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Abstract. Wave loads on lattices of marine structures, such as wind parks with shared
mooring systems, are considered. Modal excitation induced by second-order low-frequency wave
loads is derived, leading to modal quadratic transfer functions. The consequence for the modal
loads, of applying Newman’s approximation is investigated.

1. Introduction
Forthcoming generations of offshore power grids might be largely floating and composed of
hundreds of subsystems harvesting, converting and storing energy. As an example, floating wind
parks, currently in the multi-MW power range, might eventually reach a multi-GW capacity,
and be combined with e.g. floating photovoltaic cells, and hydrogen production units. In
this context, offshore energy installations might change character, from single moored floating
structures to large lattices of floating structures.

Lattices are here defined as two-dimensional arrangements of identical structures,
interconnected by soft connections such as mooring lines. As the size of the lattice increases,
the number of eigenmodes and the range of associated eigenfrequencies will increase, with many
possible resonances in the low-frequency (LF) range, i.e. below the wave-frequency range. When
operating near these frequencies, it is critical to quantify the excitation forces and the amount
of damping in the system to detect possible resonance, and accurately estimate responses of
interest for the lattice. LF excitation loads are mainly due to wind and waves. The present
paper focuses on the latter. LF wave loads result from nonlinear interactions between frequency
components in the wave spectrum, and between the waves and a moving structure. Difference-
frequency quadratic transfer functions (QTFs) have traditionally been used to describe these
effects on individual floaters.

Several authors have investigated the behaviour of lattices of floating wind turbines. Static
analyses [1, 2, 3], eigenvalues analyses [4] and dynamic time-domain analyses [5, 6, 7, 8, 9]
at various fidelity levels have been reported. However, no frequency-domain study targeting
specifically nonlinear wave loads has been carried out yet. Frequency domain approaches, despite
their limitations when considering nonlinear systems, often yield a good understanding of the
physical phenomena at play.

The main contribution of the paper is a derivation of the modal excitation from second-order
(LF) wave loads, and of the lattice response under simplifying assumptions. The consequence of
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Figure 1. Left: grid type of lattice that will be considered in the present study (N=2).
Anchored lines (represented in green) have a length and stiffness denoted la and ka, respectively.
Shared lines (represented in black) have a length and stiffness denoted ls and ks respectively.
Right: wave spectrum used in the example: JONSWAP spectrum with Hs = 7m, Tp = 10s and
γ=3.3

Table 1. Lattice parameters
Notation and value
N = 2 number of FWTs on one row of the lattice
m = 14175 + 8300 t mass (mass + asymptotic LF added mass) of each FWT
ks = 60 kN/m linear stiffness of the shared lines
ka = 120 kN/m linear stiffness of the anchored lines
ls = 1260 m projected length on waterplane of the shared lines
la = 726 m projected length on waterplane of the anchored lines
T0 = 950 kN pre-tension of the lines
γ1 = 5× 10−3 s−1 mass coefficient of the Rayleigh damping
γ2 = 3× 10−1 s stiffness coefficient of the Rayleigh damping

using Newman’s approximation instead of a full QTF is also investigated. Theory is presented
in Sections 3 to 7, illustrated by an example introduced in Section 2.

2. Example case
The example case is similar to the one studied by Connolly in [4]. A grid type of lattice is
defined, as illustrated in Figure 1. The mooring lines are approximated by a linear stiffness
with values taken from [4] and recapped in Table 2. The pre-tension in the mooring lines is
950 kN. The mass and LF asymptotic added mass properties for the floater correspond to the
INO WINDMOOR 12MW design [10]. For this floater, a numerical QTF estimate is available,
see Figure 5. The behaviour of the lattice will be investigated in a sea-state described by the
JONSWAP spectrum S(ω), and characterized by a significant wave height Hs = 7 m and a peak
period of Tp = 10 s, see Figure 1. The wave propagation direction is β = 30o with respect to
the horizontal axis. Static wind loads are represented by a constant force of 1.5 MN, applied on
all four floaters with an angle of 45o with respect to the horizontal axis.
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3. Eigenmodes
We consider the general case of a lattice with nd degrees of freedom. In the example case, only
surge and sway motions are included for simplicity, so that nd = 2N2. Let us denote r ∈ Rnd

the lattice response to an external nodal excitation F ∈ Rnd . Dynamic equilibrium yields

Mr̈ + Cṙ +Kr = F (1)

where M , C and K are nd × nd mass, damping and stiffness matrices. The response is defined
relative to the equilibrium configuration.

