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Reservoir  computing  with  cellular  automata  (ReCAs)  is  a  promising
concept  by  virtue  of  its  potential  for  effective  hardware  implementa-
tion.  In  this  paper,  we  explore  elementary  cellular  automata   rules  in
the  context  of  ReCAs  and  the  5-bit  memory  benchmark.  We  combine
elementary cellular automaton  theory with our results and use them to
identify  and  explain  some  of  the  patterns  found.  Furthermore,  we  use
these findings to expose weaknesses in the 5-bit memory benchmark as
it  is  typically  applied  in  ReCAs,  such  as  pointing  out  what  features  it
selects for or solving it using random vectors. We look deeply into previ-
ously successful rules in ReCAs such as rule 90 and explain some of the
consequences  of  its  additive  properties  as  well  as  the  correlation
between  grid  size  and  performance.  Additionally,  we  present  results
from  exhaustively  exploring  ReCAs  on  key  parameters  such  as  distrac-
tor  period,  iterations  and  grid  size.  The  findings  of  this  paper  should
motivate  the  ReCAs  community  to  move  away  from  using  the  5-bit
memory benchmark as it is being applied today. 
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Introduction1.

A  common  method  in  the  machine  learning  (ML)  community  is  to
rely  on  cloud  computing,  cluster  computing  or  even  supercomputers
for  training.  These  designs  perform  well  due  to  their  accuracy  and
flexibility;  however,  training  requires  large  amounts  of  computation,
and  computation  requires  electricity,  and  electricity  has  a  cost.  This
cost is not only money but can also be put into context as an environ-
mental burden [1]. 

A  common  but  energy-intensive  paradigm  for  artificial  intelligence
(AI) is to use deep learning with error backpropagation. Furthermore,
some  data,  such  as  time  series  data,  typically  requires  some  form  of
recurrent  neural  network  (RNN),  which  is  often  trained  using  back-
propagation  through  time.  These  methods  not  only  require  a  good
deal  of  energy  and  time  to  train,  but  they  also  require  careful  design
of the network architecture as well as global error calculations, which
imply a form of centralized control. 

Reservoir computing (RC) is a framework that allows for the speed-
ing  up  of  the  training  by  relying  on  an  untrained  but  dynamically  set
up substrate. The high-dimensional results from the substrate are then
separated  by  a  trained  single  linear  output  layer.  Relying  on  only  a
single  trained  layer  would  naturally  require  less  training  time.  The
concept  originated  in  echo  state  networks  [2]  and  liquid  state
machines  (LSMs)  [3]  and  since  then  has  been  commonly  referred  to
under  the  umbrella  term  RC.  One  interesting  feature  of  RC  is  that  it
is  very  substrate  independent  and  can  utilize  many  different  kinds  of
substrates [4]. 

One  such  substrate  is  cellular  automata  (CAs).  We  can  consider
CAs  a  special  case  of  neural  networks  with  discrete  states  and  uni-
form  connectivity.  One  advantage  of  this  substrate  is  that  it  can  be
implemented  into  hardware  such  as  field-programmable  gate  arrays
(FPGAs)  [5].  This  hardware  implementation  affords  energy-efficient
computation  and  fast  execution,  as  the  FPGAs  can  support  parallel
execution  in  a  circuit-level  performance.  Furthermore,  in  some  con-
texts  like  smart  devices  or  drones  (Edge  AI),  the  energy-intensive
and/or  cloud-based  solutions  are  not  feasible  due  to  availability,
latency,  energy  usage  or  even  privacy  [6].  Some  hyperdimensional
computing  (HDC)  systems  such  as  [7]  show  promising  results  and
include  a  cellular  automaton  (CA)  in  FPGAs  serving  for  one  part  of
the HDC architecture. 

Reservoir computing with cellular automata (ReCAs) is the combi-
nation  of  the  two,  RC  with  a  CA  for  the  reservoir  substrate.  It  was
first  explored  in  [8]  and  subsequently  in  many  other  studies  [9–14].
All  these  studies  are  mostly  exploratory  and  none  uses  the  entire  rule
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space of elementary CAs (ECAs). In this paper, we investigate and elu-
cidate  interesting  results  in  ReCAs,  such  as  rule  90’s  relationship  to
grid  size.  Additionally,  we  expand  the  results  of  our  previous  work
[15]  by  testing  many  additional  standard  parameters  on  the  x-bit
memory benchmark. The main findings of this paper are:

◼ We show an example of rule 90 being capable of changing fundamental
behavior based on small changes in a parameter. Additionally, we show
consequences of rule 90’s additive behavior and tie it into ReCAs. Fur-
thermore,  we  show  that  its  performance  on  the  x-bit  memory  bench-
mark does not necessarily make it a good reservoir. 

◼ We demonstrate how deterministic chaos and sufficient dimensions can
be  used  to  solve  the  x-bit  memory  benchmark  and  argue  why  it  is  not
necessarily a good thing. 

◼ We  identify  and  discuss  some  weaknesses  in  the  x-bit  memory  bench-
mark as it is commonly applied today. 

◼ We extend past work with additional extensive results in ReCAs on the
x-bit memory benchmark on the parameters distractor period Dp, itera-

tions between input I and Dp and grid size combined. 

Background  2.

Cellular Automata  2.1

CAs are a simple model consisting of a grid of cells possessing a lim-
ited set of k discrete states placed on a uniformly connected grid, typi-
cally  in  one  or  two  dimensions.  The  cell  state  changes  iteratively,
depending on the state of the neighbors. Which neighbor state combi-
nation  results  in  which  next  state  is  determined  by  a  lookup  table,
typically called the transition table (TT). CAs were first used to study
self-replication  by  John  von  Neumann  in  1940,  but  not  published
before 1966 [16]. It can be considered an idealized system for parallel
and decentralized computation [17].  

Elementary Cellular Automata  2.1.1

The  simplest  cellular  automaton  (CA)  form  is  an  elementary  CA
(ECA),  a  subset  of  CAs  with  two  discrete  states,  arranged  in  one
dimension, and a neighborhood schema of direct left and right neigh-

bor  as  well  as  itself.  Contained  within  this  rule  space  of  just

22
3
 256  rules  is  a  universe  that  can  be  extensively  studied.  Each

individual  rule  is  conventionally  named  after  the  output  of  the
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transition  table  in  decimal;  for  example,  Binary(01 101110) 
Decimal(110).  Rule  110  has  even  been  shown  to  be  computationally
universal [18], but we can question whether that is a useful definition
of  computation  for  a  parallel  and  distributed  computational
substrate [19].  

Additive Cellular Automata  2.1.2

All  ECA  rules  are  equivalent  to  simple  formulas  in  algebraic  or
Boolean logic. As an example, rule 90 (Figure 1), consists in an XOR
between  the  right  and  left  neighbor.  The  additive  CAs  (ACAs)  are  a
special  group  of  ECAs  that  can  be  simplified  to  adding  the  relevant
neighbors  together  and  applying  modulo  2  to  the  result.  The  list  of
ECAs  that  can  be  reduced  to  simple  additive  operations  based  on  the
neighborhood  is  shown  in  Table  1.  This  additive  property  allows  for
a  more  complete  understanding  of  the  many  global  properties  of  the
additive CA (ACA) rules [20]. A more accessible explanation of ACAs
can be found at [21].  

Figure 1. The  first  25  steps  of  rule  90  with  a  single  central  on  state  as  initial
condition.  

Differentiation Pattern  2.1.3

One  tool  that  is  sometimes  used  to  analyze  CAs  is  the  CA  difference
pattern. The process is simple: take a CA, flip a single bit in the initial
condition,  compare  to  the  original  and  see  what  is  different  in  the
development. In Figure 2 we see this in rule 110; for this rule the dif-
ference  pattern  will  vary  quite  a  bit  based  on  the  initial  condition.  In
Figure 3 we see the difference pattern for rule 90. Note that the differ-
ence  pattern  is  exactly  like  the  standard  central  pattern  generated  by
rule 90, as can be seen in Figure 1; this is a feature of the additive CA. 
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Rule Boolean

Rule 0 0

Rule 60 c-1 ⊕ c0 

Rule 90 c-1 ⊕ c1 

Rule 102 c0 ⊕ c1 

Rule 150 c-1 ⊕ c0 ⊕ c1 

Rule 170 c1 

Rule 204 c0 

Rule 240 c-1 

Table 1. ACA  and  corresponding  Boolean  form.  In  this  notation,  c-1,  c0  and
c1 are the left, central and right neighbor, respectively.  

