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Abstract

We prove global existence, uniqueness and stability of entropy solutions with L2 initial data for a general 
family of negative order dispersive equations. These weak solutions are found to satisfy one-sided Hölder 
conditions whose coefficients decay in time. The latter result controls the height of solutions and further 
provides a way to bound the maximal lifespan of classical solutions from their initial data.
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1. Introduction

We consider the initial value problem

{
ut + 1

2 (u2)x = (G ∗ u)x, (t, x) ∈R+ ×R,

u(0, x) = u0(x), x ∈ R,
(1.1)
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for initial data u0 ∈ L2(R) and an even convolution kernel G ∈ L1(R) admitting an integrable 
weak derivative G′ =: K ∈ L1(R). Included in this family of equations is the Burgers–Poisson 
equation

ut + 1
2 (u2)x =

( ∞∫
−∞

− 1
2e−|x−y|u(t, y)dy

)
x

(1.2)

which in [22] is derived as a model for shallow water waves.

1.1. Outline of main results

The paper can be divided in two parts: Section 3 establishes the well-posedness of entropy 
solutions of (1.1), while Section 4 demonstrates the one-sided Hölder regularity that the solu-
tions enjoy. To the best of our knowledge, these results are new. It was shown in [9] that the 
Burgers–Poisson equation (1.2) admits unique entropy solutions with L1 data that satisfy one 
sided Lipschitz conditions. Still, the results here add new insight also for Burgers–Poisson: The 
L2 setting is more natural (albeit harder) to work in due to the dispersive right-hand side. For the 
L2 norm of a solution is guaranteed to be non-increasing in time, which can be used to deduce 
a one-sided smoothing effect of (1.1). In particular, our Corollary 2.4 shows that the one-sided 
Lipschitz coefficients of solutions of Burgers–Poisson can at worst behave like ‘const + 1/t’ 
whereas the corresponding expression in [9] takes the form O(tet + 1/t). An interesting con-
sequence of having an explicit smoothing effect of (1.1), as given by Theorem 2.3, is that it 
provides a necessary condition on terminal data when seeking to solve the backward problem; 
this is exploited in the proof of Corollary 2.6 which bounds the lifespan of classical solutions of 
(1.1).

We give a brief discussion of our results which are presented in Section 2. The first main 
result, Theorem 2.1, provides existence, uniqueness and L2 stability for entropy solutions of 
(1.1) – as defined by Definition 1.1 – for initial data in L2 ∩ L∞(R). Corollary 2.2 then extends 
this result in a unique and continuous manner to pure L2 data. The results are proved in Section 3. 
There, uniqueness and stability is proved through a variation of Kružkov’s doubling of variables 
technique [16], while existence follows from an operator splitting argument. While there are less 
laborious approaches for proving existence (fixed point methods, vanishing viscosity), operator 
splitting has the advantage of allowing for a straightforward analysis of the regularizing effect of 
(1.1) which constitutes the second part of our results.

The second main result, Theorem 2.3, guarantees one-sided Hölder regularity for entropy 
solutions of (1.1), and it is proved in Section 4. Like the classical Oleˇınik estimate (4.1) for 
Burgers’ equation, this one-sided regularity improves over time. The proof is based on an operator 
splitting approach, used to study the evolution of the quantity ω(t, h) := supx(u(t, x + h) −
u(t, x)), for t, h > 0 and a solution u. As seen by Lemma 4.3, the nonlinearity in (1.1) has a 
smoothing effect on ω. The dispersive term on the other hand has no clear convenient effect on 
ω, and it is instead treated as a source term that we limit using the non-increasing L2 norm of u
(as done when combining Lemma 4.4 and 4.2).

The result has two interesting consequences. First, Corollary 2.5 provides an explicit height 
bound for a solution u in terms of ‖K‖L1(R), ‖u0‖L2(R) and the time t . This bound decays 

initially like 1/t
1
3 and converges to a positive constant for large times. Generally, the height of 

a solution will not tend to zero due to the existence of solitary waves [7] for several instances 
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of (1.1). Second, Corollary 2.6 bounds the lifespan of classical solutions of (1.1) provided the 
initial data satisfies a skewness condition (2.6). One may wonder how these classical solutions 
break down, and wave breaking is the natural candidate. A proof of this is beyond the scope of 
this paper, but not hard to obtain; demonstrating that (1.1) is classically well posed for times 
t � −1/ infx u′

0(x) (the hyperbolic lifespan) would leave wave breaking as the only type of blow 
up (as we already have height bounds). We point out that our skewness condition (2.6) differs 
from that of both [9] and [5]; neither imply the other.

