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Abstract 

Archaeological artifacts play important role in understanding the past developments of the humanity. However, 
the artifacts are often highly fragmented and degraded, with many details and parts missing due to centuries’ long 
degradation. Archaeologists and conservators attempt to reconstruct the original state of the objects either physi-
cally or virtually. This process includes characterizing and matching fragments’ features to identify which ones belong 
together. However, this process currently requires an extensive and tedious manual labor. Recent development 
in computational techniques gave rise to computer-assisted ways of virtual reconstruction, where the computer 
suggests solutions to the puzzle of scattered fragments and supplements or fully replaces manual labor. However, 
the capabilities of computational techniques remain limited in many aspects. This review summarizes the state-of-
the-art computational techniques for puzzle and virtual reconstruction problems in cultural heritage applications, 
in general – with a particular interest in archaeological textiles. We overview existing computational methods, their 
applications and limitations. Afterward, based on the current knowledge gaps, we discuss where the field should go 
next.
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Introduction
Archaeological objects provide invaluable insights 
into the past of humanity. Textiles have been essential 
for society throughout history and have always played 
an important role in demonstrating social- and eco-
nomic status  [1, 2]. It has been suggested that textile 
crafts predate metallurgy and even pottery  [3]. Pre-
served archaeological textiles constitute a rich source 
for cultural heritage research. The areas of use can be 
split into three main categories: clothing (as garments, 

headcovers, shoes, and accessories), furnishing and tex-
tile art (as upholstery, curtains, bedding, carpets, tapes-
tries, wall hangings, canvas for paintings) and functional 
and transport textiles (as sails, ropes, fishing nets, various 
packing) [4].

Even though textiles are often associated with organic 
materials, composite textiles containing inorganic mate-
rials, such as metal threads, are not an exception. There 
are also rare examples of pure inorganic textiles as those 
made of asbestos  [5]. Archaeological textile materials 
vary broadly and represent material groups of plant ori-
gins such as bast- and leaf fibres, seed and fruit hairs, 
grasses and even moss; animal origins such as hairs, 
silks and tissues (i.e. rawhide, leathers, sinews, intestines 
and sea silk) and inorganic origins such as asbestos and 
metal  [4]. Knowledge about materials used for heritage 
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textiles and their processing is essential for reconstruc-
tion purposes because different materials degrade in dif-
ferent ways [6].

Archaeological textiles belong to highly vulnerable 
objects due to their material characteristics and physic-
ochemical properties. That is why they have often been 
recovered in a fragmentary state. For instance, materials 
of animal origin survive better in wet and slightly acidic 
environments than cellulose-based plant materials [6]. It 
is no exception that only a part of a composite textile sur-
vives, e.g., a weft made of animal material; in contrast, a 
warp of plant material can decompose, or certain parts 
of the weft pattern can be missing. Moreover, archaeo-
logical textiles can often be brittle and excessive physical 
manipulation can have severe consequences for their fur-
ther preservation. Thus, searching for new ways to reduce 
their manipulation is crucial. Developing computational 
techniques for virtual reconstruction can be one solution.

The fragmentary state of archaeological textiles often 
requires reconstruction to interpret the stories they are 
telling. Archaeologists, conservators, and other experts 
must identify which fragments belong together to recover 
the objects’ former shape and appearance. The manual 
reconstruction process often requires physical manipu-
lation of the original material. Therefore, replacing at 
least some parts of the manual reconstruction workflow 
through virtual analysis can positively impact the preser-
vation of original objects. We may compare a reconstruc-
tion process of a flat, fragmented textile object to solving 

jigsaw puzzles (Fig.  1). Unlike the popular game that is 
usually provided with a solution image, many important 
fragments are often missing from a fragmented archae-
ological artifact and no solution or “correct answer” is 
known a priori in archaeological applications. Similarly, 
removing a solution image and a part of the jigsaw pieces 
may complicate solving the puzzle substantially. Inter-
preting motifs without knowing their original state may 
thus be more ambiguous and demanding.

Archaeological objects come with further challenges 
– they are highly damaged and sometimes even changed 
due to various post-excavation processes and past resto-
ration treatments (see Fig. 2). Dealing with multiple frag-
mented objects presents another challenge. In that case, 
it is crucial to identify which fragments come from the 
same object in the first place. The tedious and time-con-
suming task is usually done manually by archaeologists 
and conservators, where they rely on their experience 
and expertise.

Automatic puzzle solving by a machine is an interest-
ing computational problem that has been addressed by 
numerous researchers. While the majority of them use 
different computer vision and machine learning tech-
niques to recover the photographs of different scenes, 
the use of machine learning for reconstructing cultural 
heritage artifacts has been less common. Manual recon-
structions can be based on visual cues, such as identifica-
tion of matching geometric and chromatic patterns while 
considering some constraints of plausibility: for instance, 

Fig. 1  The standard jigsaw puzzles we solve in daily lives. They usually have a ground truth image as a reference with only one possible solution, 
and well-preserved pieces make solving the puzzle feasible by comparing shapes, contour continuities, and colors among pairs of pieces. 
Photographs by Davit Gigilashvili
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ensuring that sky is above ground, human head is above 
its torso, or the sequence of events depicted in the arti-
fact are consistent and meaningful, “such as cooking 
being done before eating” [7]. Another group of cues can 
be technical features given by the textile processing such 
as material and its quality, spin direction, warp and weft 
direction, thread count and others.

The first computational solution to the puzzle problem 
was conceived six decades ago [8]. A substantial progress 
in machine learning, and especially the emergence of 
deep learning within the past decade, has enabled solu-
tions that were unimaginable before (see section General 
Puzzle Solving Algorithms below). Therefore, we want to 
overview the advances in computational techniques for 
puzzle solving and discuss how they could contribute to 
the specific problem of fragmented archaeological textile 
reconstruction. Virtual puzzle solving has another advan-
tage, which is rarely discussed: the archaeological arti-
facts are usually very fragile, and development of virtual 
alternatives will limit physical interaction with them and, 
hence, facilitate their preservation. The contribution of 
this work is the following:

•	 We provide the overview of the different computa-
tional approaches to puzzle solving, both in general, 

and more specifically, for cultural heritage recon-
struction.

•	 We provide a comprehensive analysis of existing lit-
erature on puzzle solving specifically for textile arti-
facts.

•	 We analyze the existing knowledge gaps for virtual 
reconstruction of archaeological textiles and briefly 
discuss the potential future developments (see the 
bullet-point summary in the concluding part of the 
“Discussion” section).

The article is organized as follows: we start with a his-
torical discourse on general puzzle solvers; afterward, we 
focus on puzzle solving applications in cultural heritage, 
and then, we discuss the works specifically on textiles. 
Finally, we discuss the results and draw conclusions.

Existing computational algorithms for puzzle 
solving
Puzzle solving has been a broadly explored topic in 
machine learning. However, most of the algorithms 
address natural images and only part of the works 
are intended for cultural heritage applications, out of 
which only handful are about archaeological textiles. 

