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Abstract – Molecular dynamics (MD) and Monte Carlo (MC) have long coexisted as two main
independent branches of molecular simulation. In the late eighties, however, algorithms based on
the combination of both were created such as hybrid Monte Carlo which uses large MD steps as
MC moves. An entirely different kind of combination emerged a decade later via the transition
path sampling (TPS) method in which MD trajectories are not just part of the MC move, but also
form the state space being sampled. Algorithms like replica exchange transition interface sampling
(RETIS) exploit this idea to compute reaction rates via a series of TPS simulations. RETIS yields
results identical to hypothetical long MD runs, but with exponentially reduced computation time.
This perspective describes the RETIS method and discusses recent and future advancements that
will enable the study of even longer molecular timescales with reasonable computational resources.
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Introduction. – Due to the vastly increasing speed
of computer hardware and the rapid algorithmic devel-
opment, molecular modeling, with molecular dynamics
(MD) and Monte Carlo (MC) as its main branches, has
undeniably established itself as an essential third pillar
for addressing future scientific challenges next to the-
ory and experimentation [1]. Enormous progress has
been made to attack its three main difficulties: accuracy,
system size, and time range. Accuracy has drastically
been improved due to relentless efforts to develop force
fields and the development of efficient ab initio MD [2]
methods. System sizes of present biomolecular systems
are routinely several hundreds of thousands of molecules
as parallel computing algorithms exploit the power of
present-day high-performance computing [3]. Except for
certain replica-based accelerated MD methods [4], parallel
computing has played a smaller role in extending the time
range, as time evolution is fundamentally a sequential pro-
cess and not easily parallelizable. Even if the aforemen-
tioned developments allow us to perform more MD steps
per wall time, this is often still not enough to study rare
molecular transitions such as chemical reactions, protein
folding, membrane permeation, and nucleation.

In condensed systems, MD typically outperforms MC
due to its ability to move particles collectively and the
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effect of inertia which results in less diffusive sampling.
MC usually has an advantage in porous media where the
non-locality of moves, such as those implemented in config-
urational bias Monte Carlo (CBMC) [5], can be exploited.
In an effort to combine the best of both worlds, hybrid
MC [6] simulations use (sequences of) large MD steps with
a Metropolis acceptance/rejection decision [7]. The aim
here is not to accurately describe the system’s dynamics,
which can become unphysical due to rejections and a time
step that would be unstable in standard MD, but rather to
optimize the sampling of the configurational space. This
approach provides additional flexibility in optimizing sam-
pling by assigning artificial masses to certain degrees of
freedom or principal components [8].

In a different approach, transition path sampling
(TPS) [9] combines MD and MC with the specific aim
to study the dynamics of rare transitions. In this method,
generating MD trajectories is not only the way how sam-
pling is done, but also what is being sampled. The notion
that MD trajectories can be assigned a statistical weight,
similar to the Boltzmann weight in configurational space,
allowing them to be sampled akin to states in a Markov
chain, was first introduced by Pratt [10]. The advantage
compared to normal MD is that trajectories can now be
subjected to importance sampling techniques, for instance
by requiring that trajectories start in the reactant state
(A) and end in the product state (B).
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The requirements define a statistical path ensemble,
reflecting the same statistics as cutting relevant trajec-
tory segments from an infinite MD run. Provided that
an initial path can be established that is part of the path
ensemble, a trial path is generated by making some ran-
dom modifications of the previous path. This trial path
is accepted or rejected based on detailed balance and is
always rejected if it does not meet the path ensemble’s
requirements.

Quantitative dynamical properties like rates can be
computed from a series of path ensembles. TPS’s original
rate evaluation [9] relied on fixed path length ensembles
and umbrella sampling (US) [11]. Transition interface
sampling (TIS) [12] presented a more efficient algorithm
that utilizes flexible length path ensembles and phase
space partitioning via interfaces. TIS introduced a rate
expression and various theoretical concepts that have been
adopted by other methods like forward flux sampling
(FFS) [13]. These include the notion of overall states,
which captures the most recent stable state visited by
the system (see fig. 1), as well as the overall crossing
probability and local history-dependent conditional cross-
ing probabilities, which provide insight into the proba-
bility of crossing a certain state given the system’s past
behavior.

