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ABSTRACT
Assessing kinetics in biological processes with molecular dynamics simulations remains a computational and conceptual

challenge, given the large time and length scales involved. For kinetic transport of biochemical compounds or drug molecules,
the permeability through the phospholipid membranes is a key kinetic property, but long timescales are hindering the
accurate computation. Technological advances in high performance computing therefore need to be accompanied by
theoretical and methodological developments. In this contribution, the replica exchange transition interface sampling
(RETIS) methodology is shown to give perspective towards observing longer permeation pathways. It is first reviewed
how RETIS, a path sampling methodology that gives in principle exact kinetics, can be used to compute membrane
permeability. Next, recent and current developments in three RETIS aspects are discussed: several new Monte Carlo
moves in the path sampling algorithm, memory reduction by reducing path lengths, and exploitation of parallel computing
with CPU-imbalanced replicas. Finally, the memory reduction presenting a new replica exchange implementation, coined
REPPTIS, is showcased with a permeant needing to pass a membrane with two permeation channels, either representing
an entropic or energetic barrier. The REPPTIS results showed clearly that inclusion of some memory and enhancing
ergodic sampling via replica exchange moves are both necessary to obtain correct permeability estimates. In an additional
example, ibuprofen permeation through a dipalmitoylphosphatidylcholine (DOPC) membrane was modeled. REPPTIS
succeeded in estimating the permeability of this amphiphilic drug molecule with metastable states along the permeation
pathway. In conclusion, the presented methodological advances will allow for deeper insight in membrane biophysics even
if the pathways are slow, as RETIS and REPPTIS push the permeability calculations to longer timescales.

SIGNIFICANCE Permeability is a key kinetic property for membranes. Simulating permeation events at the molecular
scale is very valuable for kinetic modeling, but permeation timescales are often prohibitively long to be simulated with
present-day computational resources. Here we show how the RETIS path sampling method can give the exact kinetics
of permeation, and how its efficiency is aided by recent developments. Moreover, we present a newly implemented
REPPTIS method which approximates the kinetics by truncating memory. The REPPTIS method is promising for
permeation simulations with high efficiency and accuracy that might not be easily achieved by any other method.

INTRODUCTION
Biological membranes are responsible for compartmental-
ization in cells and organelles. Their permeability is a key
characteristic of the transport kinetics of chemicals and nu-
trients, peptide-membrane interactions, or drug delivery of
nanocarriers (1–7). Molecular dynamics (MD) simulations
are a computational tool that aid the understanding of the
biophysical mechanisms playing at the molecular scale. Un-
fortunately, membrane permeability simulations are often
computationally very demanding. The study of permeation
events requires long timescales when the permeation is a

slow and/or rare event, in addition to the need for fairly large
simulation boxes usually comprised of thousands of particles.
Permeability methods, such as the counting method (8–10)
and the inhomogeneous solubility-diffusion model (11–13),
are hence hindered by poor statistics. The latter approach can
be combined with methods such as umbrella sampling (14)
or adaptive biasing force (15, 16) to obtain the free energy
profile more efficiently. However, the possible presence of
hysteresis and parallel reaction channels can still sabotage an
accurate description of the dynamics.

In recent work by some of the authors, an algorithm was

Manuscript submitted to Biophysical Journal 1



Vervust, Zhang, van Erp and Ghysels

proposed to evaluate the permeability with the path sampling
methodology, which realizes a speed-up of several orders
of magnitude when the permeation event is rare (17). Path
sampling, and in particular transition interface sampling (TIS)
(18), achieves this speed-up by Monte Carlo (MC) sampling
of path ensembles that are populated mostly with reactive
paths or paths that make substantial progression along the
reaction coordinate before returning to the reactant state. It was
derived how the permeability can be obtained from the replica
exchange transition interface sampling (RETIS) method (17).
The method does not need a diffusive assumption, and the
kinetics are thus exact.

Other notable methods that try to determine dynamic
quantities, faster than MD, are milestoning (19) and forward
flux sampling (FFS) (20). The latter is based on the same
theoretical foundations as TIS, but instead of Metropolis
MC sampling (21), it is based on splitting. In this class of
methods, phase points of trajectories far up the barrier are
used to launch multiple trajectories that deviate from the
original due to the stochastic nature of the dynamics. Some
of these trajectories reach further and deliver new phase
points for launching the next set of trajectories and so on.
Although the FFS method has the advantage over TIS and
RETIS that it can be applied for non-equilibrium dynamics,
the splitting technique has as a major disadvantage that the
final transition trajectories can be highly correlated and that
possibly important rare initial conditions with a high reaction
probability are missed (22). Milestoning, on the other hand,
has the advantage that the statistics of long transition paths
is obtained via the transition probabilities of much shorter
paths connecting so-called milestones. The method bears
resemblance to the simultaneously introduced TIS variation
called partial path TIS (PPTIS) (23). Unlike the TIS, RETIS
and FFS methodologies, both PPTIS and milestoning are
generally not exact as they rely on a memory-loss assumption
(Markovian approximation). Only in the hypothetical case
that the milestones/interfaces are identical to isocommittor
surfaces, these two methods become exact (24). In any other
case, the inclusion of some memory can improve the accuracy
of the method, which we will discuss later on.

Of the above methods, milestoning has been most com-
monly used to calculate permeability through membranes via
slightly different theoretical approaches based on Markovian
approximations (25–28). We recently derived how the per-
meability can be computed from a RETIS simulation that
is not based on a disturbance out of equilibrium or Marko-
vian assumptions (17), but instead, it reproduces exact results
identical to the counting method in a hypothetically long
equilibrium MD run.

RETIS has been shown to provide the permeability for
a range of toy systems (17). Moreover, RETIS was success-
fully used in a realistic simulation setup to compute the
permeation rate of oxygen molecules through a 1-palmitoyl-2-
oleoyl-sn-glycero-3-phosphocholine (POPC) membrane (29).
Nevertheless, for systems with slow permeation events, where

the permeation trajectories sampled in the path ensembles
occasionally are very long, the RETIS simulation can still be
computationally demanding. To reach such long time scales,
further methodological improvements are needed to improve
sampling and efficiency.

This paper starts with a short review on how the perme-
ability formula is derived from RETIS. Next, we will give
an outlook on how the simulations at these long time scales
can be made more efficient. For permeation events with very
long path lengths, a lower computational cost may be ob-
tained with a reduction of memory similar to milestoning
and PPTIS. Specifically, we extend the PPTIS method with a
replica exchange move between path ensembles to enhance
non-local sampling. Other improvements for the sampling
efficiency will be reviewed as well, such as the use of special
path-generating MC moves (17, 30, 31) and a new way to run
replica exchange simulations with cost-unbalanced replicas
with an infinite swap frequency (32).