Fig. 2  The example of archaeological fragments of Oseberg tapestries [9]. Puzzle solving is extremely challenging, as the fragments are highly 
faded and degraded, they have irregular shapes, many fragments are missing. Moreover, some fragments, as the one on the very right, show former, 
post-excavation changes – here, for instance, sticking fragment edges by an adhesive, which may not reflect the arrangement in the original object. 
Photographs by George Alexis Pantos

Table 1  Example queries and respective number of hits on Google Scholar search engine

Search query Hits

“machine learning” AND “puzzle” 52600

(“machine learning” OR “AI” OR “artificial intelligence”) AND “puzzle solving” 8140

“machine learning” AND “puzzle” AND “cultural heritage” 1010

“machine learning” AND “puzzle” AND “cultural heritage” AND “textile” 77

“machine learning” AND “puzzle” AND “cultural heritage” AND “archaeological textile” 2
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Table 1 illustrates the example queries used for article 
retrieval from Google Scholar search engine and the 
number of respective results (hits). While “machine 
learning” and “puzzle” return 52,600 articles, addition 
of “cultural heritage” to the filter reduces the number 
to 1010, “textile” to 77, and “archaeological textile” to 
only 2. Only the articles written in English were con-
sidered. The objective of this work was to provide an 
exhaustive review on puzzle solving for archaeologi-
cal textiles, while also discussing non-exhaustive list of 
representative highly-cited articles introducing differ-
ent, rather broad machine learning methods as well as 
those addressing specific sub-domains of cultural her-
itage to better understand the overall context, existing 
knowledge gaps as well as opportunities for archaeo-
logical textile reconstruction.

The fundamental problem in solving the puzzle is the 
fact that it is often impractical to try all combinations for 
reaching a global optimal solution, due to the immen-
sity of required time and resources. Feasible methods, 
instead, should seek sub-optimal puzzling, and instead 
of exhaustive brute-force combinatorial approach, the 
solutions should utilize some exiting regularities to iden-
tify neighboring pieces. The first computer-based solu-
tion to jigsaw puzzles is a classic work by Freeman and 
Garder [8] from back in 1964. The work used apictorial, 
i.e. homogeneous gray pieces only, puzzled together 
solely based on contours of the pieces and considered the 
problem of up-to 9 pieces. The authors noted that false 
positives – matching contours that are ultimately false 
were one of the most significant challenges. The authors 
used a chain-encoding technique. A graph – called a 
chain – was constructed, which was a quantized version 
of piece’s outline. From each node, there are 8 different 
ways to proceed to the next node (four orthogonal direc-
tions and four diagonals). Each of these directions were 
labeled with numbers, creating the chain code. Each 
chain was split into smaller chainlets. To consider two 
chainlets as matching, the feature vector of a given chain-
let should have been as close as possible to the inverted 
version of another chainlet’s one. Finally, the authors 
discuss two ways to assemble the puzzle: first is find-
ing pairs of matching chainlets. This may create disjoint 
clusters and can mess up the whole process if there is 
wrong match at an early stage. The second, a more robust 
method is the algorithm that tries to find a matching pair 
for each junction, solving the puzzle incrementally.

The research has advanced significantly in the six dec-
ades since then. In addition to cultural heritage, it can 
have applications in broad range of problems, such as 
recovery of shredded documents  [10–12], or fractured 
bones  [13]. As well noted by Goldberg et  al.  [14], jig-
saw puzzle is worth exploring on its own sake, as “it is 

a natural and challenging problem that catches people’s 
imaginations”.

General puzzle solving algorithms
The research has developed in multiple directions. 
According to Zhang et al. [15] fragmented image puzzle 
solvers can be classified in two distinct categories, geom-
etry- and color-based ones. The former primarily relies 
on fragment contours, while the latter analyzes colors, to 
assess the likelihood of two given fragments being adja-
cent. While the majority of the modern works use both 
types of information [16–18], it took nearly three decades 
after the work by Freeman and Garder  [19] to start uti-
lizing color and appearance (texture, style) information. 
An alternative way to classify the approaches is whether 
these features in question are local or global. Some works 
rely on global features [20, 21] – fragment geometry and 
color distribution in the entire image, usually optimized 
by considering global geometric and color compatibil-
ity [14, 22]); while others rely on local features [23, 24] of 
a given piece, such as its shape, color, and texture that will 
be compared with its neighbors. State-of-the-art deep 
learning solvers may leverage both global as well as local 
features  [25–27]. The examples of global-feature based 
methods are Growing Consensus, such as a work by Son 
et al.  [21], and a Genetic Algorithm, such as the one by 
Sholomon et al. [20]. The former uses natural images and 
solves the puzzle of 432 pieces in 120 s. It deals with arti-
ficially created pieces as small as 7× 7 pixels. It does not 
attempt to maximize the compatibility among all pairs of 
pieces, which may be misleading when pieces are small, 
because small pieces contain little information and may 
have little or no color variation. The method rather relies 
on geometric consistencies among different configura-
tions of neighbors. The latter is designed to solve puzzles 
with very high number of pieces. It can solve a puzzle 
of 22 834 pieces in 13.19  h – which is the largest auto-
matically solved puzzle to the best of our knowledge. The 
Genetic Algorithm approach is inspired from the evolu-
tionary processes. The process starts with 1000 random 
pseudo-solutions – called chromosomes, i.e. random 
arrangements of the pieces. The evolutionary-inspired 
steps of selection, reproduction, and mutation are applied 
to iteratively improve the solutions from two “parent” 
solutions to a better “child” solution, which makes more 
sense in terms of expected regularities.

The examples of local methods are the works by Paikin 
and Tal [23] and Son et al. [24]. Both works use artificially 
fragmented photographs of natural images. The former 
is claimed to be robust even when the number and ori-
entation of the pieces, as well as the number of original 
images, are unknown, and some pieces are missing. It 
identifies compatible neighboring pieces. The authors 
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use a greedy algorithm. Greedy algorithm means that the 
algorithm usually makes decisions that are optimal at a 
given step at a given point in time, without considering 
whether this decision is optimal in the long term through 
the entire pipeline. Using a greedy algorithm creates a 
risk that mistakes at the initial stage may significantly 
compromise the eventual result. Therefore, only the 
matches of high confidence are accepted. They use the 
principle of best buddies introduced in [28]. This means 
that each piece independently identifies the other as the 
best match. The first piece is selected that has best bud-
dies in all four directions; then comes the placement of 
other pieces with respect to the first piece and so on. Son 
et al.  [24], on the other hand, start with a small loop of 
4 pieces ( 2× 2 ), created with dissimilarity metrics taken 
from previous works  [29, 30]. The loop dimensionality 
gradually increases, eventually creating a N-dimensional 
( N × N  ) loop in a bottom-up fashion using the dissimi-
larity metrics. In general, global features based tech-
niques are viable when the jigsaw puzzle is very large or 
the size of pieces of puzzle is very small, because when 
the pieces of puzzle are very small, they don’t contain 
enough spatial or local information that can be exploited 
to make a good prediction of their position; this is where 
the global geometry comes into handy, which is exploited 
by the global features based techniques. On the other 
hand, if the pieces are large and contain enough informa-
tion, then local features based techniques work better in 
accuracy, and they are also more robust than global fea-
tures based techniques. However, the methods that use 
local or global techniques work good with same source 
of pieces (same original image) in puzzle; they fail when 
the pieces of puzzles come from different sources with 
different objects and features, i.e. these techniques are 
not robust enough to work on every type of puzzles. And 
these techniques are also not robust to erosion and frag-
ments loss that is quite common in real world. This is 
where we need techniques that use both local and global 
features to come up with more generalized techniques. 
Deep learning is one of them that leverages both type of 
features and creates more generalized puzzle solver mod-
els [25, 26].