Figure 2. Rule 110 difference pattern. Left to right, random initialization, cen-
tered bit changed and difference pattern.  

Figure 3. Rule 90 difference pattern. Left to right, random initialization, cen-
tered bit changed and difference pattern.  

Equivalent Elementary Cellular Automata  2.1.4

Many  ECA  rules  are  equivalent  to  other  rules  under  simple  mirror
and  complement  transformation.  The  mirror  transformation  is  the
reflection of the rule over the x axis (e.g., rule 170 is left-shift, and its
mirror is rule 240, right-shift). The complement transformation is the
flipping  of  all  bits  in  the  TT,  both  neighborhood  and  result,  then
reordering  (e.g.,  rule  0  is  everything  turns  to  white;  complement  is
rule 255, everything turns to black). In addition, there is the combina-
tion  of  both  mirror  and  complement  transformations.  Using  these
equivalent  classes,  the  256  ECA  rules  get  reduced  to  88  unique  rule
groups, Table 2. Typically, it is not necessary to evaluate all the rules
within a group but rather to use the minimum equivalent (ME) rule to
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represent its group. The 88 ME rules can be considered to be the rep-
resentation of the entire rule space, though to be clear, the equivalent
under  the  transformations  does  not  mean  they  are  fully  equal.  If  the
computation  that  is  required  is  a  right-shift,  rule  240  would  be  the
most efficient way to achieve this and would outperform rule 170.  

Rule Equivalent Rule Equivalent Rule Equivalent

0 255 35 49,59,115 108 201

1 127 36 219 110 124,137,193

2 16,191,247 37 91 122 161

3 17,63,119 38 52,155,211 126 129

4 223 40 96,235,249 128 254

5 95 41 97,107,121 130 144,190,246

6 20,159,215 42 112,171,241 132 222

7 21,31,87 43 113 134 148,158,214

8 64,239,253 44 100,203,217 136 192,238,252

9 65,111,125 45 75,89,101 138 174,208,244

10 80,175,245 46 116,139,209 140 196,206,220

11 47,81,117 50 179 142 212

12 68,207,221 51 146 182

13 69,79,93 54 147 150

14 84,143,213 56 98,185,227 152 188,194,230

15 85 57 99 154 166,180,210

18 183 58 114,163,177 156 198

19 55 60 102,153,195 160 250

22 151 62 118,131,145 162 176,186,242

23 72 237 164 218

24 66,189,231 73 109 168 224,234,248

25 61,67,103 74 88,173,229 170 240

26 82,167,181 76 205 172 202,216,228

27 39,53,83 77 178

28 70,157,199 78 92,141,197 184 226

29 71 90 165 200 236

30 86,135,149 94 133 204

32 251 104 233 232

33 123 105

34 48,187,243 106 120,169,225

Table 2. The  group  of  equivalent  rules.  The  primary  column  is  the  minimum
equivalence rule that represents its group of equivalent rules, if any.  
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Cellular Automata Classifications  2.1.5

A favorite pastime of the CA community is to classify and group CAs
into  discrete  groups.  In  this  paper,  two  classifications  will  be
explained,  Wolfram  classification  and  ECAs  with  memory  (ECAM).
There are many other classifications, such as Li and Packard’s classifi-
cation,  index  complexity  classification  or  power  spectral  classifica-
tion.  A  good  overview  of  these  previously  mentioned  classifications
and many more can be found in [22]. 

Wolfram Classification  2.1.6

One  well-known  classification  is  the  Wolfram  classification  [23],
where  CAs  with  random  initial  conditions  were  explored.  It  was
observed  that  the  distinct  rules  for  most  initial  conditions  fit  within
one of four classes:  

◼ Class 1. Evolves into homogenized states. 

◼ Class  2.  Evolves  into  a  set  of  simple  separate  stable  or  short  periodic
structures. 

◼ Class 3. Evolves into a chaotic pattern. 

◼ Class  4.  Evolves  into  complex  localized  structures  that  sometimes  are
long lived. 

Examples of the four behaviors can be seen in Figure 4. 

Figure 4. Examples  of  the  four  Wolfram  classes.  Top:  rules  40  and  170,
bottom:  rules  30  and  110.  All  rules  with  random  initialization,  grid  size  200
and 120 CA steps.  
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Elementary Cellular Automata with Memory  2.1.7

ECAM  is  another  classification  of  ECAs.  In  this  classification,  ECAs
are  paired  with  a  memory  function  that  combined  the  n  previous  cell
states  using  minority,  majority  and  parity  function  [24].  The  ECA
rules  were  then  classified  depending  on  how  the  rule  changed  behav-
ior  or  not  in  relation  to  the  Wolfram  classification.  The  ECA  rules
were found to group into three classes:  

◼ Strong.  Most  memory  functions  change  the  rule  to  another  different
class quickly. 

◼ Moderate. Memory functions can transform to a different class and con-
serve the same class as well. 

◼ Weak. Memory functions are unable to transform into another class. 

Note  that  these  three  definitions  are  slightly  switched  in  compari-
son  to  the  original  publication:  here  the  definition  for  strong  and
weak have been mutually exchanged. The reason for this is that after
reviewing  the  evidence  of  the  same  paper,  there  is  a  contradiction  of
the  examples  and  evidence.  For  example,  rule  126  shows  complex
behavior  under  some  memory  functions.  Additionally,  consider  that
three  prepositions  of  the  paper  in  relation  to  the  classification  defini-
tions contradict each other in the original work. This correction does
not  alter  the  distribution  of  the  rules.  As  such,  there  is  no  reason  to
believe that this is a mistake made in bad faith, as it does not seem to
change the quality of the results. Yet, it is still important to clarify, as
building our rationale on the conclusion of particular rules from a par-
ticular class would become quite wrong if applied under the previous
definitions. 

The  ECA  rules  in  regard  to  ECAM  and  the  Wolfram  classification
can be found in Table 3. 

Class I Rules
Strong 128
Moderate 8,32,40,136,160,168
Weak 0

Class II Rules
Strong 2, 7, 9, 10, 11, 15, 24, 25, 26, 34, 35, 42, 46, 56, 57, 58, 62, 

94, 108, 130, 138, 152, 154, 162, 170, 178, 184
Moderate 1, 3, 4, 5, 6, 13, 14, 27, 28, 29, 33, 37, 38, 43, 44, 72, 73, 74, 

77, 78, 104, 132, 134, 140, 142, 156, 164, 172
Weak 12, 19, 23, 36, 50, 51, 76, 200, 204, 232
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Class III Rules
Strong 18, 22, 30, 45, 122, 126, 146
Moderate
Weak 60, 90, 105, 150

Class IV Rules
Strong 41, 54, 106, 110
Moderate
Weak

Table 3. All minimum equivalent ECAM classifications.  

Edge of Chaos and λ Parameter  2.2

The  parameters  space  of  a  complex  system  often  has  a  phase  transi-
tion  between  order  and  disorder;  this  phase  transition  region  is  often
called “edge of chaos.” It is theorized that this region commonly con-
tains the highest capacity for computation, defined as transformation,
manipulation and storage of information.  

Langton  [25]  explored  this  theory  in  one-dimensional  multistate
CAs  with  enlarged  neighborhoods  and  found  that  the  CA  rule  space
forms  a  phase  transition  between  order  and  chaos  when  organized
over  a  λ  (lambda)  parameter.  The  λ  parameter  starts  by  defining  a
state as the quiescent state. To generate transition tables with a given
λ  value,  we  can  allocate  to  each  TT  entry  a  random  number  α  uni-
formly  distributed  between  0  and  1  and  attribute  the  quiescent  state
to all entries with α < λ and a nonquiescent state to the others. Using
this  method,  Langton  generated  different  candidate  rules  in  several
regions  of  the  rule  space  over  the  λ  parameter.  He  showed  that  the
rule  space  organizes  into  a  phase  transition  between  order  and  chaos
and  that  strong  candidates  for  computation  are  more  likely  to  be
found  there.  Notably,  this  λ  method  does  not  seem  to  work  in  the
ECA rule space, as mentioned in [25] and previous work. 

