
Investigating Rules and Parameters of
Reservoir Computing with Elementary

Cellular Automata, with a Criticism of
Rule 90 and the Five-Bit Memory

Benchmark

Tom Eivind Glover1,4

Pedro Lind1

Anis Yazidi1

Evgeny Osipov2

Stefano Nichele1,3

1
 Department of Computer Science
Oslo Metropolitan University
Oslo, Norway

2
 Department of Computer Science, Electrical and Space Engineering
Luleå University of Technology
Luleå, Sweden

3
 Department of Computer Science and Communication
Østfold University College
Halden, Norway

4
 tomglove@oslomet.no, tom.eivind.glover@gmail.com

Reservoir computing with cellular automata (ReCAs) is a promising
concept by virtue of its potential for effective hardware implementa-
tion. In this paper, we explore elementary cellular automata rules in
the context of ReCAs and the 5-bit memory benchmark. We combine
elementary cellular automaton theory with our results and use them to
identify and explain some of the patterns found. Furthermore, we use
these findings to expose weaknesses in the 5-bit memory benchmark as
it is typically applied in ReCAs, such as pointing out what features it
selects for or solving it using random vectors. We look deeply into previ-
ously successful rules in ReCAs such as rule 90 and explain some of the
consequences of its additive properties as well as the correlation
between grid size and performance. Additionally, we present results
from exhaustively exploring ReCAs on key parameters such as distrac-
tor period, iterations and grid size. The findings of this paper should
motivate the ReCAs community to move away from using the 5-bit
memory benchmark as it is being applied today.

Keywords: Reservoir Computing; Cellular Automata; Reservoir
Computing with Cellular Automata (ReCAs); Edge of Chaos

https://doi.org/10.25088/ComplexSystems.32.3.309

mailto:tomglove@oslomet.no
mailto:tom.eivind.glover@gmail.com
https://doi.org/10.25088/ComplexSystems.32.3.309

Introduction1.

A common method in the machine learning (ML) community is to
rely on cloud computing, cluster computing or even supercomputers
for training. These designs perform well due to their accuracy and
flexibility; however, training requires large amounts of computation,
and computation requires electricity, and electricity has a cost. This
cost is not only money but can also be put into context as an environ-
mental burden [1].

A common but energy-intensive paradigm for artificial intelligence
(AI) is to use deep learning with error backpropagation. Furthermore,
some data, such as time series data, typically requires some form of
recurrent neural network (RNN), which is often trained using back-
propagation through time. These methods not only require a good
deal of energy and time to train, but they also require careful design
of the network architecture as well as global error calculations, which
imply a form of centralized control.

Reservoir computing (RC) is a framework that allows for the speed-
ing up of the training by relying on an untrained but dynamically set
up substrate. The high-dimensional results from the substrate are then
separated by a trained single linear output layer. Relying on only a
single trained layer would naturally require less training time. The
concept originated in echo state networks [2] and liquid state
machines (LSMs) [3] and since then has been commonly referred to
under the umbrella term RC. One interesting feature of RC is that it
is very substrate independent and can utilize many different kinds of
substrates [4].

One such substrate is cellular automata (CAs). We can consider
CAs a special case of neural networks with discrete states and uni-
form connectivity. One advantage of this substrate is that it can be
implemented into hardware such as field-programmable gate arrays
(FPGAs) [5]. This hardware implementation affords energy-efficient
computation and fast execution, as the FPGAs can support parallel
execution in a circuit-level performance. Furthermore, in some con-
texts like smart devices or drones (Edge AI), the energy-intensive
and/or cloud-based solutions are not feasible due to availability,
latency, energy usage or even privacy [6]. Some hyperdimensional
computing (HDC) systems such as [7] show promising results and
include a cellular automaton (CA) in FPGAs serving for one part of
the HDC architecture.

Reservoir computing with cellular automata (ReCAs) is the combi-
nation of the two, RC with a CA for the reservoir substrate. It was
first explored in [8] and subsequently in many other studies [9–14].
All these studies are mostly exploratory and none uses the entire rule

310 T. E. Glover, P. Lind, A. Yazidi, E. Osipov and S. Nichele

Complex Systems, 32 © 2023

space of elementary CAs (ECAs). In this paper, we investigate and elu-
cidate interesting results in ReCAs, such as rule 90’s relationship to
grid size. Additionally, we expand the results of our previous work
[15] by testing many additional standard parameters on the x-bit
memory benchmark. The main findings of this paper are:

◼ We show an example of rule 90 being capable of changing fundamental
behavior based on small changes in a parameter. Additionally, we show
consequences of rule 90’s additive behavior and tie it into ReCAs. Fur-
thermore, we show that its performance on the x-bit memory bench-
mark does not necessarily make it a good reservoir.

◼ We demonstrate how deterministic chaos and sufficient dimensions can
be used to solve the x-bit memory benchmark and argue why it is not
necessarily a good thing.

◼ We identify and discuss some weaknesses in the x-bit memory bench-
mark as it is commonly applied today.

◼ We extend past work with additional extensive results in ReCAs on the
x-bit memory benchmark on the parameters distractor period Dp, itera-

tions between input I and Dp and grid size combined.

Background 2.

Cellular Automata 2.1

CAs are a simple model consisting of a grid of cells possessing a lim-
ited set of k discrete states placed on a uniformly connected grid, typi-
cally in one or two dimensions. The cell state changes iteratively,
depending on the state of the neighbors. Which neighbor state combi-
nation results in which next state is determined by a lookup table,
typically called the transition table (TT). CAs were first used to study
self-replication by John von Neumann in 1940, but not published
before 1966 [16]. It can be considered an idealized system for parallel
and decentralized computation [17].

Elementary Cellular Automata 2.1.1

The simplest cellular automaton (CA) form is an elementary CA
(ECA), a subset of CAs with two discrete states, arranged in one
dimension, and a neighborhood schema of direct left and right neigh-

bor as well as itself. Contained within this rule space of just

22
3
 256 rules is a universe that can be extensively studied. Each

individual rule is conventionally named after the output of the

Investigating Rules and Parameters of Reservoir Computing 311

https://doi.org/10.25088/ComplexSystems.32.3.309

https://doi.org/10.25088/ComplexSystems.32.3.309

transition table in decimal; for example, Binary(01 101110) 
Decimal(110). Rule 110 has even been shown to be computationally
universal [18], but we can question whether that is a useful definition
of computation for a parallel and distributed computational
substrate [19].

Additive Cellular Automata 2.1.2

All ECA rules are equivalent to simple formulas in algebraic or
Boolean logic. As an example, rule 90 (Figure 1), consists in an XOR
between the right and left neighbor. The additive CAs (ACAs) are a
special group of ECAs that can be simplified to adding the relevant
neighbors together and applying modulo 2 to the result. The list of
ECAs that can be reduced to simple additive operations based on the
neighborhood is shown in Table 1. This additive property allows for
a more complete understanding of the many global properties of the
additive CA (ACA) rules [20]. A more accessible explanation of ACAs
can be found at [21].

Figure 1. The first 25 steps of rule 90 with a single central on state as initial
condition.

Differentiation Pattern 2.1.3

One tool that is sometimes used to analyze CAs is the CA difference
pattern. The process is simple: take a CA, flip a single bit in the initial
condition, compare to the original and see what is different in the
development. In Figure 2 we see this in rule 110; for this rule the dif-
ference pattern will vary quite a bit based on the initial condition. In
Figure 3 we see the difference pattern for rule 90. Note that the differ-
ence pattern is exactly like the standard central pattern generated by
rule 90, as can be seen in Figure 1; this is a feature of the additive CA.

312 T. E. Glover, P. Lind, A. Yazidi, E. Osipov and S. Nichele

Complex Systems, 32 © 2023

Rule Boolean

Rule 0 0

Rule 60 c-1 ⊕ c0

Rule 90 c-1 ⊕ c1

Rule 102 c0 ⊕ c1

Rule 150 c-1 ⊕ c0 ⊕ c1

Rule 170 c1

Rule 204 c0

Rule 240 c-1

Table 1. ACA and corresponding Boolean form. In this notation, c-1, c0 and
c1 are the left, central and right neighbor, respectively.

Figure 2. Rule 110 difference pattern. Left to right, random initialization, cen-
tered bit changed and difference pattern.

Figure 3. Rule 90 difference pattern. Left to right, random initialization, cen-
tered bit changed and difference pattern.

Equivalent Elementary Cellular Automata 2.1.4

Many ECA rules are equivalent to other rules under simple mirror
and complement transformation. The mirror transformation is the
reflection of the rule over the x axis (e.g., rule 170 is left-shift, and its
mirror is rule 240, right-shift). The complement transformation is the
flipping of all bits in the TT, both neighborhood and result, then
reordering (e.g., rule 0 is everything turns to white; complement is
rule 255, everything turns to black). In addition, there is the combina-
tion of both mirror and complement transformations. Using these
equivalent classes, the 256 ECA rules get reduced to 88 unique rule
groups, Table 2. Typically, it is not necessary to evaluate all the rules
within a group but rather to use the minimum equivalent (ME) rule to

Investigating Rules and Parameters of Reservoir Computing 313

https://doi.org/10.25088/ComplexSystems.32.3.309

https://doi.org/10.25088/ComplexSystems.32.3.309

represent its group. The 88 ME rules can be considered to be the rep-
resentation of the entire rule space, though to be clear, the equivalent
under the transformations does not mean they are fully equal. If the
computation that is required is a right-shift, rule 240 would be the
most efficient way to achieve this and would outperform rule 170.

Rule Equivalent Rule Equivalent Rule Equivalent

0 255 35 49,59,115 108 201

1 127 36 219 110 124,137,193

2 16,191,247 37 91 122 161

3 17,63,119 38 52,155,211 126 129

4 223 40 96,235,249 128 254

5 95 41 97,107,121 130 144,190,246

6 20,159,215 42 112,171,241 132 222

7 21,31,87 43 113 134 148,158,214

8 64,239,253 44 100,203,217 136 192,238,252

9 65,111,125 45 75,89,101 138 174,208,244

10 80,175,245 46 116,139,209 140 196,206,220

11 47,81,117 50 179 142 212

12 68,207,221 51 146 182

13 69,79,93 54 147 150

14 84,143,213 56 98,185,227 152 188,194,230

15 85 57 99 154 166,180,210

18 183 58 114,163,177 156 198

19 55 60 102,153,195 160 250

22 151 62 118,131,145 162 176,186,242

23 72 237 164 218

24 66,189,231 73 109 168 224,234,248

25 61,67,103 74 88,173,229 170 240

26 82,167,181 76 205 172 202,216,228

27 39,53,83 77 178

28 70,157,199 78 92,141,197 184 226

29 71 90 165 200 236

30 86,135,149 94 133 204

32 251 104 233 232

33 123 105

34 48,187,243 106 120,169,225

Table 2. The group of equivalent rules. The primary column is the minimum
equivalence rule that represents its group of equivalent rules, if any.