Deep learning has revolutionized many applications of 
computer vision and image processing, and puzzle solv-
ing is no exception. Deep learning uses artificial neural 
networks that are inspired from the intelligence mecha-
nisms in biological organisms. It has demonstrated 
an impressive performance in tasks such as identify-
ing objects in the images  [31]. Doersch et  al.  [25] used 
unsupervised learning for puzzle solving. Unsupervised 
means that the model automatically identifies patterns 
and arranges the data according to it without humans 
providing any labels. On the contrary, supervised 

methods depend on the labels, or “correct answers” 
provided by humans. For instance, if we want to teach 
a model to distinguish a cat image from dog images, we 
can show it a vast number of cat and dog images and tell 
which one is which, and the model will learn patterns 
characteristic to each of them. In unsupervised learning, 
we do not tell which image contains a cat and which once 
depicts a dog – the model captures itself that the patterns 
differ between the two groups. A neural network based 
model used by Doersch et al. [25] was trained to predict 
the position of a piece relative to the other piece when a 
pair of pieces was given to a neural network. They used 
images from Pascal VOC Dataset  [32] and ImageNet 
Dataset [6] to create pieces to train a Convolutional 
Neural Network (CNN) based model  [33]. To make the 
model more generalizable, they added jitter and gaps at 
the borders of the pieces to simulate missing parts.

Chen et al. [34] propose an interesting approach to puz-
zle solving – namely, puzzle solving is used as a Vision 
Transformer (ViT) component for image classification in 
natural images. Vision Transformers [35] are deep learn-
ing architecture that were primarily created for Natural 
Language Processing, but they have demonstrated the 
state-of-the-art performance in computer vision and 
image classification tasks  [36]. Unlike traditional CNNs, 
ViTs do not contain a convolution layer and split images 
into fixed-size non-overlapping patches and use posi-
tional encodings to track their spatial locations. Since 
ViTs work on raw image patches, the authors anticipate 
it to work well for jigsaw puzzle solving. Their model, 
called Jigsaw-ViT, uses puzzle solving as a self-supervised 
auxillary loss during image classification. In other words, 
the task of the model is to solve a jigsaw puzzle with the 
available data, and its accuracy is used as a loss function. 
They removed positional embeddings not to have direct 
explicit cues to patch positions, and used patch mask-
ing, i.e. randomly dropping different patches to force the 
model to consider the global information. They conclude 
that inclusion of a jigsaw puzzle improved generalization 
and robustness of the image classifier.

Another deep-learning based alternative to traditional 
CNN architectures can be diffusion models that are pri-
marily intended for generative tasks. Diffusion models 
gradually add noise to a sample and then learn to invert 
this process - after training, they are eventually able to 
generate samples from noise signals by denoising [37, 38]. 
Diffusion models turned out to be effective when puzzle 
solving is treated as a conditional generation process. 
In this case, the properties of a fragment are the condi-
tions for generative process. Two solutions are of spe-
cial interest: HouseDiffusion [39] and PuzzleFusion [40]. 
The objective of HouseDiffusion is generation of a floor-
plan from polygons constrained by graph where nodes 



Page 6 of 16Gigilashvili et al. Heritage Science          (2023) 11:259 

correspond to rooms and edges correspond to links 
between rooms via doors. The room generation problem 
implies generation of polygons as neighboring rooms fit-
ting with one another. Their coordinates are initialized 
with Gaussian noise and are gradually denoised. Here, 
only the outlines of the polygons are relevant. Unlike 
this approach, PuzzleFusion  [40] uses diffusion models 
explicitly for jigsaw puzzle solving, where pictorial (con-
sidering the texture of the piece as in image reconstruc-
tion) and apictorial (considering just the outline of the 
piece, as in room generation) cases are addressed.

Finally, Chanda et al. [41] used clustering to group the 
fragments of shredded papers that belong together. They 
hypothesized that the fragments that come from the 
same original paper have similar color and texture. They 
converted the images from a device-dependent RGB to 
a device-independent CIELAB color space and supple-
mented color information by texture features extracted 
with Gabor filters. While colors are limited to specific 
pixel values, texture descriptors describe the patterns 
and regularities in the spatial distribution of colors (or 
intensities if it is grayscale). The authors constructed a 
feature vector that included both color and texture fea-
tures, which was subsequently used for clustering. Clus-
tering is an unsupervised machine learning methodology 
that groups data into clusters based on specific features. 
Clustering algorithms try to minimize intra-cluster dif-
ferences and maximize inter-cluster differences, i.e. 
group samples with similar features together and place 
the samples with different features into different clus-
ters. Chanda  et al.  [41] reported that the accuracy of 
their algorithm was more than 97%. We will return to 
this work later in the context of textiles. Two works by 
Kleber, Diem, and Sablatnig [42, 43] analyze the snippets 
of torn documents that are fragmented either intention-
ally by humans for privacy concerns or by historical deg-
radation over time. They analyze different properties of 
a snippet to identify matching ones: skew or rotational 
analysis to identify the orientation of the fragment, and 
binary classification of the snippet into printed or hand-
written categories – which is achieved by checking gra-
dient orientations in each pixel; color analysis after 
segmenting the text from the background; line detection 
in segmented binary image using run lengths; and paper 
type analysis (checked, lined, blank) using Fast Fourier 
Transform. Ukovich and Ramponi [44] propose a cluster-
ing-based method for reconstructing pages of shredded 
documents cut in strips. The strips from the same page 
are grouped by broad range of features, such as line spac-
ing, number of lines, presence of markers, paper color, 
ink color, text edge energy to capture the preferred direc-
tions of strikes etc. Some of those features, such as line 
spacing, is not suitable for handwritten text.

It is worth noting that when a general puzzle solver 
deals with natural images or photographs of well-pre-
served heritage objects, the images are usually frag-
mented artificially to create the puzzle  [20, 23–27]. To 
test the robustness of the algorithm some pieces may 
be removed or eroded  [23, 25, 26]. The availability of 
the ground truth images gives the authors possibility to 
evaluate the performance in a reliable manner. On the 
other hand, the real puzzle problems with already frag-
mented objects and no ground truth exist in the cultural 
heritage domain  [45–51] or when dealing with shred-
ded documents, as in  [41]. Unlike natural images that 
are fragmented digitally, digitization of these real-world 
fragments is needed, which itself adds a complexity to the 
problem [49, 51, 52]. Although the intended final use is 
for real cases devoid of ground truth, some degree of arti-
ficial fragmenting of real artifacts  [48, 49, 53] or that of 
simulated datasets [54, 55] are often still needed to evalu-
ate the performance of the method. Human annotations 
can be also used [48, 49, 52]. The algorithms are tested in 
different case studies, which may target real artifacts [41, 
52, 56], simulated ones [57], or both [48, 49, 54, 55].