Kolmogorov Complexity, Lossless Compression, Shannon 

Entropy and Block Decomposition  

2.3

One rigorous way to assess behavior in ECAs can be found in [26]. In
this  paper,  Zenil  explored  CAs,  asymptotic  behavior  and  complexity.
First,  this  paper  demonstrates  how  rule  22  can  behave  differently
depending  on  the  initial  condition  and  how  this  is  a  problem  of  the
Wolfram  classification.  Then  the  paper  alleviates  this  problem  by
redefining  the  Wolfram  classification  as  the  limit  of  the  rule’s  behav-
iors, for example, to the highest class (complexity) of all its behaviors.
Second, the paper then explores ECAs and estimates the Kolmogorov
complexity  [27]  using  three  methods:  lossless  compression,  Shannon
block  entropy  and  block  decomposition.  Using  these  metrics  and  the
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new  classification  method,  some  ECA  rules  are  reclassified.  Finally,
using these methods, the paper estimates the complexity ratio of differ-
ent rule spaces.  

Reservoir Computing  2.4

RC is a substrate-independent framework for computing. RC is inde-
pendent  because  it  works  on  many  different  substrates,  but  to  be
clear,  different  substrates  would  of  course  have  different  capabilities.
The  RC  framework  consists  of  three  parts:  the  input,  the  untrained
reservoir and the output.  

The input part encodes some information into the untrained reser-
voir and typically into higher dimensions. The untrained reservoir typ-
ically  expands,  modifies  or  changes  the  information,  but  could  in  the
context  of  the  framework  be  considered  a  black  box,  as  seen  in  Fig-
ure 5. The output part is typically linear and does dimensional reduc-
tion and extracts useful features. 

Figure 5. RC as a substrate-independent framework.  

The  RC  concept  originated  in  echo  state  networks  (ESNs)  using
recurrent  neural  networks  (RNNs)  as  a  substrate  [2]  (see  Figure  6)
and in LSMs using a spiking neural network for a substrate [3]. Since
then,  both  ESNs  and  LSMs  and  a  host  of  other  substrates  have  been
put  under  the  umbrella  term  of  RC.  Due  to  RC’s  substrate-indepen-
dent  nature,  many  different  substrates  have  been  explored  and/or
compared  [4].  Some  explore  different  configurations  of  topology  as

Figure 6. Basic network architecture of an echo state network (ESN).  
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in [28], where instead of the typical one big reservoir, deep layered sub
reservoirs were analyzed. RC is also a very popular method with physi-
cal reservoirs [4]; as an extreme example, in [29] it was demonstrated
that RC can use the surface waves on a bucket of water as a reservoir
and  they  successfully  solved  speech  recognition  and  XOR  tasks  using
this  substrate.  One  very  interesting  substrate  is  real  biological  neural
networks (BNNs), specifically disassociated neurons that self-organize
over a microelectronic array [30].

There  is  also  evidence  of  RC  being  a  useful  trick  for  computation
(one of many) used in biology. In [31] they showed that a linear classi-
fier  can  extract  information  about  the  short-term  past  stimulus
(images,  XOR)  from  the  primary  visual  cortex  of  an  anaesthetized
cat.  Also  in  other  biological,  but  also  computational  processes,  there
is some evidence of RC. In [32] the ESN (RC) model was used to sim-
ulate an example of a known genetic regulation network (GRN) pro-
cess  and  performed  satisfactorily.  Similarly  in  [33]  a  liquid  state
machine (LSM) RC model was used. 

Echo State Property and Fading Memory Property2.4.1

An  important  property  in  ESNs  is  the  echo  state  property  (ESP).  To
have this property, the reservoir must, given some input signal, asymp-
totically  remove  the  information  of  the  initial  condition.  In  [2],  it  is
shown  that  for  a  reservoir  with  specified  conditions,  it  violates  the
ESP if the spectral radius of the weight matrix is larger than 1, and it
was  empirically  observed  that  for  spectral  radius  below  1,  the  ESP  is
given.  Note  that  in  [34]  Jaeger  warns  that  this  does  not  mean  that
ESP  is  granted  for  any  system  with  a  spectral  radius  of  below  1
(asymptotically stable). It is not a necessary or sufficient condition.

Similar to the ESP is the concept of the fading memory property. It
states  that  an  input/output  system  is  said  to  have  fading  memory
when  the  outputs  associated  with  inputs  that  are  close  in  the  recent
past  are  close,  even  when  those  inputs  may  be  very  different  in  the
distant past [4, 35]. 

Reservoir Computing with Cellular Automata2.5

The first study that introduced CAs as a substrate in RC is [8]. In this
study,  the  Game  of  Life  and  several  ECA  rules  were  investigated  as
reservoir substrates and tested on a 5-bit and a 20-bit memory bench-
mark.  In  addition,  it  presents  a  theoretical  comparison  of  CAs  versus
ESNs,  using  the  metric  of  the  number  of  operations  needed  to  solve
the benchmark, which documents a clear advantage of using CAs.

As  an  ECA  reservoir  only  relies  on  simple  discrete  binary  interac-
tions  between  cells  (e.g.,  Table  1),  it  affords  a  hardware-friendly
implementation  of  a  substrate.  The  problem  (perhaps  ironically)
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becomes  how  to  implement  the  readout  layer  in  hardware.  In  [5]
ReCAs  using  ECAs  with  a  max-pooling  and  softmax  strategy  were
implemented  on  a  field-programmable  gate  array  (FPGA).  In  [36]  a
CA  was  implemented  on  a  complementary  metal-oxide  semiconduc-
tor  (CMOS)  combined  with  a  custom  hardware  support  vector
machine  (SVM)  implemented  in  resistive  random-access  memory
(ReRAM).  In  [37]  a  synthesized  hardware  implementation  of  ReCAs
using  ECAs  with  a  max-pooling  and  ensemble  bloom  filter  classifier
was  used,  showing  impressive  results  compared  to  “state  of  the  art”
in  terms  of  energy  efficiency,  memory  usage  and  area  (number  of
gates) usage, but with comparably poor accuracy [5]. 

Since  the  first  paper  on  ReCAs  [8],  other  works  have  studied
ReCAs using the 5-bit memory benchmark. In [9], the structure of the
CA  was  changed  to  a  deep-layered  architecture  and  compared  to  a
single  layer,  which  resulted  in  noticeable  performance  improvements.
In [10] the CA substrate was organized as consisting of two regions of
different  ECA  rules.  Different  combinations  of  rules  were  explored,
and some of them showed great promise. In [11] different methods of
cell  history  selection  that  are  used  for  the  classification  model  were
explored  on  the  5-bit  memory  task,  a  temporal  order  task  and
arithmetic  and  logic  operation  tasks.  In  [13]  CA  rules  with  multiple
states  and  larger  neighborhoods  were  evolved  and  then  tested  on  the
5-bit  memory  benchmark.  In  [38]  ECAs  and  asynchronous  ECAs
were tested and compared on the 5-bit memory benchmark, mainly in
the  context  of  the  distractor  period.  In  [15]  the  full  ECA  set  was
tested  using  key  parameters  of  number  of  bits  Nb,  redundancies R
and grid size. 

ReCAs  are  also  used  on  benchmarks  other  than  the  5-bit  memory
benchmark. For example, in [5, 37] ReCAs were implemented in hard-
ware  and  tested  using  the  Modified  National  Institute  of  Standards
and Technology database (MNIST). In [14] ReCAs were used to solve
tasks  of  sine  and  square  wave  classification,  nonlinear  channel  equal-
ization, Santa Fe laser data and iris classification. 

Methodology3.

5-bit Memory Benchmark  3.1

The  5-bit  memory  benchmark  traces  its  root  to  the  short  long-term
memory task introduced in [39]. It is often cited as the source [8–10,
13], but none of the benchmarks in [39] are the 5-bit memory bench-
mark, although some of them are very similar in intention. The earli-
est  source  where  the  5-bit  memory  benchmark  is  recognizable  is  in
[40],  but  named  “noiseless  memorization,”  corroborated  with  the
clearer and more detailed explanation of the benchmark in [41, p. 47]
and in [42]. 
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The  5-bit  memory  benchmark’s  goal  is  to  test  whether  a  system  is
capable  of  memorizing  a  5-bit  string  and  reproducing  it  at  a  later
stage.  An  example  of  the  5-bit  memory  benchmark  can  be  seen  in
Table 4. The benchmark has four input channels, where only a single
channel can be active at a given time. The first two input channels are
dedicated to the five bits. The bits are fed into the system sequentially
over  five  steps.  The  first  input  channel  can  be  viewed  as  the  “pure”
five bits and the second as the reversed five bits. The third input chan-
nel is dedicated to constantly feeding input into the system during the
distractor  period  and  the  output  stage.  The  fourth  input  channel  is
dedicated  to  the  cue  signal,  signaling  that  the  output  is  to  be  given.
The  benchmark  has  three  output  channels,  where  one  and  only  one
should  be  active  at  a  given  time.  Note  that  some  earlier  examples
have  four  output  channels  but  one  is  dropped,  as  it  is  never  intended
to  give  output.  The  first  two  are  dedicated  to  the  original  five  bits
inserted  into  the  system  and  should  sequentially  output  them  follow-
ing  the  cue  signal; the  final  output  channel  should  give a  signal  in  all
other  cases.  Due  to  the  nature  of  this  output,  we  can  abstract  and
view the task as a temporal classification problem. 