The set of these methodological advances in three ar-
eas, i.e. memory reduction, new Monte Carlo moves, and
parallel computing, will push permeability calculations to
longer timescales. Specifically, the methodology that shortens
memory will be illustrated in the Results section using two
example systems. In the first system, a permeant needs to pass
through a maze-like membrane, choosing between a pathway
with an entropic barrier and another pathway with an energetic
barrier. The role of memory for PPTIS is challenged in this
setup, as the memory loss might induce an overestimation or
underestimation of the permeability compared to RETIS. In
the second example, ibuprofen permeation through a bilayer is
modeled. This drug molecule is amphiphilic, with a polar part
(carboxylic group) and apolar part. The polar group creates
metastable states in ibuprofen’s permeation pathway, which
can cause the trajectories to be trapped, making it an excellent
application of memory reduction to keep the trajectory lengths
short. The last section summarizes the conclusions.

METHODS
Permeability from RETIS
A RETIS simulation requires the definition of an order param-
eter 𝜆 and 𝑛 + 1 interfaces 𝜆𝐴 = 𝜆0 < . . . < 𝜆𝑖 < 𝜆𝑛 = 𝜆𝐵 to
describe the progression of the reaction. For a permeability
calculation, the order parameter is simply the coordinate, of a
specific “target” permeant, orthogonal to the membrane plane,
so 𝜆 = 𝑧𝑡 in Fig. 1. In curved membranes, such as liposomes,
𝜆 could be chosen as the radial distance (33). In this subsec-
tion, a short overview of the permeability derivation will be
given, to introduce the quantities that are needed to compute
the permeability for the numerical applications in the next
subsection.

A RETIS simulation consists of a series of path sampling
simulations (34), each employing a different path ensemble.
There are 𝑛 + 1 path ensembles called [0−], [0+], [1+], [2+],
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. . ., [(𝑛 − 1)+]. The [0−] ensemble explores the reactant well
and consists of paths starting and ending at 𝜆0 with all other
path frames being at the left side of this interface (< 𝜆0).
All other path ensembles [𝑖+] with 0 ≤ 𝑖 < 𝑛 explore the
barrier region and consist of paths starting at 𝜆0, ending at
either 𝜆0 or 𝜆𝑛, and crossing interface 𝜆𝑖 at least once. Since
the path sampling algorithm is based on MC moves obeying
detailed-balance, the set of trajectories that is being sampled
in each path ensemble is statistically equivalent to a set of
trajectories one would get by cutting out the relevant segments
from an infinitely long MD trajectory.

Figure 1: The membrane region between state A and state
B forms a free energy barrier. Order parameter 𝜆 is the 𝑧𝑡
coordinate of the target permeant normal to the membrane.
RETIS interfaces 𝜆𝐴 = 𝜆0, . . . ,𝜆𝑛 = 𝜆𝐵 are indicated with
orange lines. Additional interface 𝜆−1 reduces region A to
region A′ by freezing the time. Reference interval Δ𝑧 is used
to measure 𝜏ref,[0−′ ] in Eq. 8 or (𝜌ref)𝐴′ in Eq. 9.

Based on the results of the path ensembles, the rate can
be computed as

𝑘 = 𝑓𝐴𝑃𝐴(𝜆𝐵 |𝜆𝐴) (1)

where 𝑓𝐴 is the conditional flux through 𝜆𝐴 = 𝜆0 and
𝑃𝐴(𝜆𝐵 |𝜆𝐴) is the overall crossing probability, the chance
that 𝜆𝐵 will be crossed after a positive crossing with 𝜆𝐴

without recrossing 𝜆𝐴. The rate in Eq. 1 can be related to
a frequency of transitions between history dependent states,
called overall states, A and B. These overall states differ
from the stable states 𝐴 and 𝐵, which are defined as the phase
space regions being at the left of 𝜆𝐴 and at the right of 𝜆𝐵,
respectively. The overall state A also includes (“trajectory-”)
phase points that are in between 𝜆𝐴 and 𝜆𝐵, that were more
recently in 𝐴 than in 𝐵. Likewise, overall state B includes
points in between 𝜆𝐴 and 𝜆𝐵, which originate from paths that
were more recently in 𝐵 than in 𝐴. Thus the overall states
(A,B) are larger than the stable states (𝐴, 𝐵). The rate con-
stant 𝑘 is then defined as the number of A → B transitions
in a hypothetical infinitely long equilibrium MD run divided
by the time spent in A.

The flux 𝑓𝐴 in Eq. 1 is the frequency of positive crossing
with 𝜆𝐴 under the condition that the system is in overall A. In
rare events, however, the more complicated term to compute
in Eq. 1 is the overall crossing probability 𝑃𝐴(𝜆𝐵 |𝜆𝐴) since it
usually is an extremely small number. In TIS, RETIS, and also

FFS, it is computed from the following product expression:

𝑃𝐴(𝜆𝐵 |𝜆𝐴) = 𝑃𝐴(𝜆𝑛 |𝜆0) =
𝑛−1∏
𝑖=0

𝑃𝐴(𝜆𝑖+1 |𝜆𝑖) (2)

where 𝑃𝐴(𝜆𝑖+1 |𝜆𝑖) is the history dependent conditional cross-
ing probability, which is the chance that, given a first time
crossing with 𝜆𝑖 since leaving state 𝐴, 𝜆𝑖+1 will be crossed
before 𝜆𝐴. The distribution of first crossing points with 𝜆𝑖
since leaving state 𝐴, is generally not identical to the equi-
librium distribution at 𝜆𝑖 . This aspect includes memory in
the expression of Eq. 2 and makes it exact. Milestoning and
PPTIS can be viewed as approximate ways to determine the
crossing probability by removing or reducing the memory
dependence between subsequent interfaces, respectively.