Puzzle solving for cultural heritage applications
Virtual reconstruction of cultural heritage is an impor-
tant research problem for computer scientists due to its 
aesthetic and scholarly value. Not all cultural heritage 
artifacts that require virtual reconstruction are frag-
mented. Even whole objects can have smaller areas that 
are damaged, for example, due to stains or scratches.

Hyperspectral images have been successfully used for 
virtual stain removal from paintings  [58, 59]. For exam-
ple, Zhou et  al.  [58] identified the spectral bands that 
were least affected by stains. These bands exposed the 
areas that were covered by the stains in the RGB photo-
graphs. They used the Poisson editing method to recon-
struct the stained areas. The method uses image gradient, 
i.e. spatial variation of intensities and tries to match this 
variation between the source and reconstructed images. 
Hou et  al.  [59] used maximum noise fraction (MNF) 
transform to calculate principal components of the 
hyperspectral data. Then they identified which principal 
components included the most information about the 
stains and skipped them in the reverse transform to pro-
duce a stain-free image.

Another important research problem is filling the 
damaged areas, such as scratches, which usually 
involves a combination of inpainting and texture syn-
thesis  [60, 61]. Inpainting involves filling small gaps 
based on the information available in the rest of the 
image, while texture synthesis means producing large 
repetitive textured regions from a small texture pat-
tern (the examples of inpainting and texture synthesis 



Page 7 of 16Gigilashvili et al. Heritage Science          (2023) 11:259 	

algorithms can be found in [62] and [63], respectively). 
For instance, Yamauchi et  al.  [60] separated high fre-
quency and low frequency components of an image 
using discrete cosine transform (DCT). They used 
inpaiting techniques to fill the gap in the low frequency 
image based on the information available in the non-
damaged parts of the image. Afterward, they synthe-
sized a texture similar to that in the high frequency 
component and added inpainted low frequency and 
synthesized high frequency components together to 
produce the final result. Criminisi et al.  [61] also used 
inpainting and texture synthesis to remove foreground 
objects and replace them with a plausible texture that 
mimicked the rest of the background. Further impor-
tant direction in image processing is denoising and seg-
mentation of the images with missing data (e.g. when 
the pixel values contain substantial amount of noise), 
such as [64].

Sometimes, however, cultural heritage artifacts are 
fragmented into multiple pieces and instead of simply 
inpainting to fill the gaps, solving the entire puzzle is 
needed to put the respective pieces together. As shown 
above in a non-exhaustive overview of the general puz-
zle solving algorithms, a broad range of approaches can 
be taken, and a substantial amount of literature exists 
on general puzzle solving. However, we are primar-
ily interested in puzzle solving for cultural heritage 
applications.

Leităo and Stolfi  [65–67] suggested simple 2D frag-
ment outline matching for pottery, murals, and other 
fragmented artifacts. The primary objective of their 
approach was to “find any pairs of curves that have long 
sections with similar shapes”. They filter the curvature-
encoded contours at different layers of detail. They first 
find matches at a coarser scale, and then gradually try 
to identify the best candidates for match at the increas-
ingly finer levels of detail. The limitation of the work is 
the fact that it identifies only adjacent pieces and not 
those that have large eroded parts in between. However, 
the authors argue that identification of potential pairs can 
substantially decrease the complexity of the puzzle when 
multiple thousands of pieces are present. They acknowl-
edge that erosions at the edges are the primary source 
of noise and suggest that 3D approaches could mitigate 
the problem, where not only surface contours but also 
the depth information is considered. One example of 
such 3D-geometry based method can be that of Igwe and 
Knopf  [68]. 3D models of the fragments and the target 
model are needed in this approach. Similar fragments are 
grouped by clustering, while self-organizing feature maps 
(SOFM) are used to position and orient the fragments. If 
no ground truth target model is available, as it is the case 
in many archaeological applications, the authors propose 

to retrieve a similar shape from the database and use that 
one instead.

Toler-Franklin  [69] highlights that standard puzzle 
solving methods that use fragment contour and color 
information fail to successfully re-assemble damaged 
artifacts with missing pieces. The author instead pro-
poses a multi-channel RGBN image for that purpose, 
where each pixel contains RGB color and N – surface 
normal information. They demonstrate the pipeline from 
acquisition (shape-from-shading paradigm for surface 
normal estimation) to matching and rendering, and the 
approach has been deemed successful for matching the 
three different sets of fresco fragments.

Unlike previous works, where photographs of natural 
scenes were addressed, Paumard et al. [26] use paintings 
from the MET dataset [70]. They try to solve 3× 3 puz-
zle, where the fragments come from multiple items. They 
used 9 artificially created fragments with 96× 96 pixels 
each. To simulate erosions present in real-world artifacts, 
they picked the fragments that were 48 pixel away from 
one another. They first extracted features using deep 
learning based model inspired by VGG-Net  [71]. They 
assume that a central fragment is known. Afterward, they 
ran a binary classification based on the extracted features 
to identify which fragments belong to the same image as 
the central fragment. Subsequently, from the pool of the 
8 fragments that belong to the same painting, the posi-
tion of each of them was defined relative to the central 
fragment using a graph of possible reassambly scenarios. 
The solution was perfect only in 44% of the cases, while 
many homogeneous background pieces were often mis-
placed. In another work  [72], they also assume that the 
central piece is known and generate a 8× 8 matrix, where 
each row corresponds to a candidate piece and each col-
umn is a potential location relative to the center. Then 
they use a greedy algorithm, picking locations with maxi-
mal probability. In the follow-up work  [27], the authors 
presented a method called Deepzzle that was tested on 
a broad range of images, such as paintings, engravings 
(geometrical engravings or text documents), artifacts 
photographed on a homogeneous background (clothing, 
tableware, pottery plates, sculptures etc.). They short-
ened graph processing time 1000 times, which enabled 
them to accommodate 8 additional fragments in less 
than 60 min. The authors provided more comprehensive 
analysis of different scenarios, such as: robustness against 
missing fragments, fragments from other photos of the 
same object, more fragments from other objects, and the 
case where it was unknown which fragment was central. 
They decided to tolerate the errors, where homogeneous 
patches were misplaced and the difference was not visu-
ally very noticeable. This led to the best performance for 
artifacts that were on a homogeneous background, and 
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the worst performance for content-rich paintings. They 
demonstrated that while many pieces can be placed cor-
rectly, the perfect re-assembly is an extremely challenging 
task. Adding fragments from other images, missing frag-
ments, and unknown central pieces all compromise the 
performance and decrease accuracy, since the number of 
possible solutions increases. Many inaccuracies were pre-
sent in text document images. For instance, the algorithm 
could not separate the French and Italian languages. The 
authors conclude that the resolution is too low to cap-
ture this kind of high-level semantical details, and fur-
thermore, a convolutional architecture learns large visual 
features and has a limited ability with fine-grain details. 
In another work, they tried to use overall image seman-
tics to identify relative positions to the central piece [73], 
and eventually propose that “if no pertinent reassembly 
is found, a more robust solution that combines contours, 
patterns, and semantics should be considered”. The latest 
work Alphazzle is based on a single-player Monte Carlo 
Tree Search and relies on deep reinforcement learn-
ing to iteratively consider the relationship between all 
fragments [74].