The TIS method has been commonly used to investi-
gate complex two-state reaction kinetics. It allows for the
study of these kinetics without introducing any additional
approximations, except for those already inherent in the
MD model, such as the force field and periodic boundaries.
TIS is particularly efficient for transitions that are very
rare but occur rapidly once initiated. It differs from other
advanced MD methods, such as kinetic Monte Carlo [14],
temperature accelerated MD (TAMD) [4], and activation-
relaxation technique (ART) [15], which aim to describe
processes involving sequences of rare events that can be
characterized by a basin hopping mechanism at a coarser-
grained level such as the process of crystal formation,
where each monomer addition involves a reaction barrier
and can be considered a rare event. Similarly, TIS differs
from Markov state models [16], which are typically em-
ployed when the process being studied is not only rare but
also slow which is the case for many biomolecular systems.
Markov state models aim to determine a rate network be-
tween stable states and relatively long-lived metastable
states at the barrier region. However, it is worth noting
that both types of methods can be combined with TIS
to further enhance their efficiency [17,18]. The previously
mentioned FFS method also bears similarities to TIS but
requires stochastic dynamics and assumes that the rele-
vant initial distribution for transition trajectories can be
generated by plain MD. This makes FFS less suitable when
the relevant transitions necessitate rare initial conditions
instead of rare fluctuations in the stochastic nature of the
dynamics. While FFS has the advantage over TIS that it
can be used for driven non-equilibrium systems, there is a
high chance of not sampling the correct mechanism [19].

Fig. 1: A hypothetical MD run, with the arrow indicating the
direction of time. The two non-adjacent stable states for re-
actant (A) and product (B) are marked in yellow and blue,
respectively. The TIS method determines the overall state (A
or B) based on the most recent stable state visited by the sys-
tem. The rate constant k in TIS is computed as the frequency
of A to B transitions divided by the time spent in A, which
is insensitive to the precise stable state definitions and avoids
correlated recrossings. The interfaces between λ0 and λn allow
for efficient calculation of this rate by sampling path ensembles
where the [i+] ensemble consists of paths crossing at least λi.

In 2007, a significant improvement upon TIS was made
with Replica Exchange TIS (RETIS) [20,21], which en-
hances the efficiency by incorporating the minus ensem-
ble and replica exchange moves between path ensembles.
RETIS has proven effective in modeling complex processes
such as gas hydrate formation [22] and ab initio-level water
dissociation [23]. Simulations like this necessitate thou-
sands of centuries of CPU time if done with traditional
MD, but even with RETIS, they still remain expensive, re-
quiring several months of wall time. In this article, I delve
into algorithmic advancements of path sampling that have
the potential to boost the efficiency of RETIS simulations
even further, while oftentimes preserving the exactness of
the method.

TIS and RETIS. – The TIS algorithm defines a set
of non-intersecting interfaces {λ0, λ1, λ2, . . . , λn} based on
one or a few collective variables (see fig. 1). The rate of
the transition from reactant to product is expressed as

k = fAPA(λB |λA) = fA

n−1∏
i=0

PA(λi+1|λi), (1)

where fA is the flux through λA = λ0 and PA(λB |λA)
is the overall crossing probability, the chance that after
a crossing with λA, λB = λn will be crossed without re-
crossing λA. This is often an extremely small number that
cannot be directly measured, and is instead expressed us-
ing the exact factorization in the second equality. The
local history-dependent conditional crossing probability
PA(λi+1|λi) is a measure of the likelihood that λi+1 will be
crossed before λA, given that a first crossing with λi has
occurred since exiting state A. It is crucial to note that
the distribution of these first crossing points differs from
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the equilibrium distribution at λi. This fact incorporates
history dependence into eq. (1) and makes it exact.

The computation of fA in TIS involves a straightfor-
ward MD run. The system is initialized in state A, and
the number of positive crossings with λA is counted and
divided by the simulation time. Since λA is near stable
state A, a relatively high number of crossings is expected
to occur within reasonable simulation time. It is not an-
ticipated that the system will transition to overall state B,
as this would be a rare event. However, if such an event
were to occur, the system would need to be reinitialized
into state A before continuing the MD run. RETIS on the
other hand relies solely on path simulations, achieved by
introducing the minus path ensemble [0−] which has all
of its time frames at the left side of λ0 except for the end-
points. In conjunction with [0+], the average path length
τ in both ensembles is used to determine the flux [20],

fA =
(
τ[0−] + τ[0+]

)−1
. (2)

The primary advantage of replacing the traditional MD
run with an additional path ensemble in RETIS is that it
creates a more uniform set of simulations. This enables
effective implementation of replica exchange moves across
all path ensembles, resulting in a more comprehensive ex-
ploration of the path space and better sampling.

