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Path sampling allows the study of rare events like chemical reactions, nucleation, and protein folding via a
Monte Carlo (MC) exploration in path space. Instead of configuration points, this method samples short
molecular dynamics (MD) trajectories with specific start- and end-conditions. As in configuration MC, its
efficiency highly depends on the types of MC moves. Since the last two decades, the central MC move for
path sampling has been the so-called shooting move in which a perturbed phase point of the old path is
propagated backward and forward in time to generate a new path. Recently, we proposed the subtrajectory
moves, stone-skipping (SS) and web-throwing (WT), that are demonstrably more efficient. However, the
one-step crossing requirement makes them somewhat more difficult to implement in combination with external
MD programs or when the order parameter determination is expensive. In this article, we present strategies
to address the issue. The most generic solution is a new member of subtrajectory moves, wire fencing (WF),
that is less thrifty than the SS, but more versatile. This makes it easier to link path sampling codes with
external MD packages and provides a practical solution for cases where the calculation of the order parameter
is expensive or not a simple function of geometry. We demonstrate the WF move in a double-well Langevin
model, a thin film breaking transition based on classical force fields, and a smaller ruthenium redox reaction
at the ab initio level in which the order parameter explicitly depends on the electron density.

I. INTRODUCTION

Rare event simulation techniques aim to sample events
that require an exceedingly long CPU/wall time to be
simulated with standard molecular dynamics (MD). In
classical full atom simulations of protein folding, for ex-
ample, the longest reported1 MD runs generated by the
special-purpose molecular dynamics Anton 1 supercom-
puter are around 1 ms, allowing the study of fast-folding
proteins. The most recently released Anton 3 supercom-
puter is even able to generate 100 µs/day for a million
atom system.2 Despite this remarkable speed, it is still
not fast enough to study the folding of all proteins. For
instance, the tryptophan synthase β2 subunit has an ex-
perimentally measured3 folding rate of kf = 0.001 s−1.
Hence, the protein needs on average 1000 seconds to fold.
The Anton 3 computer would thus need 27,379 wall time
years to generate one single transition. For ab initio MD
(AIMD) the situation is even worse as the quantum me-
chanical force evaluation is orders of magnitude slower
than computing the gradient of a classical force field po-
tential. In addition, no special purpose AIMD computers
exist today.

Yet, rare event simulations allow the calculation of rate
constants and the study reaction mechanisms orders of
magnitude faster than MD, oftentimes without sacrificing
any molecular-level resolution.4 (Replica exchange) transi-
tion interface sampling (RE)TIS5,6 is such a method that
exploits the idea of transition path sampling (TPS)7 to
focus the CPU time on the actual barrier crossing event
via a Monte Carlo (MC) sampling of MD paths.

RETIS and TIS employ a series of path sampling sim-
ulations, each sampling a different path ensemble. The
path ensembles differ with respect to a minimal progress

requirement, i.e. the number of interfaces (defined by
fixed values of the reaction coordinate/order parameter)
that has to be crossed.8 Combining the results of all path
ensembles allows the computation of rate constants and
other properties with an exponentially reduced CPU time
compared to a single MD simulation.
For instance, a classical simulation study on methane

hydrate formation9 using TIS and RETIS reports on a
crystallization rate of 10−17 nuclei per second per simula-
tion volume. In other words, in a system as small as those
used in atomistic simulations, the process for forming a
single critical nucleus takes physically 3 years. Naturally,
the hypothetical wall time for reaching this with MD is
astronomical for any supercomputer. Likewise, RETIS
simulations10 reproduced the rate constant of water disso-
ciation at the AIMD level in reasonable agreement with
experiments suggesting it happens once per 11 hours for
each water molecule.11,12 As it required 30 minutes to
produce 1 ps MD time in the 32 water molecules system,
a naive straightforward AIMD approach would need 0.7
billion centuries of wall time to generate a single dissocia-
tion.
Despite being orders of magnitude times faster than

plain MD, simulations like the above are still compu-
tationally expensive and can require months to years to
obtain satisfactory statistical accuracy. A further increase
in efficiency is therefore desirable. There are essentially
three approaches to achieve this: i) reducing the cost
of the MC moves, ii) reducing the number of required
trajectories, and iii) parallelization of the algorithms. Par-
tial path sampling (PPTIS)13 and milestoning14 can be
viewed as realizations of i) by sampling more restrictive
path ensembles with a reduced average path length. Un-
fortunately, this introduces additional approximations.
Strategies ii) and iii), on the other hand, allow for a
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speed-up while still producing exact results, identical to
those from hypothetical unattainably long MD simula-
tions. In fact, RETIS successfully employs strategy ii) by
complementing the shooting moves with replica exchange
moves between path ensembles. RETIS is thus more CPU
efficient compared to TIS. However, regarding strategy
iii), TIS has the advantage that path ensembles can be
run in parallel completely independently, while replica
exchange moves require the progress of the sampling in
the path ensembles to be synchronized such that process-
ing units do not have to wait for each other. As a result,
RETIS might not always outperform TIS based on wall
time, which is the reason why the previously mentioned
hydrate formation study was partly based on TIS.9 The
recently introduced ∞RETIS algorithm15 is expected to
solve this issue for future studies based on a fundamen-
tally new replica exchange technique for cost-unbalanced
replicas.

In fact, ∞RETIS implicitly applies the cost-free replica
exchange moves an infinite number of times after each
shooting move. Still, replica exchange moves alone are not
ergodic and should, therefore, only be used in combination
with another MC move like shooting.16 To further push
strategy ii), the principle MC move should be changed
to reduce both the rejection rate and the resemblance
between accepted paths. This is exactly what subtrajec-
tory moves aim to establish. These MC moves resemble
PPTIS13 and milestoning14 in the sense that they evolve
via series of shorter paths (subtrajectories/subpaths), but
differently to those methods, these subpaths are just in-
termediates between sampled paths that are extended
to their full lengths. Sampled paths, therefore, have no
configuration point in common with the previous path
and the statistical inefficiency is typically reduced by a
factor equal to the number of intermediate subtrajectories.
So while the creation of a full new path becomes more
expensive, this is more than offset by the fact that far
fewer trajectories are needed to achieve a certain statisti-
cal accuracy. In addition, the approach can be combined
with a high-acceptance protocol, which minimizes the
number of rejections. As a result, most path ensembles
obtain a nearly 100% acceptance.17

The two moves presented in Ref. 17, stone skipping
(SS) and web throwing (WT), however, have one element,
the one-step crossing condition, which can hinder the
practical implementation with external MD programs or
when the calculation of the order parameter is computa-
tionally expensive. In SS and WT, the subtrajectories
are launched from a configuration point of a previous
(sub) path that is just before or after the path ensemble’s
interface. At this configuration point, velocities are gen-
erated such that the interface is crossed again within a
single time step. The velocity randomization and one-step
crossing test is reiterated several times until the condition
is fulfilled. The procedure is based on the idea that gen-
eration of new random velocities followed by a one-step
crossing test is relatively cheap compared to generating
MD steps, especially if the test can be performed without

new force calculations. This might not always be the
case. Present path sampling codes18–21 use external MD
codes for performing the MD steps. PyRETIS version
2 has for instance couplings to Gromacs,22 Lammps,23
openmm,24 and CP2K.25 In order to reduce the number
of stop/restart calls to these programs, a “time step” in
the RETIS program is often several (10-1000) MD steps
by the external MD engine. This complicates the one-
step crossing condition as it actually involves not one, but
several steps which is costly and not easy to predict with-
out actually performing these steps. Another issue arises
when the calculation of the order parameter is expensive
such as those used in nucleation studies.26,27
In this article, we discuss several approaches to tackle

this issue. The most generically applicable solution is
a new member of the subtrajectory family called wire
fencing (WF). The approach is slightly more wasteful
with respect to the number of MD steps compared to
SS, but very versatile and does not require any code
modifications of the external engines. We illustrate the
WF move on three model systems, a simple 1D double-
well potential, a Gromacs thin film breakage application,
and a CP2K study on ruthenium redox reactions.

II. SUBTRAJECTORY MOVES

The schematic main idea of the three subtrajectory
moves is shown in Fig. 1. These are the stone skipping

FIG. 1. Cartoon representation of the three subtrajectory
moves: stone skipping, web throwing, and wire fencing. The
old path is shown in blue. Four subtrajectories are shown in
orange. The final new path consists of the fourth subtrajectory
and its extensions colored in green.
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(SS), web throwing (WT), and the new wire fencing (WF)
move. The commonality is that an arbitrary number of
partial trajectories (subtrajectories/subpaths) are gener-
ated before the completion of a new full trajectory. The
subtrajectories obey different start- and end-conditions
and are, due to this, considerably shorter than full trajec-
tories. The subtrajectories are not part of the sampling,
but are just intermediate steps between one full trajectory
to another. The [i+] path ensemble that is being sampled
in Fig. 1 consists of paths starting at λA, crossing λi at
least once, and ending at either λA or λB . In Fig. 1, the
old full trajectory is colored blue. In the example, the new
trajectory is generated via 4 subtrajectories. The first sub-
trajectory is obtained from a shooting move from the old
trajectory. Then, the next subtrajectory is generated from
the previous one until the number of predetermined sub-
trajectories (4 in this case, colored in orange) is reached.
The final subtrajectory is extended backward and forward
in time until reaching a stable state. The new full trajec-
tory comprises the last subtrajectory and the extensions
colored in green. The difference between the three moves
lies in the way the shooting of subpaths is executed.
The SS move resembles a flat stone that collides with

the water’s surface after a skillful throw. The move starts
by selecting randomly any of the crossing points of the old
path with λi, generates new velocities that also establish
a crossing, and then proceeds until λB is crossed or λi is
crossed again. The process is then repeated by selecting
the subpath’s last crossing with λi for shooting off the
next subpath. Finally, the last subpath is extended and
possibly accepted or rejected.17

The WT move has been named after a gesture of the
famous Marvel character swinging between skyscrapers.
Here, an additional interface needs to be defined, the
surface of unlikely return (SOUR), at the state A side
of the λi interface. If this interface, λsour, is crossed
towards the direction of state A, it is assumed to be highly
unlikely that the MD trajectory will end up in state B
rather than A (defined by the last interface, λB , and the
first interface, λA, respectively). The first subpath is
then shot from a random crossing point with either λi
or λsour at a path segment of the old path that connects
these two interfaces. After the velocities of the system’s
atoms are re-set, like in the SS move, the subpath is
continued till λsour or λi is crossed, but is only kept if
the subpath connects λsour and λi again like the segment
of the old path. If not, the subpath is rejected and a
new crossing point is taken randomly from the same
segment. If both λsour and λi are crossed, the subpath
replaces the segment. The process is repeated until the
selected number of subpaths, accepted or rejected, has
been completed. The final accepted subpath is extended
in both time-directions to make a full new path. Note
that a rejection of a subpath does not imply a rejection
of the MC move itself, but just redirects the process
of achieving a new path from an old path. The time-
direction is chosen such that from λsour the trajectory is
propagated backward in time and from λi forward in time.