Step Input Output Stage

1 1 0 0 0 0 0 1 Input bits to memorize

2 1 0 0 0 0 0 1

3 0 1 0 0 0 0 1

4 0 1 0 0 0 0 1

5 1 0 0 0 0 0 1

6 0 0 1 0 0 0 1 Distractor period

... 0 0 1 0 0 0 1

204 0 0 1 0 0 0 1

205 0 0 0 1 0 0 1 Cue signal

206 0 0 1 0 1 0 0 Output bits to memorize

207 0 0 1 0 1 0 0

208 0 0 1 0 0 1 0

209 0 0 1 0 0 1 0

210 0 0 1 0 1 0 0

Table 4. Example of the 5-bit memory task with distractor period of 200 and
input of the number 25 in binary form. Artifact inspired by [13].  

In this paper, we will often call it the x-bit memory benchmark, as
we  have  varied  the  number  of  bits  to  be  memorized.  Also,  note  that
the 20-bit memory benchmark in at least some of the previous sources
is  not  the  same  as  the  5-bit  memory  benchmark  but  with  20  bits  to
memorize.  The  20-bit  memory  benchmark  uses  seven  input  channels,
five for the input and a bit length of 10. 
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X-bit Memory Task in Reservoir Computing with 

Cellular Automata  

3.2

The  benchmark  itself  has  been  presented  independently  of  the  chosen
substrate. We now detail the specific benchmark definition in the con-
text of a CA substrate.  

As  shown  in  Figure  7,  additional  steps  have  been  added.  First,  the
encoding  part,  which  considers  how  to  inject  the  input  into  the
substrate.  For  binary  data,  there  have  been  many  different  methods
proposed and/or implemented [8, 9, 11], but there are some common
tendencies. The input is usually randomly mapped into the CA in sev-
eral  redundant  mappings  given  by  the  redundancy  R  parameter.  This
random  mapping  stays  fixed  throughout  the  experiment.  In  [8],  it  is
not completely clear, but it is claimed to be done using a vector of the
same  size  as  the  input.  Considering  Figure  4  and  Table  3  from  said
paper,  there  is  a  conflict,  as  that  would  mean  that  for  rule  90,
T0  Dp  160 is more difficult than T0  Dp  200. This is entirely

possible  but  violates  a  claim  in  the  paper  that  “there  is  a  polynomial
increase  in  the  minimum  required  reservoir  size  with  number  of  bits
to  be  remembered  and  but  a  logarithmic  increase  with  distractor
period.”  Regardless,  in  later  experiments  [9,  10]  a  larger  vector  is
used. The size of this new vector is given by the Ld parameter. 

Figure 7. Simple  model  of  the  different  parts  of  ReCAs  using  the  x-bit  mem-
ory benchmark.  

The  simplest  way  to  encode  the  input  into  the  CA  is  to  overwrite
the  current  state  of  a  mapping.  Since  this  might  overwrite  important
information in the CA, other methods have been used, such as simple
binary  operations  between  the  current  state  of  the  CA  and  the  new
input value. In this paper, we use XOR between the current state and
input to encode into the CA. 

The  second  component  is  the  actual  substrate  itself,  a  CA  in  the
paper herein. This operates like any CA and can be of any dimensional
ity,  with  any  number  of  states  and  with  any  neighborhood  scheme.
Commonly, the CA permutes the input several steps before giving the
next  input.  Therefore,  we  can  say  that  the  CA  and  x-bit  memory
benchmark  exist  on  different  timescales,  as  several  CA  steps  are  per-
formed between I/O steps. The number of additional CA steps before
the next input is represented by I. Some examples of what the CA his-
tory of the reservoir can look like are in Figures 8 and 9. 
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Figure 8. Rule  110,  input  10110,  input  locations  19,  27,  5,  29,  71,  40,  50,
48, 102, 96, 82, 90, 134, 128, 140, 132.  

Figure 9. Rule 30, input 10110, input locations 19, 27, 5, 29, 71, 40, 50, 48,
102, 96, 82, 90, 134, 128, 140, 132.  

The third part is the classification model (sometimes known as the
decoding stage). This stage uses the state of the CA (or a set of previ-
ous  states)  to  classify  and  produce  an  output.  Due  to  the  nature  of

Investigating Rules and Parameters of Reservoir Computing 323

https://doi.org/10.25088/ComplexSystems.32.3.309

https://doi.org/10.25088/ComplexSystems.32.3.309


RC,  the  classification  model  is  commonly  a  linear  model.  Consider
that if we were to use a deep neural network as a classification model
rather than a linear one, this would cast doubt about whether the sep-
aration was done in the model or the substrate. Therefore, using a lin-
ear model demonstrates that the system is doing RC. When limited by
this  requirement,  two  common  models  are  typically  used,  that  is,  lin-
ear  regression  and  SVM  with  a  linear  kernel.  If  linear  regression  is
used,  it  would  need  to  be  paired  with  a  rounding  function  or  some
max  confidence  method  to  produce  clear  output.  If  SVM  is  used,  we
can take advantage of the fact that the output is always only a single
class and can therefore handle the model as a standard SVM model. 

Perfect Score Metric versus Weighted Average Metric  3.3

In  this  paper,  two  different  metrics  were  used  to  compare  rules.  The
perfect score P metric is the traditional and commonly used metric for
scoring on the x-bit memory benchmark. In this metric, every classifi-
cation  for  every  permutation  has  to  be  correct;  if  a  single  classifica-
tion  is  wrong,  no  credit  is  given.  In  the  example,  Table  4  has  210
classifications.  Therefore,  if  one  of  the  total  21032  6720  (32  dif-
ferent permutations of 5 bits) is incorrect, a failed score of 0 is given.
Such  a  metric  is  very  strict  and  makes  it  hard  to  identify  configura-
tions close to solving the problem; therefore, we also use the weighted

average W  metric. The average is weighted to adjust for the fact that
a  large  set  of  the  classifications  in  the  x-bit  benchmark  has  the  same
output.  In  the  example  in  Table  4,  205  out  of  the  210  classifications
are  the  “no  output  state.”  Therefore,  correctly  classifying  205  out  of
the 210 states is trivial and could be done even without a reservoir or
even without input. The ratio of trivially classifiable states depends on
two parameters, the number of bits Nb  and distractor period Dp, and

can be found using equation (1):  

W 
Dp + (Nb)

Dp + (2Nb)
. (1)

Given that the fraction of correctly classified states is Sc, the W  can
then be found using equation (2): 

W 
Sc -W

1 -W
. (2)

Both  metrics  are  then  made  into  percentages  for  ease  of  com-
parison. 
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Experimental Setup4.

Libraries and Source Code  4.1

The  CA  reservoir  was  modeled  using  the  EvoDynamics  framework
[43].  EvoDynamics  natively  supports  CA  reservoirs  built  from
TensorFlow,  enabling  the  CA  to  run  on  TensorFlow-GPU.  In  addi-
tion,  SkiKit-learn  [44]  was  used  to  create  the  SVM  with  a  linear  ker-
nel,  used  for  classification.  The  source  code  for  the  experiments  can
be found at [45], and a more accessible way to navigate the data gen-
erated and the graphs generated can also be found on GitHub at [46].