Note that system matrices for a statically loaded lattice can be very different from their
counterpart obtained in an unloaded scenario due to large deformations under external static
loading. In that case, the equilibrium configuration and the values of these matrices must be
calculated with a nonlinear static analysis, which has been done here.

Free vibrations of the lattice at a frequency ω are described by

(−Mω2 +K)r = 0 (2)

Assume that M is a real symmetric positive-definite matrix. M can be Cholesky-decomposed as
a product M = LL∗ where L is a lower triangular matrix and ∗ denotes the Hermitian transpose.
Defining q = L∗r, free vibration can then be re-written as

K̃q = ω2q (3)

where
K̃ = L−1K(L∗)−1 (4)

is a symmetric matrix. Then, there exist a set of eigenvectors (ϕi)i∈{1...nd} of K̃ that form an

orthonormal1 basis of the Euclidean vector space Rnd . Each ϕi is associated to an eigenvalue
Ω2
i . We define

Φ = [ϕ1, ..., ϕnd
] (5)

and
Λ = diag(Ω2

1, ...,Ω
2
nd
) (6)

so that
K̃Φ = ΛΦ (7)

Orthonormality yields Φ∗Φ = I.
Note that all Ωi are not necessarily distinct. In our example, when no mean load is applied

to the lattice, several modeshapes are associated with the same eigenfrequency (degenerate
eigenmodes), as shown in Figure 2. It is still possible in that case to define an orthonormal
basis Φ using Gram-Schmidt orthogonalization. In the case of an arbitrarily loaded lattice,
eigenmodes are in general non-degenerate, i.e. that all eigenfrequencies are distinct, as shown
in Figure 3.

1 In case of non-degenerate eigenmodes (all eigenvalues are distinct), orthogonality of eigenvectors is proved as
follows. Let u ∈ {1, ..., n}. ω2

uϕu = K̃ϕu, ω2
uϕ

∗
u = (K̃ϕu)

∗, K̃ being real symmetric we have ω2
uϕ

∗
u = ϕ∗

uK̃.
Let v ∈ {1, ..., n}. Post multiplying by ϕv, we have ω2

uϕ
∗
uϕv = ϕ∗

uK̃ϕv, i.e. ω2
uϕ

∗
uϕv = ϕ∗

uω
2
vϕv, yielding

(ω2
u −ω2

v)ϕ
∗
uϕv = 0. So if u ̸= v, then ϕu and ϕv are orthogonal. They can be normalized to yield an orthonormal

basis.
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4. Modal load and response
The modal load vector µ ∈ Rnd and the modal response vector ξ ∈ Rnd are defined by

µ = Φ∗L−1F (8)

ξ = Φ∗L∗r (9)

The dynamic equilibrium (1) can be rewritten asM(L−1)∗Φξ̈+C(L−1)∗Φξ̇+K(L−1)∗Φξ = LΦµ.
Premultiplying by L−1, leads to Φξ̈ + L−1C(L−1)∗Φξ̇ + K̃Φξ = Φµ. Premultiplying by Φ∗, we
get ξ̈+Φ∗L−1C(L−1)∗Φξ̇+Φ∗K̃Φξ = µ, and obtain the modal system of differential equations:

ξ̈ +Φ∗L−1C(L−1)∗Φξ̇ + Λξ = µ (10)

where couplings between the modes exist due to the modal damping term. To proceed with
the analysis, it is practical to assume Rayleigh damping, even if there is no indication that this
assumption is fulfilled in reality. In that case,