Due to the placement of λsour, it is nearly guaranteed
that the backward extension reaches state A. As λi is
also crossed, it is ensured that the path is valid for the
[i+] ensemble, though it might still be rejected due to a
final acceptance/rejection step, as required by detailed
balance.28
The WF move, further discussed in Sec. VII, differs

with the other moves by its location of the shooting
points. In the WF move, these might be any point with
a corresponding value of the reaction coordinate that is
larger than λi and lower than λB (or λcap if a so-called cap
interface is set, see Sec. VII). From this point, no specific
requirements are needed for the velocities so that they are
most conveniently generated from a Maxwell-Boltzmann
distribution for the temperature of interest. From the
new phase point, MD steps are generated forward and
backward in time until λB (or λcap) or λi is crossed. The
subpath is accepted unless it reaches λB (or λcap) in both
time-directions. In that case, it would be rejected and
the next shot is taken again from the latest accepted
subpath or the previous segment of the old path if no
accepted subpaths yet exist. After finishing the number
of desired subpaths, the last accepted one is extended
to the stable states, like in SS and WT. While the WF
move is slightly more wasteful with respect to the MD
moves compared to SS, the velocity generation is much
simpler which can have both practical and fundamental
advantages compared to SS and WT. These are further
discussed in Sec. VI. The name of the WF move is derived
from the visual resemblance between the set of full paths
and subpaths and the top of a wire fence.

The subtrajectory moves go against strategy i) as these
MC moves require more MD steps than just the number
of MD steps for generating a new path. These moves are
nevertheless more efficient because they utilize strategy
ii): the statistical inefficiency of the sampling is reduced
and, therefore, fewer trajectories are needed to achieve a
desired statistical error. Like with the standard shooting
move, a final acceptance/rejection step should ensure that
the correct statistical distribution of paths is sampled.
However, due to the complexity of the subtrajectory move,
the design and mathematical validation of the acceptance
rule is substantially more complex and is derived from
the so-called superdetailed balance29 principle.

III. SUPERDETAILED BALANCE

The term superdetailed balance was first intro-
duced within the context of configurational bias MC
(CBMC),29–31 which is an effective method to study the
adsorption of polymers in nanoporous materials such as
zeolites. In this algorithm, polymers are removed and
then regrown atom by atom such that any overlap between
the polymer and the zeolite’s walls and other polymers is
avoided. In this growth process, several attempted branch
formations are tested and potentially rejected. Therefore,
a specific final accepted configuration could, in principle,
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be obtained from the old configuration via an infinite
number of ways (construction paths). As a result, the
Metropolis-Hastings32 rule for deriving acceptance proba-
bilities becomes impractical as it requires the knowledge
on the generation probabilities of all these branches, ac-
cepted and rejected, that need to be summed up. This
issue is overcome in CBMC using the superdetailed bal-
ance principle, which can be formulated in terms of a
construction path χ and its inverse χ.17 That is, we not
only require detailed balance between any possible old
state and new state, but we require this for any specific
route that connects these two states:

Pacc = min
[

1, P (path(n))Pgen(path(n) → path(o) via χ)
P (path(o))Pgen(path(o) → path(n) via χ)

]
(1)

where Pgen(path(o) → path(n) via χ) is the generation
probability to generate the new state (path in our
case) from the old state via construction path χ and
Pgen(path(n) → path(o) via χ) is the generation probabil-
ity to generate the old state from the new state via the
reverse construction path χ.
In subtrajectory moves, the “construction” path does

not only describe the MD extensions of the final path, but
also the sequence of subtrajectories including the failed
ones. For SS and WT, the unsuccessful velocity genera-
tions, that do not obey the one-step crossing condition,
should also be considered as part of the construction path
χ. In other words, χ consists of several steps and the
generation probability “via χ” is given by the product of
generation probabilities of each step.
For each construction path χ there should exist an

unique reverse construction path χ. Roughly said, when χ
represents a sequence of algorithmic steps, χ will typically
consist of the reverse steps in reverse order. However,
some groups of consecutive steps might actually happen
in the same order. In fact, there is no unique way to
define “a reverse”, but for a given definition there will
be a one-to-one relation between any possible χ and its
reverse χ and with that, valid acceptance/rejection rules
can be derived based on the superdetailed balance, Eq. 1.
Yet, the definition of the reverse should be chosen

such that the acceptance probability is computable and
not negligibly small in the majority of cases. Therefore,
the mathematical definition for the inverse is taken such
that the probabilities of most of the algorithmic steps
in the expressions for Pgen(path(o) → path(n) via χ) and
Pgen(path(n) → path(o) via χ) will cancel.
For instance, if we represent the construction path as

a vector containing the different steps in chronological
order, χ could look like

χ = [s0, t1, t2, s3, s4, t5, s6] (2)

which shows that there were 6 subtrajectories generated
of which there were 3 failed trials t1, t2 and t5. The initial
step involves cutting out the very first subtrajectory s0

from the old path, while the final step implies not only
the generation of the last subtrajectory s6 but also its
extension to a full trajectory. The reverse construction
path in this case is conveniently defined as

χ = [s6, s4, t5, s3, s0, t1, t2] (3)

So the order of the steps is not completely reversed, but
the reverse order takes place on groups of consecutive
steps, a group being a successful subtrajectory with all
its failed trials that follow. The reason for this inverse is
that Eq. 2 shows that trial trajectory t5 can be generated
starting from s4, but this is not necessarily the case from
s6. Reversely, as s6 was generated from s4, they share
a common configuration point, which makes it possible
to generate s4 from s6. There is, however, no reason
whatsoever that s6 and t5 share a common configuration
point. Hence, if we would consider the reverse to be
χ = [s6, t5, s4, . . .], Pgen(path(n) → path(o) via χ) would
most likely be zero as χ itself cannot be generated. In
contrast, the inverse based on the grouped reordering,
Eq. 3, contains generation probabilities like the probabil-
ity to generate t5 given s4 which appear both in χ and
χ. Therefore, all the generation probabilities of failed
trajectories cancel in Eq. 1. Likewise, all failed velocity
generations in SS and WT that do not obey the one-step
crossing condition cancel out for the same reason as shown
in Ref. 17.

Excluding all the failed steps that will cancel in Eq. 1,
we can write for Pgen(path(o) → path(n) via χ):

Pgen(path(o) → path(n) via χ) ∝ Psel(s0|path(o))×
Psel(r0,3|s0)Pgen(v0,3)PMD(s3|x0,3)×
Psel(r3,4|s3)Pgen(v3,4)PMD(s4|x3,4)×
Psel(r4,6|s4)Pgen(v4,6)PMD(s6|x4,6)×

Psel(td)PMD(path(n)|s6) (4)

Here, Psel(s0|path(o)) is the probability for selecting s0

from the old path(o) and Psel(r0,3|s0) is the selection prob-
ability of choosing point r0,3 from the subpath s0 as the
shooting point. Since r0,3 is a shooting point to go from
s0 to s3, it is a configuration point that s0 and s3 have
in common. Pgen(v0,3) is the probability for generating
the velocities v0,3 which are the velocities of s3 at the cor-
responding configuration point r0,3. PMD(s3|x0,3) is the
chance that starting from phase point x0,3 = (r0,3, v0,3),
the MD integrator produces subpath s3 by integrating the
equations of motion forward and backward in time. The
MD integrator can be based on actual Newtonian MD,
Langevin, Brownian, etc. Likewise, PMD(path(n)|s6) is
the chance that the new path(n) is produced by extending
the final subpath s6. Finally, Psel(td) is the selection prob-
ability for the time-direction along the new path. Note
that the time-direction along the subpaths is irrelevant in
WT and WF. In SS, subpaths do have a sort of direction
as the next shooting always takes place at the last λi
crossing.17
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For the reverse construction path, Eq. 3, we can write

Pgen(path(n) → path(o) via χ) ∝ Psel(s6|path(n))×
Psel(r6,4|s6)Pgen(v6,4)PMD(s4|x6,4)×
Psel(r4,3|s4)Pgen(v4,3)PMD(s3|x4,3)×
Psel(r3,0|s3)Pgen(v3,0)PMD(s0|x3,0)×

Psel(td)PMD(path(o)|s0) (5)

Now, it becomes apparent that most terms will cancel
out in Eq. 1 when we take the ratio between Eq. 5 and
Eq. 4. First of all, the time-direction is chosen with a 50%
probability such that Psel(td) = 0.5. Then, we can use
the fact that a path probability can be written in terms
of a phase point probability times the MD generation
probability

P (path) = ρ(x)PMD(path|x) (6)

where ρ(x) is the phase space equilibrium density for any
phase point x that is part of the path.17 For a phase point
x = (r, v) this can be split into

ρ(x) = ρr(r)ρv(v) (7)

where ρr and ρv are, respectively, the configuration (Boltz-
mann) distribution and the velocity Maxwell-Boltzmann
distribution (possibly subjected to bond- and angle con-
straints if applicable). Further, as generating new veloci-
ties in Eqs. 4 and 5 is based on the velocity distribution,
Pgen(v) = ρv(v), we can substitute all PMD terms in Eqs. 4
and 5, e. g.:

Pgen(v4,6)PMD(s6|x4,6) = Pgen(v4,6)P (s6)
ρ(x4,6)

= ρv(v4,6)P (s6)
ρ(x4,6) = P (s6)

ρr(r4,6)
P (s6)PMD(path(n)|s6) = P (path(n)) (8)

Applying these operations to Eqs. 4 and 5, we get

Pgen(path(o) → path(n) via χ) ∝ Psel(s0|path(o))Psel(td)×
Psel(r0,3|s0)Psel(r3,4|s3)Psel(r4,6|s4)×

P (s3)P (s4)P (path(n))/[ρr(r0,3)ρr(r3,4)ρr(r4,6)]
Pgen(path(n) → path(o) via χ) ∝ Psel(s6|path(n))Psel(td)×

Psel(r6,4|s6)Psel(r4,3|s4)Psel(r3,0|s3)×
P (s4)P (s3)P (path(o))/[ρr(r6,4)ρr(r4,3)ρr(r3,0)]

(9)

In the ratio of these two equations more terms will
cancel out as rα,β = rβ,α. Further, Psel(td) = 0.5 as
stated before. In all subtrajectory moves, Psel(r|sα) is
either a fixed number (SS and WT) or it depends on sα,
but not on r (WF). In SS, the shooting point is selected
from the last crossing with λi and therefore Psel(r|sα) = 2
(the phase point just before or after λi). In WT, it is

randomly chosen from a crossing with either λi or λsour
and therefore Psel(r|sα) = 4. With stochastic dynamics
one can also opt to choose only the inner points17 such
that Psel(r|sα) = 2. In WF any point of the subpath that
lies between λi and λB (or λcap) can be chosen. In all
these cases the Psel(r|sα) terms with identical sα cancel
out in the ratio. That means that the only terms that
remain depend on the first and last subpath (s0 and s6),
or on the full paths (path(o) and path(n)):

Pgen(path(n) → path(o) via χ)
Pgen(path(o) → path(n) via χ)

= (10)

Psel(s6|path(n))Psel(r6,4|s6)P (path(o))
Psel(s0|path(o))Psel(r0,3|s0)P (path(n))

=

Psel(r6,4|path(n))P (path(o))
Psel(r0,3|path(o))P (path(n))

= P (path(o))/M (n)

P (path(n))/M (o)

where in the third expression we contracted the selection
probabilities involving the two-steps (first selecting s0 or
s6, then selecting r0,3 or r6,4) to the chance of selecting
the very first successful crossing point from the existing
full path. Finally, the latter was replaced by 1/M (n) and
1/M (o) whereM (n) andM (o) are the numbers of different
equally probable possibilities to select a shooting point
for generating a subtrajectory from the new and old full
path, respectively.
If we substitute Eq. 10 into Eq. 1, we obtain a rather

simple expression for the acceptance:

Pacc = min
[
1, M

(o)

M (n)

]
(11)

In SS, M (o) and M (n) are simply proportional to the
number of crossing points of the old and new paths with
λi, while for WT these are proportional to the number
segments that can be cut out of these trajectories that
connect λsour and λi.17 In WF, these relate to the number
of points between λi and λB . If a so-called cap-interface
is defined, M (o) and M (n) relate to the number of points
between λi and λcap excluding any points lying on a
segment λcap → λcap without crossing λi.
Eq. 11 can also be combined with an early rejection

scheme as was introduced in Ref. 5. In the standard ap-
proach, one would complete the MC move, compute the
acceptance probability, Eq. 11, take a uniform random
number α between 0 and 1, and then accept if α < Pacc
and reject otherwise. In the early rejection scheme, the
random number α is taken first and the move is rejected
as soon as M (n) > M (o)/α. In normal shooting, this
provides a considerable speed up since long paths have
a high chance to get rejected. Using the early rejection
scheme a lot of unnecessary MD steps can be avoided
as these paths can be stopped whenever they exceed the
predetermined maximum length. Yet, for the subtrajec-
tory moves the high-acceptance scheme is preferable as
we discuss in Sec V. In the next section we show why the



6

subtrajectory moves allow us to sample fewer trajecto-
ries than with standard shooting via a reduction of the
statistical inefficiency.

IV. STATISTICAL INEFFICIENCY

The principal property that is computed in the [i+]
ensemble is the local crossing probability PA(λi+1|λi).
This is the history dependent conditional probability that
the system, given it crosses λA and then crosses λi, crosses
λi+1 before λA. In the post hoc analysis, this local crossing
probability is simply the fraction of sampled path in the
[i+] ensemble that happen to cross λi+1 in addition to λi.
Once these are accurately enough determined, the global
crossing probability PA(λB |λA) is obtained from:5,8

PA(λB |λA) =
n−1∏
i=0

PA(λi+1|λi) (12)

where λ0 = λA and λn = λB. The above expression is
exact since the local crossing probabilities include the full
history dependence (λA → λi) in their condition.33 An
alternative approximate expression for the global crossing
probability is used in partial path TIS13 in which the
amount of spatial memory is reduced though not set to
zero, as in milestoning.14 The global crossing probability
gives the rate of the transition when multiplied with fA,
the conditional flux through λA.
In TIS, the flux is calculated by straightforward MD

where the system is prepared in state A and then the
number of crossings with λA per time unit is computed.
If a spontaneous transition to state B takes place, which
is unlikely for a rare event, the simulation is paused, reini-
tiated in state A and then continued. RETIS computes
the flux term differently as it does not use a single contin-
uous MD simulation. Instead, the [0−] path ensemble is
introduced to explore the A state, and the flux is derived
from the average path lengths in [0−] and [0+].6 In ad-
dition to rate constants, the overall crossing probability
can also be used to compute permeability coefficients34
and activation energies.35,36
Considering the j-th path in the simulation for path

ensemble [i+], the main output of sample j (the generated
path) that is relevant for the computation of the crossing
probability is simply the observation of whether it crosses
λi+1 or not. We can describe this by a characteristic func-
tion hj which equals 1 if λi+1 is crossed and 0 otherwise.
The simulation estimate of the local crossing probability,
p(m), after m MC moves is then expressed as

p(m) = 1
m

m−1∑
j=0

hj ≈ PA(λi+1|λi) (13)

where the index counter starts from zero for mathematical
convenience.

For finite m, the value of p(m) will not be exact and the
absolute error, εa, is defined as the standard deviation of

the mean σp(m). This is essentially the standard deviation
in possible p(m) results if the simulation experiment would
be carried out multiple times. Mathematically we can
write this as

εa = σp(m) =
√
〈(p(m)− p)2〉 (14)

where p = p(∞) = PA(λi+1|λi) and the brackets 〈·〉 re-
fer to the perfect ensemble sampling average. This can
be viewed as the hypothetical average that is obtained
after repeating the simulation an infinite number of times
starting with initial conditions that are randomly drawn
form a perfect statistical equilibrium distribution. In
other words, we have 〈p(1)〉 = 〈p(m)〉 = p. Further, since
detailed balance MC moves conserve the equilibrium dis-
tribution,29 the absolute value of the index j is irrelevant
and 〈h0〉 = 〈h1〉 = 〈hj〉 = p and 〈hjhk〉 = 〈h0hk−j〉 for
any j, k. Using this, one can show that:37

σ2
p(m) =

σ2
p(1)

m
N , N = [1 + 2nc] (15)

where N is called the statistical inefficiency and nc is the
correlation number which is the integral of the correlation
function C(j):

nc =
∞∑
j=1

C(j), C(j) = 〈(h0 − p)(hj − p)〉
〈(h0 − p)2〉

(16)

As the output hj of a single sample is either 1 with a
probability p or 0 with a probability (1− p), the sample
standard deviation σp(1) can be simplified

σ2
p(1) =

〈
(p(1)− p)2〉 =

〈
(h0 − p)2〉

= p(1− p)2 + (1− p)(0− p)2 = p(1− p) (17)

Via Eqs. 15, 16, and 17, we can write for the relative
error:

εr = εa
p

=

√
1− p
p

N
m

(18)

Eq. 18 shows that for a fixed number of MC moves m, the
larger the local crossing probability p = PA(λi+1|λi), the
lower the relative error. Hence, the result in simulation
[i+] converges faster when the difference between λi and
λi+1 is small, but this will obviously increase the number
of path ensembles needed. Analytical results on model
systems suggest that the optimum placement of interfaces
in TIS is achieved when p ≈ 0.2 for all ensembles.37 In
RETIS the optimum is expected to be slightly higher as
this would lead to more successful swaps. Likewise, the
optimum is also slightly higher if the weighted histogram
analysis method (WHAM)38 is used instead of single-point
matching to determine the total crossing probability. In
this approach, the crossing statistics of path ensemble [i+]
is not limited to the fraction of paths crossing λi+1, but
also the fractions for crossing λi+2, λi+3, etc. are used to
get a slightly more accurate estimate of Eq. 12.39,40
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If the sampling between successive MC moves is com-
pletely uncorrelated, we have that 〈(h0 − p)(hj − p)〉 =
〈(h0 − p)〉 · 〈(hj − p)〉 = 0 · 0 = 0. This would imply that
C(j) = nc = 0 and N = 1. In this case, if p = 0.2,
there are about m = 400 trajectories required to ob-
tain an εr = 10% error. For N > 1, one would need
m/N = mu = 400 to get the same error. Here, mu is
called the number of effectively uncorrelated samples.
In general, C(j) 6= 0 except for the limit j → ∞ as

correlation decays. If a MC move is rejected at step j,
then the previous sample is kept and recounted such that
sample j is identical to sample j − 1. Hence, if there are
j consecutive rejections, sample j is identical to sample
0 causing correlation over multiple steps. Even if the
j-th step is accepted, it tends to have some similarity
with the previous sample. Therefore, there is a high
probability for hj = hj−1, even if the samples are not
identical. The correlations lead to a sampling output
(h0, h1, h2, . . .) with long rows of consecutive zeros and
consecutive ones.
To illustrate this effect with a mathematical example:

suppose that the MC move has a probability πR to remain
unchanged such that hj = hj−1 and a probability πM =
1− πR to actually make a move that potentially (but not
necessarily) changes the output: the new sample yields
hj = 1 with a probability p and hj = 0 with a probability
(1− p). As shown in the appendix, for this mathematical
model the statistical inefficiency equals:

N = 2− πM
πM

(19)

This shows that for a typical MC acceptance probability
of 50%, the effect of rejections alone causes the statistical
inefficiency to be equal to 3. The situation is usually
worse in complex systems and also more difficult to iden-
tify than merely by the presence of rows of consecutive
ones or zeros. For instance, inter- and intramolecular
changes of reactants could temporarily boost or reduce
the probability of a transition. The same kind of fluc-
tuations in the temporary transition probability can be
caused by the local solvent structure and the position and
orientation of catalytic molecules. These describe degrees
of freedom that are orthogonal to the reaction coordinate.