1.2. Other dispersive equations

Central questions in the study of water wave model equations include well-posedness, per-
sistence and non-persistence of solutions, the latter two exemplified by solitary and breaking 
waves. The answers depend intricately on the type of nonlinearity and dispersive term featured 
in the equation. In the case of a quadratic nonlinearity, the fractional Korteweg–de Vries equation 
(fKdV)

ut + 1
2 (u2)x = (|D|βu)x (1.3)

where F(|D|βu) = |ξ |βû and β ∈ R, has been suggested [17] as a scale for studying how the 
strength of the dispersion affects the questions of well-posedness and water-wave features. To 
connect (1.1) to the fKdV setting, observe that our assumption on G implies that Ĝ(ξ) = o(|ξ |−1)

as |ξ | → ∞ and so one may place (1.1) in the region β < −1 for fKdV. However, Ĝ will in our 
case be bounded, whereas |ξ |β blows up at zero, and thus (1.1) can not match the low-frequency 
effect of negative order fKdV which assigns (very) high velocities to (very) low frequencies. 
This qualitative difference disappears in a periodic setting; the dispersion of fKdV on the torus 
is for β < −1 precisely of the form assumed in (1.1). We point out that the methods in this paper 
can be carried out on the torus; our results can thus be extended to periodic solutions of fKdV 
for β < −1. With the relation between (1.1) and (1.3) accounted for, we now summarize a few 
results for the latter to sketch what one may expect of well-posedness and water-wave features 
in our case.

The fractional KdV equation of order β ∈ ( 6
7 , 2] is globally well-posed in appropriate function 

spaces. The regions β ∈ ( 6
7 , 1) and β ∈ (1, 2) are treated in [21] and [10] respectively, and there 

are numerous works on the well posedness for β = 1 (Benjamin–Ono equation) and β = 2 (KdV 
equation); see for example [13] and [14] and the references therein. For values β ≤ 6

7 only local 
well-posedness results have been established [8,21]. Still, numerical investigation [15] suggests 
that fKdV is globally well-posed for dispersion as weak as β > 1

2 , but not for β ≤ 1
2 ; this is also 

conjectured in [17]. One might expect the culprit of this loss of global well-posedness for weak 
dispersion, to be the appearance of breaking waves (shock formation), i.e. bounded solutions that 
develop infinite slope in finite time. In the negative order regime β < 0 this might be true: the 
occurrence of breaking waves has been proved for the case β = −2 (Ostrovsky–Hunter equation) 
by [18], for the case β = −1 (Burgers–Hilbert) by [23] and for the region β ∈ (−1, − 1

3 ) by [12]. 
However, no such results exist in the positive order regime β > 0, and it is believed that instead 
other blowup phenomena occur in the range β ∈ (0, 12 ] inhibiting global well-posedness; see the 
discussion in [15,17] or [20] where an example of L∞ blowup in finite time is constructed for the 
modified Benjamin–Ono equation. In the absence of classical global solutions, several authors 
have for the β < 0 regime turned to the concept of entropy solutions. Adapted from the study of 
hyperbolic conservation laws, entropy solutions are weak solutions that satisfy extra conditions 
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– the entropy inequalities – automatically satisfied by classical solutions (whenever they exist). 
This solution concept allows for continuation past wave breaking and a global well-posedness 
theory may then be achieved. In [4] existence and uniqueness of global entropy solutions for 
the Ostrovsky–Hunter equation (β = −2) is established for appropriate initial data. Similarly, 
[3] provides global entropy solutions for the Burgers–Hilbert equation (β = −1) and a partial 
uniqueness result. And as mentioned above, the Burgers–Poisson equation (1.2) is in [9] shown 
to admit unique global entropy solutions for L1 initial data. There, the authors also provide 
sufficient conditions on the initial data leading to wave breaking. This equation is not an isolated 
instance of (1.1) featuring wave breaking; [5] shows that the phenomenon is present whenever 
G ∈ C ∩ L1(R) is symmetric and monotone on R+. More generally, our Corollary 2.6 hints that 
every instance of (1.1) features wave breaking as explained above.

1.3. The entropy formulation

We define the concept of entropy solutions on the function class L∞
loc([0, ∞), L∞(R)), which 

here denotes the subspace of L∞
loc([0, ∞) ×R) of functions u(t, x) that are essentially bounded 

on [0, T ] × R for each T > 0. We will in Section 2 be more liberal in our definition of entropy 
solutions (allowing then for L2 initial data) as explained after Corollary 2.2.

Necessary is the notion of an entropy pair (η, q) for (1.1), which is to say that

η : R→ R is smooth and convex, while q ′(u) = η′(u)u.