The crossing probabilities PA(λi+1|λi) are computed by
generating path ensembles [i+], where each path starts
with a positive crossing with λ0 and ends by crossing ei-
ther λn or λ0 again. For a path to be included in the
ensemble [i+], it must have at least one frame to the right
of λi. TIS and RETIS estimate PA(λi+1|λi) by counting
the fraction of paths in [i+] reaching λi+1 in addition to
λi after generating a substantial number of paths.

The primary MC move for generating paths in TPS, TIS
and RETIS has been the shooting move [24]. In this move,
a random frame (also called a time slice) from the previous
path is randomly perturbed, usually affecting only veloc-
ities, to create a new phase point. The new point is then
propagated forwards and backwards in time until reaching
either state A or B, resulting in a trial path. To be ac-
cepted, the trial path must satisfy the ensemble criteria,
such as starting at λ0 (state A) and crossing λi at least
once for ensemble [i+]. Additional acceptance/rejection
rules may be necessary to obey detailed balance, depend-
ing on the perturbation and the range of shooting point
selection. If the perturbation is small, the trial path will
resemble the old path, which increases its likelihood of
being valid for the ensemble, but slows down decorrela-
tion. Usually, a 30–50% acceptance probability is aimed
for, which is often achieved by uniformly selecting shoot-
ing points from any frame except endpoints and regenerat-
ing velocities from a new Maxwell-Boltzmann distribution,
which yields the following acceptance probability [21]:

Pacc = 1(n)
[i+] × min

[
1,

L(o)

L(n)

]
. (3)

The first term is the indicator function, which is 1 if the
new path meets the criteria of [i+], and 0 otherwise. The
last term involves the ratio of the path lengths, expressed
as the number of frames in the old and new paths. To
reduce computational cost, an early rejection scheme can
be used to replace the probabilistic decision step (eq. (3))
by a maximum allowed path length for the new path as
L(o)/α where α is a random number between 0 and 1. If
the trial path exceeds the maximum length, the move is
rejected without completing the path. By first integra-
tion backward, the path can also be early rejected if the
backward trajectory ends at state B since the ensembles
criteria include starting at A.

Uniform shooting allows trajectories to bypass barriers
that are perpendicular to the reaction coordinate λ [25],
but replica exchange moves between path ensembles can
enhance this. When a path in the [i+] ensemble crosses
λi+1, it is also valid in the [(i + 1)+] ensemble, while the
path in [(i + 1)+] is always valid for [i+]. This means
that the paths can be swapped successfully whenever the
[i+] path crosses λi+1, without doing costly MD steps.
Swapping the last two frames of [0−] and the first two
frames of [0+] allows for successful swaps between [0−]
and [0+]. The pair of frames are integrated at the other
side of λ0 forward and backward in time to establish new
paths in both ensembles. Although this swap requires MD
integration, it is a very effective way to decorrelate the
sampling. By employing these swapping moves, RETIS
typically enhances the efficiency of TIS by more than an
order of magnitude [20].

Optimizing performance and initialization. – Set-
ting the interfaces is a crucial aspect of TIS and RETIS.
When two interfaces λi and λi+1 are placed close together,
PA(λi+1|λi) increases, leading to faster convergence of its
computation. However, if all interfaces are closely placed,
many path ensemble simulations are needed to cover the
space between λA and λB , resulting in an overall statis-
tical error that is still large due to error propagation of
many small statistical errors. Solvable one-dimensional
models suggest that the ideal interface positioning for TIS
is achieved when PA(λi+1|λi) ≈ 0.2 for all i [21], indicat-
ing that one of the five paths reaches the next interface.
For RETIS, the optimal value is presumably higher as this
increases the number of successful swapping moves. The
first interface λ0 is typically placed slightly uphill along
the free energy barrier. The last interface, λB, is usu-
ally placed at the point of no return, where the system is
unlikely to return to state A. At this point, the overall
crossing probability shows a horizontal plateau.

