 𝑡 in process 𝑝.
𝑥act
𝑡,𝑝 Activity in year 𝑡 in process 𝑝.

𝑥prd
𝑡,𝑐 Production of commodity 𝑝 in year 𝑡.

The BU model is formulated as a linear program and aims to
upply energy services at minimum total cost by making equipment
ecisions, as well as operating, primary energy supply, and energy trade
ecisions. The model considers the production of electricity either from
ydropower or from gas to cover the demand of a single region using
yearly time slice. The mathematical formulation of the bottom-up
odel is given by

min
𝑖cap
𝑡,𝑝 ,𝑥act

𝑡,𝑝 ,𝑥
prd
𝑡,𝑐

𝑡end
∑

𝑡=𝑡0

∑

𝑝∈𝑃

[ min(𝑡end ,𝑡+𝐿𝑝−1)
∑

𝜏=𝑡
𝐶 fom
𝜏,𝑝 𝑖cap

𝑡,𝑝 + 𝐶act
𝑡,𝑝 𝑥

act
𝑡,𝑝

+ (1 − 𝑆𝑡,𝑝)𝐶
cap
𝑡,𝑝 𝑖cap

𝑡,𝑝

]

+
𝑡end
∑

𝑡=𝑡0

∑

𝑐∈𝐶
𝐶prd
𝑡,𝑐 𝑥prd

𝑡,𝑐 (20)

ubject to

act
𝑡,𝑝 ≤

𝑡
∑

𝜏=max(𝑡0 ,𝑡−𝐿𝑝+1)
𝐴𝑓
𝑝 𝛼

capact
𝑝 𝑖cap

𝜏,𝑝

+ 𝐴𝑓
𝑝 𝛼

capact
𝑝 𝜌𝑡,𝑝𝐼

cap
𝑡0 ,𝑝

, 𝑡 ∈ 𝑇 , 𝑝 ∈ 𝑃prod, (21)

𝑡,𝑐 +
∑

𝑝∈𝑃 in
𝑐

𝑐′∈𝐶

𝑥act
𝑡,𝑝

𝜙𝑝,𝑐,𝑐′
≤

∑

𝑝∈𝑃 out
𝑐

𝑥act
𝑡,𝑝 , 𝑡 ∈ 𝑇 , 𝑐 ∈ 𝐶 ⧵ 𝐶sup, (22)

prd
𝑡,𝑐 =

∑

𝑥act
𝑡,𝑝 , 𝑡 ∈ 𝑇 , 𝑐 ∈ 𝐶, (23)
𝑃 out
𝑐
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𝑖cap
𝑡,𝑝 ≤ 𝑈 cap

𝑡,𝑝 , 𝑡 ∈ 𝑇 , 𝑝 ∈ 𝑃 . (24)

𝑖cap
𝑡,𝑝 , 𝑥act

𝑡,𝑝 , 𝑥
prd
𝑡,𝑐 ≥ 0 (25)

The objective function (20) expresses the minimization of the total
system costs, also considering the residual value of the plant after the
planning horizon has been passed. Constraints (21) require that the
activity level of a process 𝑝 does not exceed its capacity; constraints
(22) ensure the coverage of the final and intermediate demand for each
commodity 𝑐; constraints (23) require that the total production level of
each commodity 𝑐 coincides with the sum of the process activities used
to produce such commodity; constraints (24) define the upper bounds
on expansion capacity. For a more detailed discussion of the BU model,
see [1].

A.2. Top-down model

The TD model describes a static closed economy. Structurally, it is a
CGE featuring a simple nesting structure for the production functions,
where capital and labor are aggregated according to a constant elastic-
ity of substitution (CES) function, and the result is further aggregated
with intermediate goods according to a Leontief nest.