C = γ1M + γ2K (11)

yielding L−1C(L−1)∗ = γ1L
−1M(L−1)∗ + γ2L

−1K(L−1)∗ = γ1I + γ2K̃. Then ξ̈ + Φ∗(γ1I +
γ2K̃)Φξ̇ + Λξ = µ, which leads to an uncoupled system of differential equations:

∀i ∈ {1, ..., nd}, ξ̈i + (γ1 + γ2Ω
2
i )ξ̇i +Ω2

i ξi = µi (12)

In that case, the complex modal response ξ̄i to a harmonic modal load µ̄i at frequency Ω can
immediately be found by

∀i ∈ {1, ..., nd}, ξ̄i =
µ̄i

Ω2
i − Ω2 + iΩ(γ1 + γ2Ω2

i )
(13)

Nodal responses and loads can be recovered from their modal counterparts by

r = (L−1)∗Φξ (14)

F = LΦµ (15)

5. Second-order modal wave loads and response

Consider now a lattice in an incident multi-chromatic wave field ℜ
[∑

j ζje
iωjt−kju·x

]
, where

ζj ∈ C describes the amplitude of the wave component and its phase at origin, kj the associated
wave number, u = (cosβ, sinβ)⊤ is he wave propagation direction, and x the position vector.
The second-order wave load at a frequency ∆ω ≥ 0 on a floater located at x, and on the degree
of freedom d ∈ {1, 2, 6} (for surge, sway and yaw) is given by

fd(∆ω, x) =
∑

|ωi−ωj |=∆ω

(ζie
−ikiu·x)∗(ζje

−ikju·x)Q−
d (ωi, ωj , β) (16)

where Q−
d is the difference-frequency quadratic transfer function (QTF) for the considered degree

of freedom d. Figure 5 shows the QTF for the floater considered in our example. For simplicity,
the floater is here assumed to be axisymmetric, so that the QTF represented in Figure 5 is valid
for all β. Note that this is not true for the actual INO WINDMOOR 12MW floater.
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Figure 5. Amplitude (left) and phase (right) of the surge difference-frequency quadratic transfer
function of the INO WINDMOOR 12MW floater, obtained from potential flow theory. The red
box illustrates difference-frequencies corresponding to the range of eigenfrequencies of the lattice.
The black box illustrates mean frequencies at which there is significant wave energy in the chosen
sea-state (10 and 90th percentile of wave energy, see Figure 1).

Assuming deep water, and hence a dispersion relationship ω2 = gk, the load on the floater
reads

fd(∆ω, x) =
∑

|ωi−ωj |=∆ω

ζ∗i ζje
i
ω2
i −ω2

j
g

u·x
Q−

d (ωi, ωj , β) (17)

The nodal load2 vector F (∆ω) for the lattice can then be built by gathering fd(∆ω, x) for each
degree of freedom d and each position x. For example, for a lattice of three structures located
at (x1, x2, x3) and with two degrees of freedom each, the nodal load would be obtained by

F (∆ω) = [f1(∆ω, x1), f2(∆ω, x1), f1(∆ω, x2), f2(∆ω, x2), f1(∆ω, x3), f2(∆ω, x3)]
⊤ (18)

Once nodal loads are obtained, the modal loads µi can be calculated from (8), respectively.
They are shown in Figure 4 (upper row) for our example case. Note that by setting ζi = ζj = 1,
modal difference-frequencies QTFs are obtained for the lattice.

From this derivation, and by considering Figure 4, it becomes clear that the amplitude of
the modal QTF at a given bi-frequency (ω1, ω2) is influenced by three parameters. First of all,
(1) the quadratic transfer function at (ω1, ω2) represented in Figure 5, appears as a background
pattern, providing the strength and phasing of the nodal load on each of the (identical) floaters.
On top of that background, (2) fringes are observed, that are variations of the modal load over
shorter bi-frequency ranges. These fringes are induced by the (ω2

1 − ω2
2)u · x factor, and thus

depend on the wave propagation direction, and the lattice layout. Finally, (3) the projection
F (∆ω) · ϕi, which involves the eigenvector/modeshape ϕi acts as a uniform multiplying factor
over the bi-frequency plane. It is for example noticeable that modes 2 and 7 are clearly less
excited than the other ones, due to the fact that the corresponding modeshapes are nearly
orthogonal to the wave propagation direction.