TIS allows for a hierarchical approach by running a [0+]
ensemble simulation without defining λ1. The paths are
continued until reaching stable states, and after generat-
ing a sufficient number of paths, the crossing probability
can be analyzed to determine the value of λ1 at which
PA(λ1|λ0) = 0.2. A path from the [0+] ensemble that
reaches this level can then be used to start MC sampling

30001-p3



Titus S. van Erp

in [1+]. This process is repeated to fix λ2 and so on.
In practice, however, it is desirable to run the ensembles
simultaneously in parallel and the hierarchical approach
is also not feasible for RETIS because of the swapping
moves between ensembles. Instead, initialization is typi-
cally done in an ad hoc fashion with interface repositioning
in a preliminary phase. During a production run, interface
changes are typically avoided unless local crossing proba-
bilities deviate from an acceptable range of (0.05, 0.6). To
bootstrap the MC sampling in each path ensemble in the
absence of a hierarchical approach, an initial path must
be provided, which can be generated using various tech-
niques. This initial path need not be highly probable and
may even be unphysical like non-connected frames as the
MC sampling should automatically drift towards the more
likely path space. Yet, higher quality initial paths are
likely to converge faster [26].

Advanced shooting. – Despite the significant algo-
rithmic advancements in path sampling, the main path
generating MC move shooting [24] has remained largely
unchanged [24] apart from variations in velocity genera-
tion and shooting point selection. Many auxiliary MC
moves have been developed, such as the swapping moves
in RETIS, or the mirror move and target-swap moves for
permeation studies [27]. While they provide speed-ups
when combined with shooting, they cannot provide er-
godic sampling on their own. Clearly, performing many
replica exchange moves (swaps) eventually leads to resam-
pling of the same paths repeatedly.

Still, the efficiency of shooting can be hampered by
rejections and the degree of similarity between consecu-
tive accepted paths. The recently developed subtrajectory
moves with high acceptance address both issues [28,29].
Three subtrajectory moves have been devised: web throw-
ing (WT) [28], stone skipping (SS) [28], and wire fencing
(WF) [29]. The implementation of the former two can
be difficult, particularly when the MD portion of the algo-
rithm is outsourced to dedicated MD programs. To reduce
communication overhead with these external MD engines,
the time step in TIS or RETIS is usually comprised of 5
to 1000 actual MD steps, but WT and SS ideally require
single MD step resolution. To address these implementa-
tion challenges, the WF move was developed. While the
WF move may be less thrifty with MD steps compared to
the other two methods, it is still substantially more effi-
cient than standard shooting without requiring significant
modifications to external molecular dynamics software or
the need to increase the communication overhead.

As shown in fig. 2, a new path in WF is generated via
a series of shorter subpaths. While the WF move itself is
more costly than a shooting move, the resulting new path
is more decorrelated from its source such that fewer tra-
jectories are needed to achieve a desired statistical error.
Additionally, the high-acceptance technique increases the
acceptance typically above 95%. In high-acceptance ad-
vanced shooting, any new trial path that starts at λn and

Fig. 2: The sampling process in the [i+] ensemble using the
WF move: the process begins by selecting a segment, subpath
s0 (in blue), randomly from the old path (in green) that con-
nects λi to λn or λi to λi. Multiple subpaths (red) are then
generated by consecutive shooting moves within the restricted
interval (λi, λcap). If a subpath ends at λcap in both time direc-
tions (like s2), it is rejected, and the next subpath is released
from the shooting point of the previous subpath (s1). Once
the desired number of subpaths has been generated (5 in this
case), the last accepted one, s5 (blue), is extended in both time
directions (green), until reaching λ0 or λn.

ends at λ0 is not rejected but time-reversed. In addition,
the sampling distribution is adjusted so that the statistical
weight of a path is multiplied by a biasing factor that aims
to maximize the acceptance. In the analysis, the effect of
this artificial bias is negated by weighting each sampled
path with the inverse of this biasing factor. Mesoscopic
DNA simulations indicate that advanced shooting moves
can lead to a 12-fold increase in efficiency [28].