The considered economy consists of four sectors, each producing
a single good, and a representative household. The exchanged goods
are gas, electricity (ele), manufacturing (man), and non-manufacturing
(non). Capital and labor are the two resources provided by the house-
holds to the production sectors. The income received from lending
capital and labor to the production sectors is used to purchase the
produced goods according to a utility maximization approach. Namely,
a Stone–Geary utility function is used to model the purchase behavior of
the households, which is translated into a linear expenditure system (as
described in Goldberger and Gamalestos [35]). The social accounting
matrix (SAM) in Table 3 is used as data describing the monetary
exchanges in the base year.

The TD model is formulated by considering three groups of condi-
tions: a zero-profit condition, requiring no activity from the production
sectors when there are losses, a market clearing condition requiring that
a positive price provides a balance between demand and supply of each
commodity, and an income balance condition requiring that the income
obtained by lending the resources to the production sectors is spent for
consumption. The notation is given below.

Sets
𝐼 Economic sectors; 𝐼 = {gas, ele, man, non}
Parameters
𝐾𝑆 Capital endowment (given in the SAM).
𝐿𝑆 Labor endowment (given in the SAM).
𝑖𝑜𝑖,𝑗 Amount of good 𝑖 to produce one unit of

output 𝑗.
𝜎𝐹𝑖 Elasticity of substitution between capital and

labor in sector 𝑖.
𝛾𝐹𝑖 Cost share for capital in sector 𝑖.
𝑎𝐹𝑖 Efficiency parameter CES production function

for sector 𝑖.
𝛼ℎ𝑖 Household percent share of budget allocated to

consumption of good 𝑖.
𝜇ℎ
𝑖 Household subsistence level of good 𝑖.
Variables
𝑝𝑙 Price of labor (wage rate).
𝑝𝑘 Price of capital (return to capital).
𝑝𝑖 Price of good 𝑖.
𝑥𝑖 Production good 𝑖.
ℎ Household income.
𝐿𝑖 Demand for labor from sector 𝑖.
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𝐾𝑖 Demand for capital from sector 𝑖.
Table 3
Social accounting matrix (SAM).

gas ele man non L K hou Tot

gas 4 2 3 1 10
ele 1 1 7 8 5 22
man 1 3 6 26 2 38
non 5 10 10 30 92 147
L 1 1 5 53 60
K 2 3 8 27 40
hou 60 40 100
Tot 10 22 38 147 60 40 100

The mathematical formulation of the top-down model is as follows.
The zero profit condition is given by

0 ≤ 𝑝𝑙 ⋅ 𝐿𝑖 + 𝑝𝑘 ⋅𝐾𝑖 +
∑

𝑗∈𝐼
𝑝𝑗 𝑖𝑜𝑗,𝑖𝑥𝑖 − 𝑝𝑖 ⋅ 𝑥𝑖 ⟂ 𝑥𝑖 ≥ 0, 𝑖 ∈ 𝐼. (26)

The market clearing conditions for goods are given by

0 ≤ 𝑥𝑖 − 𝜇ℎ
𝑖 −

𝛼ℎ𝑖
𝑝𝑖

(

ℎ −
∑

𝑗∈𝐼
𝑝𝑗𝜇

ℎ
𝑗

)

−
∑

𝑗∈𝐼
𝑖𝑜𝑖,𝑗𝑥𝑗 ⟂ 𝑝𝑖 ≥ 0, 𝑖 ∈ 𝐼. (27)

The market clearing condition for labor is given by

0 ≤ 𝐿𝑆 −
∑

𝑖∈𝐼
𝐿𝑖 ⟂ 𝑝𝑙 ≥ 0, (28)

where, for every 𝑖 ∈ 𝐼 ,

𝐿𝑖 =
𝑥𝑖
𝑎𝐹𝑖

(

1 − 𝛾𝐹𝑖
𝑝𝑙

)𝜎𝐹𝑖
(29)

×
(

𝛾𝐺𝜎𝐹𝑖 ⋅ 𝑝
1−𝜎𝐹𝑖
𝑘 (1 − 𝛾𝐺𝜎𝐹𝑖 )𝜎

𝐹
𝑖 ⋅ 𝑝

1−𝜎𝐹𝑖
𝑙

)