Rule Order4.2

In  the  following  sections,  the  rule  space  is  sorted  in  the  same  way  as
[15].  The  intention  is  to  organize  the  rule  space  such  that  rules  with
similar  behavior  are  placed  adjacent.  The  rule  space  is  ordered  in
descending  order  of  importance  from  three  factors,  first  using
Wolfram classification class 1, 2, 3, 4; then on ECAM strong, moder-
ate  and  weak;  and  finally,  the  tie  breaker  is  performance  on  Nb  3
in  [15].  Wolfram  classification  was  picked  because  it  is  the  de  facto
standard  classification  and  more  importantly  because  it  correlates
well  with  behavior.  ECAM  was  picked  because  the  behavior  (specifi-
cally  classes  3  and  4)  correlates  well.  Note  that  ECAM  and  the  x-bit
memory benchmark both share the word memory but they refer to dif-
ferent  concepts  [24].  Indeed,  memory  refers  to  combining  previous
CA  steps  with  an  operation,  while  in  the  x-bit  memory  benchmark,
memory refers to recovering earlier input. Finally, Nb  3 was picked
because  it  was  seen  as  the  simplest  version  of  this  benchmark  run  so
far. We acknowledge that this unconventional order might make it dif-
ficult  in  comparison  to  numeric  sorting,  or  if  you  want  to  find  your
favorite rule in the diagram.  

Only the ME rule of each group is presented in the diagram, and in
addition,  rules  that  did  not  perform  beyond  the  trivial  case  of
performing  0  on  the  w  on  any  experiment  are  not  shown  in  the  rule
diagrams.  This  is  in  slight  contrast  to  [15],  in  that  work  rules  were
filtered  if  they  had  a  trivial  performance  on  individual  experiments
for  the  sake  of  space  usage,  but  this  makes  it  harder  to  navigate  the
many  different  versions  of  the  diagram;  therefore,  this  is  avoided  in
this paper. No Wolfram class 1 made this distinction of nontrivial per-
formance;  this  is  not  surprising  but  might  be  worth  noting  to  avoid
confusion. 

Overview of Explored Reservoir Computing with Cellular 
Automata Parameters  

4.3

This  benchmark  and  the  CA  setup  have  many  parameters;  they  have
been  introduced  on  demand,  and  to  establish  a  better  overview,  we
list them here.   
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◼ R is the number of regions the CA is divided into. 

◼ Ld is the width of the individual R. 

◼ I  is  the  number  of  CA-only  iterations  between  input  and  historical
states (height) of the CA the SVM has access to. 

◼ Dp  is  the  length  of  the  distractor  period,  or  the  number  of  distractor

inputs between the last memory input bit and the cue signal. 

◼ Nb is the number of bits to be memorized. 

R, I  and Ld  can be seen in Figure 10, and both Dp  and Nb  can be

seen  in  Table  4.  Note  that  there  are  many  parameters  of  the  bench-
mark  and  CA  setup  that  are  not  explored  in  this  paper,  for  example,
encoding strategies. 

Figure 10. Example  showing  R,  I  and  Ld.  Additionally,  the  top  stream  is  an
example of how input is encoded temporarily into the reservoir.  

Encoding Strategy  4.4

The  5-bit  memory  benchmark  is  a  temporal  benchmark,  meaning  the
input streams are inputted into the CA over time. The past input and
their  “echos”  can  therefore  still  affect  the  CA  configuration,  and  the
CA  is  no  “tabula  rasa”  of  only  quiescent  cells.  In  these  experiments,
given  the  previous  state  S,  the  input  streams  Is  are  XORed  together
S⊕ Is.  A  more  general  encoding  strategy  that  would  work  for  more
than two states would be: given the number of states Ns; (S + Is)%Ns.
This would be equivalent to the XOR strategy for binary states.  

Results  5.

We  present  our  results  in  this  section,  starting  with  the  quantitative
results,  as  they  do  build  up  some  evidence  for  our  in-depth  results,
which are discussed later.  
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Exploring the Parameter Space  5.1

The  quantitative  experiments  run  in  this  paper  greatly  extend  what
was done in [15], and this paper can be seen as a completion of impor-
tant  hyperparameters,  as  it  extends  into  parameters  not  explored  in
the  previous  paper.  We  will  go  through  three  quantitative  experi-
ments, one exploring the landscape of I, one exploring Dp  and finally

one  exploring  Dp  and  Ld  in  combination.  In  all  experiments,  any

unspecified  variable  uses  the  default  of  R  4,  Ld  40,  I  2,
Dp  200  and  Nb  5.  All  results  are  out  of  at  least  100  runs;  some

are  more,  as  past  experiments  are  also  used  in  the  results—for  exam-
ple,  in  [15]  experiments  are  made  over  the  Ld  parameter  in  the  same
parameter  space  as  this  paper’s  Dp  and  Ld  experiment,  and  that

crossover region would then have results out of 200 runs. To be clear,
this  was  not  done  in  some  attempt  to  P-hack,  but  simply  because  the
past  experimented  parameter  values  were  not  excluded  from  later
experiments.  Finally,  we  will  also  look  at  qualitative  spacetime
diagrams of some ReCAs.  

I  Experiment  5.2

The  I  parameter  results  are  shown  in  Figure  11.  It  is  important  to
note  that  this  parameter  controls  both  reservoir  height  and  the  num-
ber  of  pure  CA  steps  between  inputs.  The  parameter  directly  affects
how  many  data  points  get  fed  into  the  SVM;  therefore,  we  could
assume  that  any  dynamical  behavior  would  be  drowned  out  by  this
feature,  yet  what  we  see  is  that  many  rules  show  clear  dynamical
behavior. Extreme examples are the rules 3, 56 and 15, but also previ-
ously  proposed  good  rules  in  ReCAs  like  rules  60  and  90.  From  the
aforementioned rules, rules 15 and 56 show odd I number preference,
and  rules  3,  60  and  90  favor  even-numbered  I.  In  fact,  for  I  3,
rule 150  has  a  better  score  than  rule  90.  If  past  experiments  had

Figure 11. I experiment.  
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instead  of  doubling  R  and  I  values  used  odd  numbers  for  parameters
or maybe a prime number strategy, a different “best” rule might well
have emerged.  

Dp  Experiment  5.3

The  main  results  are  shown  in  Figure  12.  This  parameter  affects  the
experiment  in  two  important  ways:  distractor  steps  inputted  into  the
system,  which  would  also  directly  influence  the  total  number  of  CA
iterations  to  run.  This  experiment  is  perhaps  the  most  indicative  of
rules exhibiting something analogous to fading memory, or the closest
thing  to  fading  memory  the  discrete  system  of  a  CA  can  have.  Many
rules  show  that  the  task  becomes  harder  the  larger  the  Dp,  most

notably,  in  the  W  experiment  this  can  be  seen  in  the  non-weak  class
of CA. The weak chaotic rules do seem to exhibit this feature in the P
metric as a general trend, but also in detail show very opposed behav-
ior,  rule  60  finding  Dp  100  harder  than  Dp  200  or  the  rules  90,

105 and 150 finding Dp  100 easier than Dp  50. 

Figure 12. Dp experiment.  

Dp  4000  5.3.1

A  further  longer  experiment  testing  Dp  4000  on  rules  that  got  a

significant  score  on  Dp  300  is  given  in  Figures  13  and  14.  In  these

results, many of the rules do not seem to find the problem any harder;
in  fact,  the  rules  162,  10,  105  and  150  find  it  easier  than  Dp  300.

Naturally,  this  does  not  mean  that  we  are  observing  a  gaining  mem-
ory, the opposite of a fading memory. First, due to that, the distractor
period  perturbs  at  the  same  locations  in  a  very  ordered  way,  and  the
CA can still settle into a short periodic attractor despite being continu-
ously  perturbed.  This  can  be  seen  happening  in  rule  170,  due  to  it
looping  around  the  CA,  and  the  distractor  input  simply  cancels  the
previous  distractor  input  and  adds  it  again  in  turn  [47].  We  will  go
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into this further in the spacetime diagram section. This feature does of
course not make the problem easier though, but it can prevent it from
becoming  harder  the  longer  the  Dp  is.  Second,  we  know  that  many

rules  expand  and  contract  within  the  CA  and  that  the  perturbations
can cause different paths in the state. We hypothesize that all or some
of  the  six  last  I/O  steps  (i.e.,  cue  signal  and  return  of  the  original
5-bits  steps)  will  be  more  separable  for  Dp = 4000  than  for

Dp = 3000. These rules are likely to be in an attractor that is not fully

dependent on the initial mapping, and the length of the Dp  makes the

cue  signal  hit  different  steps  in  that  attractor  that  can  be  easily
separable.

Figure 13. Dp stable experiment, W  metric.  

Figure 14. Dp stable experiment, P% metric.  

Dp  over Ld  Experiment  5.4

In  this  subsection,  we look  at  results  from  rules  90, 150,  54  and  170
when looking at how small changes in Dp  and Ld  affect performance.