We can examine this by a slightly more complex model
where we assume that there are two phases α and β,
described by the orthogonal degrees of freedom, which
occur with probabilities Pα and Pβ = 1 − Pα. Let pα
and pβ be the corresponding local crossing probabilities
along the reaction coordinate for these phases such that:
p = Pαpα + Pβpβ . Analogous to the above, let πρ be
the chance to not update the phase, and πµ = 1 − πρ
be the chance to freshly choose between phase α or β
with respective probabilities Pα and Pβ . As shown in the
appendix, in this case the statistical inefficiency equals:

N = 2Ks − πµ(2Ks − 1)
πµ

(20)

where Ks is a system parameter that does not depend on
the type of MC move:

Ks = PαPβ(pα − pβ)2

p(1− p) = (p− pα)(pβ − p)
p(1− p) (21)

Note that Ks = 0 whenever pα = pβ , which gives N = 1.
This would be the case if all TIS interfaces are placed at
isocommittor surfaces, which partly supports the hypoth-
esis of Ref. 41 that stated that path sampling simulations
are most efficient if the reaction coordinate λ equals the
committor. However, although this surely minimizes the
statistical inefficiencies, the mean path lengths in the path
ensembles also depend on the choice of the reaction coor-
dinate λ. If this is included in the analysis, the hypothesis
is at least not generally true.33

Now assume that not all generated paths are saved and
analyzed, but instead only everyNs-th path is kept. While
this will cause a reduction in the number of samples from
m to m/Ns, it does not necessarily reduce the number
of uncorrelated samples mu as the statistical inefficiency
between saved samples is also reduced. In particular, the
“remain” probability between saved samples changes from
πρ to πNs

ρ and, therefore, the “move” probability changes
from πµ to 1 − πNs

ρ = 1 − (1 − πµ)Ns . The statistical
inefficiency between saved samples is henceforth:

N (Ns) = 2Ks − (1− (1− πµ)Ns)(2Ks − 1)
1− (1− πµ)Ns

(22)

Eq. 22 shows that the statistical efficiency indeed goes
down with increasing Ns up to an asymptote equal to 1.
Taking the power series up to first order in πµ, we see
that the initial downfall is inversely linear:

N (Ns) ≈
2Ks −Nsπµ(2Ks − 1)

Nsπµ
≈ N (1)

Ns
(23)

where we assumed Nsπµ � 1. As a result, saving every
Ns-th path instead of all paths will not affect much the
post-simulation analysis in terms of accuracy. The reduc-
tion in the number of data points from m to m/Ns is
compensated by a lower statistical inefficiency such that
the number of uncorrelated samples mu remains nearly
unchanged. While this allows for obvious data storage
savings, reducing both the memory and time for writing to
disk, it also paves the way to reduce MD steps as is shown
in Fig. 2. The figure illustrates a hypothetical MC se-
quence in path sampling of six consecutive paths, labeled
0 to 5, where the shooting point has an order parameter
larger than λi. If only every fifth path is saved, only
paths 0 and 5 are considered as in Fig. 2-a). Although the
intermediate paths contribute for their decorrelation, it
is clear that many MD steps can be omitted, as exploited
by the subtrajectory moves. Fig. 2-b) shows a scenario
where the same final path is being generated with a set
of hypothetical WF subtrajectories resembling the top
scenario. Instead of five full trajectories, only four short
subtrajectories and one full trajectory are needed to es-
tablish a new full path (path 5) from the old one (path 0).
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FIG. 2. Illustration of wasted MD steps in shooting and WF.
Panel a) shows six consecutive paths being generated by the
shooting move where only the solid golden paths, with index 0
and 5, are being saved. Panel b) gives an equivalent scenario
in the WF algorithm showing that considerably fewer MD
steps are needed to obtain the same paths 0 and 5 via Ns = 5
subtrajectories. Still, WF is not as thrifty as SS and WT since
only parts of the subtrajectories, shown in panel c), actually
contribute to the sampling progress to get from path 0 to 5.
The additional steps in panel b) are seemingly “wasted” but
still needed for the superdetailed balance relation. SS and
WT do not generate wasted MD steps, but rely on a one-step
crossing condition as discussed in the main text.

Based on this principle alone, the relative efficiency gain
η of subtrajectory moves compared to standard shooting

is expected to be

η(Ns) = NsLp
Lp + (Ns − 1)Ls

(24)

where Lp and Ls are, respectively, the average length of
a full path and a subpath. Still, if we purely focus on the
MD steps that are required to allow for the progression
from path 0 to path 5, even fewer MD steps are needed as
shown in Fig. 2-c). Yet, the “extra” (wasted) MD steps
in panel b) are required for the superdetailed balance as
discussed in Sec. III. Wasted MD steps are avoided in
SS and WT where the shooting always happens at an
interface (see Figs. 1-a) and b)). The price to be paid
for this is the additional complication with regard to
the one-step crossing condition (see Sec. VI). But even
with a slightly higher MD waste, the WF move requires
considerably fewer MD steps than standard shooting.
Eq. 24 levels off to a constant Lp/Ls for increasing

Ns. Likewise, Eqs. 23 and 22 show that the trend
N (Ns) = N (1)/Ns is not sustained for increasing Ns
as N ultimately levels off to 1. It is henceforth assumed
that while efficiency initially increases quite rapidly as
function of Ns, it can not surpass Lp/Ls and ultimately
even decreases when N (Ns) levels off. Clearly, for the
[0−] and [0+] ensemble where Lp = Ls no gain is ex-
pected and one could set Ns = 1 if data storage latency
would not be an issue. Therefore, as a rule of thumb,
Ns can be set approximately equal to Lp/Ls such that
for Lp > Ls the cost of the MC move is less than dou-
bled, while Eq. 24 reaches more than 50% of its anyways
unattainable maximum of Lp/Ls.
Although the essence of the above analysis is correct,

there is however a caveat: rejections leave a much heavier
mark on the subtrajectory move than on standard shoot-
ing. If, for instance, the extension of the fifth and last
subpath in Fig. 2-b) is rejected, it would imply a com-
plete reset to the latest accepted full path (path 0) since
subpath 4 is not a valid trajectory and extending subpath
4 after the rejection would violate detailed balance. As
a result, all MD steps of subpaths 1 to 5 are trashed as
the next move starts from path 0 again. Instead, the MC
chain will only fall back to path 4 (assuming path 4 was
accepted) in standard shooting. It is therefore clear that
rejections in the subtrajectory move approach should be
avoided even more than in the shooting method. This
can be achieved with the high-acceptance procedure that
is discussed in the next section.

V. HIGH-ACCEPTANCE PROCEDURE

As discussed in the previous section, a rejection in the
subtrajectory moves implies a large amount of wasted
MD steps. An early rejection scheme, like the one used
in TIS and RETIS with standard shooting (see Sec. III),
is also not so helpful as a rejection cannot be made until
the generation of the last subtrajectory has been initiated.
It is, therefore, preferable to combine the subtrajectory
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moves with the high-acceptance scheme.17 The approach
uses the following two tricks. First, if the final subtra-
jectory has a backward extension ending in state B, the
MC move is not directly rejected. Instead, the extension
forward in time is completed and, if it ends in state A,
the path is time-reversed providing an A→ B path. The
consequence is that the time-direction selection proba-
bility Psel(td) in Eq. 4 is no longer 0.5 for all paths as
an A → B path can be generated in two ways: either
by choosing the correct time-direction immediately, or in
reverse. This implies an extra factor two in the generation
probabilities Pgen, in Eqs. 1 and 10, of the A→ B paths
compared to A→ A paths. We henceforth write:

Pgen(path(n) → path(o) via χ)
Pgen(path(o) → path(n) via χ)

= P (path(o))q(path(o))/M (n)

P (path(n))q(path(n))/M (o)

(25)

where

q(path) =
{

1 if path ∈ {A→ A}
2 if path ∈ {A→ B}

(26)

The second trick is to slightly change the sampling
distribution. Instead of sampling the correct physical path
distribution, P (path), restrained to the path ensemble’s
requirements, an alternative path distribution P̃ (path) is
sampled. From Eqs. 1 and 25, the acceptance probability
thus becomes

Pacc = min
[

1, P̃ (path(n))P (path(o))q(path(o))M (o)

P̃ (path(o))P (path(n))q(path(n))M (n)

]
(27)

and to maximize the acceptance, we choose the sampling
distribution in ensemble [i+] as

P̃ (path) = P (path)wi(path)1[i+](path) with
wi(path) = q(path)Mλi(path) (28)

where 1C(x) is the indicator function that equals 1 if x is
part of set C and 0 otherwise. A subscript λi was added
to the last term M , as the number of equal probable
possibilities for a first shooting, generally depends on the
interface λi. Substituting Eq. 28 in Eq. 27 implies that
with high-acceptance

Pacc = 1[i+](path(n)) (29)

In other words, the new path will always be accepted un-
less the MC move led to a path not obeying the ensemble’s
definition: starting at λA, ending at λA or λB , and having
at least one crossing with λi. By construction, the cross-
ing of λi is always achieved in the subtrajectory moves if
the starting condition at λA is met. Hence, the only neces-
sary rejection is when the extension of the final successful
subtrajectory ends at λB in both time-directions.
If no successful subtrajectories were generated after

Ns attempts, s0 could be extended. However, since this

would regenerate the old trajectory in deterministic dy-
namics and otherwise a trajectory that is highly corre-
lated with the old one, it is preferable to reject the move.
Other potential reasons for rejections could be due to
non-convergence of the atomistic forces in AIMD level
calculations. Another potential issue is jumpy order pa-
rameters,42 such that Mλi can be zero even if the path is
actually valid. This issue is further discussed in Sec. VII.