Definition 1.1. For bounded initial data u0 ∈ L∞(R), we say that a function u ∈ L∞
loc([0, ∞),

L∞(R)) is an entropy solution of (1.1) if:

(1) it satisfies for all non-negative ϕ ∈ C∞
c (R+ × R) and all entropy pairs (η, q) of (1.1) the 

entropy inequality

∞∫
0

∫
R

η(u)ϕt + q(u)ϕx + η′(u)(K ∗ u)ϕ dxdt ≥ 0, (1.4)

(2) it assumes the initial data in L1
loc sense, that is

ess lim
t↘0

r∫
−r

|u(t, x) − u0(x)|dx = 0,

for all r > 0.

The concept of entropy solutions lies between that of strong and weak solutions. If u ∈
L∞

loc([0, ∞), L∞(R)) ∩ C1(R+ × R) is a classical solution of (1.1) then it is necessarily an 
entropy solution as multiplying (1.1) with η′(u)ϕ and integrating by parts yields (1.4) as an 
equality. And if u is an entropy solution of (1.1) then it is necessarily a weak solution as follows 
from considering the two entropy pairs (η(u), q(u)) = (u, 12u2) and (η(u), q(u)) = (−u, − 1

2u2)

respectively.
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1.4. A fractional variation

The exponents of the one-sided Hölder conditions provided by Theorem 2.3 depend on the 
regularity of K = G′; the smoother K is, the higher the exponent. More precisely, we attain the 
Hölder exponent 1+s

2 if |K|T V s < ∞ where the latter seminorm is for s ∈ [0, 1] defined by

|K|T V s = sup
h>0

‖K(· + h) − K‖L1(R)

hs
. (1.5)

When s = 1 this seminorm coincides with the classical total variation of K , while s = 0 gives 
twice the L1 norm of K , and thus we necessarily have |K|T V 0 < ∞ as we assume K ∈ L1(R). 
For s ∈ (0, 1) the seminorm is a measure of intermediate regularity between L1(R) and BV (R). 
This seminorm does not coincide with the scaling invariant fractional variation from [19] used in 
[2] to attain maximal smoothing effects for one-dimensional scalar conservation laws.

2. Main results

We here present the two main results, Theorem 2.1 and Theorem 2.3 and corresponding corol-
laries. For a general discussion of the content given here, see the end of the above introduction. 
We start with Theorem 2.1, which provides a global well-posedness theory for entropy solutions 
of (1.1) with initial data in L2 ∩ L∞(R). The theorem is established in Section 3.

Theorem 2.1. For every initial data u0 ∈ L2 ∩L∞(R) there exists a unique entropy solution u of 
(1.1). The mapping t �→ u(t) is continuous from [0, ∞) to L2(R) and u(t) satisfies for all t ≥ 0
the bounds

‖u(t)‖L2(R) ≤‖u0‖L2(R), ‖u(t)‖L∞(R) ≤etκ‖u0‖L∞(R), (2.1)

where κ := ‖K‖L1(R). Moreover, we have the following stability result: if two sequences 
(tk)k∈N ⊂ [0, ∞) and (u0,k)k∈N ⊂ L2 ∩ L∞(R) admit the limits

lim
k→∞ tk = t, and lim

k→∞u0,k = u0 in L2(R),

where u0 ∈ L2 ∩ L∞(R), then the corresponding entropy solutions satisfy

lim
k→∞uk(tk) = u(t) in L2(R).

The following corollary is an extension of the result to a pure L2 setting which is proved at 
the end of Subsection 3.3.

Corollary 2.2 (Global L2 well-posedness). Equation (1.1) is globally well-posed for L2(R) ini-
tial data in the following sense: The solution map S : (t, u0) �→ u(t) mapping L2 ∩ L∞(R)

initial data to the corresponding entropy solution evaluated at time t ≥ 0, extends uniquely to a 
jointly continuous map S : [0, ∞) × L2(R) → L2(R). In particular, the L2-bound, -continuity 
and -stability of Theorem 2.1 carries over to all weak solutions provided by S. Moreover, for 
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any u0 ∈ L2(R), the corresponding weak solution u(t, x) := S(t, u0)(x) is locally bounded in 
(0, ∞) ×R and satisfies the entropy inequalities (1.4).

For the remainder of the section, we broaden the definition of an entropy solution: for u0 ∈
L2(R) we say that u is the corresponding entropy solution of (1.1) if, and only if, u(t) = S(t, u0), 
where S is as in the previous corollary.

The second theorem infers one-sided Hölder regularity for the entropy solutions. The Hölder 
exponent depends on the regularity of K = G′, here measured using the fractional variation 
|K|T V s defined in (1.5). The theorem is proved in Section 4.