∞RETIS. – TIS improves both efficiency and accuracy
compared to the original TPS rate evaluation. Although
TPS has been advocated as an exact method, in practice,
the fixed path ensembles employed in TPS introduce a cut-
off such that a small but significant part of the tail in the
path distribution cannot be sampled. The flexible path
lengths in TIS, on the other hand, are on average lower,
but occasionally higher than the TPS cut-off. RETIS,
besides being substantially more CPU efficient than TIS,
also improves accuracy for moderately rare events due to
the slightly more accurate flux evaluation that does not
require reinitialization when a spontaneous event occurs.
Hence, it seems logical that RETIS should always be pre-
ferred over TIS and the TPS rate method. However, TIS
still has the advantage that it is easier to parallelize since
the path ensembles can be run in an embarrassingly par-
allel fashion. This means that while RETIS significantly
outperforms TIS in terms of CPU efficiency, TIS could
still win the battle in terms of wall time if a very powerful
parallel computer cluster is available.

The main challenge in parallelizing the RETIS algo-
rithm is that the standard MC moves do not require the
same amount of CPU time. Specifically, creating a new
path via a shooting or a WF move has a varying CPU
cost due to the variable path length and the ensemble’s
average path lengths differ as well. If each path ensemble
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in RETIS is assigned to a specific processor or a group of
processors (referred to as a worker), the workers in the
fast ensembles must wait for the slow ones to finish before
they can swap. Therefore, programs like OpenPathSam-
pling [30] and PyRETIS [31] implement RETIS as a fully
sequential algorithm. Alternatively, serial replicas [32] can
be used in single replica TIS [33].

To effectively compute ensembles in parallel without idle
time, we recently developed an asynchronous replica ex-
change method [34] that executes multiple swaps upon
completion of each path by a worker. Previous asyn-
chronous replica exchange methods for parallel tempering
or Hamiltonian exchange [35–37] differ in that they main-
tain a fast state generation move, typically comprising a
single MD step, while aiming to solve the issue of hardware
diversity (slow vs. fast workers), rather than addressing
inherent CPU cost imbalances of the states (long vs. short
paths). Workers can therefore run strides of many MD
steps in isolation and occasionally switch to an interactive
state to allow swaps with neighboring ensembles.

It is non-trivial to mathematically demonstrate the un-
biased sampling property of an asynchronous replica ex-
change method when the computational cost of a MC
move depends on the characteristics of the generated
states. The conventional proof for replica exchange as-
sumes that the M replicas can be treated as a single su-
perstate residing in a dimension that is M times higher
than the dimension of a normal state. This conceptual
view allows replica exchange to be treated as a regular
Markov chain operating in this higher-dimensional space.
However, when updates within ensembles occur in a non-
cohort manner, this interpretation breaks down.

The algorithm of ref. [34] can be proven in a fundamen-
tal different way based on a twisted balance relation in
which the superstate view is replaced by an ensemble plus
environment based view. A crucial aspect of the method
is that, like ref. [37], the availability of states that can be
swapped is ensured by having more ensembles than work-
ers. After a worker completes its standard move within
an ensemble, the ensemble and its state are freed. At this
point, a series of swaps occur between the free ensembles
to exchange their states before the worker is randomly re-
assigned to another available ensemble (see fig. 3).

Furthermore, it is possible to perfectly replicate the hy-
pothetical outcome of performing an infinite number of
swapping moves by calculating the sum of all probabili-
ties for every potential permutation between free ensem-
bles and free states [34]. The idea of doing an infinite
number of swaps was proposed before [38], but the steep
factorial increase in the number of permutations drasti-
cally restricts the number of replicas that can be involved.
Addressing this problem, ref. [34] formulates the summa-
tions as permanents of weight matrices. This approach
provides a versatile solution that outperforms the factorial
method [39] and enables even faster computation by ex-
ploiting specific characteristics of the weight matrix. The
asynchronous infinite swapping replica exchange method

Fig. 3: Visualisation of the ∞RETIS algorithm, showcasing
how three parallel workers navigate seven path ensembles ([0+]
and [0+] not shown). Top: worker W3 just generated a new
path (in green) in the [4+] ensemble, which was subsequently
accepted (in orange below). Middle: the next step involves
swapping the paths of all free ensembles in every possible way,
mimicking an infinite number of swaps. Bottom: W3 is ran-
domly reassigned to the [3+] ensemble to initiate a new ad-
vanced shooting move.

can be applied to various MD or MC methods, but it is
particularly beneficial for improving efficiency and scala-
bility in RETIS, leading to the ∞RETIS method.