2 Note that the wave load is real due to the Hermitian symmetry of the QTF. Indeed consider a bi-chromatic

wave, the sum above reduces to ζ∗1 ζ2e
i
ω2
1−ω2

2
g

u·x
Q−(ω1, ω2, β) + ζ∗2 ζ1e

i
ω2
2−ω2

1
g

u·x
Q−(ω2, ω1, β) which is a sum of

complex conjugates, and is then equal to 2ℜ[ζ∗1 ζ2ei
ω2
1−ω2

2
g

u·x
Q−(ω1, ω2, β)].
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Figure 6. Modal load (left) and response (right) spectra in Hs = 7m, Tp = 10s (see Fig. 1)

From the modal load µ, modal responses ξ are simply obtained from (13). They are shown in
the lower row in Figure 4. It is seen that for the present choice of damping model and damping
ratio, the modal response is strongly enhanced at difference frequencies (ω1, ω2) matching the
eigenfrequencies Ωi of the mode (resonance). Modal response is relatively smaller for large
difference-frequencies in spite of a larger floater QTF, as the lattice does not respond significantly
to such high frequencies. Note that the properties of the response ξ are very much affected by
the assumed Rayleigh damping model and (γ1,γ2) coefficients. These assumptions simplify the
analysis and enables understanding the mechanisms at play, but there is no indication they are
valid.

6. Modal load and response spectra in a sea-state
We now denote Ω, the frequency of the nonlinear wave loading, consistently with Section 3. For
a given mode i ∈ {1, ..., nd} and a given frequency Ω, the spectral density of the modal nonlinear
wave load Sµs(Ω) is obtained by integration over all combinations of sea-state components ω
and ω +Ω that will generate a load at a (difference-) frequency Ω [11, eq (7.99)]:

Sµi(Ω) = 8

∫ ∞

0
S(ω)S(ω +Ω)|µi(ω, ω +Ω, β)|2dω (19)

Similarly the spectral density of the modal response for mode i, denoted Sξi(Ω) is obtained:

Sξi(Ω) = 8

∫ ∞

0
S(ω)S(ω +Ω)|ξi(ω, ω +Ω, β)|2dω (20)

Spectra of both modal load and response are shown on the left- and right-hand side of Figure
6, respectively, for the sea-state whose spectrum used in the example, and plotted in Figure 1.

Considering Sµ, and leaving aside modes 2 and 7, which are not significantly excited with
the given wave propagation direction, it is clear that all other modes are loaded over the whole
range of frequencies of relevance for the lattice. Furthermore, large variations of the loading are
observed among the modes and across the frequency range (note the y-log-scale of the plots).
Modal response is as expected largest near the eigenfrequencies (0.7 and 0.10 rad/s), and then
quickly tends to zero. Note however that linear wave loads, not included in the present study,
are likely to generate a significant modal load and response at frequencies close to 0.63 rad/s.
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7. Consequence of applying Newman approximation
In Section 5, we showed how the modal QTF was dependent on the individual floater QTF.
Despite the fact that second-order potential flow codes are now widely available (such as WAMIT
S and Hydrostar), it is still common to consider applying the so-called Newman’s approximation,
instead of using full QTFs. Newman’s approximation consists in approximating the QTF at a
bi-frequency (ω1, ω2) by the arithmetic mean of its diagonal terms at (ω1, ω1) and (ω2, ω2):

Q−
d (ω1, ω2) =

Q−
d (ω1, ω1) +Q−

d (ω2, ω2)

2
(21)