Theorem 2.3 (One-sided Hölder regularity). For initial data u0 ∈ L2(R), let u be the corre-
sponding entropy solution of (1.1), and let s ∈ [0, 1] be such that |K|T V s < ∞. Then u satisfies 
the one-sided Hölder condition

u(t, x) − u(t, y) ≤ a(t)(x − y)
1+s

2 , (2.2)

for all x ≥ y and t > 0, where the Hölder coefficient a(t) is given by

a(t) = C1(s)|K|
2+s
3+2s

T V s ‖u0‖
1+s
3+2s

L2(R)
+ C2(s)

‖u0‖
1−s

3
L2(R)

t
2+s

3

, (2.3)

for two constants C1(s) and C2(s) written out in (A.1).

Since u(t) is in L2(R) it is not necessarily true that x �→ u(t, x) is well defined pointwise; in 
the previous theorem we have identified u(t) with its left-continuous representation which exists 
due to Lemma A.1.

Since K ∈ L1(R) and |K|T V 0 = 2‖K‖L1(R), the s = 0 case of Theorem 2.3 is valid for any in-
stance of (1.1). In particular, entropy solutions of (1.1) are guaranteed to admit one-sided Hölder 
regularity of order 1

2 . In the case of the Burgers–Poisson equation, where K = 1
2 sgn(x)e−|x|

we find |K|T V 1 = |K|T V = 2 and so by the s = 1 case of Theorem 2.3 we get the following 
corollary.

Corollary 2.4 (One-sided Lipschitz smoothing of Burgers–Poisson). For initial data u0 ∈ L2(R), 
let u be the corresponding entropy solution of the Burgers–Poisson equation (1.2). Then u satis-
fies the one-sided Lipschitz condition

u(t, x) − u(t, y) ≤
[

12
1
5 ‖u0‖

2
5
L2(R)

+ 1

t

]
(x − y),

for all x ≥ y and t > 0.

While it was already established in [9] that entropy solutions of the Burgers–Poisson equation 
are one-sided Lipschitz continuous, our result has the advantage of a Lipschitz coefficient that 
decreases with time.

We conclude this section with two less obvious corollaries of Theorem 2.3: a decaying height 
bound for entropy solutions of (1.1) and a maximal lifespan estimate for classical solutions.
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Corollary 2.5 (Height bound). For initial data u0 ∈ L2(R), let u be the corresponding entropy 
solution of (1.1). Then for all t > 0 we have the height bound

‖u(t)‖L∞(R) ≤
[

2
11
12 3

1
3 ‖K‖

1
3
L1(R)

+ 2
5
4

t
1
3

]
‖u0‖

2
3
L2(R)

. (2.4)

Proof. See Appendix B.

Observe that together, the two height bounds (2.1) and (2.4) imply that when u0 ∈ L2 ∩L∞(R)

the corresponding entropy solution of (1.1) is globally bounded.
For the final result of the section, we need to introduce the following seminorm

[u0]s := ess sup
x∈R
h>0

[
u0(x − h) − u0(x)

h
1+s

2

]
, (2.5)

which is a (left) one-sided Hölder seminorm of exponent 1+s
2 .

Corollary 2.6 (Maximal lifespan). There are universal constants C, c > 0 such that: if initial 
data u0 ∈ L2 ∩ L∞(R) satisfies the skewness condition

[u0]3+2s
s > c|K|2+s

T V s ‖u0‖1+s

L2(R)
, (2.6)

for some s ∈ [0, 1] such that |K|T V s < ∞, then the lifespan T of a classical solution u ∈ L∞ ∩
C1((0, T ) ×R) of (1.1) admitting u0 as initial data must satisfy

T < C

[‖u0‖1−s

L2(R)

[u0]3
s

] 1
2+s

. (2.7)

Proof. See Appendix B.

3. Well posedness of entropy solutions

In this section, we provide for (1.1) a global well-posedness theory of entropy solutions as 
defined by Definition 1.1. In particular, the content of Theorem 2.1 follows from Proposition 3.1, 
Corollary 3.6 and Proposition 3.9; see the summary at the beginning of Subsection 3.3. Corol-
lary 2.2 is also proved here at the end of Subsection 3.3. For entropy solutions of (1.1), the 
proofs of existence and uniqueness are the same for L2 ∩ L∞ data as for L∞ data; only the L1

setting allows for ‘shortcuts’. Thus for generality, many results in the two coming subsections 
will be presented for initial data u0 ∈ L∞(R). We also note that in these two subsections only 
Lemma 3.3 exploits the dispersive nature of (1.1), that is, that K = G′ is odd.
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3.1. Uniqueness of entropy solutions

It is natural to start with the proof of uniqueness, as this equips us with a weighted L1-
contraction that can further be used in the existence proof. The involved weight wr

M(t, x) can 
be interpreted as a bound on the propagation of information for solutions of (1.1). Its technical 
role in the coming proof is to serve as a subsolution of a dual equation, namely the one obtained 
from setting the square bracket in (3.17) to zero. A similar method can be found in [1] where 
nonlocal conservation laws are treated.