314 T. E. Glover, P. Lind, A. Yazidi, E. Osipov and S. Nichele

Complex Systems, 32 © 2023

Cellular Automata Classifications 2.1.5

A favorite pastime of the CA community is to classify and group CAs
into discrete groups. In this paper, two classifications will be
explained, Wolfram classification and ECAs with memory (ECAM).
There are many other classifications, such as Li and Packard’s classifi-
cation, index complexity classification or power spectral classifica-
tion. A good overview of these previously mentioned classifications
and many more can be found in [22].

Wolfram Classification 2.1.6

One well-known classification is the Wolfram classification [23],
where CAs with random initial conditions were explored. It was
observed that the distinct rules for most initial conditions fit within
one of four classes:

◼ Class 1. Evolves into homogenized states.

◼ Class 2. Evolves into a set of simple separate stable or short periodic
structures.

◼ Class 3. Evolves into a chaotic pattern.

◼ Class 4. Evolves into complex localized structures that sometimes are
long lived.

Examples of the four behaviors can be seen in Figure 4.

Figure 4. Examples of the four Wolfram classes. Top: rules 40 and 170,
bottom: rules 30 and 110. All rules with random initialization, grid size 200
and 120 CA steps.

Investigating Rules and Parameters of Reservoir Computing 315

https://doi.org/10.25088/ComplexSystems.32.3.309

https://doi.org/10.25088/ComplexSystems.32.3.309

Elementary Cellular Automata with Memory 2.1.7

ECAM is another classification of ECAs. In this classification, ECAs
are paired with a memory function that combined the n previous cell
states using minority, majority and parity function [24]. The ECA
rules were then classified depending on how the rule changed behav-
ior or not in relation to the Wolfram classification. The ECA rules
were found to group into three classes:

◼ Strong. Most memory functions change the rule to another different
class quickly.

◼ Moderate. Memory functions can transform to a different class and con-
serve the same class as well.

◼ Weak. Memory functions are unable to transform into another class.

Note that these three definitions are slightly switched in compari-
son to the original publication: here the definition for strong and
weak have been mutually exchanged. The reason for this is that after
reviewing the evidence of the same paper, there is a contradiction of
the examples and evidence. For example, rule 126 shows complex
behavior under some memory functions. Additionally, consider that
three prepositions of the paper in relation to the classification defini-
tions contradict each other in the original work. This correction does
not alter the distribution of the rules. As such, there is no reason to
believe that this is a mistake made in bad faith, as it does not seem to
change the quality of the results. Yet, it is still important to clarify, as
building our rationale on the conclusion of particular rules from a par-
ticular class would become quite wrong if applied under the previous
definitions.

The ECA rules in regard to ECAM and the Wolfram classification
can be found in Table 3.

Class I Rules
Strong 128
Moderate 8,32,40,136,160,168
Weak 0

Class II Rules
Strong 2, 7, 9, 10, 11, 15, 24, 25, 26, 34, 35, 42, 46, 56, 57, 58, 62,

94, 108, 130, 138, 152, 154, 162, 170, 178, 184
Moderate 1, 3, 4, 5, 6, 13, 14, 27, 28, 29, 33, 37, 38, 43, 44, 72, 73, 74,

77, 78, 104, 132, 134, 140, 142, 156, 164, 172
Weak 12, 19, 23, 36, 50, 51, 76, 200, 204, 232

316 T. E. Glover, P. Lind, A. Yazidi, E. Osipov and S. Nichele

Complex Systems, 32 © 2023

Class III Rules
Strong 18, 22, 30, 45, 122, 126, 146
Moderate
Weak 60, 90, 105, 150

Class IV Rules
Strong 41, 54, 106, 110
Moderate
Weak

Table 3. All minimum equivalent ECAM classifications.

Edge of Chaos and λ Parameter 2.2

The parameters space of a complex system often has a phase transi-
tion between order and disorder; this phase transition region is often
called “edge of chaos.” It is theorized that this region commonly con-
tains the highest capacity for computation, defined as transformation,
manipulation and storage of information.

Langton [25] explored this theory in one-dimensional multistate
CAs with enlarged neighborhoods and found that the CA rule space
forms a phase transition between order and chaos when organized
over a λ (lambda) parameter. The λ parameter starts by defining a
state as the quiescent state. To generate transition tables with a given
λ value, we can allocate to each TT entry a random number α uni-
formly distributed between 0 and 1 and attribute the quiescent state
to all entries with α < λ and a nonquiescent state to the others. Using
this method, Langton generated different candidate rules in several
regions of the rule space over the λ parameter. He showed that the
rule space organizes into a phase transition between order and chaos
and that strong candidates for computation are more likely to be
found there. Notably, this λ method does not seem to work in the
ECA rule space, as mentioned in [25] and previous work.

Kolmogorov Complexity, Lossless Compression, Shannon

Entropy and Block Decomposition

2.3

One rigorous way to assess behavior in ECAs can be found in [26]. In
this paper, Zenil explored CAs, asymptotic behavior and complexity.
First, this paper demonstrates how rule 22 can behave differently
depending on the initial condition and how this is a problem of the
Wolfram classification. Then the paper alleviates this problem by
redefining the Wolfram classification as the limit of the rule’s behav-
iors, for example, to the highest class (complexity) of all its behaviors.
Second, the paper then explores ECAs and estimates the Kolmogorov
complexity [27] using three methods: lossless compression, Shannon
block entropy and block decomposition. Using these metrics and the

Investigating Rules and Parameters of Reservoir Computing 317

https://doi.org/10.25088/ComplexSystems.32.3.309

https://doi.org/10.25088/ComplexSystems.32.3.309

new classification method, some ECA rules are reclassified. Finally,
using these methods, the paper estimates the complexity ratio of differ-
ent rule spaces.

Reservoir Computing 2.4

RC is a substrate-independent framework for computing. RC is inde-
pendent because it works on many different substrates, but to be
clear, different substrates would of course have different capabilities.
The RC framework consists of three parts: the input, the untrained
reservoir and the output.

The input part encodes some information into the untrained reser-
voir and typically into higher dimensions. The untrained reservoir typ-
ically expands, modifies or changes the information, but could in the
context of the framework be considered a black box, as seen in Fig-
ure 5. The output part is typically linear and does dimensional reduc-
tion and extracts useful features.

Figure 5. RC as a substrate-independent framework.

The RC concept originated in echo state networks (ESNs) using
recurrent neural networks (RNNs) as a substrate [2] (see Figure 6)
and in LSMs using a spiking neural network for a substrate [3]. Since
then, both ESNs and LSMs and a host of other substrates have been
put under the umbrella term of RC. Due to RC’s substrate-indepen-
dent nature, many different substrates have been explored and/or
compared [4]. Some explore different configurations of topology as

Figure 6. Basic network architecture of an echo state network (ESN).

318 T. E. Glover, P. Lind, A. Yazidi, E. Osipov and S. Nichele

Complex Systems, 32 © 2023

in [28], where instead of the typical one big reservoir, deep layered sub
reservoirs were analyzed. RC is also a very popular method with physi-
cal reservoirs [4]; as an extreme example, in [29] it was demonstrated
that RC can use the surface waves on a bucket of water as a reservoir
and they successfully solved speech recognition and XOR tasks using
this substrate. One very interesting substrate is real biological neural
networks (BNNs), specifically disassociated neurons that self-organize
over a microelectronic array [30].

There is also evidence of RC being a useful trick for computation
(one of many) used in biology. In [31] they showed that a linear classi-
fier can extract information about the short-term past stimulus
(images, XOR) from the primary visual cortex of an anaesthetized
cat. Also in other biological, but also computational processes, there
is some evidence of RC. In [32] the ESN (RC) model was used to sim-
ulate an example of a known genetic regulation network (GRN) pro-
cess and performed satisfactorily. Similarly in [33] a liquid state
machine (LSM) RC model was used.

Echo State Property and Fading Memory Property2.4.1

An important property in ESNs is the echo state property (ESP). To
have this property, the reservoir must, given some input signal, asymp-
totically remove the information of the initial condition. In [2], it is
shown that for a reservoir with specified conditions, it violates the
ESP if the spectral radius of the weight matrix is larger than 1, and it
was empirically observed that for spectral radius below 1, the ESP is
given. Note that in [34] Jaeger warns that this does not mean that
ESP is granted for any system with a spectral radius of below 1
(asymptotically stable). It is not a necessary or sufficient condition.

Similar to the ESP is the concept of the fading memory property. It
states that an input/output system is said to have fading memory
when the outputs associated with inputs that are close in the recent
past are close, even when those inputs may be very different in the
distant past [4, 35].

Reservoir Computing with Cellular Automata2.5

The first study that introduced CAs as a substrate in RC is [8]. In this
study, the Game of Life and several ECA rules were investigated as
reservoir substrates and tested on a 5-bit and a 20-bit memory bench-
mark. In addition, it presents a theoretical comparison of CAs versus
ESNs, using the metric of the number of operations needed to solve
the benchmark, which documents a clear advantage of using CAs.

As an ECA reservoir only relies on simple discrete binary interac-
tions between cells (e.g., Table 1), it affords a hardware-friendly
implementation of a substrate. The problem (perhaps ironically)

Investigating Rules and Parameters of Reservoir Computing 319

https://doi.org/10.25088/ComplexSystems.32.3.309

https://doi.org/10.25088/ComplexSystems.32.3.309

becomes how to implement the readout layer in hardware. In [5]
ReCAs using ECAs with a max-pooling and softmax strategy were
implemented on a field-programmable gate array (FPGA). In [36] a
CA was implemented on a complementary metal-oxide semiconduc-
tor (CMOS) combined with a custom hardware support vector
machine (SVM) implemented in resistive random-access memory
(ReRAM). In [37] a synthesized hardware implementation of ReCAs
using ECAs with a max-pooling and ensemble bloom filter classifier
was used, showing impressive results compared to “state of the art”
in terms of energy efficiency, memory usage and area (number of
gates) usage, but with comparably poor accuracy [5].