The historical reason for applying Newman’s approximation is that linear potential solvers,
which are less computationally expensive than their second-order counterparts, give access to
the diagonal terms Q−

d (ω, ω) of the QTF, under the denomination wave drift coefficients.
However, a QTF being Hermitian symmetric, its diagonal terms have zero phase. So an

important bi-effect of Newman’s approximation is that the phase information in the QTF, shown
on the right hand side of Figure 5, is lost. This has several consequences for the modal loads on
lattices. (1) Phase information between degrees of freedom of a given floater is lost. If a mode
involves e.g. sway and yaw of a given floater, the modal strength will be affected by an error
in the relative phases in the nodal load. Furthermore, (2) phase information between modal
loads will be lost, which can have consequences on quantities of interests that are extracted by
combining modal responses. This can be for instance mooring line tensions, estimated from the
motions of the floaters. Finally, by construction, (3) Newman’s approximation provides more
accurate estimates of the module/real-part of the QTF near the main diagonal (small difference-
frequencies), rather away from it (large difference-frequencies, often of interest for lattices). It
implies that Newman’s approximation might be less conservative when a QTF exhibits maxima
at large difference-frequencies, compared to when such peaks occur near the main diagonal.

The error induced by Newman’s approximation3 can be estimated quantitatively for the
example at hand. Denote Ŝµ(Ω) the modal load power spectra obtained as outlined in Section
6, but now applying Newman approximation (21) instead of the full QTF Q−

d . We define the

error S̃ in the modal load as

S̃ =
Ŝµ(Ω)− Sµ(Ω)

Sµ(Ω)
(22)

S̃ is represented in Figure 7. It is seen to vary from mode to mode and across the frequency
range, but with a clear trend being that the error increases with the loading frequency. For the
range of frequencies relevant for the lattices considered here (say Ω < 0.2 rad/s), S̃ can reach
-40%, meaning that Newman’s approximation can lead to modal loads underestimated by 20%.
From linearity, the same error would be made on the response spectrum.

Since numerical tools that are practical to use in an engineering context, give access to full
QTFs, it is therefore recommended to use them when studying lattices. In many cases, it is
recommended to use empirical corrections to the QTF, derived with a cross-bi-spectral analysis
[12, Section 4] or least-square based techniques [13, 14]. This has been done for the INO
Windmoor 12MW considered here [15], and it was found that for moderate to high sea-states,
potential flow predictions generally underestimate the QTF. Such discrepancies are likely to
be related to viscous loads, not modelled in potential theory, or to higher than second order
potential flow effects.

3 Since axisymmetry of the floater has been assumed in the present paper, and since quantities of interests due
to modal responses have not been investigated, estimates the error induced by points (1) and (2) above are not
accessible within the scope of this paper, and we are only considering the effect of point (3).
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8. Conclusion
The present paper introduced modal quadratic transfer functions (QTF) for lattices of marine
structures, such as wind parks with shared moorings. The procedure for obtaining modal QTFs
consists in performing a nonlinear static (to account for large deformations), a modal analysis of
the lattice, followed by the procedure outlined in Section 5. As a results, modal QTFs presented
in Figure 4 are obtained. Their features have been explained in details in Section 5. For the
example used in the paper, that is a grid-type of lattice with four floaters, it has been shown
that applying Newman’s approximation could lead to an significant underestimation the modal
loads.

The modal response of the lattice has also been derived, assuming a Rayleigh damping model
which led to uncoupled modes, and given the choice of Rayleigh coefficients, to resonant modes.
This enabled understanding the mechanisms at play, but there is no indication that this damping
model is applicable for shared mooring systems. If shared lines induced a large amount of
damping, resonance might be avoided, even under wave loading occurring at the eigenfrequencies
of the lattice.

Further work is ongoing to model and quantify damping. This will enable extending the
frequency domain analysis to study lattice responses, and derived quantities of interest such as
tensions in mooring lines, and absolute/relative excursion of floaters. Understanding the role of
specific modes on these quantities of interest is of interest for design.

Finally, it should be stressed that the present paper only focused on second-order wave
loads, of interest because they occur at typical eigenfrequencies of lattices. Wind loads and
linear wave loads, usually significantly larger in magnitude, should of course be included in the
dynamic analysis of a lattice.
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