Similarly to the rate 𝑘 (unit 1/time), the permeability 𝑃 is
a kinetic property (unit length/time). The membrane perme-
ability 𝑃 is defined as the ratio 𝐽/Δ𝑐, where 𝐽 is the net flux
through the membrane when a concentration gradient Δ𝑐 is
maintained over the membrane in steady-state. Firstly, in the
counting method, this ratio is evaluated by counting the mem-
brane crossings in both positive and negative directions and by
evaluating the ratio 𝑃 = (𝐽++|𝐽− |)/(2𝑐ref) of the bidirectional
flux 𝐽+ + |𝐽− | through the whole membrane and the refer-
ence concentration 𝑐ref in a long equilibrium MD simulation.
Secondly, in the inhomogeneous solubility-diffusion model,
the permeability is estimated assuming diffusive transport, as
described by the Smoluchowski equation, giving

1
𝑃

= 𝑒−𝛽𝐹ref

∫ ℎ/2

−ℎ/2

1
𝑒−𝛽𝐹 (𝑧)𝐷 (𝑧)

d𝑧, (3)

with 𝛽 = 1/(𝑘𝐵𝑇) the inverse temperature, 𝑘𝐵 the Boltzmann
constant, 𝑇 the temperature, ℎ the membrane thickness, and
𝐹ref the reference free energy in the solvent phase in region
A. The position-dependent free energy 𝐹 (𝑧) and diffusion
𝐷 (𝑧) profiles along the membrane normal that figure in the
Smoluchowski equation may be fitted from equilibrium MD
with Bayesian analysis (35, 36) or a maximum likelihood
estimation (37).

Let us now return to the path sampling methodology. The
ratio 𝑃 = 𝐽+/𝑐ref is evaluated, where 𝐽+ is the flux in the
positive direction and 𝑐ref is the reference concentration in
state A at the left of the membrane (see Fig. 1). As shown in
Ref. (17), the definition of 𝐽+ has similarities to the RETIS
rate 𝑘 ,

𝐽+ =
#(𝐴 → 𝑀 → 𝐵)all perm.

𝑇𝜎

𝑘 =
#(𝐴 → 𝑀 → 𝐵)target

𝑇A
(4)

where 𝑀 refers to the membrane region, 𝑇 is the simulation
time of a very long equilibrium simulation, 𝑇A is the part of
simulation time spent in overall state A and 𝜎 is the cross
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section area of the membrane. By juggling Eqs. 4 and 1, it
follows that

𝐽+ = 𝑓𝐴 𝑝A
𝑁𝑝

𝜎
𝑃𝐴(𝜆𝐵 |𝜆𝐴) (5)

with 𝑁𝑝 the number of permeants in the simulation box and
𝑝A = 𝑇A/𝑇 . The quantity 𝑝A in Eq. 5 is the probability
that the permeants were last in state A rather than in state B.
Its evaluation would necessitate full sampling of B, which
is however not sampled at all in the RETIS simulation!
Fortunately, this factor conveniently drops out when evaluating
the product 𝑓𝐴𝑝A . This is a key point in the derivation of the
practical permeability formula (see Ref. (17)). In a last step,
the reference concentration 𝑐ref enters in the ratio 𝐽+/𝑐ref. It
negates the 𝑁𝑝/𝜎 factor in Eq. 5. When combined with the
product 𝑓𝐴𝑝A , the reference concentration contribution to
the permeability formula becomes a matter of counting the
time spent in a user-chosen reference interval Δ𝑧 in state A.
With the details given in Ref. (17), this gives an equation for
the permeability that purely uses RETIS quantities,

𝑃 =
Δ𝑧

𝜏ref,[0− ]
𝑃𝐴(𝜆𝐵 |𝜆𝐴) (6)

where 𝜏ref,[0− ] is the time spent in Δ𝑧, per path in the [0−]
ensemble.

Yet, Eq. 6 is not straightforward to use with RETIS in
practical simulations. The bulk phases at each side of the
membrane are, in principle, unbounded such that the order
parameter 𝜆 can have any value from minus infinite to infinite.
The application of periodic boundary conditions will prevent
this in practice, but could potentially introduce artificial
transitions where a permeant ends up at the other side of
the membrane without actually moving through it. Ref. (17)
solved both issues by introducing an extra interface 𝜆−1 < 𝜆0
that bounds region A to the left (Fig. 1). Time is frozen for
particles that reach beyond 𝜆−1.

When using the 𝜆−1 interface, the [0−] ensemble is re-
placed with the [0−′] path ensemble. Whereas [0−] only
contains paths starting and ending at 𝜆0, the [0−′] ensemble
will also contain paths that start or end at the other side of the
A′ region, at 𝜆−1. Consequently, this changes the number of
paths in [0−′] versus [0−] that could be cut of a long equilib-
rium trajectory. This in turn affects the time spent per path in
the Δ𝑧 reference interval by a factor 𝜉, 𝜏ref,[0− ] 𝜉 = 𝜏ref,[0−′ ]
with

𝜉 =
𝑁→𝑅,[0−′ ]
𝑁[0−′ ]

(7)

The factor 𝜉 expresses this ratio in number of paths between
ensembles, i.e. only the paths arriving to the right at 𝜆0 are
counted, versus all paths arriving at either 𝜆−1 or 𝜆0 are
counted. Using the factor 𝜉, this leads to the final permeability
formula in presence of the 𝜆−1 interface,

𝑃 =
𝜉Δ𝑧

𝜏ref,[0−′ ]
𝑃𝐴(𝜆𝐵 |𝜆𝐴) (8)

Alternatively, one can write (17)

𝑃 =
𝜉𝑃𝐴(𝜆𝐵 |𝜆𝐴)
(𝜌ref)𝐴′𝜏[0−′ ]

(9)

where 𝜏[0−′ ] is the average path length of paths in ensemble
[0−′] and (𝜌ref)𝐴′ is the conditional probability density of the
reference region provided that the system is inside state A′. If
both 𝜆0 and 𝜆−1 are in the bulk where the free energy is flat,
then (𝜌ref)𝐴′ = 1/(𝜆0 − 𝜆−1).

Improvements of sampling and
computational efficiency
Reformulating the permeability expression in RETIS terminol-
ogy has the obvious advantage that many recent developments
in the RETIS method can now be used for permeation simula-
tions. Recently there have been some interesting advancements
in the exact RETIS approach, but even further acceleration
while maintaining a good accuracy is possible by reducing the
memory-dependency of the methodology via a PPTIS-like
description of the crossing probabilities. In the next section,
we will present some simulation results on the combination
of replica exchange and PPTIS, coined REPPTIS, in a highly
simplified didactical model showing both the importance of
replica exchange and memory. In this section, we will cover
the three aspects by which improvements towards longer
timescales are achieved, i.e. development of new MC moves,
novel parallellization schemes, and memory reduction.

MC moves
Like any MC method, the efficiency of the sampling highly
depends on the types of moves that are being employed. Until
recently, the main MC move in all path sampling simulations
has been the shooting move (38) in which a phase point of the
previous trajectory is perturbed, usually by a randomization of
the velocities alone, after which the equations of motion from
this point are integrated forward and backward in time by
means of MD until the boundaries of the stable states, 𝜆𝐴 or
𝜆𝐵, are hit. To ensure detailed balance, the final trajectory is
accepted or rejected using a Metropolis-Hastings scheme (21,
39).