Rule  90  was  picked,  as  it  is  viewed  as  the  quintessential  rule  for
ReCAs.  Rule  150  was  picked  as  a  close  contestant  to  rule  90  that
other  experiments  have  shown  to  have  better  performance  under
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specific  circumstances,  and  we  hypothesized  we  would  find  more
examples of this. Rule 54 was picked as it is, within our experiments,
the  rule  within  the  complex  group  that  had  the  best  performance  on
small grid sizes. Finally, rule 170 was picked as a comparison, as it is
a  very  simple  rule,  but  also  because  it  performs  very  well  in  most
circumstances.  

Rule 90  5.4.1

In  Figures  15  and  16,  we  observe  in  rule  90  a  clear  pattern  of  good
performance  in  even-numbered  Ld,  as  was  found  in  [15].  In  fact,  out
of  the  13200  trials  using  odd  numbered  Ld  included  in  the  data  for
these  two  diagrams,  not  a  single  one  got  a  perfect  run,  and  only  for
Ld  43  did  any  configuration  get  anything  close  to  above  the  abso-

lute minimum in the W  metric. The results further strengthen that this
combination  of  parameters  Ld  40  and  Dp  200  is  a  very  good  fit

for  rule  90  on  this  benchmark.  Also  note  that  there  are  some  exam-
ples of specific Dp that have an impact on performance.  

Figure 15. Rule 90 I  1.  

Figure 16. Rule 90 I  2.  

330 T. E. Glover, P. Lind, A. Yazidi, E. Osipov and S. Nichele

Complex Systems, 32 © 2023



Rule 150  5.4.2

For rule 150 in Figures 17 and 18, we also see a similar pattern as in
rule 90 of Ld. As for the Dp pattern, it is less clear what the pattern is.

Note  that  for  I  1,  the  best  performance  was  found  at  Dp  198

and Dp  204, outperforming rule 90 with the same parameters. This

again  indicates  that  if  different  standard  parameters  were  picked  for
this  and  past  experiments,  then  perhaps  different  CA  rules  would
have been inspected and optimized. 

Figure 17. Rule 150 I  1.  

Figure 18. Rule 150 I  2.  

Rule 54  5.4.3

We  also  wanted  to  inspect  a  rule  classified  as  complex;  rule  54  was
picked  because  it  had  the  best  performance  on  smaller  reservoirs  in
[15]. In Figures 19 and 20 the results are not as dynamic as the addi-
tive  rules  previously  inspected,  but  also  there  is  a  weak  pattern
between the two of odd versus even Ld. In addition, there seems to be
a  slight  “phase  change”  happening  between  Ld  39  and  Ld  40,
most noticeable in I  2.  
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Rule 170  5.4.4

Finally, we also looked at rule 170 in Figure 21. No dynamical behav-
ior  was  expected,  but  there  is  slight  evidence  for  a  preference  for
Ld / 3 for the P% metric, most notably in Ld  36 and Ld  39. More-

over, this is different in the W  metric; in fact, the pattern is the oppo-
site: Ld / 3 indicates poor performance in this metric.  

Figure 19. Rule 54 I  1.  

Figure 20. Rule 54 I  2.  

Figure 21. Rule 170 I  2.  
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Spacetime Diagrams  5.5

In  this  subsection,  we  look  at  some  specific  spacetime  diagrams  and
rules.  

Rule 204  5.5.1

We start with rule 204, a relatively simple rule. Rule 204 is a rule that
projects the past state onto the next state. We start with this rule, as it
is the simplest rule that allows us to say anything interesting in regard
to  behavior,  but  also  as  a  simple  way  to  understand  the  benchmark
and  diagram.  In  Figure  22,  we  see  an  example  of  this  rule.  The  only
interference of this downward projection is the information put into it
on  the  same  cell:  the  five  bits,  the  reversed  five  bits,  the  distractors
and  the  cue  signal—these  inputs  are  all  visible  in  this  example.

Notably,  this  rule  consistently  gets  50%  on  the  W  metric  but  never
manages  to  do  a  perfect  run;  we  can  understand  this  from  the  dia-
gram.  First,  this  rule  can  always  detect  the  cue  signal,  as  it  is  never
interfered  with  due  to  the  downward  projection,  and  the  input  chan-
nels never overlap. Therefore, the SVM will always know whether or
not the cue signal has been received. Then the SVM can perfectly sepa-
rate when it is supposed to return 1 in the “no output” channel (001)
from  when  it  is  supposed  to  give  a  100  or  010.  Yet,  this  rule  can
never provide a perfect run because many different inputs will lead to

Figure 22. Rule  204,  input  10110,  Dp  40  with  input  locations  19,  27,  5,

29, 71, 40, 50, 48, 102, 96, 82, 90, 134, 128, 140, 132.  
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the  same  CA  states.  All  inputs  that  have  an  odd  number  of  1s  lead
to  an  on  state  in  that  cell,  and  all  inputs  that  have  an  even  number
of  1s  lead  to  an  off  state  in  that  cell.  The  SVM  cannot  separate  the
CAs  that  input  10101  from  11100,  as  they  will  be  the  same  in  the
final stage.

Rule 170  5.5.2

Rule  170  is  also  simple:  its  behavior  is  shifting  the  past  state  to  the
left.  We  can  see  an  example  in  Figure  23.  As  mentioned  in  Sec-
tion 5.3.1,  in  a  longer  run  than  the  example,  the  distractor  period
would  also  loop  around  and  collide  with  itself  again.  For  the  exam-
ple,  the  input  would  take  480  CA  steps  (160  input  steps)  after  the
first  distractor  input  before  looping.  This  period  could  be  potentially
shorter with the right input mapping, or longer with a different input
frequency  but  always  quite  limited.  This  means  that  after  a  certain
point,  adding  more  distractor  periods  would  not  affect  performance.
In  this  rule,  the  cue  signal  is  also  often  easy  to  detect.  Having  these
two features of cue signal detection and direct trajectories of the origi-
nal input is essentially what makes rule 170 perform so well.  

We  can  take  from  this  that  rule  170  demonstrates  a  weakness  of
the x-bit memory benchmark. As long as you can separate the cue sig-
nal  from  the  other  signals  and  the  inputs  perturb  the  system  into

unique  states,  all  you  need  to  separate  is  the  2Nb  unique  input,  and
with 320 dimensions the SVM would be likely to find one. 

Figure 23. Rule  170,  input  10110,  input  locations  19,  27,  5,  29,  71,  40,  50,
48, 102, 96, 82, 90, 134, 128, 140, 132.  
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Rule 54  5.5.3

Rule 54 is seemingly the best-performing complex rule, which inhibits
complex abilities of complex trajectories, as described by Wolfram. In
Figure  24  we  see  an  example  of  this,  where  the  interaction  of  the
input  creates  trajectories  that  persist,  and  the  regions  often  called  the
ether  (larger  self-similar  region)  seem  to  be  relatively  easy  to  perturb
for the cue signal not to disappear. In Figure 25, we also see that the
different  input  causes  different  and  unique  trajectories;  these  features
would not seem ideal, but are still well suited for a memory task like
the N-bit memory task. 

Figure 24. Rule  54,  input  10110,  input  locations  19,  27,  5,  29,  71,  40,  50,
48, 102, 96, 82, 90, 134, 128, 140, 132.  

0:00000 1:00001 2:00010 3:00011 4:00100

5:00101 6:00110 7:00111 8:01000 9:01001
Figure 25. (continues)

Investigating Rules and Parameters of Reservoir Computing 335

https://doi.org/10.25088/ComplexSystems.32.3.309

https://doi.org/10.25088/ComplexSystems.32.3.309


10:01010 11:01011 12:01100 13:01101 14:01110

15:01111 16:10000 17:10001 18:10010 19:10011

20:10100 21:10101 22:10110 23:10111 24:11000

25:11001 26:11010 27:11011 28:11100 29:11101

30:11110 31:11111

Figure 25. Rule  54,  all  input,  input  locations  19,  27,  5,  29,  71,  40,  50,  48,
102, 96, 82, 90, 134, 128, 140, 132. 