The weight is constructed as follows. Writing |K| to denote the function x �→ |K(x)|, we 
introduce for a parameter t ≥ 0 the operator et |K|∗ mapping Lp(R) to itself for any p ∈ [1, ∞], 
defined by

(
et |K|∗f

)
(x) = f (x) +

∞∑
n=1

(
(|K|∗)nf

)
(x)

tn

n! , (3.1)

where (|K|∗)n represents the operation of convolving with |K| repeatedly n times. Observe that 
by repeated use of Young’s convolution inequality we have for any p ∈ [1, ∞] and f ∈ Lp(R)

‖et |K|∗f ‖Lp(R) ≤ etκ‖f ‖Lp(R), (3.2)

where κ := ‖K‖L1(R). For parameters r, M ≥ 0, we further introduce

χr
M(t, x) =

{
1, |x| < r + Mt,

0, else,
(3.3)

and set

wr
M(t, x) =

(
et |K|∗χr

M(t, ·)
)
(x). (3.4)

By (3.2), this weight satisfies for p ∈ [1, ∞] the bound

‖wr
M(t, ·)‖Lp(R) ≤ etκ (2r + 2Mt)

1
p , (3.5)

where the case p = ∞ is evaluated in a limit sense. Thus, wr
M(t, ·) ∈ L1 ∩L∞(R) for all t, r, M ≥

0. With wr
M defined, we are ready to state Proposition 3.1 establishing the uniqueness of entropy 

solutions. Although the following result is stated to hold for a.e. t ≥ 0, it can be extended to all 
t ≥ 0, as we later prove that entropy solutions of (1.1) are continuous when viewed as L1

loc(R)-
valued time-dependent functions.

Proposition 3.1. Let u, v ∈ L∞
loc([0, ∞), L∞(R)) be entropy solutions of (1.1) with u0, v0 ∈

L∞(R) as initial data. Then, for any r > 0 and a.e. t ≥ 0 we have the weighted L1-contraction

r∫
−r

|u(t, x) − v(t, x)|dx ≤
∞∫

−∞
|u0(x) − v0(x)|wr

M(t, x)dx, (3.6)
419
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where wr
M is given by (3.4), and M is any parameter satisfying

M ≥ ‖u‖L∞([0,t]×R) + ‖v‖L∞([0,t]×R)

2
. (3.7)

Thus, there is at most one entropy solution of (1.1) for each u0 ∈ L∞(R).

Proof. We begin by reformulating (1.4) in terms of the Kružkov entropies; parameterized over 
k ∈R, they are given by (ηk(u), qk(u)) = (|u − k|, F(u, k)) where

F(u, k) := 1
2 sgn(u − k)(u2 − k2).

These entropy pairs lack the required smoothness, but are still applicable in (1.4) as they can 
be smoothly approximated. Indeed, consider for δ > 0 and k ∈ R the entropy pairs ηδ

k(u) =√
(u − k)2 + δ2 and qδ

k (u) = ∫ u

k
(ηδ

k)
′(y)ydy. As we have the pointwise limits

lim
δ→0

ηδ
k(u) =|u − k|, lim

δ→0
qδ
k (u) =F(u, k), lim

δ→0
(ηδ

k)
′(u) = sgn(u − k),

we can substitute (η, q) �→ (ηδ
k, q

δ
k ) in (1.4) and let δ → 0 to conclude through dominated con-

vergence that u satisfies

0 ≤
∞∫

0

∫
R

|u − k|ϕt + F(u, k)ϕx + sgn(u − k)(K ∗ u)ϕdxdt, (3.8)

for all k ∈ R and all non-negative ϕ ∈ C∞
c (R+ × R). For brevity, we set U = R+ × R for use 

throughout the proof. Let ψ ∈ C∞
c (U × U) be non-negative, and consider u and v as functions 

in (t, x) and (s, y) respectively. For fixed (s, y) ∈ U , we can in (3.8) insert the test-function 
ϕ : (t, x) �→ ψ(t, x, s, y) and the constant k = v(s, y) so to obtain

0 ≤
∫
U

|u − v|ψt + F(u, v)ψx + sgn(u − v)(K ∗x u)ψdxdt, (3.9)

where we write K ∗x u to stress that the operator K∗ is applied with respect to the x-variable. 
As (3.9) holds for all (s, y) ∈ U we can integrate (3.9) over (s, y) ∈ U giving

0 ≤
∫
U

∫
U

|u − v|ψt + F(u, v)ψx + sgn(u − v)(K ∗x u)ψdxdtdyds. (3.10)

Swapping the roles of u(t, x) and v(s, y) we similarly find

0 ≤
∫
U

∫
U

|u − v|ψs + F(v,u)ψy + sgn(v − u)(K ∗y v)ψdxdtdyds. (3.11)

As F(u, v) = F(v, u) and sgn(v − u) = −sgn(u − v) we can add (3.10) to (3.11) so to further 
obtain
420
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0 ≤
∫
U

∫
U

|u − v|(ψt + ψs) + F(u, v)(ψx + ψy)dxdtdyds

+
∫
U

∫
U

sgn(u − v)(K ∗x u − K ∗y v)ψdxdtdyds.