The shifting move, which adds a few steps at the end and
removes a few steps at the start of the path or vice versa, was
the most frequently executed move in the original TPS method.
The standard RETIS (40, 41) rate calculation method emerged
via TIS (18) from transition path sampling (TPS) (38, 42). TIS
and RETIS allowed for flexible path lengths, which made the
shifting move both useless and redundant. The time reversal
move, which simply inverts the direction of time in the old path,
used to be employed regularly in path sampling simulations
(TPS, TIS and RETIS). While it is not so useful in present-day
simulation settings where the randomization of velocities in
the shooting move is mostly fully randomized, independent
of the previous velocities, it is still useful for other types of
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path analysis such as the predictive capacity identification
of reaction triggers (43). RETIS improved the former TPS
further via the introduction of the [0−] path ensemble, and
it added the replica exchange move between neighboring
path ensembles to the palette (41). New advances in path
sampling seek to add more alternative moves, replace the
main shooting move entirely, or gain greater efficiency by
novel parallelization schemes and by optimizing the relative
frequency of the moves’ execution.

New MC moves

In particular, in Ref. (17) we added two MC moves, the mirror
move and the target swap move, specifically for permeation
simulations. The target swap move improves the exploration
path space whenever more than one permeant is present in
the simulation box. As RETIS studies transitions from the
𝜆𝐴 to the 𝜆𝐵 interface defined by the 𝑧-coordinate of a single
target particle, 𝜆 = 𝑧𝑡 , the presence of other permeants in the
system merely affects the environment of the target permeant.
The target swap move, however, uses the statistics of the
other permeants more effectively by a random reassignment
of the target. This new target permeant might be located
in a different area of the simulation box, and thus higher
sampling decorrelation is likely achieved. The mirror move
(17) increases the sampling in periodic systems by completely
mirroring the particle’s coordinates in the 𝑥𝑦-plane, effectively
changing the reaction coordinate from 𝜆 = 𝑧𝑡 to 𝜆 = −𝑧𝑡
with respect to the original coordinates. This implies that
permeation pathways through the membrane in both directions
are sampled, which also improves sampling efficiency. Despite
the fact that the target swap move and the mirror move only
operate in the [0−′] path ensemble, the faster exploration in
the directions orthogonal to the reaction coordinate are felt
by all the other path ensembles due to the replica exchange
moves between path ensembles as was clearly illustrated in a
membrane model with two unequal permeation channels (17).

Another promising trend is to change the main MC move
itself via so-called subtrajectory moves (30, 31). The main
idea behind these moves is that successive paths, created by
the shooting move, are correlated which leads to a statistical
inefficiency, N , of several tens or hundreds of paths (40). Not
saving every path, but saving every 𝑁𝑠-th path, with 𝑁𝑠 < N ,
will typically not lead to any loss in statistical precision in the
final result as a lower number of stored paths, that is used in
the analysis, is compensated by a reduction in the correlation
between the paths that are saved. While this may be a good
strategy to save disk capacity and time required for writing to
disk, the subtrajectory moves go a step further by significantly
reducing the number of MD steps for paths that do not need
to be saved. The subtrajectory move is best combined with
the high-acceptance technique (30, 31).

Parallellization
Further efficiency gains without invoking any approximation
or Markovian assumption can be achieved via a smart paral-
lelization scheme and by maximizing the replica exchange
swapping frequency (32). Parallel computing will typically
distribute the same number of processing units per ensemble
to carry out the computational intensive standard moves. This
makes the parallelization of the RETIS method a non-trivial
task as each path can have a different length and the average
path length differs for each path ensemble. Standard RETIS
simulations apply the replica exchange swapping moves and
standard MC moves alternately. The swapping move is cheap,
but requires that the ensembles involved in the swap have
completed their previous move. This means that if the standard
moves in each ensemble require different computing times,
several processing units have to wait for the slow ones to
finish, i.e. the replicas are cost-unbalanced. Ref. (32) solves
this problem through a fundamentally new approach to the
generic replica exchange method in which ensembles are not
updated in cohort.

Ref. (32) also shows that the number of replica exchange
moves, in between two shooting or subtrajectory moves, can
effectively be set to infinite without having to do an infinite
number replica exchange moves explicitly. While the idea
of infinite swapping has been suggested before (44–47) a
reformulation of the implicit infinite swapping problem in
terms of permanents allows for a much better scaling with
the number of interfaces. The non-cohort infinite replica
exchange approach applied to RETIS, coined ∞RETIS, opens
the way for massively parallel path sampling simulations
for computing rate constants (40), activation energies (48),
permeability constants (17), and mechanistic analysis for
reaction triggers (43, 49).

Reduction in memory
Still, when the individual trajectories themselves are too
long to be simulated, the statistics of long trajectories should
be obtained via shorter ones without actually sampling any
trajectory going all the way from 𝜆𝐴 to 𝜆𝐵. This is essentially
the idea behind milestoning (19) and PPTIS (23). This strategy
will generally cause the method to be no longer exact unless
the interfaces are isocommittor surfaces (24). However, the
isocommittor surfaces are generally not known and extremely
difficult and costly to determine via simulations. The lack of
knowledge about the isocommittor can be compensated by
adding a bit of memory to the interface crossing probabilities.
We denote the PPTIS path ensembles as [𝑖±] (23). Trajectories
in path ensemble [𝑖±] are restricted by the 𝜆𝑖−1 and 𝜆𝑖+1
interfaces. They can start and end at either side, but should
at least cross the middle interface 𝜆𝑖 once. From these path
ensembles, two-directional local crossing probabilities are
obtained, 𝑝±

𝑖
,𝑝=

𝑖
, 𝑝∓

𝑖
, 𝑝‡

𝑖
. Here, the lower sign refers to the

the past conditional direction and the upper sign refers to the
measure of the probability in the future, measured from a
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point in time where 𝜆𝑖 is crossed for the first time since its
latest crossing with either 𝜆𝑖−1 or 𝜆𝑖+1. For instance, both 𝑝±

𝑖

and 𝑝
‡
𝑖

refer to the probability that 𝜆𝑖+1 is crossed earlier than
𝜆𝑖−1 (future condition) after a first-crossing with 𝜆𝑖 . But their
past condition is different and equal to “given it came from
𝜆𝑖−1” and “given it came from 𝜆𝑖+1”, respectively. The local
crossing probabilities with the same past condition add up to
one: 𝑝±

𝑖
+ 𝑝= = 𝑝∓

𝑖
+ 𝑝‡

𝑖
= 1. Once a sufficient number of paths

in the [𝑖±] ensemble is sampled, the local crossing probability
are determined by simply counting the appropriate paths with
specific future and past conditions, e.g. 𝑝±

𝑖
is given by the

number of paths starting at 𝜆𝑖−1 and ending at 𝜆𝑖+1 divided
by the number of paths starting at 𝜆𝑖−1.