Rule 90 and Spacetime Chimera States  5.5.4

Rule 90 is the quintessential elementary rule for ReCAs. In Figure 26,
we see an example of its spacetime diagram. At the start of the exam-
ple,  we  can  see  the  input  creating  overlaying  triangles  that  are  added
together,  before  turning  into  what  looks  like  quite  chaotic  behavior.
In  Figure  27,  we  see  an  interesting  behavior  where  regions  are  the
same in all inputs, this odd version of a strange attractor (regions not
perturbed  by  the  different  inputs).  The  figure  is  converted  into  a  gif
and can be found at [48], as well as a version with more steps at [49].
This  feature  does  not  occur  in  every  rule  90  run,  but  usually,  we
observe larger regions of local spacetime states that are common over
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several different inputs but not every single one; such an example can
be found at [50]. These regions could potentially give a clue to which
step  the  CA  is  in,  and  if  it  is  partially  stable,  it  can  help  separate  the
different  original  input  from  the  current  state.  This  concept  is  also
very  reminiscent  of  chimera  states  [51–53],  a  coexistence  of  coherent
(synchronized)  and  incoherent  (desynchronized)  first  identified  in
oscillators.  In  our  case,  the  chimera  states  are  not  local  to  specific
oscillators (or CA cells) only, but in space and time.  

Figure 26. Rule  90,  input  10110,  input  locations  19,  27,  5,  29,  71,  40,  50,
48, 102, 96, 82, 90, 134, 128, 140, 132.  

0:00000 1:00001 2:00010 3:00011 4:00100

5:00101 6:00110 7:00111 8:01000 9:01001

Figure 27. (continues)
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10:01010 11:01011 12:01100 13:01101 14:01110

15:01111 16:10000 17:10001 18:10010 19:10011

20:10100 21:10101 22:10110 23:10111 24:11000

25:11001 26:11010 27:11011 28:11100 29:11101

30:11110 31:11111

Figure 27. Rule  90,  all  input,  input  locations  19,  27,  5,  29,  71,  40,  50,  48,
102,  96,  82,  90,  134,  128,  140,  13;  several  large  stable  regions  can  be
observed even at the end of the CA history.  

Rule 90 and Initial Condition Do Not Matter in Binary 

2n Grid Sizes  

5.5.5

In  [12,  20],  rule  90’s  relationship  to  grid  size  was  pointed  out.  The
randomization  period  of  the  rule  had  a  relationship  to  odd  versus
even  grid  sizes,  where  the  longest  period  was  with  primary  numbers
and the shortest was for 2n for some n. In this section, we see why the

binary  n2  grid  sizes  perform  as  they  do,  and  what  that  means  for
ReCAs.  First,  let  us  consider  rule  90’s  differentiation  pattern  as  seen
in Figure 3, as we can draw some understanding from it. The differen-
tiation  pattern  looks  just  like  the  rule  does  if  it  is  initiated  with  a
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single  centroid.  In  combination,  we  also  know  due  to  the  Boolean
logic of rule 90 that if all cells are black, the next state is all white, or
if every other cell is black, the next state is all white as well. 

Now, if we consider rule 90 with a central pattern in Figure 1, the
example of alternating black and white is happening for the entire per-
turbed  grid.  Indeed,  at  step  3,  the  central  seven  cells  are  alternating,
and  at  step  7,  the  central  15  cells  are  alternating  and  so  forth.  If  we
set  the  CA  grid  size  to  match  these  alternating  points  such  that  the
grid size is 2n  (2/4/8/16/32/64/...), these alternating cells will cause the
entire CA to become quiescent. This remains true not just for centroid
initialization,  but  because  of  the  difference  pattern,  as  seen  in  Figure
3, the CA for these 2n  grid sizes will always become quiescent within
steps.  This  effect  can  be  seen  in  Figures  28  and  29.  Therefore,  for
these grid sizes, the memory of any input will never exceed this limit.
If  we  apply  this  to  the  x-bit  memory  benchmark,  this  means  that  for
this  rule  and  these  grid  sizes,  the  CA  will  always  land  in  an  attractor
where  the  original  input  has  no  impact  on  the  final  CA  state,  as  can
be  seen  in  [54].  We  can  make  similar  predictions  for  many  of  the
other  additive  rules,  such  as  rules  60  and  102  will  exhibit  the  same
behavior but after twice as many steps, as they are not bidirectional.

Figure 28. Rule 90 grid size 16, centroid and random initiation.  

Figure 29. Rule 90 grid size 512, random initiation.  
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Rule 90 and Why Otherwise Even-Numbered Grid Sizes 

Perform Well  
5.5.6

If  we  take  this  understanding  of  the  differentiation  pattern  of  rule  90
and  look  at  grid  sizes  39,  40  and  41,  as  seen  in  Figure  30,  we  notice
that  in  one  of  them  the  attractor  length  is  very  short,  yet  not  in  the
others.  This  pattern  would  mean  that  this  short  attractor  length
would  also  occur  in  the  reservoir  for  width  40  in  Figure  31.  We
hypothesize  that  this  is  at  least  one  reason  why  rule  90  (and  rules  60
and  150)  have  such  a  marked  difference  in  performance  on  Ld  39
versus  Ld  40:  the  attractor  length  is  short  and  therefore  the  SVM
has to separate fewer instances.  

39 40 41

Figure 30. Rule 90 grid size 39 versus 40 versus 41. Grid sizes 39 and 41 fea-
ture a longer attractor length, while grid size 40 has a shorter one.  

Rule 150  5.5.7

Rule  150,  like  rule  90,  also  has  this  self-similar  differentiation  pat-
tern,  and  we  find  the  same  answer  here  for  why  it  performs  better  at
certain  grid  sizes.  As  we  can  see  in  Figure  32,  the  attractor  in  one  is
much shorter than in the other. We can also make similar predictions
to  rule  90  on  the  binary  grid  size,  but  due  to  its  pattern,  rather  than
going  quiescent,  the  CA  would  end  up  in  the  same  state  as  its  initial
condition.  
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Figure 31. Rule  90  example  with  Ld  40  in  four  slices  showing  a  repeating
pattern.  

39 40 41

Figure 32. Rule  150  grid  sizes  39,  40  and  41.  Grid  sizes  39  and  41  feature  a
longer attractor length, while grid size 40 has a shorter one.
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Note  that  these  rules  do  not  behave  quite  as  chaotically  as  they
were  perceived  to  in  [55,  p.  227].  Though  they  are  examined  under
different  conditions,  this  is  a  much  shorter  attractor  length  and  puts
into  question  whether  these  rules  deserve  to  be  classified  as  chaotic
under these conditions. 

Discussion and Conclusion  6.

We  have  in  this  and  past  work  conducted  the  most  extensive  explo-
ration of ECA parameters for ReCAs and pointed out observations of
many results. In this section, we will sum up the results as well as tie
them to the greater context of CAs, RC and ReCAs.  

I  Is about More than Just Reservoir Size6.1

Considering  the  experiments  with  varying  I  in  contrast  to  those  with
varying  Dp  and  those  with  simultaneously  varying  Dp  over  Ld,  some

rules,  like  rules  3,  15  and  56,  showed  dynamics  in  the  I  but  not  the
same  trends  in  the  Dp,  while  none  of  the  rules  explored  showed

dynamical  behavior  over  small  increments  of  Dp  in  the  Dp  over  Ld

experiments.  This  indicates  that  the  timesteps’  length  did  not  much
affect  the  results  in  these  examples,  leaving  only  the  conclusion  that
the highly dynamic behavior in these rules comes from the number of
pure  CA  steps  between  inputs.  So  we  can  say  that  there  are  patterns
around  the  parameter  of  I  that  are  not  just  about  the  reservoir  size.
We  can  make  a  similar  argument  about  the  other  parameters  that
affect the reservoir size, the R and Ld parameters [15].  

The Importance of Grid Size Ld6.2

We have seen further evidence of how Ld  or the grid size will greatly
affect  performance  in  some  rules,  particularly  in  the  rules  most  stud-
ied  in  literature  on  ReCAs.  We  have  seen  how  particular  configura-
tions  have  great  importance,  such  that  they  can  enhance  or  even
break  the  ability  of  the  reservoir  to  perform  the  simple  task  of  5-bit
memory.  

Attractor Length and Dp  6.3

We  have  seen  that  in  certain  CAs  where  their  attractor  length  is
already reached, a longer Dp does not hamper performance. Addition-

ally, in many rules, due to the ordered nature of always inputting the
distractor at the same locations, the distractor does not strongly affect
the reservoir’s capabilities. Although exact length sometimes does still
affect performance in dynamic ways, we hypothesize this is due to the
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exact expansion and contraction of the input such that it hit at better
lengths, making either the input or cue signal easier or harder to sepa-
rate in the reservoir.  