(3.12)

Let ρ ∈ C∞
c (R2) be non-negative and satisfy ‖ρ‖L1(R2) = 1, and let ρε denote the expression

ρε = ρε(t − s, x − y) = 1

ε2 ρ

(
t − s

ε
,
x − y

ε

)
,

for ε > 0. For a fixed T ∈ (0, ∞), we further let ϕ denote a non-negative element of C∞
c ((0, T ) ×

R) and set

ψ(t, x, s, y) = ϕ(t, x)ρε(t − s, x − y),

or simply ψ = ϕρε for short. Note that, for ε > 0 sufficiently small, this ψ is non-negative, 
smooth and of compact support in U × U ; in particular, it satisfies the prior assumptions posed 
on it. Using that (∂t + ∂s)ρε = 0 = (∂x + ∂y)ρε , we can conclude

(ψt + ψs) =ϕtρε, (ψx + ψy) =ϕxρε,

and so inserting for ψ in (3.12) we get

0 ≤
∫
U

∫
U

[
|u−v|ϕt +F(u, v)ϕx

]
ρεdxdtdyds+

∫
U

∫
U

sgn(u−v)(K ∗x u−K ∗y v)ϕρεdxdtdyds.

(3.13)
We now wish to ‘go to the diagonal’ by taking lim supε→0 of (3.13); for simplicity we study 
each line separately. For the first one we pick M ∈ (0, ∞) satisfying the inequality (3.7) with T
replacing t , and use (u2 − v2) = (u + v)(u − v) to compute∫

U

∫
U

[
|u − v|ϕt + F(u, v)ϕx

]
ρεdxdtdyds

≤
∫
U

∫
U

|u − v|
[
ϕt + M|ϕx |

]
ρεdxdtdyds

≤
∫
U

|u(t, x) − v(t, x)|
[
ϕt + M|ϕx |

]
dxdt

+
∫
U

∫
U

|v(t, x) − v(s, y)|
[
ϕt + M|ϕx |

]
ρεdxdtdyds.

(3.14)

As ρε(t − s, x − y) is supported in the region |(t − s, x − y)| ≤ ε and satisfies ‖ρε‖L1(R2) = 1, 
the very last integral in (3.14) is bounded by
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sup
|(ε,δ)|≤ε

∫
U

|v(t, x) − v(t + ε, x + δ)|
[
ϕt + M|ϕx |

]
dxdt → 0, ε → 0,

where the limit holds as translation is a continuous operation on L1
loc(R) and ϕ ∈ C∞

c ((0, T ) ×
R). Thus we have established

lim sup
ε→0

∫
U

∫
U

[
|u − v|ϕt + F(u, v)ϕx

]
ρεdxdtdyds ≤

∫
U

|u(t, x) − v(t, x)|
[
ϕt + M|ϕx |

]
dxdt.

(3.15)
Turning our attention to the second line of (3.13), we start by observing∫

U

∫
U

sgn(u − v)(K ∗x u − K ∗y v)ϕρεdxdtdyds

≤
∫
U

∫
U

∫
R

|K(z)||u(t, x − z) − v(s, y − z)|ϕ(t, x)ρε(t − s, x − y)dzdxdtdyds

=
∫
U

∫
U

∫
R

|K(z)||u(t, x) − v(s, y)|ϕ(t, x + z)ρε(t − s, x − y)dzdxdtdyds

=
∫
U

∫
U

|u − v|
[
|K| ∗x ϕ

]
ρεdxdtdyds,

where the third line holds by the substitution (x, y) �→ (x +z, y +z) and the last by the symmetry 
of z �→ |K(z)|. By similar reasoning used to attain (3.14), we conclude

lim sup
ε→0

∫
U

∫
U

sgn(u − v)(K ∗x u − K ∗y v)ρεϕdxdtdyds

≤
∫
U

|u(t, x) − v(t, x)|(|K| ∗ ϕ)dxdt,

(3.16)

Combining (3.13) with (3.15) and (3.16), yields the inequality

0 ≤
∫
U

|u − v|
[
ϕt + M|ϕx | + |K| ∗ ϕ

]
dxdt, (3.17)

where both u and v are now functions in (t, x). By density, we may extend (3.17) to hold for all 
non-negative ϕ ∈ W