Since the first paper on ReCAs [8], other works have studied
ReCAs using the 5-bit memory benchmark. In [9], the structure of the
CA was changed to a deep-layered architecture and compared to a
single layer, which resulted in noticeable performance improvements.
In [10] the CA substrate was organized as consisting of two regions of
different ECA rules. Different combinations of rules were explored,
and some of them showed great promise. In [11] different methods of
cell history selection that are used for the classification model were
explored on the 5-bit memory task, a temporal order task and
arithmetic and logic operation tasks. In [13] CA rules with multiple
states and larger neighborhoods were evolved and then tested on the
5-bit memory benchmark. In [38] ECAs and asynchronous ECAs
were tested and compared on the 5-bit memory benchmark, mainly in
the context of the distractor period. In [15] the full ECA set was
tested using key parameters of number of bits Nb, redundancies R
and grid size.

ReCAs are also used on benchmarks other than the 5-bit memory
benchmark. For example, in [5, 37] ReCAs were implemented in hard-
ware and tested using the Modified National Institute of Standards
and Technology database (MNIST). In [14] ReCAs were used to solve
tasks of sine and square wave classification, nonlinear channel equal-
ization, Santa Fe laser data and iris classification.

Methodology3.

5-bit Memory Benchmark 3.1

The 5-bit memory benchmark traces its root to the short long-term
memory task introduced in [39]. It is often cited as the source [8–10,
13], but none of the benchmarks in [39] are the 5-bit memory bench-
mark, although some of them are very similar in intention. The earli-
est source where the 5-bit memory benchmark is recognizable is in
[40], but named “noiseless memorization,” corroborated with the
clearer and more detailed explanation of the benchmark in [41, p. 47]
and in [42].

320 T. E. Glover, P. Lind, A. Yazidi, E. Osipov and S. Nichele

Complex Systems, 32 © 2023

The 5-bit memory benchmark’s goal is to test whether a system is
capable of memorizing a 5-bit string and reproducing it at a later
stage. An example of the 5-bit memory benchmark can be seen in
Table 4. The benchmark has four input channels, where only a single
channel can be active at a given time. The first two input channels are
dedicated to the five bits. The bits are fed into the system sequentially
over five steps. The first input channel can be viewed as the “pure”
five bits and the second as the reversed five bits. The third input chan-
nel is dedicated to constantly feeding input into the system during the
distractor period and the output stage. The fourth input channel is
dedicated to the cue signal, signaling that the output is to be given.
The benchmark has three output channels, where one and only one
should be active at a given time. Note that some earlier examples
have four output channels but one is dropped, as it is never intended
to give output. The first two are dedicated to the original five bits
inserted into the system and should sequentially output them follow-
ing the cue signal; the final output channel should give a signal in all
other cases. Due to the nature of this output, we can abstract and
view the task as a temporal classification problem.

Step Input Output Stage

1 1 0 0 0 0 0 1 Input bits to memorize

2 1 0 0 0 0 0 1

3 0 1 0 0 0 0 1

4 0 1 0 0 0 0 1

5 1 0 0 0 0 0 1

6 0 0 1 0 0 0 1 Distractor period

... 0 0 1 0 0 0 1

204 0 0 1 0 0 0 1

205 0 0 0 1 0 0 1 Cue signal

206 0 0 1 0 1 0 0 Output bits to memorize

207 0 0 1 0 1 0 0

208 0 0 1 0 0 1 0

209 0 0 1 0 0 1 0

210 0 0 1 0 1 0 0

Table 4. Example of the 5-bit memory task with distractor period of 200 and
input of the number 25 in binary form. Artifact inspired by [13].

In this paper, we will often call it the x-bit memory benchmark, as
we have varied the number of bits to be memorized. Also, note that
the 20-bit memory benchmark in at least some of the previous sources
is not the same as the 5-bit memory benchmark but with 20 bits to
memorize. The 20-bit memory benchmark uses seven input channels,
five for the input and a bit length of 10.

Investigating Rules and Parameters of Reservoir Computing 321

https://doi.org/10.25088/ComplexSystems.32.3.309

https://doi.org/10.25088/ComplexSystems.32.3.309

X-bit Memory Task in Reservoir Computing with

Cellular Automata

3.2

The benchmark itself has been presented independently of the chosen
substrate. We now detail the specific benchmark definition in the con-
text of a CA substrate.

As shown in Figure 7, additional steps have been added. First, the
encoding part, which considers how to inject the input into the
substrate. For binary data, there have been many different methods
proposed and/or implemented [8, 9, 11], but there are some common
tendencies. The input is usually randomly mapped into the CA in sev-
eral redundant mappings given by the redundancy R parameter. This
random mapping stays fixed throughout the experiment. In [8], it is
not completely clear, but it is claimed to be done using a vector of the
same size as the input. Considering Figure 4 and Table 3 from said
paper, there is a conflict, as that would mean that for rule 90,
T0  Dp  160 is more difficult than T0  Dp  200. This is entirely

possible but violates a claim in the paper that “there is a polynomial
increase in the minimum required reservoir size with number of bits
to be remembered and but a logarithmic increase with distractor
period.” Regardless, in later experiments [9, 10] a larger vector is
used. The size of this new vector is given by the Ld parameter.

Figure 7. Simple model of the different parts of ReCAs using the x-bit mem-
ory benchmark.

The simplest way to encode the input into the CA is to overwrite
the current state of a mapping. Since this might overwrite important
information in the CA, other methods have been used, such as simple
binary operations between the current state of the CA and the new
input value. In this paper, we use XOR between the current state and
input to encode into the CA.

The second component is the actual substrate itself, a CA in the
paper herein. This operates like any CA and can be of any dimensional
ity, with any number of states and with any neighborhood scheme.
Commonly, the CA permutes the input several steps before giving the
next input. Therefore, we can say that the CA and x-bit memory
benchmark exist on different timescales, as several CA steps are per-
formed between I/O steps. The number of additional CA steps before
the next input is represented by I. Some examples of what the CA his-
tory of the reservoir can look like are in Figures 8 and 9.

322 T. E. Glover, P. Lind, A. Yazidi, E. Osipov and S. Nichele

Complex Systems, 32 © 2023

Figure 8. Rule 110, input 10110, input locations 19, 27, 5, 29, 71, 40, 50,
48, 102, 96, 82, 90, 134, 128, 140, 132.

Figure 9. Rule 30, input 10110, input locations 19, 27, 5, 29, 71, 40, 50, 48,
102, 96, 82, 90, 134, 128, 140, 132.

The third part is the classification model (sometimes known as the
decoding stage). This stage uses the state of the CA (or a set of previ-
ous states) to classify and produce an output. Due to the nature of

Investigating Rules and Parameters of Reservoir Computing 323

https://doi.org/10.25088/ComplexSystems.32.3.309

https://doi.org/10.25088/ComplexSystems.32.3.309

RC, the classification model is commonly a linear model. Consider
that if we were to use a deep neural network as a classification model
rather than a linear one, this would cast doubt about whether the sep-
aration was done in the model or the substrate. Therefore, using a lin-
ear model demonstrates that the system is doing RC. When limited by
this requirement, two common models are typically used, that is, lin-
ear regression and SVM with a linear kernel. If linear regression is
used, it would need to be paired with a rounding function or some
max confidence method to produce clear output. If SVM is used, we
can take advantage of the fact that the output is always only a single
class and can therefore handle the model as a standard SVM model.

Perfect Score Metric versus Weighted Average Metric 3.3

In this paper, two different metrics were used to compare rules. The
perfect score P metric is the traditional and commonly used metric for
scoring on the x-bit memory benchmark. In this metric, every classifi-
cation for every permutation has to be correct; if a single classifica-
tion is wrong, no credit is given. In the example, Table 4 has 210
classifications. Therefore, if one of the total 21032  6720 (32 dif-
ferent permutations of 5 bits) is incorrect, a failed score of 0 is given.
Such a metric is very strict and makes it hard to identify configura-
tions close to solving the problem; therefore, we also use the weighted

average W metric. The average is weighted to adjust for the fact that
a large set of the classifications in the x-bit benchmark has the same
output. In the example in Table 4, 205 out of the 210 classifications
are the “no output state.” Therefore, correctly classifying 205 out of
the 210 states is trivial and could be done even without a reservoir or
even without input. The ratio of trivially classifiable states depends on
two parameters, the number of bits Nb and distractor period Dp, and

can be found using equation (1):

W 
Dp + (Nb)

Dp + (2Nb)
. (1)

Given that the fraction of correctly classified states is Sc, the W can
then be found using equation (2):

W 
Sc -W

1 -W
. (2)

Both metrics are then made into percentages for ease of com-
parison.

324 T. E. Glover, P. Lind, A. Yazidi, E. Osipov and S. Nichele

Complex Systems, 32 © 2023

Experimental Setup4.

Libraries and Source Code 4.1

The CA reservoir was modeled using the EvoDynamics framework
[43]. EvoDynamics natively supports CA reservoirs built from
TensorFlow, enabling the CA to run on TensorFlow-GPU. In addi-
tion, SkiKit-learn [44] was used to create the SVM with a linear ker-
nel, used for classification. The source code for the experiments can
be found at [45], and a more accessible way to navigate the data gen-
erated and the graphs generated can also be found on GitHub at [46].

Rule Order4.2

In the following sections, the rule space is sorted in the same way as
[15]. The intention is to organize the rule space such that rules with
similar behavior are placed adjacent. The rule space is ordered in
descending order of importance from three factors, first using
Wolfram classification class 1, 2, 3, 4; then on ECAM strong, moder-
ate and weak; and finally, the tie breaker is performance on Nb  3
in [15]. Wolfram classification was picked because it is the de facto
standard classification and more importantly because it correlates
well with behavior. ECAM was picked because the behavior (specifi-
cally classes 3 and 4) correlates well. Note that ECAM and the x-bit
memory benchmark both share the word memory but they refer to dif-
ferent concepts [24]. Indeed, memory refers to combining previous
CA steps with an operation, while in the x-bit memory benchmark,
memory refers to recovering earlier input. Finally, Nb  3 was picked
because it was seen as the simplest version of this benchmark run so
far. We acknowledge that this unconventional order might make it dif-
ficult in comparison to numeric sorting, or if you want to find your
favorite rule in the diagram.