Exact natural averages can still be obtained by weight-
ing each sample j with the inverse of wi(j). For instance,
the estimated local crossing probability, previously defined
by Eq. 13, can now be expressed as

p(m) =
∑m−1
j=0 wi(j)−1hj∑m−1
j=0 wi(j)−1

≈ PA(λi+1|λi) (30)

The effect of the weighting implies that different sam-
ples have different contribution. If a sample j′ has a
much lower than average w−1

i factor, the sample could
essentially be removed from Eq. 30 without significantly
affecting the estimate p(m). Yet, thanks to this sample
not being rejected, sample j′ + 1 is more different than
j′ − 1 than it would be in the case that j′ was rejected.
This shows the power of the high-acceptance approach.

The improved acceptance in the subtrajectory move
will slightly reduce the acceptance in the replica exchange
move. For instance, if a path j from ensemble [i+] will
be exchanged with a path k from ensemble [(i+ 1)+], the
acceptance becomes:17

Pacc = 1[(i+1)+](j)×min
[
1,
wi(k)w(i+1)(j)
wi(j)w(i+1)(k)

]
(31)

Without high-acceptance, the factor in Eq. 31 after the
multiplication sign equals 1. This means that whenever
j, the path originating from [i+] is valid for [(i + 1)+],
the swap will be accepted. Note that any path in [(i +
1)+] is also valid in [i+]. This lower acceptance is not
dramatic since replica exchange moves do not require
any MD steps. Therefore, replica exchange moves have
negligible CPU cost. The only exception is the [0−] ↔
[0+] swap in which two new paths are generated. Without
high-acceptance, this move is always accepted. For SS
and WT the acceptance remains 100%, but this is not
the case for WF. We can solve this problem for WF in
RETIS by sampling the [0−] and [0+] ensembles with the
standard shooting method without high acceptance. Due
to this w0+ and w0− equal 1 irrespective to the paths
and swapping between these two ensembles will always
be accepted. The absence of high-acceptance is partly
compensated by early rejection (see Sec. III). Moreover, in
these ensembles there is no difference between the average
path length of a subpath and a full path, making the
subtrajectory moves anyways not so effective for these
ensembles.
The high-acceptance protocol eliminates the more se-

rious drawbacks of rejections in the subtrajectory moves
compared to shooting. In the next section we discuss how
the one-step crossing condition can be met.
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VI. ONE-STEP CROSSING CONDITION

As discussed above, SS and WT are very thrifty algo-
rithms with respect to the number of generated MD steps.
Yet, the one-step crossing condition puts a challenge to
the implementation. One can eliminate the one-step cross-
ing condition via the new but less thrifty WF algorithm
that is further discussed in Sec. VII. In this section we dis-
cuss a few algorithmic solutions to overcome the one-step
crossing condition in SS and WT. These two approaches
assume that one time step in (RE)TIS is effectively also
one MD step.

The one-step crossing can be achieved in different ways.
The most straightforward way is to generate velocities
from a Maxwell-Boltzmann distribution, execute an MD
step, calculate the new order parameter, and if the cross-
ing is established, then the two frames comprising the
crossing are extended at the side above λi to create a new
subpath. The problem with this approach is that, after
each velocity generation, an MD step, and therefore a
force calculation is required. Especially if λi is at a steep
slope of the potential energy surface, the two trajectory
frames forming the crossing of a given interface might
be rather far apart in λ-space. In such cases, if one of
the two frames is located in the very proximity of the
interface, it might be extremely unlikely to re-generate
a new one-step crossing from the configuration furthest
to the λi interface given a random approach to generate
velocities.

There are essentially two strategies to reduce the cost
for fulfilling the one-step criterion: i) generate atom ve-
locities from a Maxwell-Boltzmann distribution and pre-
dict the next step’s order parameter without performing
an actual MD step, and ii) generate velocities in a way
such that the crossing is likely achieved after very few
attempts. Strategy i) assumes that generating new veloci-
ties is rather computationally inexpensive and the expense
of the one-step crossing condition is mostly provided by
the force calculation. This is the case for AIMD level
simulations as these typically consist of just a few (hun-
dreds of) atoms, while requiring a high CPU demand for
the force calculation. In large classical MD systems with
a significant number of atoms, the velocity generation
might actually be equally expensive as a force calculation.
In that case, strategy ii) might be preferable.

i) Prediction strategy

The velocity-Verlet29 MD integrator propagates a phase
point x(t) = (r(t), v(t)) deterministically to a next phase
point x(t+ ∆t) = (r(t+ ∆t), v(t+ ∆t)). The integrator is
most conveniently expressed via “intermediate velocities”
at t+ ∆t/2:
v(t+ ∆t/2) = v(t) + f(t)∆t/(2m)
r(t+ ∆t) = r(t) + v(t+ ∆t/2)∆t
v(t+ ∆t) = v(t+ ∆t/2) + f(t+ ∆t)∆t/(2m) (32)

where m is the mass and f are the forces. We used a
simplified notation here, but one should realize that for
an N particle system both r, v and f are 3N-dimensional
vectors and m is actual a 3N × 3N diagonal mass matrix.
Further, the forces are determined from the positions:
f(t) = f(r(t)).
Eq. 32 suggests that one MD step requires two force

evaluations, but this is not the case when the steps of
Eq. 32 are called repeatedly in a loop. After the force
calculation at the third step, required to determine v(t+
∆t), the forces are stored such that these can be used at
the first step of the next cycle. With the same reasoning,
if the forces are known already at time t from its previous
step, a new force evaluation is only needed to determine
v(t+ ∆t), but not r(t+ ∆t). This means that if the order
parameter only depends on geometry, λ = λ(r), its value
at t + ∆t can also be determined without the need of
doing an actual force calculation.
When testing the one-step crossing for the selected

configuration with randomized velocities, a new (single
step) MD trajectory is started with no information avail-
able from the previous MD step. However, the selected
configuration is also part of the previous subpath, so the
corresponding forces could have been known, in principle.
When not available, the forces can be reobtained from
the trajectory data without further electronic structure
calculation in AIMD or from the gradient of force field
potential in classical MD. In particular, let x1 = (r1, v1)
and x2 = (r2, v2) be two consecutive phase points of the
latest subpath that define a crossing. This means that
x2 follows from x1 through a single MD step and both
points are at opposite sides of the interface. Therefore,
both points are viable points for shooting off the next
subpath. By inverting Eq. 32 we can derive

f1 = 2m (r2 − r1 −∆t v1)
∆t2 , f2 = 2m (r1 − r2 + ∆t v2)

∆t2
(33)

So Eq. 33 directly provides the forces on the two potential
shooting points by reading the trajectory data from the
subpath. Given that one of these two points is selected
as a shooting point and new randomized velocities are
generated, the coordinates after one MD step can be
determined without any additional force calculation but
using just the first two steps of Eq. 32. Hence, the value
of the order parameter after one step can be asserted.
If the prediction suggests that a crossing might be

achieved, the MD step is completed and then the next
subtrajectory is generated. If the velocities do not lead
to a crossing, a new velocity randomization is attempted
until the crossing condition is met. As in SS, the shooting
point selection has to be maintained, the computation
of Eq 33 only needs to be done once for the generation
of each subpath. Naturally, if the MD step integrator is
more complex than velocity-Verlet (due to thermostats,
barostats, constraints, stochasticity), then the prediction
becomes more difficult. The method also works best if a
MD step is computationally expensive while regenerating
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velocities is relatively cheap. This method is therefore
more suitable for simulations with AIMD level. The
approach has been implemented in the PyRETIS software,
and it can be directly used with the CP2K25 external
MD engine. Note that the use of the plain velocity-Verlet
MD integrator is rather common in path sampling since
the generation of paths is already thermostated via the
shooting move that allows a change of energy, while the
individual paths have NVE dynamics.

ii) Alternative velocity generation

The mathematically simple form of Eq. 10 is due to
the many terms conveniently canceling out. For instance,
the terms in Eqs. 9, ρr(r0,3), ρr(r4,3), and ρr(r4,6) in
Pgen(path(o) → path(n) via χ) cancel out with, respec-
tively, ρr(r3,0), ρr(r4,3), and ρr(r6,4) in Pgen(path(n) →
path(o) via χ) because rα,β = rβ,α. However, whereas
consecutive (accepted) subtrajectories share a common
configuration point, they do not necessarily share of com-
mon phase point as vα,β 6= vβ,α. Here, vα,β refers to
the velocities of sβ at the configuration point rα,β , and
vβ,α refers to the velocities of sα at an identical config-
uration point. These velocities have typically not the
same orientation nor amplitude. Luckily, the ρv(vα,β)
terms still cancel out via Pgen(vα,β) = ρv(vα,β) and
ρ(xα,β) = ρr(rα,β)ρv(vα,β) in Eq. 8.
Now, suppose that in a N particle system not all 3N

velocity components are regenerated from a Maxwell-
Boltzmann distribution, but some velocities components
are kept and some others are inverted (multiplied with
-1). These two velocity groups do not cancel out
in Eq. 8 as they are not part of Pgen which implies
that the final results changes from P (s6)/ρr(r4,6) to
P (s6)/[ρr(r4,6)ρv(u4,6)] where u4,6 are the velocity com-
ponents that are either unchanged or inverted. Since the
equilibrium velocity distribution is symmetric ρv(v) =
ρv(−v), and u4,6 is identical to u6,4 except for some com-
ponents having different sign, all the ρv(uα,β) terms cancel
in the ratio, Eq. 10, just like the ρr(rα,β) terms.
This allows for different strategies. For instance, if