The PPTIS formalism is based on recursive relations
where the local crossing probabilities are linked to global
crossing probabilities:

𝑃+
𝑗 ≈

𝑝±
𝑗−1𝑃

+
𝑗−1

𝑝±
𝑗−1 + 𝑝=

𝑗−1𝑃
−
𝑗−1

, 𝑃−
𝑗 ≈

𝑝∓
𝑗−1𝑃

−
𝑗−1

𝑝±
𝑗−1 + 𝑝=

𝑗−1𝑃
−
𝑗−1

𝑃+
1 = 𝑃−

1 = 1 (10)

where 𝑃+
𝑗
= 𝑃𝐴(𝜆 𝑗 |𝜆1) is the chance to cross 𝜆 𝑗 before

𝜆𝐴 = 𝜆0 given that 𝜆1 is crossed at this moment while 𝜆𝐴 was
crossed more recently than 𝜆1. Similarly, 𝑃−

𝑗
is the chance

that 𝜆𝐴 is crossed before 𝜆 𝑗 given that 𝜆 𝑗−1 is crossed at this
moment while 𝜆 𝑗 was crossed more recently than 𝜆 𝑗−1. From
these recursive relations, the overall crossing probability from
𝜆𝐴 to 𝜆𝐵 can be computed from

𝑃𝐴(𝜆𝐵 |𝜆𝐴) = 𝑃𝐴(𝜆𝑛 |𝜆0) = 𝑃𝐴(𝜆1 |𝜆0)𝑃𝐴(𝜆𝑛 |𝜆1) = 𝑝±0 𝑃
+
𝑛

(11)

Here, the 𝑝±0 probability is slightly different from the 𝑝±
𝑖

definitions with 𝑖 > 0 in the sense that it is just the probability
to reach 𝜆1 before 𝜆0 after a positive crossing with 𝜆0, i.e. 𝑝±0
has no additional past condition.

The larger the distance between interfaces, the more
memory is included in the calculation, the more accurate are
Eqs. 10. The calculation of memory-loss functions is a way to
estimate the required distance between interface (23). On the
other hand, the interfaces should be placed relatively close
to each other to obtain the best efficiency. This can lead to
conflicting strategies for parameter optimization. A potential
solution could be to use path history beyond the boundaries of
the [𝑖±] ensemble. This kind of information could in principle
become available if PPTIS is also combined with replica
exchange moves.

The potential of performing replica exchange between
path ensembles was first suggested for PPTIS (48). Yet, this
idea has so-far never been put in practice. The replica exchange
move [𝑖±] ↔ [(𝑖 + 1)±] in PPTIS is more costly than the
swapping move [𝑖+] ↔ [(𝑖 + 1)+] move in RETIS. In RETIS,
full trajectories are swapped without the need to do additional
MD steps. In PPTIS, it is first checked whether the [𝑖±] path
ends at 𝜆𝑖+1 and the [(𝑖+1)±] path starts at 𝜆𝑖 . If not, the move

is directly rejected. However, if so, the [𝑖±] and [(𝑖 + 1)±]
paths are extended forward and backward in time, respectively.
Subsequently, the extended paths are trimmed in accordance
to the new path ensembles boundaries to which the paths are
being transferred to.

This article presents the first applications of the replica
exchange and PPTIS combination, which we coin REPPTIS.
The algorithms are implemented in the PyRETIS code which
is readily available to be used in combination with other MD
simulation packages such as GROMACS, OpenMM, or CP2K
(50, 51). The first application is a model system, showing both
the importance of the replica exchange moves and the effect of
memory. In the second application of ibuprofen permeation,
we show how RETIS is challenged by metastable states which
can make the paths prohibitively long, whereas REPPTIS can
be used to simulate full membrane transits. The results of
these two examples are presented in the next section.

NUMERICAL RESULTS
Permeation through a maze potential
A two-dimensional toy system is developed to demonstrate
the role of memory in permeability calculations. A Langevin
particle is permeating along the 𝑧 direction from the wa-
ter phase through the membrane (Fig. 2). The propagation
of the permeation is measured by the 𝑧-coordinate of the
particle, so the order parameter is 𝜆 = 𝑧. The coordinate 𝑦

describes the orthogonal degrees of freedom, which could be
a general coordinate such as the orientation of the molecule
or local composition of heterogeneous membranes. Here, a
membrane is chosen with different permeation pathways, for
instance in different regions of a heterogeneous membrane.
The membrane is represented by a maze potential with two per-
meation channels (upper channel for 𝑦 > 0.5, lower channel
for 𝑦 < 0.5). Passage through the lower channel is entrop-
ically unfavorable, as the lower channel is only accessible
via an aperture at about 𝑧 = 0.44. Passage through the upper
channel requires the Langevin particle to overcome an energy
barrier at 𝑧 = 0.71. The channel can be thought of as a pinball
machine, where the ball can either go through the ‘flippers’ of
the lower channel, or go over the ‘bump’ in the upper channel.
When the initial path is located in the upper channel passing
over the bump, the orthogonal degree of freedom (𝑦) will
need to be sampled sufficiently with the path sampling in
order to detect the alternative pathway through the flippers,
and vice versa. Moreover, for every 𝑧 value, there is a broad
𝑦-region in the upper and/or lower channel where the ball can
easily move locally somewhat left or right. This local picture
could give the impression that the ball has no entropic nor
energetic challenges to overcome at all. However, all complete
permeation pathways will need to overcome the entropic or
energetic barrier, so including all memory in the pathways
gives a distinctly different picture than the local picture. This
makes our test case a good illustration of the role of memory. If
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one focuses on pieces of trajectories that only move somewhat
to the left or right, i.e. memory is too short, one will miss the
dynamics included in the complete pathways.

Figure 2: The potential energy𝑉 (𝑧, 𝑦) for the two-dimensional
maze system. The isolines display the specific values for
the potential. Additionally, a green gradient is added in the
horizontal direction from 𝑧 = 0.2 to 𝑧 = 1.0 to visualize the
small, positive and linear tilt with a slope of 0.5 that exists
within that range in the potential. Interfaces 𝜆−1, . . . ,𝜆5 are
indicated with vertical dashed lines. Reduced units are used.