Machine learning has various applications in archae-
ology, including but not limited to dating, identification, 
and classification of artifacts [75–78]. As for fragment 
classification and reconstruction, 3D fragments, such as 
pottery artifacts have received most attention. A com-
prehensive review of pottery reconstruction is given 
in seminal reviews by Rasheed and Nordin, for 2D 
images [79] and 3D data [80], respectively. The methods 
for classification in 2D images is based on features such 
as Gabor Wavelet Transformation  [81], Scale Invariant 
Features Transform (SIFT)  [82], or Local Binary Pat-
terns (LBP)  [83] – clustered by K-nearest neighbors 
(KNN) clustering  [83, 84]. Reconstruction is based on 
contours  [85, 86], color  [87], or a combination of the 
both [88].

De Lima-Hernandez et  al. proposed several interest-
ing approaches to puzzling damaged 3D archaeological 
artifacts  [45–47]. The 3D Puzzling Engine  [45, 46] reg-
isters the 3D ancient wall-decorated fragments based on 
surface normal coherence, and offers elements of full-
automation, as well as user-input-based semi-supervised 
solutions. In their recent study, de Lima-Hernandez 
et  al.  [47] propose using a Generative Adversarial Net-
work (GAN) to predict the missing decoration traces on 
broken heritage fragments, extending the texture infor-
mation of the fragments and allowing for a more accurate 
estimation of fragment alignment.

Further applications include tile panels, where Rika 
et  al.  [89] introduce a puzzle solver that is based on 
genetic algorithm. They use deep learning to meas-
ure compatibility among potentially neighboring tiles. 

The method uses high-level color and texture statistics, 
and despite challenges related to homogeneous tiles 
and degraded edges, provides accuracy of 82%, which 
authors claim is the state-of-the-art performance. They 
propose that accuracy can be improved by additional 
training data. Another work on ceramic reconstruction 
is Ceramic Fragment Reassembly System (CFRS) devel-
oped by Lin et  al.  [56], where fragments are segmented 
and candidate matching pairs are generated using curve 
matching. For final matching, both curve and color simi-
larities are considered. Finally, puzzling is optimized by 
considering additional factors, such as overlapping area 
(fragments whose contours partly match, but this match 
causes large areas to overlap, are unlikely to be matching). 
The authors mention that future work should incorporate 
the knowledge on motifs, cultural features, and other 
metadata and high-level expert knowledge. In-painting 
and texture synthesis have also been used to predict the 
content beyond the edge of a ceramic fragment  [54], 
which is subsequently used to calculate features and find 
a match by FFT-based registration.

Another problem the reconstruction solutions have 
been proposed for is assembly of the culturally signifi-
cant heritage documents, such as papyrus, which often is 
fragmented and puzzle solving is needed to recover the 
complete text. Pironne et  al.  [53] utilized deep Siamese 
network, dubbed “Papy-S-Net”, that was trained and vali-
dated on 500 fragments, and yielded 79% accuracy. The 
approach suffers from high false negative rate and needs 
more sophisticated pre-processing. In another work, 
Abitbol et  al.  [90] hypothesize that papyrus plants that 
the papers are made of contain unique thread patterns, 
which can be utilized to find a match. They developed 
deep-learning-based method to identify local thread-
based features.

A recent study [57] investigates fresco reconstruction, 
which is a complex problem due to missing and dam-
aged areas (sometimes half of the fresco is missing due 
to erosion), as well as many and mostly irrelagularly 
shaped fragments. They try to match hand-crafted key-
points and use fresco and fragment local color histo-
grams. The authors point out the need for ground truth 
in their approach. The paper by Derech et al. [55] focuses 
on the reconstruction of highly degraded 3D statues and 
frescoes of an arbitrary shape. The authors extrapolate 
fragments to predict how they would continue, and then 
search for transformations where two fragments over-
lap in the extrapolated parts only. Although the authors 
claim cutting-edge performance, the algorithm failed 
when large parts were missing in the center of the fresco. 
Enayati et al. [52] also extract semantic information from 
fresco fragments that will facilitate classification and re-
assembly of the fragments.
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A semi-automatic solution based on geometric fea-
tures for 3D fragments have been proposed by Mellado 
et  al.  [51]. This approach runs in loop and takes into 
consideration a feedback of a human expert. The expert 
specifies relative positions of the two fragments by user 
interface; the computer subsequently uses the Iterative 
Closest Point (ICP) to estimate the potential contact 
surface and propose the new visualization to the human 
user. The semantic expertise of the user is a fundamental 
component for increasing the performance.

Textiles
While the puzzle solving for other types of cultural herit-
age, such as ceramics, clay pots, papyrus, engravings, and 
paintings, attracted relatively more attention, the works 
on textiles are rather few. Although some of the images 
tested from the MET dataset by Paumard et al.  [27] are 
clothes, they occupy a small part of the overall image, and 
as mentioned by the authors, the convolutional model 
just captures large visual variations, not the fine-grain 
details that are characteristic for textiles.

Kodrič et  al.  [50] present an interesting case study of 
virtual reconstruction of two damaged heritage textiles 
from 18th century with non-invasive methods. They ana-
lyzed fibers using microscopy to determine their type and 
surface morphology. Afterward, they conducted techni-
cal analysis of the weave (yarn thickness; ground warp 
and weft thickness in mm; pattern weft thickness in mm; 
warp and weft density (i.e. yarns per cm) etc.). Obtain-
ing such detailed technical information is currently one 
of the major problems in the puzzle solving process. They 
identified that both fragments were made of silk and had 
nearly identical weave structure. The stylistic and motif 
analysis also provided additional insight. After analyz-
ing the technical properties of the weave, they eventually 
reconstructed the damaged areas using Adobe Photo-
shop and ArahWeave software. The damaged areas were 
restored by repeating the patterns present in the well-
preserved parts. Eventually, they highlight the need for a 
large database of historical textiles with associated stylis-
tic and technical features that would facilitate attribution 
and identification of the artifacts and will foster digital 
reconstruction and reproduction.