Reducing memory: PPTIS and REPPTIS. – As
discussed above, TPS, TIS, and RETIS can become less
efficient when the transition is not only rare but also slow.
In such cases, it may be necessary to sacrifice the exactness
of the methodology in favor of computational efficiency.
By assuming that memory is lost after traveling a certain
distance along the λ parameter, path ensembles can be
redefined, terminating trajectories before they reach stable
states. This approach gives rise to the partial path variant
of TIS (PPTIS) [40], which shares similarities with the
milestoning method [41].

It is interesting to note that while the idea of performing
replica exchange moves between path ensembles was ini-
tially proposed for PPTIS before RETIS [42], it was only
recently that a replica exchange variant of PPTIS (REPP-
TIS) was realized and demonstrated [43]. Although PP-
TIS and REPPTIS are no longer exact, they still retain
some memory, unlike milestoning or Markov state models.
Moreover, as replica exchange moves in REPPTIS require
extending the paths, similar to the [0−] ↔ [0+] swap in
RETIS, efforts are being made to explore whether this
information can be used to increase the amount of mem-
ory further and enhance the accuracy without additional
computational cost.

Path sampling and machine learning. – Recent
advancements in machine learning (ML) are expected to
significantly enhance path sampling in terms of both sam-
pling efficiency and path data analysis. A systematic
mathematical approach for gathering mechanistic infor-
mation about transitions can be based on committor anal-
ysis, employing techniques such as neural networks [44],
autoencoder models [45], or symbolic regression [46]. A
related approach is to find so-called reaction triggers
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based on the RETIS output via the predictive power
method [47], which has been combined with decision
trees [23]. An interesting recent development is the use of
conditional normalizing flows to generate statistically in-
dependent paths from a given distribution [48]. However,
the efficacy of this approach in tackling high-dimensional
complex systems is still an unresolved inquiry.

Although the development of ML force fields has be-
come well-established [49–51], accurately creating reactive
force fields remains a challenge. Molecular interactions
during bond breaking and formation require a more com-
plex mathematical description due to the subtle depen-
dence of charge redistribution on the atomic coordinates
of large collective groups of molecules. Incorporating this
level of complexity into an ML force field can be difficult,
and developing and validating such a force field requires
a large dataset of chemical reactions that can be used to
train the model.

RETIS can offer a double benefit when used alongside
ML in the development of force fields. At the front end, ab
initio MD-based RETIS simulations can generate trajec-
tories that offer the most relevant set of configurations for
the reaction under study, providing valuable training data
for the creation of reactive force fields. At the back end,
RETIS can also be used with classical MD-based simula-
tions and the developed force field when conventional MD
simulations are still too slow, despite electronic structure
calculations not being used.

Ab initio-based RETIS simulations have identified col-
lective phenomena in water structures, such as precise [52]
or distorted [23] tetrahedral orientation around solute
molecules, that create specific local electric field condi-
tions acting as catalysts for chemical reactions, and it is
uncertain whether the ML force field can accurately repli-
cate such phenomena. When fitting classical reactive force
fields like ReaxFF [53], we found that mutual comparative
testing methods are crucial to ensure trustworthiness [54].
Relying solely on fitting to forces and energies from an ab
initio data set may result in the force field producing un-
physical complexes or reactions that were not included in
the data set. Further research is therefore needed to deter-
mine whether present training routines for generating ML
force fields are capable of capturing both the behavior of
molecular systems in solution and avoiding the generation
of artifacts, such as reactions or reaction mechanisms that
are not present in an ab initio-based RETIS simulation.

One interesting approach is not to eliminate ab initio
computations entirely, but to use them when classical force
fields are potentially problematic, such as when chemi-
cal bonds are formed or broken. This forms the basis of
the QuanTIS algorithm [55], which can be viewed as a
QM/MM method in which a quantum level and a classi-
cal level description are not glued together in space but
in time. Specifically, QuanTIS simulates the [0−] path
ensemble at the lower level of theory as these typically re-
flect rearrangements of reactants, solvent structure, and
catalysts without any real chemistry occurring. All the

[i+] ensembles that describe the barrier crossing event and
involve the breaking and making of bonds in case of a
reaction are described at the higher level of theory. In
this algorithm, the [0−] ↔ [0+] swap has to go through
a Metropolis acceptance/rejection step as the exchanged
configuration points move to another potential energy sur-
face yielding a double energy difference. The acceptance
is the highest if the sum of the two energy differences is
low and, therefore, this acceptance ratio could potentially
be used to optimize both the efficiency of the method and
simultaneously the force field. An additional advantage of
this approach is that the exchange automatically includes
mutual comparative testing of the ab initio and ML poten-
tial energy surfaces. With the current ease of creating ML
force fields on the fly, the QuanTIS method can become
a powerful tool for studying highly complex industry- or
biology-relevant chemical processes.