We do different types of simulations:

• RETIS simulation, which retains all memory and thus
gives exact kinetics. This is the benchmark.

• PPTIS simulation, where memory is reduced. In the
[𝑖±] ensemble, paths that cross 𝜆𝑖 are cut short when
they pass a neighboring interface at 𝜆𝑖−1 or 𝜆𝑖+1.

• REPPTIS simulation, where memory is reduced and
where replica exchange moves between the [𝑖±] ensem-
bles are allowed. This potentially incorporates addi-
tional memory (see previous section).

Six interfaces were chosen along the 𝑧-axis (𝜆𝐴 = 𝜆0,
. . ., 𝜆5 = 𝜆𝐵) in the membrane region between 𝜆𝐴 = 0.2 and
𝜆𝐵 = 0.9. The [0+], . . . , [4+] path ensembles were sampled
for a total of 100 000 MC moves with the PyRETIS code
(50, 51) using shooting moves, the wire fencing (31) variant of
the subtrajectory moves with 6 subpaths, and replica exchange
moves. The [𝑖±] ensembles were sampled for (RE)PPTIS
without wire fencing moves. In addition, the 𝜆−1 interface
was used at 𝑧 = 0.1 to bound the region at the left of the
membrane. The properties 𝜉 and 𝜏ref,[0−′ ] with the reference
interval set to [0.1,0.2] were computed from the [0−′] path
ensemble. Two PPTIS simulations were run, where the first
was initialized with a reactive path through the lower entropic
barrier, and the second with a reactive path through the upper

energetic barrier. These PPTIS simulations are referred to as
PPTIS 1 and PPTIS 2, respectively.

To challenge the memory reduction, we also run REPPTIS
with an extra interface at 𝑧 = 0.62 between 𝜆2 and 𝜆3, which
we refer to as 𝜆2.5 in this text for convenience. For RETIS,
extra interfaces typically increase the accuracy as more paths
are sampled, and matching the probabilities can be done with
higher accuracy. For (RE)PPTIS however, the extra interface
implies a more drastic cut in memory, as some of the [𝑖±]
ensembles will span a smaller spatial area. The simulation
without and with the extra 𝜆2.5 interface are referred to as
REPPTIS 1 and REPPTIS 2, respectively.

A tilt potential with slope 0.5 was superimposed on the
maze potential (green gradient in Fig. 2) for 𝑧 ≥ 0.2, mimick-
ing a membrane barrier. Details about setup, simulations and
code to generate more general maze potentials are given in
the Supp. Info. Reduced units are used, and reported errors
are standard errors based on block averaging.

The maze: Effect of memory and replica
exchange move
The average path length in the highest RETIS ensemble [4+]
is 47.5, while the [4±] (RE)PPTIS ensembles have an average
path length of about 3.8. The goal of reducing the length
of the MD trajectories by memory reduction is thus clearly
achieved. With Eq. 8, the permeability from RETIS is equal to
2.54 × 10−5 (±8%). To compare the effect of memory on this
permeability value, this discussion will focus on the crossing
probability 𝑃𝐴(𝜆𝐵 |𝜆𝐴), which is the only factor in Eq. 8 that
may be affected by the memory reduction. The overall crossing
probability is given in Table 1. We first discuss the simulations
without the extra 𝜆2.5 interface. The PPTIS 1 and PPTIS 2
simulations significantly overestimate and underestimate the
crossing probability, respectively, by more than a factor of 2.
The added replica exchange moves in REPPTIS 1 improves the
crossing probability considerably. Fig. 3 plots the intermediate
crossings probabilities 𝑃𝐴(𝜆𝑖 |𝜆𝐴) to reach 𝜆𝑖 , showing that
the first deviations between the simulations start at 𝜆3, when
the Langevin particle has entered the maze.

Let us look at the origin of these deviations by tracing
some randomly selected exemplary paths in the different
ensembles in Fig. 4. In the reference simulation, RETIS, the
reactive paths in [4+] cross both the entropic and energetic
barrier, where the particle prefers the ‘flippers’ channel (lower)
rather than the ‘bump’ channel (upper).

In PPTIS 1, the initial path is located in the lower channel
and it remains there indefinitely in the [3±] ensemble. The MC
shooting moves in [3±] cannot result in a switch to the other
channel, so the path is stuck. The absence of such non-local
moves that allow channel switching breaks the ergodicity of
the sampling. The effect of this sampling deficit is modest as
can be concluded from the 𝑝±3 and 𝑝∓3 values in Table 1 since
crossings with 𝜆3 are more likely in the lower channel where
the potential energy is low. Also in the [2±] ensemble, the
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simulation overall forward backward
𝑃𝐴(𝜆𝐵 |𝜆𝐴) [10−4] 𝑝±2 𝑝±2.5 𝑝±3 𝑝∓2 𝑝∓2.5 𝑝∓3

RETIS 2.65 (±5%)
PPTIS 1 init. lower 6.44 (±17%) 0.41 0.54 0.45 0.63
PPTIS 2 init. upper 0.93 (±34%) 0.18 0.24 0.70 0.96
REPPTIS 1 2.14 (±12%) 0.19 0.47 0.56 0.66
REPPTIS 2 with 𝜆2.5 2.94 (±9%) 0.59 0.28 0.43 0.39 0.79 0.75

Table 1: Overall crossing probability through the membrane from 𝜆𝐴 = 0.2 to 𝜆𝐵 = 0.9, without and with extra interface 𝜆2.5.
For PPTIS, the initial path was either in the upper (PPTIS 1) or lower (PPTIS 2) channel. The local crossing probabilities 𝑝±

and 𝑝∓ are given for some of the [𝑖±] ensembles.

Figure 3: Crossing probabilities 𝑃𝐴(𝜆𝑖 |𝜆𝐴) for RETIS (black),
PPTIS (circles), and REPPTIS (triangles) simulations. The
RETIS simulation provides the benchmark values, which are
connected by a line. REPPTIS 2 includes the extra 𝜆2.5 inter-
face. Values to the right are the global crossing probabilities
𝑃𝐴(𝜆5 |𝜆𝐴) = 𝑃𝐴(𝜆𝐵 |𝜆𝐴).

paths remain for most of the simulation in the lower channel,
but here the ergodicity problem is more severe since most
first time crossings with 𝜆2 coming from 𝜆1 should be in
the upper channel. As it is more difficult to reach 𝜆3 from
𝜆2 in the under-sampled upper channel, 𝑝±2 is overestimated.
For PPTIS 2, the initial path is in the upper channel and the
absence of non-local MC moves again breaks the ergodicity
of the sampling, where the paths in [3±] are now stuck in
the upper channel. In REPPTIS 1, we have added the replica
exchange moves, and impressively, this move reintroduces
ergodicity. When the 𝑦-axis is sampled in the [0−′] ensemble,
this effect can be transported to the other ensembles with the
swap move. Adding the exchange move will thus effectively
allow for switching between channels.