1,1
0 ((0, T ) ×R). Thus, we can set ϕ(t, x) = θ(t)φ(t, x) for two non-negative 

functions θ ∈ W
1,1
0 ((0, T )) and φ ∈ W 1,1((0, T ) × R) where we note that φ need not vanish at 

t = 0 and t = T . In doing so, (3.17) yields

0 ≤
∫
U

|u − v|θ ′φdxdt +
∫
U

|u − v|θ
[
φt + M|φx | + |K| ∗ φ

]
dxdt, (3.18)
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To rid ourselves of the second integral, we now construct a particular φ such that the square 
bracket in (3.18) is non-positive in (0, T ) × R. Let f : R → [0, 1] be smooth, non-increasing 
and satisfy f (x) = 1 for x ≤ 0 and f (x) = 0 for sufficiently large x, and define

g(t, x) = f (|x| + M(t − T )). (3.19)

It is readily checked that g ∈ C∞
c ([0, T ] ×R). We now define the function φ to be

φ(t, x) =
(
e(T −t)|K|∗g(t, ·)

)
(x), (3.20)

where we used the operator defined in (3.1). Observe that φ is non-negative and smooth on 
[0, T ] × R with integrable derivatives; this last part follows when using (3.2). That the square 
bracket in (3.18) is non-positive, can be seen as follows: note first from (3.19) that

gt (t, x) =Mf ′(|x| + M(t − T )),

gx(t, x) = sgn(x)f ′(|x| + M(t − T )).

As f ′ is non-positive, we find gt = −M|gx |. Thus, using (3.20) we calculate for t ∈ (0, T )

φt + |K| ∗ φ = e(T −t)|K|∗gt ,

= − M
(
e(T −t)|K|∗|gx |

)
,

≤ − M

∣∣∣e(T −t)|K|∗gx

∣∣∣
= − M|φx |,

where the last equality holds as differentiation commutes with convolution. In conclusion, the 
second integral in (3.18) is non-positive. Next, for a small parameter ε > 0 we set θ = θε where 
θε is given by

θε(t) =

⎧⎪⎨⎪⎩
t/ε, t ∈ (0, ε),

1, t ∈ (ε, T − ε),

(T − t)/ε, t ∈ (T − ε, T ).

(3.21)

Inserting this in (3.18), removing the non-positive integral and letting ε → 0, we conclude

lim inf
ε→0

T∫
T −ε

(∫
R

|u(t, x) − v(t, x)|φ(t, x)dx

)
dt

ε

≤ lim sup
ε→0

ε∫
0

(∫
R

|u(t, x) − v(t, x)|φ(t, x)dx

)
dt

ε

(3.22)

where we moved the negative term over to the left-hand side. As u and v are bounded on (0, T ) ×
R and continuous at t = 0 in L1 sense, it is easy to see that |u(t, ·) − v(t, ·)|φ(t, ·) → |u0(·) −
loc
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v0(·)|φ(0, ·) in L1(R) when t → 0 since the same is true for φ(t, x) and φ(0, x). Thus the right-
hand side of (3.22) is given by

lim sup
ε→0

ε∫
0

(∫
R

|u(t, x) − v(t, x)|φ(t, x)dx

)
dt

ε
=

∫
R

|u0 − v0|φ(0, x)dx.

As for the left-hand side, we wish to apply the Lebesgue differentiation theorem so to get con-
vergence for a.e. T > 0, but this can not be directly done due to the implicit T -dependence of 
φ. Instead, we observe from (3.19) and (3.20) that φ(T , x) = g(T , x) = f (|x|) where the latter 
function is independent of T . Since ϕ(t, ·) → f (| · |) in L1(R) as t → T , the boundness of u and 
v means that |u(t, ·) − v(t, ·)|(ϕ(t, ·) − f (| · |)) → 0 in L1(R) as t → T and so we may estimate

lim sup
ε→0

T∫
T −ε

(∫
R

|u(t, x) − v(t, x)|φ(t, x)dx

)
dt

ε

= lim sup
ε→0

T∫
T −ε

(∫
R

|u(t, x) − v(t, x)|f (|x|)dx

)
dt

ε

=
∫
R

|u(T , x) − v(T , x)|f (|x|)dx, a.e. T ≥ 0,

where the last equality used the Lebesgue differentiation theorem. Thus we conclude from (3.22)
that we for a.e. T ≥ 0 have∫

R

|u(T , x) − v(T , x)|f (|x|)dx ≤
∫
R

|u0(x) − v0(x)|
(
eT |K|∗f (| · | − MT )