Less Is More, Sometimes  6.4

It is natural to assume that, as a general trend, bigger reservoirs mean
better  performance,  but  it  is  important  to  note  that  there  are  other
parameters such as the grid size that affect performance. Furthermore,
in  all  parameters  that  affect  grid  size  or  reservoir  size  (Ld,  R  and  I),
we  see  many  exceptions  where  smaller  reservoirs  with  the  same  rule
outperform the effect of a larger reservoir.  

Patterns within Patterns  6.5

We  have  seen  evidence  that  the  performance  of  rule  90  has  patterns
that  are  not  simple;  there  are  patterns  within  patterns  of  the  parame-
ters’ performance. That is, checked even numbers seem better, but the
worst  theoretical  performing  ones  are  binary  values  for  rule  90.  For
this  single  rule,  there  are  at  least  two  patterns  affecting  performance.
We  hypothesize  that  this  is  not  only  true  for  this  single  rule  and  that
there are many patterns we have not perceived.  

Not Quite Chaotic  6.6

We  have  also  seen  how  some  classified  chaotic  rules  behave  notice-
ably  less  chaoticically  under  certain  circumstances,  at  least  regarding
the  attractor  length.  That  means  if  it  were  possible  to  neatly  catego-
rize  ECAs  from  chaotic  to  ordered,  this  would  then  depend  on  the
parameters, and different parameters might yield a different order. As
was  demonstrated  for  asymptotic  behavior  for  different  initial  condi-
tions in [26], similarly this can be true for other parameters, for exam-
ple, the grid size.  

Attempts at mapping CA rule space over some variable or function
and identifying an edge of chaos point only worked in non-ECA CAs
[25].  If  mapping  ECA  rule  space  over  some  variable  or  function  and
identifying the edge of chaos could be done, then it would need to at
least include features such as the grid size and initial condition.

Pseudorandom Rule 30, Why the Sharp Turn?  6.7

As observed in [15] and in Figure 12, the strong chaotic rules exhibit
a sharp turn when the 5-bit memory benchmark changes from hard to
trivial.  Rule  30  is  part  of  this  group  and  is  seen  as  the  quintessential
pseudorandom  number  generator  rule,  particularly  its  central  column
[55,  p.  315].  This  rule  and  those  similar  to  it  would  be  expected  to
turn  the  original  five  bits,  due  to  the  tiny  variations  between  them,
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into  very  different  configurations  of  the  CA  over  time  (deterministic
chaos).  Essentially,  every  configuration  that  the  SVM  has  to  separate
is turning pseudorandom and very likely to be unique. Our SVM sim-
ply  then  needs  to  be  able  to  separate  the  532  160  (final  five  out-
put steps of every permutation) final output steps from the remaining
(21032) - 160  6560 output steps. It appears that if the vector our
SVM has access to is large enough (I ≥ 4), or if the separating classes
are  easier  (Nb ≤ 4),  this  turns  very  possible  and  quickly  trivial.  Inter-
estingly,  we  tried  to  do  the  same  x-bit  memory  benchmark,  but
instead of using a CA, we generated and used a pseudorandom vector
of  the  same  size  and  data  type  as  the  CA  would  have  produced;  the
results can be compared to rule 30 in Table 5. Despite this being a ran-
dom  vector,  the  SVM  could  still  separate  in  all  instances  where  rule
30  allowed  it  to  separate.  The  following  quote  is  attributed  to  Linus
Torvalds:  “Given  enough  eyeballs,  all  bugs  are  shallow.”  If  we  steal
this  and  apply  it  to  our  context,  we  could  say  that  “given  enough
dimensions,  all  classifications  are  trivial,”  provided  that  your  sub-
strate  is  exhibiting  sufficient  deterministic  chaos  and  that  you  do  not
cross-validate  or  apply  similar  methods.  The  conclusion  of  this  might
make  it  seem  that  we  are  stating  that  if  you  cannot  classify,  then  use
more dimensions, but this is more of a warning, if your system is only
able  to  classify  because  you  use  so  many  dimensions  that  even  a
pseudorandom  number  generator  can  solve  it,  then  will  the  solution
generalize? Moreover, will the solution even scale?  

Metric Rule 30 Random Vector

Nb  4 Nb  5 Nb  4 Nb  5 

w 100 7.8 100 9.2

P% 100 0 100 0

Dp  50 Dp  100 Dp  50 Dp  100 

w 80 49 79 51

P% 0 0 0 0

I  3 I  4 I  3 I  4 

w 82 100 87 100

P% 0 100 0 100

Table 5. Data for solving the x-bit memory benchmark with a random vector
versus rule 30.  

The Limitations of the x-Bit Memory Benchmark  6.8

The  history  of  this  5-bit  memory  benchmark  is  a  bit  muddled,  but
regardless,  does  this  benchmark  make  sense  as  the  standard  of
ReCAs? Said differently, does it still select for beneficial properties?  
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We  have  identified  that  the  x-bit  memory  benchmark  selects  fea-
tures such as, Can the cue signal be detected?; Do the different inputs
lead  to  different  states  in  the  reservoir?;  Does  the  distractor  period
not perturb the original input of the system? The second one seems a
bit  analogous  to  separation  property  [3]  or  deterministic  chaos,  but
the  third  one  is  conceptually  the  opposite  of  the  echo  state  property,
as memory will not fade. Are these the right features to ask of a good
reservoir? Or rather perhaps the benchmark is not all that useful as a
high truth and only is useful as a low bar to pass. 

Let us put some of our specific findings in a real example. We just
showed  how  the  benchmark  can  be  solved  with  sufficient  dimensions
and a random vector. In Table 5, I  4, the vector that the SVM has
access to is IRLd  4440  640 dimensions. In [38], the vector
used  was  4820  640,  meaning  at  least  for  Dp  200  the  bench-

mark  can  be  solved  using  just  this  feature.  This  could  also  further
explain  why  more  of  the  asynchronous  ECAs  perform  better,  the
introduction  of  a  stochastic  order  of  updates  simply  pushes  the  rules
to  behave  more  chaotically,  allowing  them  to  solve  the  benchmark
using just pseudorandomness. 

One  alternative  is  changing  the  benchmark,  say  if  the  distractor
period input is placed not in the same location every time, but chang-
ing  locations,  this  might  be  better  at  demonstrating  fading  memory.
Moreover,  the  training  and  testing  on  the  same  data  mean  no  cross-
validation,  but  we  could  simply  add  cross-validation  between  differ-
ent  input  locations,  and  it  should  still  be  possible  to  solve  in  some
aspects.  Furthermore,  maybe  the  x-bit  memory  benchmark  just  does
not  fit  well  with  CAs,  and  the  concept  of  fading  memory  is  not  a
good  quality  measure  for  ReCAs,  and  new  measures  should  be
invented  in  the  CA  context.  Finally,  as  we  have  previously  hinted  at,
computation  is  just  computation;  its  usefulness  depends  on  the  con-
text.  Therefore,  any  true  usefulness  of  ReCAs  can  only  be  demon-
strated by doing something useful with them. 

Future Work7.

The dynamical nature of the parameter space presents us with a prob-
lem: how do we find good combinations? Considering the many ways
that the different parameters can be combined, an exhaustive search is
not  feasible,  but  if  we  can  work  on  good  methods  to  search  for  a
given  combination—for  example,  use  an  evolutionary  algorithm  to
optimize for good parameters—this could help us utilize the potential
of reservoir computing with cellular automata (ReCAs).  

We  have  now  looked  very  deeply  at  ReCAs  in  the  context  of  the
x-bit memory benchmark, but this benchmark only tests for memory,
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and the parameter space would likely look very different for a bench-
mark  that  relies  more  on  the  complex  interaction  of  the  information
rather  than  just  its  persistence.  Therefore,  running  other  experiments
using  different  benchmarks,  for  example,  reinforcement  learning  in
the AI Gym [56], could yield interesting results.

Cellular  automata  (CAs)  are  a  very  specific  substrate  and  can  be
viewed as a special case of random Boolean networks (RBNs), and we
can view RBNs as a special case of neural networks (NNs). In the con-
text  of  reservoir  computing  (RC),  what  is  gained  or  lost  by  this  con-
strained version? it could be useful to understand CAs and RBNs and
even NNs in contrast to each other and RC, to better understand the
strength and weaknesses of each substrate. 
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