Only the ME rule of each group is presented in the diagram, and in
addition, rules that did not perform beyond the trivial case of
performing 0 on the w on any experiment are not shown in the rule
diagrams. This is in slight contrast to [15], in that work rules were
filtered if they had a trivial performance on individual experiments
for the sake of space usage, but this makes it harder to navigate the
many different versions of the diagram; therefore, this is avoided in
this paper. No Wolfram class 1 made this distinction of nontrivial per-
formance; this is not surprising but might be worth noting to avoid
confusion.

Overview of Explored Reservoir Computing with Cellular
Automata Parameters

4.3

This benchmark and the CA setup have many parameters; they have
been introduced on demand, and to establish a better overview, we
list them here.

Investigating Rules and Parameters of Reservoir Computing 325

https://doi.org/10.25088/ComplexSystems.32.3.309

https://doi.org/10.25088/ComplexSystems.32.3.309

◼ R is the number of regions the CA is divided into.

◼ Ld is the width of the individual R.

◼ I is the number of CA-only iterations between input and historical
states (height) of the CA the SVM has access to.

◼ Dp is the length of the distractor period, or the number of distractor

inputs between the last memory input bit and the cue signal.

◼ Nb is the number of bits to be memorized.

R, I and Ld can be seen in Figure 10, and both Dp and Nb can be

seen in Table 4. Note that there are many parameters of the bench-
mark and CA setup that are not explored in this paper, for example,
encoding strategies.

Figure 10. Example showing R, I and Ld. Additionally, the top stream is an
example of how input is encoded temporarily into the reservoir.

Encoding Strategy 4.4

The 5-bit memory benchmark is a temporal benchmark, meaning the
input streams are inputted into the CA over time. The past input and
their “echos” can therefore still affect the CA configuration, and the
CA is no “tabula rasa” of only quiescent cells. In these experiments,
given the previous state S, the input streams Is are XORed together
S⊕ Is. A more general encoding strategy that would work for more
than two states would be: given the number of states Ns; (S + Is)%Ns.
This would be equivalent to the XOR strategy for binary states.

Results 5.

We present our results in this section, starting with the quantitative
results, as they do build up some evidence for our in-depth results,
which are discussed later.

326 T. E. Glover, P. Lind, A. Yazidi, E. Osipov and S. Nichele

Complex Systems, 32 © 2023

Exploring the Parameter Space 5.1

The quantitative experiments run in this paper greatly extend what
was done in [15], and this paper can be seen as a completion of impor-
tant hyperparameters, as it extends into parameters not explored in
the previous paper. We will go through three quantitative experi-
ments, one exploring the landscape of I, one exploring Dp and finally

one exploring Dp and Ld in combination. In all experiments, any

unspecified variable uses the default of R  4, Ld  40, I  2,
Dp  200 and Nb  5. All results are out of at least 100 runs; some

are more, as past experiments are also used in the results—for exam-
ple, in [15] experiments are made over the Ld parameter in the same
parameter space as this paper’s Dp and Ld experiment, and that

crossover region would then have results out of 200 runs. To be clear,
this was not done in some attempt to P-hack, but simply because the
past experimented parameter values were not excluded from later
experiments. Finally, we will also look at qualitative spacetime
diagrams of some ReCAs.

I Experiment 5.2

The I parameter results are shown in Figure 11. It is important to
note that this parameter controls both reservoir height and the num-
ber of pure CA steps between inputs. The parameter directly affects
how many data points get fed into the SVM; therefore, we could
assume that any dynamical behavior would be drowned out by this
feature, yet what we see is that many rules show clear dynamical
behavior. Extreme examples are the rules 3, 56 and 15, but also previ-
ously proposed good rules in ReCAs like rules 60 and 90. From the
aforementioned rules, rules 15 and 56 show odd I number preference,
and rules 3, 60 and 90 favor even-numbered I. In fact, for I  3,
rule 150 has a better score than rule 90. If past experiments had

Figure 11. I experiment.

Investigating Rules and Parameters of Reservoir Computing 327

https://doi.org/10.25088/ComplexSystems.32.3.309

https://doi.org/10.25088/ComplexSystems.32.3.309

instead of doubling R and I values used odd numbers for parameters
or maybe a prime number strategy, a different “best” rule might well
have emerged.

Dp Experiment 5.3

The main results are shown in Figure 12. This parameter affects the
experiment in two important ways: distractor steps inputted into the
system, which would also directly influence the total number of CA
iterations to run. This experiment is perhaps the most indicative of
rules exhibiting something analogous to fading memory, or the closest
thing to fading memory the discrete system of a CA can have. Many
rules show that the task becomes harder the larger the Dp, most

notably, in the W experiment this can be seen in the non-weak class
of CA. The weak chaotic rules do seem to exhibit this feature in the P
metric as a general trend, but also in detail show very opposed behav-
ior, rule 60 finding Dp  100 harder than Dp  200 or the rules 90,

105 and 150 finding Dp  100 easier than Dp  50.

Figure 12. Dp experiment.

Dp  4000 5.3.1

A further longer experiment testing Dp  4000 on rules that got a

significant score on Dp  300 is given in Figures 13 and 14. In these

results, many of the rules do not seem to find the problem any harder;
in fact, the rules 162, 10, 105 and 150 find it easier than Dp  300.

Naturally, this does not mean that we are observing a gaining mem-
ory, the opposite of a fading memory. First, due to that, the distractor
period perturbs at the same locations in a very ordered way, and the
CA can still settle into a short periodic attractor despite being continu-
ously perturbed. This can be seen happening in rule 170, due to it
looping around the CA, and the distractor input simply cancels the
previous distractor input and adds it again in turn [47]. We will go

328 T. E. Glover, P. Lind, A. Yazidi, E. Osipov and S. Nichele

Complex Systems, 32 © 2023

into this further in the spacetime diagram section. This feature does of
course not make the problem easier though, but it can prevent it from
becoming harder the longer the Dp is. Second, we know that many

rules expand and contract within the CA and that the perturbations
can cause different paths in the state. We hypothesize that all or some
of the six last I/O steps (i.e., cue signal and return of the original
5-bits steps) will be more separable for Dp = 4000 than for

Dp = 3000. These rules are likely to be in an attractor that is not fully

dependent on the initial mapping, and the length of the Dp makes the

cue signal hit different steps in that attractor that can be easily
separable.

Figure 13. Dp stable experiment, W metric.

Figure 14. Dp stable experiment, P% metric.

Dp over Ld Experiment 5.4

In this subsection, we look at results from rules 90, 150, 54 and 170
when looking at how small changes in Dp and Ld affect performance.

Rule 90 was picked, as it is viewed as the quintessential rule for
ReCAs. Rule 150 was picked as a close contestant to rule 90 that
other experiments have shown to have better performance under

Investigating Rules and Parameters of Reservoir Computing 329

https://doi.org/10.25088/ComplexSystems.32.3.309

https://doi.org/10.25088/ComplexSystems.32.3.309

specific circumstances, and we hypothesized we would find more
examples of this. Rule 54 was picked as it is, within our experiments,
the rule within the complex group that had the best performance on
small grid sizes. Finally, rule 170 was picked as a comparison, as it is
a very simple rule, but also because it performs very well in most
circumstances.

Rule 90 5.4.1

In Figures 15 and 16, we observe in rule 90 a clear pattern of good
performance in even-numbered Ld, as was found in [15]. In fact, out
of the 13200 trials using odd numbered Ld included in the data for
these two diagrams, not a single one got a perfect run, and only for
Ld  43 did any configuration get anything close to above the abso-

lute minimum in the W metric. The results further strengthen that this
combination of parameters Ld  40 and Dp  200 is a very good fit

for rule 90 on this benchmark. Also note that there are some exam-
ples of specific Dp that have an impact on performance.

Figure 15. Rule 90 I  1.

Figure 16. Rule 90 I  2.

330 T. E. Glover, P. Lind, A. Yazidi, E. Osipov and S. Nichele

Complex Systems, 32 © 2023

Rule 150 5.4.2

For rule 150 in Figures 17 and 18, we also see a similar pattern as in
rule 90 of Ld. As for the Dp pattern, it is less clear what the pattern is.

Note that for I  1, the best performance was found at Dp  198

and Dp  204, outperforming rule 90 with the same parameters. This

again indicates that if different standard parameters were picked for
this and past experiments, then perhaps different CA rules would
have been inspected and optimized.

Figure 17. Rule 150 I  1.

Figure 18. Rule 150 I  2.

Rule 54 5.4.3

We also wanted to inspect a rule classified as complex; rule 54 was
picked because it had the best performance on smaller reservoirs in
[15]. In Figures 19 and 20 the results are not as dynamic as the addi-
tive rules previously inspected, but also there is a weak pattern
between the two of odd versus even Ld. In addition, there seems to be
a slight “phase change” happening between Ld  39 and Ld  40,
most noticeable in I  2.

Investigating Rules and Parameters of Reservoir Computing 331

https://doi.org/10.25088/ComplexSystems.32.3.309

https://doi.org/10.25088/ComplexSystems.32.3.309

Rule 170 5.4.4

Finally, we also looked at rule 170 in Figure 21. No dynamical behav-
ior was expected, but there is slight evidence for a preference for
Ld / 3 for the P% metric, most notably in Ld  36 and Ld  39. More-

over, this is different in the W metric; in fact, the pattern is the oppo-
site: Ld / 3 indicates poor performance in this metric.

Figure 19. Rule 54 I  1.

Figure 20. Rule 54 I  2.

Figure 21. Rule 170 I  2.

332 T. E. Glover, P. Lind, A. Yazidi, E. Osipov and S. Nichele

Complex Systems, 32 © 2023

Spacetime Diagrams 5.5

In this subsection, we look at some specific spacetime diagrams and
rules.

Rule 204 5.5.1

We start with rule 204, a relatively simple rule. Rule 204 is a rule that
projects the past state onto the next state. We start with this rule, as it
is the simplest rule that allows us to say anything interesting in regard
to behavior, but also as a simple way to understand the benchmark
and diagram. In Figure 22, we see an example of this rule. The only
interference of this downward projection is the information put into it
on the same cell: the five bits, the reversed five bits, the distractors
and the cue signal—these inputs are all visible in this example.