The recent work by Huang et al. [91] proposed a non-
invasive methodology to classify the fiber material. 
They use hyperspectral imaging to capture the spectra 
of 25 different samples of 11 different textile materials 
of plant, animal, and synthetic origin. They used part 
of the images for training different models. The authors 
compared traditional machine learning classification 
algorithms, namely, k-nearest neighbors (KNN), sup-
port vector machine (SVM), random forest (RF), and 
partial least squares-discriminant analysis (PLS-DA), 

with a one-dimensional convolutional neural network 
(1D-CNN). However, this method may not be applicable 
for puzzle solving where an object is made of the same 
materials. It can be instead used for sorting the materi-
als that differ substantially. Furthermore, the authors do 
not discuss degradation, which may limit its applicabil-
ity to archaeological textiles. Another example of using 
machine learning for fiber analysis is the recent work by 
Rippel et al.  [92]. Automatic panoptic segmentation and 
identification of animal fibers can potentially contrib-
ute to identification of textile fragments made of similar 
fibers.

Thread counting of painting canvases is a well-known 
problem in art forensics. As the paints usually cover the 
threads, the proposed approach uses X-Ray images [93], 
which makes warps and wefts more visible to a machine. 
The approach models the canvas as a sum of two sinu-
soids with orthogonal spatial frequencies (warps and 
wefts), and uses Fourier analysis for vertical and horizon-
tal thread counting.

In terms of reconstruction of textile heritage objects, a 
recent work by Stoean et al.  [94] used deep learning for 
inpainting in parts missing from the costumes. Consid-
ering the structural complexity and variation of motifs, 
the approach leaves substantial room for improvement. 
The authors proposed Generative Adversarial Networks 
(GANs) as a future work. Sun et al. [95] discuss the chal-
lenges related to inpainting for silk artifacts, which relies 
on previous information in the overall object and often 
fails to success when the patterns are unique and irregu-
lar. They propose a three-step process for virtual recon-
struction of silk artifacts and claim the state-of-the-art 
performance in terms of structural similarity metric 
(SSIM). First, they pre-process the image to unblur and 
remove noise. Besides, damaged areas are identified by 
human experts and marked with green masks; afterward, 
they first reconstruct the missing structure lines by adap-
tive curve fitting and inverse distance weighted interpola-
tion. In other words, they identify clear line trends that 
are discontinued due to damages and reconstruct these 
continuous lines. Finally, they use inpainting to recon-
struct the remaining parts guided by already recovered 
line structure. This way they avoid erroneous fillings 
and line breaks, as well as blocking artifacts due to ran-
domness of the inpainting. However, the clear structural 
trends need to be visible for this method to be successful.

Liu et al. [96] discuss the challenges related to recon-
structing archaeological textiles. They point out that 
unlike rigid materials, textiles are flexible and more 
prone to deformations that considerably complicates 
the restoration process. Further challenge is the lack 
of unified standard for result evaluation. The authors 
propose a workflow based on Human-Computer 
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Interaction (HCI) and demonstrate it on the example 
of the Chinese archaeological silk gauze gown found in 
the Mawangdui Han tomb. They use sketches to create 
patterns and virtual simulation to generate a 3D object. 
They reconstruct a virtual 3D version of the silk gauze 
gown using 2D images and in the process, convert back 
and forth between 2D and 3D spaces. They analyze the 
structure, color, fabric, and pattern of the artifact, try 
the 2D patterns on a 3D model, then unfold 3D to 2D 
for virtual stitching and pattern arrangement. For simu-
lation, first human body and posture are modeled. Then 
2D garment fragments are imported and stitched virtu-
ally, and then color and fabric are rendered for the final 
display. The evaluation is a complex and multi-faced 
problem. For this, they use the Analytic Hierarchy Pro-
cess (AHP), which outlines the hierarchical index sys-
tem of factors that need to be evaluated, such as overall 
shape, garment structure and garment fabric are pri-
mary indicators, which contain clothing silhouette, 
hem structure, and fabric color as secondary indicators, 
respectively. Each indicator is assigned a weight and 
then aggregated for the overall evaluation. The evalua-
tion is done against a historical prototype and the pro-
cess implies high degree of human expert involvement.

To the best of our knowledge, there are only two stud-
ies  [48, 49] that explicitly address the puzzle problem 
for highly fragmented archaeological textile artifacts. 
Both of these works argue that due to high degradation 
of the archaeological textiles, missing fragments, and 
the unknown number of original items that the frag-
ments come from, fully automated puzzle solving for 
archaeological textiles is unlikely to be achieved. The 
authors also discuss the problems associated with the 
lack of ground truth. First, there are not enough data-
bases of such artifacts with available ground truth that 
could be used for training the models; and second, the 
lack of ground truth makes it challenging to evaluate 
the results and identify which methods work well. The 
authors create ground truth by splitting existing frag-
ments into smaller pieces for training and evaluation 
purposes but point out to take the results with care, 
because false positives, i.e. match between the pieces 
cropped from different fragments is not necessarily 
wrong and may instead indicate the compatibility of 
their respective fragments. Both of these works point 
out that the foremost task is to identify which frag-
ments belong to the same original item and propose 
clustering method to group similar fragments. The puz-
zle solving process is supposed to be finished by human 
intervention after it becomes clear which ones belong 
together. These works take the approach similar to 
Chanda et al. [41], where color and texture features are 
extracted from the photographs to conduct clustering.

Gigilashvili et  al.  [48] use highly fragmented and 
degraded Oseberg Tapestry from Norway as a case 
study  [9]. The authors split the ultra high resolution 
photographs of the Oseberg tapestry fragments into 
patches of 200× 200 pixels and extracted features by 
Opponent Color Local Binary Patterns (OCLBP)  [97], 
Co-occurrence Matrices (CoM)  [98], and AlexNet  [33] 
convolutional neural network, which they fed to three 
different clustering algorithms: K-means, Mean-Shift, 
and Agglomerative Hierarchical clustering. They found 
two major clusters of low spatial frequency and high 
spatial frequency textures by traditional texture descrip-
tors, which they recommend to take with care, because 
more complex variations among the fragments were not 
captured with these measures. The CNN also produced 
two groups—textures with the majority of the fragments, 
and a small group of homogeneous, faded ones. They 
highlight that the approach suffers from low number of 
training samples available. Their primary research ques-
tion was to identify from how many original items the 
fragments come. Although the accuracy of the cluster-
ing was above 90%, they measured the accuracy based 
on false negatives only. Due to the lack of ground truth, 
they did not penalize for false positives, because if the 
patches from different fragments ended up in the same 
cluster, it could be an indication that the two fragments 
belonged together. Finally, the authors asked archaeolo-
gists to assess the clustering results. However, archaeolo-
gists did not identify valid trends in the results that could 
have shed more light to their research hypotheses.

Gulbrandsen  [49] used color histograms and color 
moments as color features, Local Binary Patterns 
(LBP)  [99] as a texture feature, and also the features 
extracted with VGG19 pre-trained deep convolutional 
neural network [100]. LBP measures statistical co-occur-
rencies of pixel intensities in grayscale images and cap-
tures spatio-structural information. VGG19 is a deep 
neural network architecture, and its pre-trained version 
is trained on more than one million images to detect 
the features of different complexities, from simple edges 
to complex object characteristics. It is widely used for 
image classification, such as identifying objects and ani-
mals. Afterward, K-means and Hierarchical clustering 
were conducted. The author reports three case studies 
of different complexities, where he used the images of 
fragmented household textiles that are in a good condi-
tion, virtually fragmented photographs of well-preserved 
(non-archaeological) heritage textiles (such as Tingelstad 
cloth [101]), and Oseberg archaeological tapestry studied 
by Gigilashvili et al. [48]. The ground truth was available 
for the first two cases but not for the latter. The accuracy 
for the cases that involved textiles in a good condition 
was high. Color and texture features performed better 
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for heritage textiles, while VGG19 features worked better 
for household ones (with nearly 100% accuracy). How-
ever, the performance dropped drastically when similar 
method was tested on Oseberg tapestry. Although there 
is no reliable ground truth information available to evalu-
ate the performance, the results were compared with the 
archaeologists’ hypotheses and found not to be aligned 
with them.