the dynamics is stochastic, all velocities can simply be
inverted. This option was used for WT in Ref. 17. In-
verting the velocities of specific atoms or molecules whose
coordinates determine the order parameter could also be
effective. The other velocities could be either kept un-
changed, randomized, or a combination. For instance, in
protein folding simulations inverting the velocities of all
protein atoms while leaving the velocities of the solvent
molecules (partly) unchanged would make the sampling
less diffusive. Reinspection of Eq. 32 shows that the co-
ordinates of the atoms with the inverted velocities are
mapped exactly back after 1 MD step to the previous coor-
dinates regardless of the velocities of the other atoms. As
a result, the one-step crossing condition is automatically
fulfilled.
This approach requires, however, a single MD step

resolution at the interface crossing. In large molecular
systems, it is not desirable to save trajectory coordinates
every MD step as it could overwhelm hard disk capacity
and will result in a loss of effective CPU efficiency due
to the time that is spent writing to disk. An adaptive
scheme could be adopted when the frequency of order
parameter determination and the data retention is in-
tensified whenever the system approaches an interface.
Since trajectories can later be swapped in a replica ex-
change move, this adaptive approach would have to be
carried out for all interfaces or, at least, in the proximity
of neighboring interfaces. The latter choice might still
lead to path ensembles receiving a trajectory missing the
right resolution at the relevant interface. That part of
the trajectory would then have to be reintegrated by MD.
While all these issues can be solved in theory, it puts
quite some challenges to the implementation. Moreover,
if the integrator is not deterministic, but involves a ther-
mostat or barostat, the one-step crossing might still not
be guaranteed. Several velocity generation steps might
still be needed. These challenges lead us to derive the
WF move that straightforwardly can be implemented in
present path sampling codes like OpenPathSampling18,19
and PyRETIS20,21 with, potentially, any MD engine.

VII. WIRE FENCING

Compared to the SS and WT moves, the shooting point
selection of the WF move is constructed to avoid the one-
step crossing issue altogether. Instead of restricting the
shooting point to sets of crossing points at an interface,
WF allows any phase point between the path ensemble’s
specific ensemble interface, λi, and interface λB to be
picked. To increase the efficiency of the WF move in
systems with asymmetric free energy barriers (See Fig. 3),
the selection range and the boundaries of the subtrajecto-
ries can be changed by replacing λB with a user-defined
cap-interface, λcap with λi < λcap ≤ λB value.

FIG. 3. Illustration of an asymmetric barrier where the place-
ment of a cap-interface, λcap, in WF can avoid the generation
of long subtrajectories and too many shooting points being in
the basin of attraction of state B.
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The presence of a relatively flat downhill region after
the barrier’s maximum and before a stable product state
implies that transition paths can become very long. If
accepted, the paths will have a large fraction of points
at the right side of the free energy barrier from which
shooting has a very high chance to generate a failed
λB → λB trajectory. This problem was also addressed by
the spring-shooting method.43
In an AIMD level simulation of aqueous silicate con-

densation,44 this issue was solved by defining λB in the
RETIS algorithm at the position of λcap in the figure.
After the simulation was completed, all paths reaching
λB were extended in a straightforward MD simulation.
The introduction of the λcap interface makes these post-
simulation MD extensions redundant.
We will first outline the WF algorithm without a cap-

interface (or λcap = λB) using the high-acceptance pro-
tocol. The introduction of the λcap only requires a few
modifications that we discuss afterward.

1. From the old path, count the number of framesM (o)
λi

between λi and λB. If M (o)
λi

= 0 we immediately
reject the full MC move. Otherwise continue with
the next step.

2. Subdivide the M (o)
λi

points into groups where each
group are the points lying on a segment connecting
λi with λB or a segment connecting λi with itself.

3. Select one segment as s0 based on a weighted ran-
dom selection such that each segment has a chance
to be selected proportional to the number of points
it has.

4. Set two counters ns and na equal to zero: ns =
na = 0. Then start the following loop: steps 5 to
12.

5. Select at random one of the configuration points of
the last subpath, sns , as the new shooting point.

6. Generate random velocities from a Maxwell-
Boltzmann distribution.

7. Starting from the configuration point with the new
velocities, apply the MD integrator to go backward
and forward in time until λi or λB is crossed.

8. Increase the ns counter by one: ns = ns + 1.

9. If both time-directions crosses λB, the trial subpath
is rejected. In that case, the previous successful
subpath is kept, sns = sns−1. Go to step 12.
Otherwise, continue with the next step.

10. Increase the na counter by one: na = na + 1.

11. Accept the trial subpath such that it becomes sns .

12. If ns < Ns, go to step 5. Otherwise, continue with
next step.

13. If no accepted subpaths have been generated, na =
0, stop and reject the move. Otherwise, continue
with the next step.

14. Extend the last subpath sNs in both time-directions
with MD until λA or λB is hit. If the path ends at
λB at both time-directions, the whole MC move is
rejected. Otherwise, continue to the next step

15. If the path is λB → λA, reverse the time-direction
of the path.

16. Now a new full path has successfully been estab-
lished. Let q(n) be 2 if it is a λA → λB path. Oth-
erwise, it is 1. Let M (n)

λi
be the number of frames

between λi and λB . The weight-factor of the path
is w(n) = q(n)M

(n)
λi

that is needed for computing
proper path ensemble averages, Eq. 30, and for a
possible swap move via Eq. 31.

FIG. 4. Illustration of the s0 selection from the old path.
Selectable shooting points are shown in green, end-points
by open black circles, and all other points in red. a) shows
the “jumpy order parameter” case that leads to an immediate
rejection as no selectable points are present. b) and c) show the
selectable points without and with cap-interface, respectively.

The scenario of the potential rejection at step 1, is
shown if Fig. 4-a) which can occur due to a jumpy char-
acter of the order parameter.42 A typical example is nu-
cleation where the time steps in path sampling is usually
chosen to consist of many MD steps45 for the reason that
computing order parameters for nucleation is rather costly.
As a result, occasionally the order parameter, defined by
the size of the largest cluster, can make sudden jumps
such that more than one interface is crossed in a single
RETIS time step.

The path shown in Fig. 4-a) is a valid path in [i+] such
that 1[i+] = 1, but wi = 0 since Mλi = 0. In a WF move
such a path has zero probability to be generated. Yet, its
contribution in Eq. 30 to the average, if hypothetically
sampled, would be w−1

i =∞ and, therefore, the sampling
average becomes ill-defined. This can be solved by not
allowing w = 0 weights:

wi(path) = min [1, q(path)Mλi(path)] (34)

Introducing this small modification of Eq. 28 solves the
“division by zero” problem and has further no impact of
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the implementation nor on the robustness of the algorithm.
The existence of jumpy trajectories implies that a pure
WF simulation is no longer ergodic. A path like the one
in Fig. 4-a) can never be made from a WF move and,
vice versa, it can not be destroyed by the WF move if it
is fed as the initial path to the algorithm. However, the
full sampling remains ergodic due to the replica exchange
moves.

Step 2 is further illustrated in Fig. 4-b). We can identify
two groups of selectable shooting points (in green), one
group of seven points lying on a λi → λi segment and
one group of nine points on a λi → λB segment. So
these segments are selected as s0 with a 7/16 and 9/16
probability, respectively. In the next step, the points
of the selected segment have an equal probability to be
selected for the first shooting.
Despite that all the green points have the same 1/16

probability to be selected for shooting off the first subpath,
the two-step selection process is needed to fix s0. With a
single step selection, it could be possible to first obtain
a failed trial path t1 that starts from a point at the
first group, followed by a successful subtrajectory that is
launched from a point of the second group. This will break
the superdetailed balance as it would not be possible to
generate t1 from s0 in the reverse path (see the example
construction paths in Eqs. 2 and 3).

The introduction of the cap-interface changes the initial
s0 selection as is shown in Fig. 4-c) where, for the same
path as panel b), there are now three groups of two points
that can be chosen. Note that not all the points between
λi and λcap are selectable as the points on a λcap → λcap
segment should be excluded. The algorithm is further
identical as described above with λcap instead of λB in the
main loop (steps 5 to 12). Outside the main loop (step
13-15), λB is not replaced by λcap since the final extension
always shall reach the A or B states. In the final step
(16), M (n)

λi
is replaced with the number of frames between

λi and λcap excluding those on λcap → λcap segments.

VIII. NUMERICAL RESULTS

We tested the WF algorithm on three model systems: a
simple one-dimensional system for which we can perform
full RETIS simulations with high convergence, and two
challenging complex systems based on classical MD and
AIMD, where our analysis is more qualitative based on
a single path ensemble simulation. The one-dimensional
system describes a single particle in a double-well poten-
tial that is moving following the underdamped Langevin
equation as previously described in Ref. 33. The purpose
of these simulations is to show numerically that the WF
method leads indeed to exact results. In addition, due to
the high degree of convergence that can be reached, we
also draw some conclusions on the efficiency compared
to standard shooting. However, it should be taken into
account that a larger boost factor is expected for more
complex high-dimensional systems.

The other two systems are part of ongoing projects on
which we plan to report extensively in later publications.
The classical MD system describes the thin film breakage
in oil-water mixtures based on the studies Ref. 46–49.
The system size of this simulation is over 100,000 atoms
making the one-step crossing impracticable as it requires
a stop/restart at every MD step. Instead, in our single
path ensemble simulation the coordinates were recorded
every 50 MD steps. The AIMD system describes the elec-
tron transfer between ruthenium ions in a redox reaction
taking place in liquid water. To determine the relative
position of the moving electron, the Kohn-Sham orbitals
are projected on maximally localized Wannier Functions50
whose centers can be viewed as “electron positions”. This
implies that in order to compute the order parameter from
a configuration point, a full electronic structure calcula-
tion is required. A cheap prediction scheme as described
in Sec. VI is therefore not suitable. For both systems,
we show the usefulness of the cap-interface in practical
simulations.