The crossing probabilities of PPTIS are affected by the
particle being stuck in [3±] (or somewhat stuck in [2±]) in a
particular channel. It is much easier to reach 𝜆3 in the lower
channel, instead of the upper channel where 𝜆3 is high uphill
on the wall’s slope. The true mechanism has a mixture of both
pathways (see RETIS). This gives an overestimation of the
𝜆1 → 𝜆2 → 𝜆3 and 𝜆2 → 𝜆3 → 𝜆4 crossing probability by
PPTIS 1 and an underestimation by PPTIS 2. Numerically, this
is also reflected in the local crossing probabilities. A selection
is shown in Table 1; other local crossing probabilities were
not statistically different between the simulations, as expected.
PPTIS 1 is mainly located in the easier flipper channel, and 𝑝±2
is overestimated by PPTIS 1 compared to REPPTIS 1 (0.41
versus 0.19), which increases the overall crossing probability
in PPTIS 1. Likewise, PPTIS 2 is mainly located in the more
difficult bump channel, and 𝑝±3 is strongly underestimated
by PPTIS 2 compared to REPPTIS 1 (0.24 versus 0.47). In
combination with the higher backwards 𝑝∓2 and 𝑝∓3 values,
this results in a lower overall crossing probability. In a very
long PPTIS simulation, the [2±] ensemble could eventually
be correctly sampled, but the [3±] ensembles will remain
stuck with paths resembling the initial path.

Finally, we discuss REPPTIS 2 with the extra interface
at 𝜆2.5, which further reduces memory. Fig. 3 shows that
the probability to reach 𝜆3 is overestimated, which can be
expected because of tunneling between [2±] and [2.5±]. In
[2±], the particle can move freely in the upper channel, as it is
not hindered by the energetic barrier located to the right of 𝜆2.5.
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Figure 4: Example paths of each simulation. The paths are colored according to the 4 possible path types, which are determined
by the interfaces where the path begins and ends. For example, if a path of the [𝑖±] starts at interface 𝜆𝑖−1 and ends at interface
𝜆𝑖+1, it is labeled an LMR path as it started from the left (L) of 𝜆𝑖 and ended at the right (R) of 𝜆𝑖 . The 4 possibilities are LML
paths (blue), LMR paths (green), RML paths (red), and RMR paths (orange). The weight of each path type is indicated in
percentages. For each ensemble, 10 paths are randomly selected, respecting the weight of the path types. For example, of the 10
paths in the [2±] PPTIS 1 ensemble, 3 are LML (34%), 2 are LMR (20%), 2 are RML (20%), and 3 are RMR (25%).

In [2.5±], the particle can move freely in the lower channel, as
it is not hindered by the entropic barrier located to the left of
𝜆2. This can also be seen in Fig. 4, where the LMR and RML
example paths of [2±] and [2.5±] are predominantly located
in the upper and lower channel, respectively. Connecting these
two ensembles to derive a 𝜆1 → 𝜆2 → 𝜆3 crossing probability,
the particle seems to switch from the upper channel in [2±]
to the lower channel in [3±], as if it had tunneled through the
wall. In other words, the particle ‘forgets’ its passage through
the flippers. A too harsh reduction of memory can thus lead to

an overestimate of the permeability. For REPPTIS 1, no such
tunneling occurs between [2±] and [3±], because 𝜆3 is located
on the rising edge of the energetic barrier. Surprisingly, the
REPPTIS 2 crossing probability decreases at the end, resulting
in a total crossing probability which lies close to RETIS. This
is, however, a lucky cancellation of errors as tunneling also
happens from right to left. Paths of RETIS and REPPTIS 1
have a small probability of recrossing the energetic or entropic
barrier, while the reverse tunneling in REPPTIS 2 makes this
more likely, which results in a decrease of the global crossing
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probability.

Permeation of ibuprofen drug molecule
Whereas the maze system was built to showcase the role of
memory, we now study an application that is more representa-
tive for a typical membrane permeability simulation. Passive
permeability through (lipid) membranes is of vital impor-
tance for drug design, as it gives insight to the timescale at
which drugs transit the membrane, for a given concentration
gradient (6, 52). The nonsteroidal anti-inflammatory drug
ibuprofen has to cross several membranes before realizing its
inhibitory effect on the cyclooxygenase enzymes COX-1 and
COX-2 (53, 54). Path sampling will now be used to investigate
the permeation of ibuprofen through a dioleoylphosphatidyl-
choline (DOPC) membrane. The presence of metastable states
combined with an orthogonal degree of freedom will put
REPPTIS to the test.

Assume 𝑧 is the center-of-mass distance (in unit nanome-
ters) of ibuprofen to the bilayer midplane, and 𝜃 is the dihedral
angle determining the OH orientation in the carboxyl group
of ibuprofen. The free energy profile 𝐹 (𝑧, 𝜃) of ibuprofen in a
DOPC bilayer is shown in Fig. 5A, which was recreated from
data in Ref. (55). Details of the implementation can be found
in the Supp. Info. The two stable OH bond conformations
are cis (𝜃 ≈ 0) and trans (𝜃 ≈ 𝜋), which are visualized in
Fig. 5B. The free energy profile contains minima in each
leaflet (𝑧 ∈ [−1.5,−1] and 𝑧 ∈ [1, 1.5]), such that a full
transit across the bilayer consists of at least two successive
rare events. This means that RETIS is no viable option to
study the full permeation event, as the paths would get stuck
in the metastable states, resulting in extremely long paths.
The memory reduction in REPPTIS greatly reduces the path
lengths and enables the study of the full permeation using a
single simulation.

Permeation of ibuprofen through the DOPC bilayer is char-
acterized by three steps, i.e. entering the membrane, hopping
over an internal barrier, and escaping from the membrane.
Starting from the water phase in 𝑧 < −3, ibuprofen enters the
energy minimum around 𝑧 ∈ [−1.5,−1.0] in the first leaflet.
Given ibuprofen crosses 𝑧 = −3 to the right, the molecule has
a crossing probability denoted by 𝑃entr to enter into this stable
region. This probability is not 1, as friction by the membrane
molecules can let the molecule return to −3, rather than fully
entering. Next, ibuprofen must overcome the internal barrier
between the leaflets to reach the second energy minimum
𝑧 ∈ [1, 1.5]. The corresponding crossing probability over the
internal barrier is denoted 𝑃int. Finally, ibuprofen needs to
escape from the second stable region and reach the water
phase (𝑧 > 3). This crossing probability is denoted 𝑃esc.