Notably, this rule consistently gets 50% on the W metric but never
manages to do a perfect run; we can understand this from the dia-
gram. First, this rule can always detect the cue signal, as it is never
interfered with due to the downward projection, and the input chan-
nels never overlap. Therefore, the SVM will always know whether or
not the cue signal has been received. Then the SVM can perfectly sepa-
rate when it is supposed to return 1 in the “no output” channel (001)
from when it is supposed to give a 100 or 010. Yet, this rule can
never provide a perfect run because many different inputs will lead to

Figure 22. Rule 204, input 10110, Dp  40 with input locations 19, 27, 5,

29, 71, 40, 50, 48, 102, 96, 82, 90, 134, 128, 140, 132.

Investigating Rules and Parameters of Reservoir Computing 333

https://doi.org/10.25088/ComplexSystems.32.3.309

https://doi.org/10.25088/ComplexSystems.32.3.309

the same CA states. All inputs that have an odd number of 1s lead
to an on state in that cell, and all inputs that have an even number
of 1s lead to an off state in that cell. The SVM cannot separate the
CAs that input 10101 from 11100, as they will be the same in the
final stage.

Rule 170 5.5.2

Rule 170 is also simple: its behavior is shifting the past state to the
left. We can see an example in Figure 23. As mentioned in Sec-
tion 5.3.1, in a longer run than the example, the distractor period
would also loop around and collide with itself again. For the exam-
ple, the input would take 480 CA steps (160 input steps) after the
first distractor input before looping. This period could be potentially
shorter with the right input mapping, or longer with a different input
frequency but always quite limited. This means that after a certain
point, adding more distractor periods would not affect performance.
In this rule, the cue signal is also often easy to detect. Having these
two features of cue signal detection and direct trajectories of the origi-
nal input is essentially what makes rule 170 perform so well.

We can take from this that rule 170 demonstrates a weakness of
the x-bit memory benchmark. As long as you can separate the cue sig-
nal from the other signals and the inputs perturb the system into

unique states, all you need to separate is the 2Nb unique input, and
with 320 dimensions the SVM would be likely to find one.

Figure 23. Rule 170, input 10110, input locations 19, 27, 5, 29, 71, 40, 50,
48, 102, 96, 82, 90, 134, 128, 140, 132.

334 T. E. Glover, P. Lind, A. Yazidi, E. Osipov and S. Nichele

Complex Systems, 32 © 2023

Rule 54 5.5.3

Rule 54 is seemingly the best-performing complex rule, which inhibits
complex abilities of complex trajectories, as described by Wolfram. In
Figure 24 we see an example of this, where the interaction of the
input creates trajectories that persist, and the regions often called the
ether (larger self-similar region) seem to be relatively easy to perturb
for the cue signal not to disappear. In Figure 25, we also see that the
different input causes different and unique trajectories; these features
would not seem ideal, but are still well suited for a memory task like
the N-bit memory task.

Figure 24. Rule 54, input 10110, input locations 19, 27, 5, 29, 71, 40, 50,
48, 102, 96, 82, 90, 134, 128, 140, 132.

0:00000 1:00001 2:00010 3:00011 4:00100

5:00101 6:00110 7:00111 8:01000 9:01001
Figure 25. (continues)

Investigating Rules and Parameters of Reservoir Computing 335

https://doi.org/10.25088/ComplexSystems.32.3.309

https://doi.org/10.25088/ComplexSystems.32.3.309

10:01010 11:01011 12:01100 13:01101 14:01110

15:01111 16:10000 17:10001 18:10010 19:10011

20:10100 21:10101 22:10110 23:10111 24:11000

25:11001 26:11010 27:11011 28:11100 29:11101

30:11110 31:11111

Figure 25. Rule 54, all input, input locations 19, 27, 5, 29, 71, 40, 50, 48,
102, 96, 82, 90, 134, 128, 140, 132.

Rule 90 and Spacetime Chimera States 5.5.4

Rule 90 is the quintessential elementary rule for ReCAs. In Figure 26,
we see an example of its spacetime diagram. At the start of the exam-
ple, we can see the input creating overlaying triangles that are added
together, before turning into what looks like quite chaotic behavior.
In Figure 27, we see an interesting behavior where regions are the
same in all inputs, this odd version of a strange attractor (regions not
perturbed by the different inputs). The figure is converted into a gif
and can be found at [48], as well as a version with more steps at [49].
This feature does not occur in every rule 90 run, but usually, we
observe larger regions of local spacetime states that are common over

336 T. E. Glover, P. Lind, A. Yazidi, E. Osipov and S. Nichele

Complex Systems, 32 © 2023

several different inputs but not every single one; such an example can
be found at [50]. These regions could potentially give a clue to which
step the CA is in, and if it is partially stable, it can help separate the
different original input from the current state. This concept is also
very reminiscent of chimera states [51–53], a coexistence of coherent
(synchronized) and incoherent (desynchronized) first identified in
oscillators. In our case, the chimera states are not local to specific
oscillators (or CA cells) only, but in space and time.

Figure 26. Rule 90, input 10110, input locations 19, 27, 5, 29, 71, 40, 50,
48, 102, 96, 82, 90, 134, 128, 140, 132.

0:00000 1:00001 2:00010 3:00011 4:00100

5:00101 6:00110 7:00111 8:01000 9:01001

Figure 27. (continues)

Investigating Rules and Parameters of Reservoir Computing 337

https://doi.org/10.25088/ComplexSystems.32.3.309

https://doi.org/10.25088/ComplexSystems.32.3.309

10:01010 11:01011 12:01100 13:01101 14:01110

15:01111 16:10000 17:10001 18:10010 19:10011

20:10100 21:10101 22:10110 23:10111 24:11000

25:11001 26:11010 27:11011 28:11100 29:11101

30:11110 31:11111

Figure 27. Rule 90, all input, input locations 19, 27, 5, 29, 71, 40, 50, 48,
102, 96, 82, 90, 134, 128, 140, 13; several large stable regions can be
observed even at the end of the CA history.

Rule 90 and Initial Condition Do Not Matter in Binary

2n Grid Sizes

5.5.5

In [12, 20], rule 90’s relationship to grid size was pointed out. The
randomization period of the rule had a relationship to odd versus
even grid sizes, where the longest period was with primary numbers
and the shortest was for 2n for some n. In this section, we see why the

binary n2 grid sizes perform as they do, and what that means for
ReCAs. First, let us consider rule 90’s differentiation pattern as seen
in Figure 3, as we can draw some understanding from it. The differen-
tiation pattern looks just like the rule does if it is initiated with a

338 T. E. Glover, P. Lind, A. Yazidi, E. Osipov and S. Nichele

Complex Systems, 32 © 2023

single centroid. In combination, we also know due to the Boolean
logic of rule 90 that if all cells are black, the next state is all white, or
if every other cell is black, the next state is all white as well.

Now, if we consider rule 90 with a central pattern in Figure 1, the
example of alternating black and white is happening for the entire per-
turbed grid. Indeed, at step 3, the central seven cells are alternating,
and at step 7, the central 15 cells are alternating and so forth. If we
set the CA grid size to match these alternating points such that the
grid size is 2n (2/4/8/16/32/64/...), these alternating cells will cause the
entire CA to become quiescent. This remains true not just for centroid
initialization, but because of the difference pattern, as seen in Figure
3, the CA for these 2n grid sizes will always become quiescent within
steps. This effect can be seen in Figures 28 and 29. Therefore, for
these grid sizes, the memory of any input will never exceed this limit.
If we apply this to the x-bit memory benchmark, this means that for
this rule and these grid sizes, the CA will always land in an attractor
where the original input has no impact on the final CA state, as can
be seen in [54]. We can make similar predictions for many of the
other additive rules, such as rules 60 and 102 will exhibit the same
behavior but after twice as many steps, as they are not bidirectional.

Figure 28. Rule 90 grid size 16, centroid and random initiation.

Figure 29. Rule 90 grid size 512, random initiation.

Investigating Rules and Parameters of Reservoir Computing 339

https://doi.org/10.25088/ComplexSystems.32.3.309

https://doi.org/10.25088/ComplexSystems.32.3.309

Rule 90 and Why Otherwise Even-Numbered Grid Sizes

Perform Well
5.5.6

If we take this understanding of the differentiation pattern of rule 90
and look at grid sizes 39, 40 and 41, as seen in Figure 30, we notice
that in one of them the attractor length is very short, yet not in the
others. This pattern would mean that this short attractor length
would also occur in the reservoir for width 40 in Figure 31. We
hypothesize that this is at least one reason why rule 90 (and rules 60
and 150) have such a marked difference in performance on Ld  39
versus Ld  40: the attractor length is short and therefore the SVM
has to separate fewer instances.

39 40 41

Figure 30. Rule 90 grid size 39 versus 40 versus 41. Grid sizes 39 and 41 fea-
ture a longer attractor length, while grid size 40 has a shorter one.

Rule 150 5.5.7

Rule 150, like rule 90, also has this self-similar differentiation pat-
tern, and we find the same answer here for why it performs better at
certain grid sizes. As we can see in Figure 32, the attractor in one is
much shorter than in the other. We can also make similar predictions
to rule 90 on the binary grid size, but due to its pattern, rather than
going quiescent, the CA would end up in the same state as its initial
condition.

340 T. E. Glover, P. Lind, A. Yazidi, E. Osipov and S. Nichele

Complex Systems, 32 © 2023

Figure 31. Rule 90 example with Ld  40 in four slices showing a repeating
pattern.

39 40 41

Figure 32. Rule 150 grid sizes 39, 40 and 41. Grid sizes 39 and 41 feature a
longer attractor length, while grid size 40 has a shorter one.

Investigating Rules and Parameters of Reservoir Computing 341

https://doi.org/10.25088/ComplexSystems.32.3.309

https://doi.org/10.25088/ComplexSystems.32.3.309

Note that these rules do not behave quite as chaotically as they
were perceived to in [55, p. 227]. Though they are examined under
different conditions, this is a much shorter attractor length and puts
into question whether these rules deserve to be classified as chaotic
under these conditions.

Discussion and Conclusion 6.

We have in this and past work conducted the most extensive explo-
ration of ECA parameters for ReCAs and pointed out observations of
many results. In this section, we will sum up the results as well as tie
them to the greater context of CAs, RC and ReCAs.

I Is about More than Just Reservoir Size6.1

Considering the experiments with varying I in contrast to those with
varying Dp and those with simultaneously varying Dp over Ld, some

rules, like rules 3, 15 and 56, showed dynamics in the I but not the
same trends in the Dp, while none of the rules explored showed

dynamical behavior over small increments of Dp in the Dp over Ld

experiments. This indicates that the timesteps’ length did not much
affect the results in these examples, leaving only the conclusion that
the highly dynamic behavior in these rules comes from the number of
pure CA steps between inputs. So we can say that there are patterns
around the parameter of I that are not just about the reservoir size.
We can make a similar argument about the other parameters that
affect the reservoir size, the R and Ld parameters [15].