A. Double-well 1D barrier

Despite the model’s simplicity, several popular rare
event simulation methods, like forward flux sampling
(FFS)51,52 and other splitting based methods,53–55 have
shown that they can easily fall into a kind of sampling
trap when applied to this system yielding a too low rate
and non time-symmetric transition paths.33
The double-well barrier system consists of a one-

dimensional particle moving in the following potential33

V (z) = z4 − 2z2 (35)

with underdamped Langevin dynamics. In reduced
units, the Boltzmann constant and mass are set to unity,
kB = m = 1, while the temperature and friction coeffi-
cient are set equal to T = 0.07 and γ = 0.3. The equations
of motion are propagated using an MD time step equal
to dt = 0.025. In a straightforward MD run, the particle
will mostly oscillate within one of the potential minima
at z = −1 and z = 1, but also (very) infrequently cross
the transition state at z = 0. During the oscillatory move-
ment, the total energy of the particle will fluctuate by the
random force of the Langevin dynamics. As a result, the
system is effectively two-dimensional in phase space where
the velocity can be considered as an orthogonal degree of
freedom. The reason that FFS and other splitting type
methods underestimate the crossing rate is due to an insuf-
ficient sampling of the tail in the velocity distribution.33
Path sampling methods like RETIS which are based on
both forward and backward in time propagation do not
have this issue.
We defined eight RETIS interfaces: λA = λ0 = −0.99,

λ1 = −0.8, λ2 = −0.7, λ3 = −0.6, λ4 = −0.5, λ5 = −0.4,
λ6 = −0.3, and λB = λ7 = 1.0, and ran four RETIS
simulations using the PyRETIS code20,21 consisting of
200,000 cycles. In all simulations (Shooting, WF, WF*,
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FIG. 5. Total running average of the computed rate as function
of RETIS cycles.

WF-cap), each path ensemble either employs only shoot-
ing or only WF as the main MC move in addition to
replica exchange moves. In the simulation “Shooting” all
path ensembles employ the shooting move. In the other
simulations the WF move is used for most path ensembles.
However, simulation WF* uses normal shooting in the
[0−] ensemble, while simulations WF and WF-cap use the
shooting move in both the [0−] and [0+] ensemble as was
suggested in Sec. III. The WF-cap simulation uses a cap-
interface at λcap = 0.1 At each cycle, all path ensembles
are updated with an ensemble move (shooting or WF) or
with replica exchange moves with a 50%-50% probability.
In case that a replica exchange move is selected, another
50%-50% probability determines whether the [0−]↔ [0+],
[1+] ↔ [2+], . . ., [5+] ↔ [6+] swaps will be attempted
or the [0+] ↔ [1+], [2+] ↔ [3+], . . ., [4+] ↔ [5+] swaps.
In the latter case, the [0−] and [6+] ensembles simply
duplicate the previous path (null move). In the WF simu-
lations, the number of subpaths was arbitrarily set equal
to Ns = 6 for all path ensembles.
The results are shown in Fig. 5 and in table I where

they are compared with Kramers’ theory56 which, for this
system, can be considered as a nearly exact reference.
Fig. 5 shows that the WF based simulations rapidly con-
verge close to the Kramers’ value of the rate confirming
the exactness of the superdetailed balance relations and
the correct implementation in the PyRETIS code. The
results based on shooting are further off, but have a sig-
nificantly lower computational cost per RETIS cycle (see
table I).
Based on the relative errors from the block averaging

analysis and the cost per cycle, we can compute the CPU
efficiency time for each method, shown in the last column.
Based on these numbers, we can see that the WF, WF*
and WF-cap simulations are 2.5, 2.4 and 2.7 times more
efficient than the simulation in which all path ensembles
use the standard shooting move as their main MC move.

Note that an improvement of more than a factor 2 is
rather remarkable given the low dimensionality of the
system.

TABLE I. Simulation data for the double-well 1D barrier sys-
tem. The cost column describes the total number of calculated
MD steps. The errors are based on block averaging using sin-
gle standard deviations. The final column shows the CPU
efficiency times37 corresponding to the number of required
MD steps for obtaining a relative error equal to 1. Simulation
“Shooting” uses the standard shooting move as the main MC
move in all path ensembles. The other simulations use the
WF move in all ensembles except for [0−] (WF, WF*, WF-
cap) and [0+] (WF, WF-cap). WF-cap uses a cap-interface at
λcap = 0.1.

Simulation Rate/10−7 εr (%) Cost/107 Cost·ε2
r/1011

Shooting 2.30 6.46 5.32 222.0
WF 2.69 2.28 16.98 88.3
WF* 2.58 2.19 19.56 93.9
WF-cap 2.54 2.29 15.72 82.4
Kramers 2.58

In table II, we further examine the acceptance prob-
abilities of the different moves. It is apparent that in
all simulations the main MC move has a nearly 100%
acceptance in the path ensembles where the WF move is
employed thanks to the high-acceptance protocol. The
acceptance is marginally lower at the last path ensembles
[5+] and [6+] from which there is a higher probability
to generate λB → λB paths. The shooting move has a
lower acceptance, but has the advantage that all swapping
moves with the [0−] ensemble are accepted if shooting is
the main move in both [0−] and [0+]. Since [0−] can only
swap with [0+], these are the computationally expensive
[0−]↔ [0+] swaps.
The other swapping moves are inexpensive as they do

not require any MD steps. Therefore, an anticipated
lower acceptance for these swapping moves in the WF
simulations would not be dramatic. However, even this is
not always the case. At first sight this appears counter-
intuitive. Given a pair of paths in two neighboring ensem-
bles, the standard swap should always have an acceptance
probability that is equal to or higher than the acceptance
based on Eq. 31. However, this effect can be canceled
by the path distributions not being the same. Since the
altered path distribution in the high-acceptance scheme,
Eq. 28, overrepresents paths with many points between λi
and λB or λcap, the [i+] path ensemble is likely to contain
a higher fraction of paths crossing λi+1. From the data
of table II, this seems indeed the case in the majority of
path ensembles.

B. Thin Film Breakage

A system of 1100 dodecane molecules layered on a slab
of 23936 water molecules is studied in the NPT ensemble
via full atom TIS simulations using the GROMACS 2020.1
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TABLE II. Acceptance ratio (%). Simulation “Shooting” uses
the standard shooting move as main MC move in all path
ensembles. The other simulations use the WF move in all
ensembles except for [0−] (WF, WF*, WF-cap) and [0+] (WF,
WF-cap).

ens. shooting WF WF* WF-cap
main swap main swap main swap main swap

[0−] 84.6 100.0 84.3 100.0 84.5 83.9 84.3 100.0
[0+] 84.2 57.8 84.0 55.6 100.0 49.0 84.0 55.8
[1+] 48.8 15.5 100.0 16.3 100.0 17.9 100.0 16.8
[2+] 37.8 13.4 100.0 19.9 100.0 19.7 100.0 20.2
[3+] 32.2 11.5 100.0 18.5 100.0 18.0 100.0 18.4
[4+] 30.1 12.2 100.0 20.6 100.0 20.3 100.0 20.4
[5+] 30.0 14.7 99.8 28.2 99.9 28.3 100.0 26.6
[6+] 29.1 16.7 99.2 33.9 99.2 34.2 100.0 30.8

simulation package57 as the external engine. The dode-
cane molecules are simulated according to the OPLS-AA
force field58 and the water molecules with the TIP4p/2005
model.59 The preparation of the initial equilibrated system
is explained in detail by Ref. 46. The temperature is set to
300 K and is controlled with a velocity rescaling method60
employing a coupling time of 0.1 ps. Pressure is controlled
by the Berendsen barostat and its normal component is
maintained constant at 1 bar, with a time constant of
1.0 ps and compressibility coefficient of 4.7 · 10−5bar−1.
The velocity-Verlet algorithm is used to solve the Newton
equations of motion with a timestep of 0.002 ps. Periodic
boundary conditions are applied in all directions, with
the z direction being perpendicular to the 2D film. The
box size is set to equal a box size of 15× 15× 5.1983 nm.
The order parameter of the system is calculated by

discretizing the system into 85× 85 tiles in the x and y
direction such that the order parameter value becomes
the number of empty dodecane tiles that also have empty
neighbors in the x and y direction. Such a definition
provides a way to measure the presence of low-density
regions, in addition to any breakage or “hole” formation
that occurs within a trajectory. The sensitivity of the
order parameter is determined by the specified discretizing
size. In our case, the order parameter values fluctuated
between 0 and 5 during an equilibrium run at T = 300
K. Based on this, we set λA = 5. We further defined
λB = 100 as preliminary analysis showed that from this
point on the hole tends to grow further with a negligible
chance to close again.

To obtain an initial reactive trajectory, we ran an equi-
librium run at T = 375 K until the thin film broke down.
For our single path ensemble analysis we further defined
λi = 10.0 as the interface that has to be crossed. In
addition, we set the cap-interface λcap = 15.0. We then
created 1000 trajectories using standard shooting and WF
with Ns = 10. Three exemplary trajectories from the WF
simulation are shown in Fig. 6-a).
From the sample size of 1000 MC moves, the accep-

tance in WF was equal to 73.4% and 35.0% for standard
shooting. The limited sample size prohibits accurate CPU
efficiency analysis, but a qualitative assertion of the sam-
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FIG. 6. Exemplary trajectories from the WF algorithm
in the [i+] path ensemble showing the progress of the order
parameter versus time. The stable state interfaces λA, λB , the
cap-interface λcap, and the ensemble interface λi are shown as
well. The two different panels represent the a) classical MD
level simulation of the thin film breakage and b) the AIMD
level simulations of the ruthenium self-exchange reaction.

pling effectivity can be obtained by viewing the simulated
path lengths as function of the MC step.

Fig. 7-a) shows that the WF sampling has much more
frequent transitions between long and short paths whereas
shooting is mostly stuck in the short path domain. Once
the shooting move manages to produce a long path, the
path remains in the MC chain due to a long series of
rejections (e.g. around step 500 where the same path
length remains for a number of steps due to rejections).
This indicates that the shooting move is struggling to
properly sample path space. Even if the acceptance is not
extremely low for the short paths, it fails to make regular
switches to the longer paths. Moreover, if a long path is
generated, the subsequent moves are likely rejected such
that other longer paths are not likely found.
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FIG. 7. Path length vs MC move for WF and standard
shooting for a) classical MD system of thin film breakage and
b) AIMD system of ruthenium self-exchange reaction.