Summary. – TPS has been renowned for its concep-
tual elegance in studying rare events, but accurately com-
puting dynamical properties such as rates and permeation
coefficients can be computationally demanding. However,
recent algorithmic innovations such as TIS, RETIS, and
∞RETIS, as well as new types of path-generating MC
moves, have increased the efficiency of quantitative path
sampling by orders of magnitude. Remarkably, these de-
velopments have not sacrificed accuracy, but have instead
improved it. However, if metastable states or long-lived
quasi-stable regions exist, it can be wise to make a com-
promise between accuracy and efficiency by introducing a
soft Markovian assumption of memory loss as in the PP-
TIS and REPPTIS methods. Additional speed-ups can
be expected from synergies between ML and RETIS meth-
ods, specifically for training and using reactive force fields.
Furthermore, the use of ML methods in path analysis is
becoming a dominant instrument.

How far we can stretch the time scale depends on fac-
tors like system size, level of theory, desired statistical ac-
curacy, hardware and patience. Nonetheless, RETIS has
already produced accurate rate estimates for challenging
transitions. Ab initio RETIS simulations [23] revealed the
process of water dissociation, which occurs once per 11
hours for a water molecule. A classical MD-based RETIS
study focused on the formation of a critical nucleus in hy-
drates [22], which physically takes 3 years (real time) given
the size of the simulation box. Although such simulations
are still expensive requiring months of computations, the
recent algorithmic advancements and untapped potential
of ML tools may transform quantitative path sampling
into a standard technique for unraveling the complexities
of many dynamical molecular processes in the near future.

∗ ∗ ∗
I thank Daniel T. Zhang and Anders Lervik for

fruitful feedback and comments.

Data availability statement : No new data were created
or analysed in this study.

30001-p6



How far can we stretch the timescale with RETIS?

REFERENCES

[1] Schlick T. and Portillo-Ledesma S., Nat. Comput.
Sci., 1 (2021) 321.

[2] Iftimie R., Minary P. and Tuckerman M. E., Proc.
Natl. Acad. Sci. U.S.A., 102 (2005) 6654.

[3] Shaw David E. et al., Proceedings of SC21: Inter-
national Conference for High Performance Computing,
Networking, Storage and Analysis (IEEE, St. Louis, Mo.,
USA) 2021.

[4] Zamora R. J., Perez D., Martinez E., Uberuaga

B. P. and Voter A. F., Handbook of Materials Mod-
eling: Methods: Theory and Modeling, edited by An-

dreoni W. and Yip S. (Springer Nature, Switzerland)
2020.

[5] Siepmann J. I. and Frenkel D., Mol. Phys., 75 (1992)
59.

[6] Duane S., Kennedy A. D., Pendleton B. J. and
Roweth D., Phys. Lett., 195 (1987) 216.

[7] Metropolis N., Rosenbluth A. W., Rosenbluth

M. N., Teller A. H. and Teller E., J. Chem. Phys.,
21 (1953) 1087.

[8] Michielssens S., van Erp T. S., Kutzner C., Ceule-

mans A. and de Groot B. L., J. Phys. Chem. B, 116
(2012) 8350.

[9] Dellago C., Bolhuis P. G., Csajka F. S. and Chan-

dler D., J. Chem. Phys., 108 (1998) 1964.
[10] Pratt L. R., J. Chem. Phys., 85 (1986) 5045.
[11] Torrie G. M. and Valleau J. P., J. Comput. Phys.,

23 (1977) 187.
[12] van Erp T. S., Moroni D. and Bolhuis P. G., J.

Chem. Phys., 118 (2003) 7762.
[13] Allen R. J., Warren P. B. and ten Wolde P. R.,

Phys. Rev. Lett., 94 (2005) 018104.
[14] Gillespie D. T., J. Comput. Phys., 22 (1976) 403.
[15] Barkema G. T. and Mousseau N., Comput. Mater.

Sci., 20 (2001) 285.
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