The Importance of Grid Size Ld6.2

We have seen further evidence of how Ld or the grid size will greatly
affect performance in some rules, particularly in the rules most stud-
ied in literature on ReCAs. We have seen how particular configura-
tions have great importance, such that they can enhance or even
break the ability of the reservoir to perform the simple task of 5-bit
memory.

Attractor Length and Dp 6.3

We have seen that in certain CAs where their attractor length is
already reached, a longer Dp does not hamper performance. Addition-

ally, in many rules, due to the ordered nature of always inputting the
distractor at the same locations, the distractor does not strongly affect
the reservoir’s capabilities. Although exact length sometimes does still
affect performance in dynamic ways, we hypothesize this is due to the

342 T. E. Glover, P. Lind, A. Yazidi, E. Osipov and S. Nichele

Complex Systems, 32 © 2023

exact expansion and contraction of the input such that it hit at better
lengths, making either the input or cue signal easier or harder to sepa-
rate in the reservoir.

Less Is More, Sometimes 6.4

It is natural to assume that, as a general trend, bigger reservoirs mean
better performance, but it is important to note that there are other
parameters such as the grid size that affect performance. Furthermore,
in all parameters that affect grid size or reservoir size (Ld, R and I),
we see many exceptions where smaller reservoirs with the same rule
outperform the effect of a larger reservoir.

Patterns within Patterns 6.5

We have seen evidence that the performance of rule 90 has patterns
that are not simple; there are patterns within patterns of the parame-
ters’ performance. That is, checked even numbers seem better, but the
worst theoretical performing ones are binary values for rule 90. For
this single rule, there are at least two patterns affecting performance.
We hypothesize that this is not only true for this single rule and that
there are many patterns we have not perceived.

Not Quite Chaotic 6.6

We have also seen how some classified chaotic rules behave notice-
ably less chaoticically under certain circumstances, at least regarding
the attractor length. That means if it were possible to neatly catego-
rize ECAs from chaotic to ordered, this would then depend on the
parameters, and different parameters might yield a different order. As
was demonstrated for asymptotic behavior for different initial condi-
tions in [26], similarly this can be true for other parameters, for exam-
ple, the grid size.

Attempts at mapping CA rule space over some variable or function
and identifying an edge of chaos point only worked in non-ECA CAs
[25]. If mapping ECA rule space over some variable or function and
identifying the edge of chaos could be done, then it would need to at
least include features such as the grid size and initial condition.

Pseudorandom Rule 30, Why the Sharp Turn? 6.7

As observed in [15] and in Figure 12, the strong chaotic rules exhibit
a sharp turn when the 5-bit memory benchmark changes from hard to
trivial. Rule 30 is part of this group and is seen as the quintessential
pseudorandom number generator rule, particularly its central column
[55, p. 315]. This rule and those similar to it would be expected to
turn the original five bits, due to the tiny variations between them,

Investigating Rules and Parameters of Reservoir Computing 343

https://doi.org/10.25088/ComplexSystems.32.3.309

https://doi.org/10.25088/ComplexSystems.32.3.309

into very different configurations of the CA over time (deterministic
chaos). Essentially, every configuration that the SVM has to separate
is turning pseudorandom and very likely to be unique. Our SVM sim-
ply then needs to be able to separate the 532  160 (final five out-
put steps of every permutation) final output steps from the remaining
(21032) - 160  6560 output steps. It appears that if the vector our
SVM has access to is large enough (I ≥ 4), or if the separating classes
are easier (Nb ≤ 4), this turns very possible and quickly trivial. Inter-
estingly, we tried to do the same x-bit memory benchmark, but
instead of using a CA, we generated and used a pseudorandom vector
of the same size and data type as the CA would have produced; the
results can be compared to rule 30 in Table 5. Despite this being a ran-
dom vector, the SVM could still separate in all instances where rule
30 allowed it to separate. The following quote is attributed to Linus
Torvalds: “Given enough eyeballs, all bugs are shallow.” If we steal
this and apply it to our context, we could say that “given enough
dimensions, all classifications are trivial,” provided that your sub-
strate is exhibiting sufficient deterministic chaos and that you do not
cross-validate or apply similar methods. The conclusion of this might
make it seem that we are stating that if you cannot classify, then use
more dimensions, but this is more of a warning, if your system is only
able to classify because you use so many dimensions that even a
pseudorandom number generator can solve it, then will the solution
generalize? Moreover, will the solution even scale?

Metric Rule 30 Random Vector

Nb  4 Nb  5 Nb  4 Nb  5

w 100 7.8 100 9.2

P% 100 0 100 0

Dp  50 Dp  100 Dp  50 Dp  100

w 80 49 79 51

P% 0 0 0 0

I  3 I  4 I  3 I  4

w 82 100 87 100

P% 0 100 0 100

Table 5. Data for solving the x-bit memory benchmark with a random vector
versus rule 30.

The Limitations of the x-Bit Memory Benchmark 6.8

The history of this 5-bit memory benchmark is a bit muddled, but
regardless, does this benchmark make sense as the standard of
ReCAs? Said differently, does it still select for beneficial properties?

344 T. E. Glover, P. Lind, A. Yazidi, E. Osipov and S. Nichele

Complex Systems, 32 © 2023

We have identified that the x-bit memory benchmark selects fea-
tures such as, Can the cue signal be detected?; Do the different inputs
lead to different states in the reservoir?; Does the distractor period
not perturb the original input of the system? The second one seems a
bit analogous to separation property [3] or deterministic chaos, but
the third one is conceptually the opposite of the echo state property,
as memory will not fade. Are these the right features to ask of a good
reservoir? Or rather perhaps the benchmark is not all that useful as a
high truth and only is useful as a low bar to pass.

Let us put some of our specific findings in a real example. We just
showed how the benchmark can be solved with sufficient dimensions
and a random vector. In Table 5, I  4, the vector that the SVM has
access to is IRLd  4440  640 dimensions. In [38], the vector
used was 4820  640, meaning at least for Dp  200 the bench-

mark can be solved using just this feature. This could also further
explain why more of the asynchronous ECAs perform better, the
introduction of a stochastic order of updates simply pushes the rules
to behave more chaotically, allowing them to solve the benchmark
using just pseudorandomness.

One alternative is changing the benchmark, say if the distractor
period input is placed not in the same location every time, but chang-
ing locations, this might be better at demonstrating fading memory.
Moreover, the training and testing on the same data mean no cross-
validation, but we could simply add cross-validation between differ-
ent input locations, and it should still be possible to solve in some
aspects. Furthermore, maybe the x-bit memory benchmark just does
not fit well with CAs, and the concept of fading memory is not a
good quality measure for ReCAs, and new measures should be
invented in the CA context. Finally, as we have previously hinted at,
computation is just computation; its usefulness depends on the con-
text. Therefore, any true usefulness of ReCAs can only be demon-
strated by doing something useful with them.

Future Work7.

The dynamical nature of the parameter space presents us with a prob-
lem: how do we find good combinations? Considering the many ways
that the different parameters can be combined, an exhaustive search is
not feasible, but if we can work on good methods to search for a
given combination—for example, use an evolutionary algorithm to
optimize for good parameters—this could help us utilize the potential
of reservoir computing with cellular automata (ReCAs).

We have now looked very deeply at ReCAs in the context of the
x-bit memory benchmark, but this benchmark only tests for memory,

Investigating Rules and Parameters of Reservoir Computing 345

https://doi.org/10.25088/ComplexSystems.32.3.309

https://doi.org/10.25088/ComplexSystems.32.3.309

and the parameter space would likely look very different for a bench-
mark that relies more on the complex interaction of the information
rather than just its persistence. Therefore, running other experiments
using different benchmarks, for example, reinforcement learning in
the AI Gym [56], could yield interesting results.

Cellular automata (CAs) are a very specific substrate and can be
viewed as a special case of random Boolean networks (RBNs), and we
can view RBNs as a special case of neural networks (NNs). In the con-
text of reservoir computing (RC), what is gained or lost by this con-
strained version? it could be useful to understand CAs and RBNs and
even NNs in contrast to each other and RC, to better understand the
strength and weaknesses of each substrate.

Acknowledgments

This work was financed mainly by the Research Council of Norway’s
DeepCA project, grant agreement 286558, and in part by Swedish
Research Council project 2022-04657. The work was conducted at
the OsloMet Artificial Intelligence Lab and the NordSTAR - Nordic
Center for Sustainable and Trustworthy AI Research. Special thanks
to Trym Lindell and Barbora Hudcová for useful and inspiring feed-
back and discussions.

References

[1] E. Strubell, A. Ganesh and A. McCallum, “Energy and Policy Considera-
tions for Deep Learning in NLP.” arxiv.org/abs/1906.02243.

[2] H. Jaeger, “The ‘Echo State’ Approach to Analysing and Training Recur-
rent Neural Networks: With an Erratum Note,” German National
Research Center for Information Technology GMD Technical Report,
report number 148, 2001 p. 13.
www.ai.rug.nl/minds/uploads/EchoStatesTechRep.pdf.

[3] W. Maass, T. Natschläger and H. Markram, “Real-Time Computing
without Stable States: A New Framework for Neural Computation
Based on Perturbations,” Neural Computation, 14(11), 2002
pp. 2531–2560. doi:10.1162/089976602760407955.

[4] G. Tanaka, T. Yamane, J. B. Héroux, R. Nakane, N. Kanazawa,
S. Takeda, H. Numata, D. Nakano and A. Hirose, “Recent Advances in
Physical Reservoir Computing: A Review,” Neural Networks, 115,
2019 pp. 100–123. doi:10.1016/j.neunet.2019.03.005.

346 T. E. Glover, P. Lind, A. Yazidi, E. Osipov and S. Nichele

Complex Systems, 32 © 2023

https://arxiv.org/abs/1906.02243
https://www.ai.rug.nl/minds/uploads/EchoStatesTechRep.pdf
https://doi.org/10.1162/089976602760407955
https://doi.org/10.1016/j.neunet.2019.03.005

[5] A. Morán, C. F. Frasser, M. Roca and J. L. Rosselló, “Energy-Efficient
Pattern Recognition Hardware with Elementary Cellular Automata,”
IEEE Transactions on Computers, 69(3), 2019 pp. 392–401.
doi:10.1109/TC.2019.2949300.