Gulbrandsen  [49] noticed that the algorithm usually 
clusters fragments by their overall color. This was robust 
enough for household textiles and well-preserved herit-
age textiles, since the samples differed substantially in 
color. This is also what explains high accuracy of the work 
by Chanda et al.  [41], where paper fragments came into 
noticeably different colors and textures (it is worth men-
tioning that Chanda et al. [41] used CIELAB color space, 
which is better aligned with the human visual perception, 
while Gulbrandsen [49] and Gigilashvili et al. [48] worked 
in RGB). However, the color is not a reliable feature to 
separate degraded archaeological artifacts. Gulbrand-
sen  [49] argues that general feature extractors are not 
tailored to this very specific task and advocates for devel-
opment of textile-specific feature extractors.

Interestingly, Gulbrandsen  [49] also developed a soft-
ware solution called Artifact Assembly that enables vir-
tual manual puzzle solving that is intended to manually 
reconstruct the archaeological textiles without disturbing 
the fragile physical samples and support their preserva-
tion. The software includes color enhancement tools for 
better visualization to human users. However, the author 
points out that proper algorithms need to be developed 
for machine-assisted assembly that would significantly 
speed up the process.

Discussion
The computational solutions to the puzzle problem 
have been developed substantially since its incep-
tion six decades ago, and the state-of-the-art includes 
broad range of different approaches, from classical 
edge descriptors [8] to cutting-edge deep learning tech-
nologies  [7], from attempting a fully automatic puzzle 
solver  [20] to clustering for manual assembly facilita-
tion  [49]. Table  2 summarizes the alternative ways to 
categorize these approaches.

The results demonstrate that archaeological tex-
tile reconstruction is in its infancy and merits a rigor-
ous future research. Virtual restoration of heritage has 
developed in several different directions. While some 
works attempt to remove stains, or inpaint smaller 
missing areas, others attempt to reassemble the arti-
facts that are fragmented into many small pieces. The 
fragment assembly may be based on 2D (image) or 3D 
(geometric) input data. The classification of above dis-
cussed articles is given in Table 3. Jigsaw puzzles often 
contain all necessary pieces that are in good condi-
tion. However, to increase the complexity of the com-
putational problem and robustness of the algorithm, 
sometimes the noise, such as gaps and missing pieces, 
is artificially introduced, such as in [23, 72]. This is 
especially crucial for the cultural heritage applications, 
where the noise due to degradation and aging is inher-
ently present. However, some approaches may intro-
duce the noise artificially and test the algorithm on the 
artificial data, while others work directly on the actual 
fragmented heritage objects, which offers more realistic 
“in-the-wild” challenge. The classification of the works 
according to the noise type can be found in Table 4.

Table 2  There are multiple ways to group computational techniques for puzzle solving

The ways to classify computational solutions to the puzzle problem

Classical image processing OR Deep learning-based OR Combining the both

Using geometric features OR Using color and appearance features OR Using both

Using local features OR Using global features OR Using both

Using 2D data OR Using 3D data

Fully automatic OR Semi-automatic

Table 3  Classification of the heritage reconstruction algorithms by the type of the input data and the problem solved

Fragment reassembly (2D) Fragment reassembly (3D) Inpainting & texture synthesis Stain removal

[27, 72–74, 79, 81, 82] [65–69] [60–63] [58, 59]

[83–89] [45–47, 51, 80] [50, 94–96]

[50, 53–57, 90] [94, 96]

[48, 49, 94, 95]
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Puzzle solving has impactful applications in the cul-
tural heritage domain. However, a broad range of chal-
lenges, such as high number of pieces, missing pieces, 
degraded areas, homogeneous pieces with little structural 
information, or mixing pieces from different originals, 
complicate the problem and compromise the robustness 
of the algorithms (e.g.  [26, 27, 48]). These problems are 
especially severe for archaeological textile artifacts that 
have undergone centuries of degradation. The research 
on computational reassembly of archaeological textiles 
remains in its infancy and is limited to a mere attempts of 
clustering to identify the number of original items, which 
leaves room for a rigorous research effort in the future, 
given that there is a need for such solution in the archae-
ological and conservation communities.

There is a broad range of machine learning approaches 
for solving the puzzle of fragmented cultural heritage 
artifacts, where deep learning-based methods have dem-
onstrated the best performance. Table  5 provides the 
classification for deep learning-based methods. While 
the methods based on diffusion and visual transform-
ers have demonstrated promising performance, they are 
relatively novel and have not yet been tested on complex, 
highly degraded artifacts. On the other hand, CNN-
based methods suffer from a very significant limitation: 
when the fragments are missing or come from multiple 
initial items, the number of potential solutions increases 
and the performance drops substantially. This is relevant 
for archaeological textiles, where both of these limita-
tions are usually present. The example of the works by 
Paumard et al. [26, 27] show that the task is very complex 
even when we are trying to solve a 3× 3 puzzle of square 
patches with high quality photographs of well-preserved 
heritage objects, where the erosion is simulated by a 
simple gap with a fixed width, where all fragments come 
from the same initial image and the central fragment is 
known. Now imagine the complexity of the task when 
fragments come in irregular shapes and from unknown 

number of initial items, they are highly degraded, and 
unknown number of fragments with unknown sizes are 
missing. While convolution-based neural networks may 
have a good enough performance when high-level visual 
characteristics need to be captured, as demonstrated by 
Paumard et al. [27], their ability to capture fine details is 
limited. Puzzle solving for archaeological textiles needs 
a substantial amount of specialized training, which will 
consist of a broad range of high resolution textile images. 
Current deep learning models are often trained on gen-
eral databases of natural images, such as ImageNet, that 
are primarily intended for classification tasks, such as 
distinguishing dogs from cats. The features extracted 
with these models turned out to be of little use for tech-
nical analysis of textiles, as shown by Gulbrandsen  [49] 
and Gigilashvili  et al.  [48]. On the other hand, Kodrič 
et  al.  [50] proposed a database specifically for heritage 
textile classification. Training machine learning models 
from scratch on this kind of specialized database may 
lead to a significant breakthrough in textile classification. 
An alternative avenue is to automatize the technical anal-
ysis conducted by Kodrič et al. [50].