These characteristic crossing probabilities 𝑃entr, 𝑃int, and
𝑃esc are calculated using RETIS and REPPTIS (simulation de-
tails in Supp. Info.), and are given in Table 2. Each simulation
was run twice, where the initial path was either in the cis or
trans configuration. As it was verified that transitions between

these configurations happened in all of the ensembles, the
data of both runs was merged.

As the paths would become too long to simulate a full
transit with RETIS, the three characteristic crossing probabil-
ities were used in a Markov model to estimate the full transit
probability 𝑃trans from 𝑧 = −3 to 𝑧 = 3. Let 𝑘 int = 𝑓int𝑃int and
𝑘esc = 𝑓esc𝑃esc be the internal and escape rates, respectively,
where the fluxes 𝑓int and 𝑓esc are part of the RETIS simulation
output. As shown in the Supp. Info., the transit probability is
approximated by 𝑃trans ≈ (𝑃entr𝑘 int)/(𝑘esc+2𝑘 int). In contrast
to RETIS, REPPTIS is capable of calculating 𝑃trans of the full
membrane transit using a single simulation. Both the REPP-
TIS and the approximate Markov RETIS values of 𝑃trans are
given in Table 2.

The RETIS and REPPTIS simulations result in statisti-
cally equivalent crossing probabilities for both the internal
and escape transitions. From the entrance RETIS simula-
tion, the factor (𝜉Δ𝑧)/𝜏ref,[0−′ ] = (5.0 ± 1%) × 10−2 nm/ps
is obtained which enters the permeability equation (Eq. 8).
Using the Markov model with the characteristic crossing
probabilities of the RETIS simulations, the permeability of
ibuprofen becomes (27 ± 23%) cm/s. Using 𝑃trans of the full
permeation REPPTIS simulation, the permeability of ibupro-
fen is estimated to be (30 ± 7%) cm/s. This value, based on
the two-dimensional 𝐹 (𝑧, 𝜃) profile at 303 K of Ref. (55),
is in reasonable agreement with the ibuprofen permeability
(92±6) cm/s through dipalmitoylphosphatidylcholine (DPPC)
at 323 K as obtained from MD simulations and the inhomoge-
neous solubility-diffusion model (56).

CONCLUSION
In this article we first reviewed the recently developed the-
oretical framework for calculating permeability coefficients
using the RETIS methodology. The approach requires a slight
modification of the [0−] path ensemble to the [0−′] ensem-
ble, which describes the paths at the left side of 𝜆𝐴. The
RETIS-based permeability can be computed with exponen-
tial reduction in time compared to standard MD, while it
still gives exactly the same result without introducing any
approximation. The mathematical formulation of microscopic
permeability in terms of RETIS properties has the advantage
that recent algorithmic developments in the RETIS method
can directly be applied such as the recently developed MC
moves for generating new paths more efficiently (17, 30, 31)
and the non-synchronous replica exchange approach (32).

However, if the individual transition paths themselves are
long, it may be wise to give up some of the method’s exactness
for the sake of obtaining shorter paths. This idea underlies
the PPTIS method in which the statistics of long transition
paths is obtained via paths with much shorter range using a
memory-loss assumption. Still, some memory is retained in
the conditional local crossing probabilities that are computed.
In this article, we combined the PPTIS method with replica
exchange into a new implementation, coined the REPPTIS
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Simulation 𝑃entr [10−2] 𝑃int [10−6] 𝑃esc [10−6] 𝑃trans [10−3]
RETIS 17 (±7%) 1.2 (±11%) 2.3 (±8%) 5.4 (±23%)
REPPTIS 1.1 (±8%) 2.2 (±5%) 6.1 (±7%)

Table 2: Characteristic crossing probabilities of ibuprofen permeation through a phospholipid bilayer. 𝑃trans is the crossing
probability of a full membrane transit: the REPPTIS value is from a simulation, while the RETIS value is an estimate based on
a simple Markov model. Reported errors are standard errors based on block averaging.

Figure 5: A: Two-dimensional free energy profile 𝐹 (𝑧, 𝜃)
of ibuprofen in a DOPC bilayer. 𝐹 is periodic in 𝜃 with
period 2𝜋. The regions 𝜃 ≈ 0 and |𝜃 | ≈ 𝜋 are the cis and
trans configurations, respectively. The membrane is located in
𝑧 ∈ [−3, 3], while 𝑧 < −3 and 𝑧 > 3 represent the water phases
near each leaflet. The RETIS simulation to calculate 𝑃entr uses
the 𝜆−1 interface (green vertical line). The simulation domains
for all other RE(PP)TIS simulations lie in between the 𝜆𝐴 and
𝜆𝐵 interfaces (blue lines) of the full permeation REPPTIS
simulation. B: Ibuprofen in the cis and trans configurations.
The atoms that define the dihedral angle 𝜃 of the hydroxyl
hydrogen of the carboxyl group are annotated with arrows.

method. We applied PPTIS and REPPTIS on a didactic model
and on the permeation of ibuprofen based on a realistic free
energy surface. The results showed the importance of both
replica exchange and memory, as simulations without them
gave wrong permeability estimates.

There are several interesting opportunities to improve
the REPPTIS method further. Note that the extension of
paths by means of MD in a swapping move could yield
additional information that adds back in some of the lost
memory. Before the extended trajectories are trimmed to fit
the boundaries of the new path ensemble, these extensions
provide continuous trajectories that go beyond the range
of three consecutive interfaces. Using the information of
untrimmed trajectories might be exploited in future variants
of the REPPTIS method since it could solve the conflicting
benefits of having interfaces close enough for efficiency and
far apart for accuracy. Moreover, the time information is not
yet exploited by TIS-based methods. For instance, the PPTIS
crossing probabilities relate to the chance that a specific
interface is crossed before another irrespective how long it
takes. Another future development that we want to achieve is
the inclusion of time durations in the statistical description
of the crossing probabilities, as is done in milestoning, in
order to compute (conditional) mean first passage times and
diffusion coefficients. Note that other milestone variations
such as the use of multidimensional interface networks via
e.g. Voronoi cells (57), can in principle be applied within
a REPPTIS framework as well. We can therefore conclude
that REPPTIS is a promising method to enable permeation
simulations with high efficiency and accuracy that might not
be easily achieved by any other method.
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