[6] Y.-L. Lee, P.-K. Tsung and M. Wu, “Technology Trend of Edge AI,” in
2018 International Symposium on VLSI Design, Automation and Test
(VLSI-DAT), Hsinchu, Taiwan, Piscataway, NJ: IEEE, 2018 pp. 1–2.
doi:10.1109/VLSI-DAT.2018.8373244.

[7] A. Moin, A. Zhou, A. Rahimi, A. Menon, S. Benatti, G. Alexandrov,
S. Tamakloe, et al. “A Wearable Biosensing System with In-Sensor Adap-
tive Machine Learning for Hand Gesture Recognition,” Nature Elec-
tronics, 4(1), 2021 pp. 54–63. doi:10.1038/s41928-020-00510-8.

[8] O. Yilmaz, “Reservoir Computing Using Cellular Automata.”
arxiv.org/abs/1410.0162.

[9] S. Nichele and A. Molund, “Deep Learning with Cellular Automaton-
Based Reservoir Computing,” Complex Systems, 26(4), 2017
pp. 319–339. doi:10.25088/ComplexSystems.26.4.319.

[10] S. Nichele and M. S. Gundersen, “Reservoir Computing Using Non-
uniform Binary Cellular Automata.” arxiv.org/abs/1702.03812.

[11] M. Margem and O. S. Gedik, “Reservoir Computing Based on Cellular
Automata (RECA) in Sequence Learning,” Journal of Cellular
Automata, 14(1–2), 2019 pp. 153–170.

[12] D. Kleyko, E. P. Frady and F. T. Sommer, “Cellular Automata Can
Reduce Memory Requirements of Collective-State Computing.”
arxiv.org/abs/2010.03585.

[13] N. Babson and C. Teuscher, “Reservoir Computing with Complex
Cellular Automata,” Complex Systems, 28(4), 2019 pp. 433–455.
doi:10.25088/ComplexSystems.28.4.433.

[14] N. McDonald, “Reservoir Computing and Extreme Learning Machines
Using Pairs of Cellular Automata Rules,” in 2017 International Joint
Conference on Neural Networks (IJCNN), Anchorage, AK, Piscataway,
NJ: IEEE, 2017 pp. 2429–2436. doi:10.1109/IJCNN.2017.7966151.

[15] T. E. Glover, P. Lind, A. Yazidi, E. Osipov and S. Nichele, “The Dynam-
ical Landscape of Reservoir Computing with Elementary Cellular
Automata,” in ALIFE 2021: The 2021 Conference on Artificial Life,
Cambridge, MA: MIT Press, 2021. doi:10.1162/isal_a_00440.

[16] J. von Neumann, Theory of Self-Reproducing Automata (A. W. Burks,
ed.), Urbana, IL: University of Illinois Press, 1966.

[17] M. Mitchell, “Life and Evolution in Computers,” History and Philoso-
phy of the Life Sciences, 23(3/4), 2001 pp. 361–383.
www.jstor.org/stable/23332520.

[18] M. Cook, “Universality in Elementary Cellular Automata,” Complex
Systems, 15(1), 2004 pp. 1–40. complex-systems.com/pdf/15-1-1.pdf.

Investigating Rules and Parameters of Reservoir Computing 347

https://doi.org/10.25088/ComplexSystems.32.3.309

https://doi.org/10.1109/TC.2019.2949300
https://doi.org/10.1109/VLSI-DAT.2018.8373244
https://doi.org/10.1038/s41928-020-00510-8
https://arxiv.org/abs/1410.0162
https://doi.org/10.25088/ComplexSystems.26.4.319
https://arxiv.org/abs/1702.03812
https://arxiv.org/abs/2010.03585
https://doi.org/10.25088/ComplexSystems.28.4.433
https://doi.org/10.1109/IJCNN.2017.7966151
https://doi.org/10.1162/isal_a_00440
https://www.jstor.org/stable/23332520
https://complex-systems.com/pdf/15-1-1.pdf
https://doi.org/10.25088/ComplexSystems.32.3.309

[19] B. Hudcová and T. Mikolov, “Computational Hierarchy of Elementary
Cellular Automata,” ALIFE 2021: The 2021 Conference on Artificial
Life, Cambridge, MA: MIT Press, 2021, p. 105.
doi:10.1162/isal_a_00447.

[20] O. Martin, A. M. Odlyzko and S. Wolfram, “Algebraic Properties of
Cellular Automata,” Communications in Mathematical Physics, 93(2),
1984 pp. 219–258. doi:10.1007/BF01223745.

[21] T. Rowland and E. W. Weisstein, “Additive Cellular Automaton” from
Wolfram MathWorld—A Wolfram Web Resource.
mathworld.wolfram.com/AdditiveCellularAutomaton.html.

[22] G. J. Martínez, “A Note on Elementary Cellular Automata Classifica-
tion,” Journal of Cellular Automata, 8(3–4), 2013 pp. 233–259.

[23] S. Wolfram, “Universality and Complexity in Cellular Automata,”
Physica D: Nonlinear Phenomena, 10(1–2), 1984 pp. 1–35.
doi:10.1016/0167-2789(84)90245-8.

[24] G. J. Martínez, A. Adamatzky and R. Alonso-Sanz, “Designing Com-
plex Dynamics in Cellular Automata with Memory,” International
Journal of Bifurcation and Chaos, 23(10), 2013 1330035.
doi:10.1142/S0218127413300358.

[25] C. G. Langton, “Computation at the Edge of Chaos: Phase Transitions
and Emergent Computation,” Physica D: Nonlinear Phenomena,
42(1–3), 1990 pp. 12–37. doi:10.1016/0167-2789(90)90064-V.

[26] H. Zenil and E. Villarreal-Zapata, “Asymptotic Behavior and Ratios of
Complexity in Cellular Automata,” International Journal of Bifurcation
and Chaos, 23(09), 2013 1350159. doi:10.1142/S0218127413501599.

[27] A. N. Kolmogorov, “Three Approaches to the Quantitative Definition
of Information,” International Journal of Computer Mathematics,
2(1–4), 1968 pp. 157–168. doi:10.1080/00207166808803030.

[28] C. Gallicchio and A. Micheli, “Deep Reservoir Computing: A Critical
Analysis,” in 24th European Symposium on Artificial Neural Networks
(ESANN), Bruges (Belgium) (M. Verleysen, ed.), Louvain-la-Neuve,
Belgique: Ciaco, 2016.

[29] C. Fernando and S. Sojakka, “Pattern Recognition in a Bucket,” in
European Conference on Artificial Life (ECAL 2003), Dortmund,
Germany (W. Banzhaf, J. Ziegler, T. Christaller, P. Dittrich and
J. T. Kim, eds.), Berlin, Heidelberg: Springer, 2003 pp. 588–597.
doi:10.1007/978-3-540-39432-7_63.

[30] P. Aaser, M. Knudsen, O. H. Ramstad, R. van de Wijdeven, S. Nichele,
I. Sandvig, et al., “Towards Making a Cyborg: A Closed-Loop Reser-
voir-neuro System,” in Fourteenth European Conference on Artificial
Life (ECAL 2017), Lyon France, Cambridge, MA: MIT Press, 2017
pp. 430–437.

348 T. E. Glover, P. Lind, A. Yazidi, E. Osipov and S. Nichele

Complex Systems, 32 © 2023

https://doi.org/10.1162/isal_a_00447
https://doi.org/10.1007/BF01223745
https://mathworld.wolfram.com/AdditiveCellularAutomaton.html
https://doi.org/10.1016/0167-2789(84)90245-8
https://doi.org/10.1142/S0218127413300358
https://doi.org/10.1016/0167-2789(90)90064-V
https://doi.org/10.1142/S0218127413501599
https://doi.org/10.1080/00207166808803030
https://doi.org/10.1007/978-3-540-39432-7_63

[31] D. Nikolic, S. Haeusler, W. Singer and W. Maass, “Temporal Dynamics
of Information Content Carried by Neurons in the Primary Visual Cor-
tex,” in Advances in Neural Information Processing Systems 19 (NIPS
2006), Canada (B. Shölkopf, J. C. Platt and T. Hoffman, eds.), Cam-
bridge, MA: MIT Press, 2006 pp. 1041–1048.
papers.nips.cc/paper_files/paper/2006/file/
60792d855cd8a912a97711f91a1f155c-Paper.pdf.

[32] X. Dai, “Genetic Regulatory Systems Modeled by Recurrent Neural Net-
work,” in International Symposium on Neural Networks (ISNN 2004),
Dalian, China (F. L. Yin, J. Wang and C. Guo eds.), Berlin, Heidelberg:
Springer, 2004 pp. 519–524. doi:10.1007/978-3-540-28648-6_83.

[33] B. Jones, D. Stekel, J. Rowe and C. Fernando, “Is There a Liquid State
Machine in the Bacterium Escherichia coli?,” in 2007 IEEE Symposium
on Artificial Life, Honolulu, HI, Piscataway, NJ: IEEE, 2007
pp. 187–191. doi:10.1109/ALIFE.2007.367795.

[34] H. Jaeger, “Echo State Network,” Scholarpedia, 2(9), 2007 2330. Revi-
sion #196567. doi:10.4249/scholarpedia.2330.

[35] L. Grigoryeva and J.-P. Ortega, “Echo State Networks Are Universal,”
Neural Networks, 108, 2018 pp. 495–508.
doi:10.1016/j.neunet.2018.08.025.

[36] W. Olin-Ammentorp, K. Beckmann and N. C. Cady, “Cellular Memris-
tive-Output Reservoir (CMOR).” arxiv.org/abs/1906.06414.

[37] D. Liang, M. Hashimoto and H. Awano, “BloomCA: A Memory Effi-
cient Reservoir Computing Hardware Implementation Using Cellular
Automata and Ensemble Bloom Filter,” in 2021 Design, Automation &
Test in Europe Conference & Exhibition (DATE 2021), Grenoble,
France, Piscataway, NJ: IEEE, 2021 pp. 587–590.
doi:10.23919/DATE51398.2021.9474047.

[38] D. Uragami and Y.-P. Gunji, “Universal Criticality in Reservoir Comput-
ing Using Asynchronous Cellular Automata,” Complex Systems, 31(1),
2022 pp. 103–121. doi:10.25088/ComplexSystems.31.1.103.

[39] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural
Computation, 9(8), 1997 pp. 1735–1780.
doi:10.1162/neco.1997.9.8.1735.