(

𝜎𝐹𝑖
1−𝜎𝐹𝑖

)

. (30)

The market clearing condition for capital is given by

0 ≤ 𝐾𝑆 −
∑

𝑖∈𝐼
𝐾𝑖 ⟂ 𝑝𝑘 ≥ 0, (31)

where, for every 𝑖 ∈ 𝐼 , 𝐾𝑖 equals

𝐾𝑖 =
𝑥𝑖
𝑎𝐹𝑖

(

𝛾𝐹𝑖
𝑝𝑘

)𝜎𝐹𝑖
(32)

×
(

𝛾𝐺𝜎𝐹𝑖 ⋅ 𝑝
1−𝜎𝐹𝑖
𝑘 (1 − 𝛾𝐺𝜎𝐹𝑖 )𝜎

𝐹
𝑖 ⋅ 𝑝

1−𝜎𝐹𝑖
𝑙

)

(

𝜎𝐹𝑖
1−𝜎𝐹𝑖

)

. (33)

Finally, the income balance condition is given by

ℎ = 𝑝𝑘 ⋅𝐾𝑆 + 𝑝𝑙 ⋅ 𝐿𝑆, (34)

with associated dual variable ℎ.
Condition (26) states that a positive production from sector 𝑖 ∈ 𝐼

is possible only if all the production factors are compensated. Con-
dition (27) states that a positive price will ensure that the supply of
goods is equal to their demand, while a zero price will be considered
in case of excess supply. Similar conditions are established for the
demand and supply of labor and capital in (28) and (31). Finally,
condition (34) states that the total budget used for consumption is
formed as compensation for the lending of capital and labor to the
production sectors.

The system is homogeneous of degree one in prices, which means
that there is an infinite number of solutions, each differing by a multi-
plicative scalar for prices. As a consequence, prices are only relevant in
terms of their relative value compared to a numéraire. The wage rate 𝑝𝑙
is defined as numéraire and its value is fixed to 1. The model assumes
no savings, exogenously fixed endowments of capital and labor, no
government, and is defined as static. This last feature implies that, in
this simple model, the state of the economy at the end of the planning
horizon is projected by setting capital and labor force at the values that
are expected to be found in that last period and computing the resulting
equilibrium. For a more detailed discussion of the TD model, see [1].
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𝑖

A.3. Linking the top-downand bottom-up model

The energy mix from the BU solution is translated into Leontief
coefficients for energy production factors in the TD model, while the
TD solution provides input for the BU model in the form of projected
demand for energy services. See Fig. 2 for an illustration of the linking.

Specifically, the formula for the Leontief coefficient 𝑖𝑜gas,ele in the
D model is

𝑜gas,ele =
𝑥act
𝑡end,gaspower

𝑥act
𝑡end,electricitydemand

, (35)

where 𝑥act
𝑡end,gaspower and 𝑥act

𝑡end,electricitydemand are the activity levels of
producing electricity using gas and of electricity demand, respectively,
in the BU model solution.

Moreover, the formula for the projected demand for energy services
𝐷𝑡,𝑐 in the BU model is

𝐷𝑡,𝑐 = 𝐷𝑡0 ,𝑐 +𝐷𝑡0 ,𝑐 ⋅
𝑥gas + 𝑥ele − 𝑥0gas − 𝑥0ele

𝑥0gas + 𝑥0ele
⋅

𝑡 − 𝑡0
𝑡end − 𝑡0

, (36)

for every 𝑡 ∈ 𝑇 , 𝑐 ∈ 𝐶, where 𝑥gas and 𝑥ele are the projected demand
of gas and electricity, respectively, at the end of the modeling horizon
in the TD model, and 𝑥0gas and 𝑥0ele are the corresponding initial values.
In our framework

[

𝑥gas, 𝑥ele
]

corresponds to 𝑥 in the algorithm, while
[

𝑥act
𝑡end,gaspower, 𝑥

act
𝑡end,electricitydemand

]

corresponds to 𝑦 in the algorithm.
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