In comparison with solving jigsaw puzzles and puz-
zles on well-preserved paintings, solving a puzzle of 
archaeological textile fragments is especially challeng-
ing due to multiple reasons: first and foremost, it is not 
known whether the fragments at all belong to the same 
initial item; secondly, many fragments are missing; and 
thirdly, the surviving fragments are highly degraded 
and have irregular shape – and the degree of degrada-
tion can vary substantially among them. Furthermore, 
no big databases with known ground truth are available 
to train the models and evaluate their performance. As 
pointed out by Gigilashvili et  al.  [48], even if we arti-
ficially introduce ground truth by further fragment-
ing existing artifacts, the lack of ground truth in real 
archaeological problems makes assessment of accuracy 
extremely challenging, because it is difficult to tell the 
real false positives and fake false positives apart—i.e. 
when patches from different fragments end up in the 
same cluster, we do not know whether this is a mistake, 
or this is an indication that their respective fragments 
belong together.

While the macroscopic high-level features, such as 
motifs, can be detected by more generic machine learn-
ing algorithms, much of the features that are possible to 
be extracted from the surviving fragments and that are 
being used by the experts, are more low-level texture 
variations. However, Enayati et  al.  [52] have shown that 
part of the semantic information can be extracted from 
individual fragments too that can facilitate reassembly. 
Semantic information has been used in the analysis by 
Kodrič et al. [50] as well.

Table 4  The classification of the heritage reconstruction 
algorithms by the type of noise/fragmentation

Artificially introduced noise Real Fragments

[27, 65–68, 72, 73] [45, 46, 69, 81–88]

[49, 51, 55, 57, 74, 96] [47–49, 53, 54, 56, 89, 90]

Table 5  Deep learning methods for puzzle solving

CNN-based Diffusion-based Visual transformer

[25–27, 48, 49, 72–74] [39, 40] [34]
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Kodrič et al. [50] demonstrated the robustness of yarn 
properties and weave technical analysis for reconstruc-
tion. It is also proposed by Gigilashvili et al. [48] as well 
as Gulbrandsen [49] that the future work should focus on 
automatic measurement of weave – such as thread count, 
thread diameter, twist and spin direction, and technique. 
This can develop in two directions: classical image pro-
cessing and texture descriptors, where the existing work 
on X-Ray-based thread counting in painting canvas 
can be of use  [93]; and supervised CNNs, which would 
require a large database of manually-labeled dataset of 
images with manually measured properties. Finally, fea-
tures extracted by machine learning can be manually 
supplemented by other high-level semantic metadata, 
such as context and chronology of the discovery.

Additional information can be obtained using more 
sophisticated imaging techniques. For instance, Gul-
brandsen  [49] and Gigilashvili et  al.  [48] propose using 
hyperspectral imaging for a deeper insight into material 
chemical composition, and reflectance transformation 
imaging (RTI) for 3D structures; whereas Toler-Frank-
lin [69] also proposes multi-channel 3D geometry imag-
ing, which includes surface normal information.

Considering the limited accuracy of the cutting edge 
machine learning algorithms even for few fragments 
(as few as 3× 3 patches) of well-preserved paintings, 
fully automated puzzle solving of archaeological textiles 
is highly unlikely to be achieved in near future, if ever. 
Many works on puzzle solving for cultural heritage appli-
cations state very explicitly that those solutions are not 
intended as a full substitute to human expertise, but they 
are rather intended for semi-automatic reconstruction 
to assist human experts by providing reasonable sugges-
tions [27, 45–47, 49, 51, 56]. Current puzzle solvers rely 
on apparent motifs and contours and suffer in homo-
geneous areas. Many archaeological textile fragments 
lack high level motifs and look homogeneous, which 
would make accurate spatial positioning impossible. On 
the other hand, computational solutions have potential 
to substantially speed-up the calculations and hence, 
the puzzle solving process. In comparison with manual 
human labor, which is often hard to coordinate, comput-
ers provide an opportunity for massive parallelization 
that can considerably decrease the solving time. Paralleli-
zation efforts for speeding up the process should be one 
of the directions for future research.

To summarize the article, the main findings and con-
clusions of the literature analysis are as follows:

•	 General puzzle solvers, especially those based on 
deep learning, demonstrate promising performance 
on solving puzzles of artificially fragmented natural 
images.

•	 Less amount of work has been done on puzzle solv-
ing for heritage artifacts and especially archaeological 
textiles. The puzzle solver performance is often com-
promised due to missing or highly damaged pieces 
that come in irregular shapes and from unknown 
number of original objects.

•	 The overall pipeline of puzzle solving for archaeologi-
cal textiles can be divided into three major steps: dig-
itization, clustering and matching similar fragments, 
and virtual reconstruction including inpainting and 
placement in space. Each of these steps are complex 
and merit rigorous amounts of future work.

•	 The lack of ground truth for real archaeological 
puzzle problems complicates the evaluation of the 
results.

•	 The lack of specialized textile datasets with ground 
truth makes it difficult to train machine learning 
models. Development of such databases can be a 
substantial contribution on its own, since models 
trained on general natural image datasets have not 
shown promising results for archaeological textiles.

•	 Human experts rely on high-level motifs, yarn prop-
erties, and technical analysis of the weave that are 
measured manually. Automatization of these meas-
urements can speed up the process.

•	 Semantic metadata, such as context and chronology 
of discovery, that are also used by human experts, 
can be also fed into the computational algorithms.

•	 In addition to photographs, some works have suc-
cessfully utilized information on chemical proper-
ties and 3D geometry. Some authors proposed using 
hyperspectral data and reflectance transformation 
imaging (RTI).

•	 Overall, fully automated solutions for highly 
degraded archaeological textiles are unlikely to be 
achieved. The primary objective of the research is to 
facilitate work for human experts instead of substi-
tuting them.

•	 Computational techniques have potential of large-
scale parallelization that can substantially speed up 
the process, and that itself is an interesting direction 
for future research.

Conclusions
In this work, we reviewed the state-of-the-art machine 
learning techniques for solving puzzles when an original 
image needs to be recovered from pieces. A particular 
focus was on cultural heritage artifacts, and more specifi-
cally, archaeological textiles. While the cutting-edge deep 
learning techniques enable puzzle solving to the extent 
that was unthinkable before, the approaches still suffer 
from very significant limitations, and the reconstruction 
accuracy when many pieces are missing and fragments 
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from multiple initial items are mixed, is far from perfect. 
While many works address paintings, ceramic, and papy-
rus artifacts, the knowledge on archaeological textiles 
is extremely limited. Human experts rely on manually 
measured features, such as thread count, fibre thick-
ness, twist and spin direction, weave/binding technique, 
and fibre material, to solve the puzzle, which requires a 
substantial time and effort. While more generic machine 
learning models fail to capture those features, we propose 
that the research can develop in two different directions: 
first, automatic measurement of the above-mentioned 
features that are currently measured or digitized by hand; 
and second, creating big labeled databases of specific 
archaeological textiles that would enable training deep 
learning models. Finally, since archaeological textiles are 
highly fragmented and degraded, we want to emphasize 
that fully automated puzzle solvers are unlikely to emerge 
in the near future, if ever, and machine learning should 
be seen as an assistance to human professionals not as a 
substitute to their expertise.
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