[40] J. Martens and I. Sutskever, “Learning Recurrent Neural Networks with
Hessian-Free Optimization,” in Proceedings of the 28th International
Conference on Machine Learning (ICML ’11), Bellevue, WA (L. Getoor
and T. Scheffer, eds.), Madison, WI: Omnipress, 2011 pp. 1033–1040.

[41] I. Sutskever, Training Recurrent Neural Networks, Ph.D. thesis, Depart-
ment of Computer Science, University of Toronto, Toronto, ON,
Canada, 2013.

[42] H. Jaeger, “Long Short-Term Memory in Echo State Networks: Details
of a Simulation Study,” Technical Report, Jacobs University Bremen,
2012. opus.constructor.university/frontdoor/index/index/docId/638.

Investigating Rules and Parameters of Reservoir Computing 349

https://doi.org/10.25088/ComplexSystems.32.3.309

https://papers.nips.cc/paper_files/paper/2006/file/60792d855cd8a912a97711f91a1f155c-Paper.pdf
https://papers.nips.cc/paper_files/paper/2006/file/60792d855cd8a912a97711f91a1f155c-Paper.pdf
https://doi.org/10.1007/978-3-540-28648-6_83
https://doi.org/10.1109/ALIFE.2007.367795
https://dx.doi.org/10.4249/scholarpedia.2330
https://doi.org/10.1016/j.neunet.2018.08.025
https://arxiv.org/abs/1906.06414
https://doi.org/10.23919/DATE51398.2021.9474047
https://doi.org/10.25088/ComplexSystems.31.1.103
https://doi.org/10.1162/neco.1997.9.8.1735
https://opus.constructor.university/frontdoor/index/index/docId/638
https://doi.org/10.25088/ComplexSystems.32.3.309

[43] S. Pontes-Filho, P. Lind, A. Yazidi, J. Zhang, H. Hammer,
G. B. M. Mello, I. Sandvig, G. Tufte and S. Nichele, “A Neuro-inspired
General Framework for the Evolution of Stochastic Dynamical Systems:
Cellular Automata, Random Boolean Networks and Echo State
Networks towards Criticality,” Cognitive Neurodynamics, 14(5), 2020
pp. 657–674. doi:10.1007/s11571-020-09600-x.

[44] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al.,
“Scikit-learn: Machine Learning in Python,” The Journal of Machine
Learning Research, 12(85), 2011 pp. 2825–2830.

[45] “ReCA_X-bit_memory.” (Nov 28, 2023) github.com/DeepCANFR/
DeepCA---Hybrid-Deep-Learning-Cellular-Automata-Reservoir/blob/
master/ReCA%20parameter%20space/ReCA_X-bit_memory.py.

[46] “Create Graphs.” (Nov 28, 2023) github.com/DeepCANFR/DeepCA---
Hybrid-Deep-Learning-Cellular-Automata-Reservoir/blob/master/
ReCA%20parameter%20space/Data/Create%20Graphs.ipynb.

[47] “Trival170Long.” (Nov 28, 2023) github.com/DeepCANFR/DeepCA---
Hybrid-Deep-Learning-Cellular-Automata-Reservoir/blob/master/
ReCA%20parameter%20space/examples/Rule170/Trival170Long.gif.

[48] “ChimeraStates.” (Dec 21, 2023) github.com/DeepCANFR/DeepCA---
Hybrid-Deep-Learning-Cellular-Automata-Reservoir/blob/master/
ReCA%20parameter%20space/examples/Rule90/ChimeraStates.gif.

[49] “chimeraStates2.” (Dec 21, 2023) github.com/DeepCANFR/DeepCA---
Hybrid-Deep-Learning-Cellular-Automata-Reservoir/blob/master/
ReCA%20parameter%20space/examples/Rule90/chimeraStates2.gif.

[50] “RegionsOfDiffTemporalRelations.” (Dec 21, 2023) github.com/
DeepCANFR/DeepCA---Hybrid-Deep-Learning-Cellular-Automata-
Reservoir/blob/master/ReCA%20parameter%20space/
examples/Rule90/RegionsOfDiffTemporalRelations.gif.

[51] Y. Kuramoto and D. Battogtokh, “Coexistence of Coherence and Inco-
herence in Nonlocally Coupled Phase Oscillators.”
arxiv.org/abs/cond-mat/0210694.

[52] D. M. Abrams and S. H. Strogatz, “Chimera States for Coupled Oscilla-
tors,” Physical Review Letters, 93(17), 2004 174102.
doi:10.1103/PhysRevLett.93.174102.

[53] V. García-Morales, “Cellular Automaton for Chimera States,” Euro-
physics Letters, 114(1), 2016 18002.
doi:10.1209/0295-5075/114/18002.

[54] “width32.” (Dec 21, 2023) github.com/DeepCANFR/DeepCA---Hybrid-
Deep-Learning-Cellular-Automata-Reservoir/blob/master/
ReCA%20 parameter%20space/examples/Rule90/width32.gif.

350 T. E. Glover, P. Lind, A. Yazidi, E. Osipov and S. Nichele

Complex Systems, 32 © 2023

https://doi.org/10.1007/s11571-020-09600-x
https://github.com/DeepCANFR/DeepCA---Hybrid-Deep-Learning-Cellular-Automata-Reservoir/blob/master/ReCA%20parameter%20space/ReCA_X-bit_memory.py
https://github.com/DeepCANFR/DeepCA---Hybrid-Deep-Learning-Cellular-Automata-Reservoir/blob/master/ReCA%20parameter%20space/ReCA_X-bit_memory.py
https://github.com/DeepCANFR/DeepCA---Hybrid-Deep-Learning-Cellular-Automata-Reservoir/blob/master/ReCA%20parameter%20space/ReCA_X-bit_memory.py
https://github.com/DeepCANFR/DeepCA---Hybrid-Deep-Learning-Cellular-Automata-Reservoir/blob/master/ReCA%20parameter%20space/Data/Create%20Graphs.ipynb
https://github.com/DeepCANFR/DeepCA---Hybrid-Deep-Learning-Cellular-Automata-Reservoir/blob/master/ReCA%20parameter%20space/Data/Create%20Graphs.ipynb
https://github.com/DeepCANFR/DeepCA---Hybrid-Deep-Learning-Cellular-Automata-Reservoir/blob/master/ReCA%20parameter%20space/Data/Create%20Graphs.ipynb
https://github.com/DeepCANFR/DeepCA---Hybrid-Deep-Learning-Cellular-Automata-Reservoir/blob/master/ReCA%20parameter%20space/examples/Rule170/Trival170Long.gif
https://github.com/DeepCANFR/DeepCA---Hybrid-Deep-Learning-Cellular-Automata-Reservoir/blob/master/ReCA%20parameter%20space/examples/Rule170/Trival170Long.gif
https://github.com/DeepCANFR/DeepCA---Hybrid-Deep-Learning-Cellular-Automata-Reservoir/blob/master/ReCA%20parameter%20space/examples/Rule170/Trival170Long.gif
https://github.com/DeepCANFR/DeepCA---Hybrid-Deep-Learning-Cellular-Automata-Reservoir/blob/master/ReCA%20parameter%20space/examples/Rule90/ChimeraStates.gif
https://github.com/DeepCANFR/DeepCA---Hybrid-Deep-Learning-Cellular-Automata-Reservoir/blob/master/ReCA%20parameter%20space/examples/Rule90/ChimeraStates.gif
https://github.com/DeepCANFR/DeepCA---Hybrid-Deep-Learning-Cellular-Automata-Reservoir/blob/master/ReCA%20parameter%20space/examples/Rule90/ChimeraStates.gif
https://github.com/DeepCANFR/DeepCA---Hybrid-Deep-Learning-Cellular-Automata-Reservoir/blob/master/ReCA%20parameter%20space/examples/Rule90/chimeraStates2.gif
https://github.com/DeepCANFR/DeepCA---Hybrid-Deep-Learning-Cellular-Automata-Reservoir/blob/master/ReCA%20parameter%20space/examples/Rule90/chimeraStates2.gif
https://github.com/DeepCANFR/DeepCA---Hybrid-Deep-Learning-Cellular-Automata-Reservoir/blob/master/ReCA%20parameter%20space/examples/Rule90/chimeraStates2.gif
https://github.com/DeepCANFR/DeepCA---Hybrid-Deep-Learning-Cellular-Automata-Reservoir/blob/master/ReCA%20parameter%20space/examples/Rule90/RegionsOfDiffTemporalRelations.gif
https://github.com/DeepCANFR/DeepCA---Hybrid-Deep-Learning-Cellular-Automata-Reservoir/blob/master/ReCA%20parameter%20space/examples/Rule90/RegionsOfDiffTemporalRelations.gif
https://github.com/DeepCANFR/DeepCA---Hybrid-Deep-Learning-Cellular-Automata-Reservoir/blob/master/ReCA%20parameter%20space/examples/Rule90/RegionsOfDiffTemporalRelations.gif
https://github.com/DeepCANFR/DeepCA---Hybrid-Deep-Learning-Cellular-Automata-Reservoir/blob/master/ReCA%20parameter%20space/examples/Rule90/RegionsOfDiffTemporalRelations.gif
https://arxiv.org/abs/cond-mat/0210694
https://doi.org/10.1103/PhysRevLett.93.174102
https://doi.org/10.1209/0295-5075/114/18002
https://github.com/DeepCANFR/DeepCA---Hybrid-Deep-Learning-Cellular-Automata-Reservoir/blob/master/ReCA%20parameter%20space/examples/Rule90/width32.gif
https://github.com/DeepCANFR/DeepCA---Hybrid-Deep-Learning-Cellular-Automata-Reservoir/blob/master/ReCA%20parameter%20space/examples/Rule90/width32.gif
https://github.com/DeepCANFR/DeepCA---Hybrid-Deep-Learning-Cellular-Automata-Reservoir/blob/master/ReCA%20parameter%20space/examples/Rule90/width32.gif

[55] S. Wolfram, A New Kind of Science, Champaign, IL: Wolfram Media,
Inc., 2002.

[56] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang and W. Zaremba, “OpenAI Gym.” arxiv.org/abs/1606.01540.

Investigating Rules and Parameters of Reservoir Computing 351

https://doi.org/10.25088/ComplexSystems.32.3.309

https://arxiv.org/abs/1606.01540
https://doi.org/10.25088/ComplexSystems.32.3.309