C. Ruthenium-Ruthenium Self-Exchange Reaction

We studied the self-exchange reaction between two
ruthenium ions in aqueous solution described by the fol-
lowing chemical reaction

Ru2+ + Ru3+ → Ru3+ + Ru2+ (36)

The simulation system consisted of two ruthenium ions,
63 H2O molecules and one OH− ion. The dynamics were
propagated using NVE velocity-Verlet and the CP2K25

simulation package. The effect of temperature was intro-
duced via the randomization of velocities from a Maxwell-
Boltzmann distribution at a temperature of 300 K. We
used a time step of 0.5 fs and periodic boundary condi-
tions were applied to a cubic box with an edge length of
12.4138 Å. Further simulation details on functional and
basis sets are explained in Ref. 61.
To monitor the reaction progress, the electron trans-

fer has been “followed” by transforming the occupied
Kohn-Sham orbitals62 into maximally localized Wannier
functions (MLWF)50 and computing the distance between
the center of these localized functions (X) describing the
moving electron to each of the ruthenium ions. The order

parameter of the system is then defined as

λ = (dRu−X − dRu′−X)
dRu−Ru′

(37)

where dRu−X is the distance between X and the initial
ruthenium electron donor, dRu′−X is the distance between
X and the initial ruthenium electron acceptor and dRu−Ru′

is the distance between the two ruthenium ions in the
system. In this formulation, λ = −1 and λ = +1 de-
fine the reactant state and product state, respectively.
Ru2+/Ru3+ have 5/6 d-electrons and H2O/OH− have 8
valence electrons. This means there are a total of 523
MLWFs in the system. The order parameter, Eq. 37, re-
quires the location X of the transferring electron, which is
one of the centers of these 523 MLWFs. To identify which
is X, each Wannier center is linked to either a ruthenium
or oxygen atom that is closest. Then, if one ruthenium
ion has 6 associated MLWFs, X is set to be the one that
is the farthest away from this ruthenium ion. In the case
that both ruthenium ions have 5 associated MLWFs, one
of the oxygens has an excess MLWF (9 instead of 8), and
the center that is farthest away from this oxygen is set as
X.

To qualitatively compare standard shooting and WF for
this system we run two single path ensemble simulations
representing [i+] with λi = −0.736, λA = −0.99, and
λB = +0.99. The value for λi = −0.736 was chosen from
preliminary runs where we aimed for a 20% probability
that a path ends up at state B. In the WF simulation,
an additional λcap = +0.95 was set to avoid λB → λB
rejections due to the selection of shooting points lying
within the basin of attraction of state B. Here, we only
applied a rather modest number of subtrajectories Ns = 2.
Higher performances might be obtained with a larger
number of subpaths. Exemplary trajectories of the WF
simulation are shown in Fig 6-b).

Due to the relatively low value of Ns, the subpath con-
tribution to the total WF computational cost is only 15%.
The acceptance probability increased from the shooting
move’s 48% to WF’s 96%. Similarly to the classical MD
system, the WF simulation seems to show a better sample
exploration when we look at the path length as function of
the MC step (Fig. 7-b)). The standard shooting algorithm
seems not to be able to produce any paths larger than
300 fs. The WF algorithm, however, started with a short
initial path but was able to quickly move up to the 600 fs
range and making regular transitions between the shorter
and longer paths. So also here, the sampling quality of
the WF algorithm appears substantially superior to the
one of standard shooting.

IX. CONCLUDING REMARKS

We reviewed the recently developed subtrajectory
moves stone skipping (SS) and web throwing (WT) and
added a new member to this group: wire fencing (WF).
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These moves are more efficient than the standard shoot-
ing move which has been the main MC move for path
sampling simulations during the last two decades. The
subtrajectory moves proceed from a complete old path
to a complete new path via a series of intermediate short
paths (subpaths/subtrajectories). While this increases the
average cost of a MC step, the correlations between paths
are substantially reduced leading to a lower statistical inef-
ficiency. The use of shorter paths resembles approximate
path sampling methods like PPTIS or milestoning. How-
ever, the subtrajectory moves are still exact like standard
shooting as they are based on mathematically rigorous su-
perdetailed balance relations. The approach is preferably
combined with a high-acceptance protocol in which the
sampling distribution of the paths is adjusted in order to
maximize the acceptance of newly generated trajectories.
The effect of the biased distribution is undone in the post-
simulation analysis using appropriate reweighting. The
SS and WT move, however, require a one-step crossing
condition which complicates their implementation and
we discussed several solutions for this issue. The new
WF does not rely on the one-step crossing condition and
is therefore the most practical solution to the aforemen-
tioned problem even if it is slightly more wasteful than SS
and WT. The WF move is in particular useful when the
path sampling code uses an external MD engine and/or
when the computation of the order parameter is costly.
We showed the exactness and the efficiency gain of the
WF approach in a RETIS simulation where the transition
rate of an underdamped Langevin particle in a double-
well potential has been computed and compared with the
analytical Kramers’ expression. Thereafter, we showed
qualitatively how the WF move performs in a classical
MD system describing the thin film breaking process and
in an AIMD level system describing an electron transfer
process between ruthenium ions in aqueous solution. In
both cases, the WF move seems to allow a faster sampling
through path space than standard shooting, which was
concluded from the rapid switches that WF made between
the shorter and longer paths.
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Appendix A: Analytical expressions for the statistical
inefficiency in model systems

Sec. IV introduces a model where at each MC move j
there is a chance of πR that the state of the system remains
essentially unchanged and a chance of πM = 1 − πR
to “throw a dice”. The latter implies that at step j
the output value of hj equals 1 with a probability p
and 0 with a probability 1 − p. Let us consider the
conditional probability that hj = 0 given that h0 = 0:
P (hj = 0|h0 = 0). We can distinguish two scenarios.
Scenario 1 relates to the case that all j moves implied a
“remain” and therefore hj = h0 = 0. Scenario 2 is related
to the situation that at least once the dice was thrown.
In this scenario we have that hj is either 1 or 0 with
respective probabilities p and 1− p. The probability of
having scenario 1 equals πjR and that of scenario 2 equals
1− πjR. Therefore,

P (hj = 0|h0 = 0) = πjR + (1− πjR)(1− p)
= (1− p) + pπjR (A1)

Likewise, we can derive all the other conditional proba-
bilities:

P (hj = 1|h0 = 0) = (1− πjR)p = p− pπjR
P (hj = 0|h0 = 1) = (1− πjR)(1− p) = (1− p) + (1− p)πjR
P (hj = 1|h0 = 1) = πjR + (1− πjR)p = p+ (1− p)πjR

(A2)

Let us call pkl = P (hj = k ∧ h0 = l) = P (hj = k|h0 =
l)P (h0 = l). From Eqs. A1 and A2 we can derive:

p00 = (1− p)2 + p(1− p)πjR
p10 = p(1− p)− p(1− p)πjR = p01

p11 = p2 + p(1− p)πjR (A3)

and from this we can compute

〈(h0 − p)(hj − p)〉 = p00p
2 − p10(1− p)p

− p01(1− p)p+ p11(1− p)2 (A4)

In the above expression, all the πR-independent terms
cancel. This is expected since we know the result equals 0
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if πR = 0. The remaining πR-dependent terms sum up to

p(1− p)πjR
[
p2 + 2p(1− p) + (1− p)2]

= p(1− p)πjR [p+ (1− p)]2 = p(1− p)πjR (A5)

From Eqs. 16, 17, and A5 we derive that

C(j) = πjR ⇒ nc = πR
1− πR

(A6)

and via Eq. 15:

N = 1 + 2 πR
1− πR

= 1 + πR
1− πR

(A7)

As πM = 1− πR, A7 is equivalent to Eq. 19 of Sec. IV.
In the second model we assume πR = 0, but there are

two phases x = α, β that have, respectively, probabilities
Pα and Pβ and local crossing probabilities pα and pβ . Let
πρ = 1 − πµ be the probability that the MC maintains
the previous phase. The inverse probability πµ implies
throwing the dice to determine the phase x such that
the selection probability for x corresponds to Pα and
Pβ = 1−Pα. After the phase x is set, hj will be set to 1 or
0 with respective probabilities px and (1−px). Given that
the phase of the first sample equals x0 = x, the chance
that the j-th sample has the same or opposite phase
equals, respectively, πjρ + (1−πjρ)Px and (1−πjρ)(1−Px).
This leads to the following conditional probabilities akin
Eqs. A1 and A2:

P (hj = 0|x0 = x) = πjρ(1− px) + (1− πjρ)(1− p)
= πjρ(p− px) + (1− p)
= πjρPy(py − px) + (1− p)

P (hj = 1|x0 = x) = πjρpx + (1− πjρ)p
= πjρ(px − p) + p

= πjρPy(px − py) + p (A8)

where y ∈ (α, β) and y 6= x. Hence, analogous to Eqs. A3

pk0 =
∑
x=α,β

Px(1− px)P (hj = k|x0 = x)

pk1 =
∑
x=α,β

PxpxP (hj = k|x0 = x)

(A9)

which leads to

p00 = (1− p)2 + πjρ
∑
x

PxPy(1− px)(py − px)

= (1− p)2 + πjρPαPβ(pα − pβ)2

p10 = p(1− p) + πjρ
∑
x

PxPy(1− px)(px − py)

= p(1− p)− πjρPαPβ(pα − pβ)2 = p01

p11 = p2 + πjρ
∑
x

PxPypx(px − py)

= p2 + πjρPαPβ(pα − pβ)2 (A10)

Analogous to Eqs. A4 and A5 we find that

〈(h0 − p)(hj − p)〉 = πjρPαPβ(pα − pβ)2 (A11)

and like Eq. A6:

C(j) = PαPβ(pα − pβ)2

p(1− p) πjρ = Ksπ
j
ρ

⇒ nc = Ks
πρ

1− πρ
= Ks

1− πµ
πµ

(A12)

where we used πµ = 1− πρ and Eq. 21. Substitution of
Eq. A12 in Eq. 15 leads to Eq. 20.
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