)
(x)dx, (3.23)

where we inserted for φ(0, x) using (3.19) and (3.20). As f was any smooth, non-negative, non-
increasing function satisfying f (x) = 1 for x ≤ 0 and f (x) = 0 for sufficiently large x, we may 
in (3.23) set f = 1(−∞,r) through a standard approximation argument. Doing this, we observe 
that f (|x| − MT ) = χr

M(T , x) where the latter is defined in (3.3), and so we obtain from (3.23)
exactly (3.6), with T substituting for t . This concludes the proof. �

While we in this paper are concerned with global entropy solutions, one may wish to study 
entropy solutions on a time-bounded domain (0, T ) ×R. Such solutions would be defined as in 
Definition 1.1, but with the test-functions in (1.4) restricted to C∞

c ((0, T ) × R). Still, no new 
solutions are attained this way: the uniqueness of entropy solutions on a time-bounded domain 
follows from the same argument as above, and thus an entropy solution on (0, T ) × R is the 
restriction of a global one which the following section establishes the existence of.

3.2. Existence of entropy solutions

In this subsection, we prove the existence of an entropy solution of (1.1) for arbitrary ini-
tial data u0 ∈ L∞(R). The strategy goes as follows: we first introduce for a parameter ε > 0 an 
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approximate solution map Sε,t : L∞(R) → L∞(R) whose key properties are collected in Propo-
sition 3.2. Next, we show in Lemma 3.4 that when Sε,t is applied to sufficiently regular initial data 
u0, we attain approximate entropy solutions. Further, in Proposition 3.5 we establish the conver-
gence (as ε → 0) of these approximations to an entropy solution, and the result is extended to 
general L∞ data in Corollary 3.6.

By an operator splitting argument, we aim to build entropy solutions of (1.1) from those of 
Burgers’ equation, ut + 1

2 (u2)x = 0, and the linear convolution equation, ut = K ∗ u. On that 
note, we introduce two families of operators (SB

t )t≥0 and (SK
t )t≥0 parameterized over t ≥ 0. The 

operator SB
t : L∞(R) → L∞(R) is the solution map for Burgers’ equation restricted to L∞ data 

at time t ; that is,

SB
t : f �→ uf (t, ·), (3.24)

where (t, x) �→ uf (t, x) is the unique bounded entropy solution for the problem{
ut + 1

2 (u2)x = 0, (t, x) ∈ R+ ×R,

u(0, x) = f (x), x ∈R.

As demonstrated in [6], this solution lies in C([0, ∞), L1
loc(R)), the space of functions u ∈

L1
loc([0, ∞) × R) such that t �→ u(t, ·) is continuous from [0, ∞) to L1

loc(R). Note that SB
t is 

a flow map in the sense that SB
t1

◦ SB
t2

= SB
t1+t2

for all t1, t2 ≥ 0. The second map SK
t : L∞(R) →

L∞(R) is for t ≥ 0 defined by

SK
t : f �→ f + tK ∗ f. (3.25)

The actual solution map for the equation ut = K ∗u is the operator etK∗ defined similarly to (3.1); 
the reason we have instead chosen SK

t as (3.25) (which can be seen as a first order approximation 
of etK∗) is for our calculations to be slightly tidier. Note however, SK

t is not a flow mapping. With 
these two families of operators, we build a third family of operators Sε,t : for fixed parameters 
ε > 0 and t ≥ 0, pick the unique pair n ∈N0 and s ∈ [0, ε) such that t = s + nε, and define

Sε,t =SB
s ◦

[
SK

ε ◦ SB
ε

]◦n
, (3.26)

where the notation ◦n implies that the square bracket is composed with itself (n − 1) times; if 
n = 0, then the square bracket should be replaced by the identity. We shall demonstrate that as 
ε → 0 the map Sε,t converges in an appropriate sense to the solution map for entropy solutions 
of (1.1). We begin by collecting a few properties of Sε,t when applied to the space BV (R); 
this subspace of L1(R) is equipped with the norm ‖ · ‖BV (R) = ‖ · ‖L1(R) + | · |T V , where the 
total variation seminorm | · |T V coincides with | · |T V 1 as defined in (1.5). A short and effective 
discussion of BV (R) can be found in either [6] or [11]; we note that functions in BV (R) have 
essential right and left limits at each point, and their height is bounded by their total variation, 
thus BV (R) ↪→ L1 ∩ L∞(R).

Proposition 3.2. With Sε,t as defined in (3.26), we have for all ε > 0, t ≥ t̃ ≥ 0, f ∈ BV (R) and 
p ∈ [1, ∞]
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‖Sε,t (f )‖Lp(R) ≤ etκ‖f ‖Lp(R), (Lp bound),

‖Sε,t (f )‖T V ≤ etκ‖f ‖T V , (T V bound),

‖Sε,t (f ) − Sε,t̃ (f )‖L1(R) ≤ (t − t̃ + ε)Cf (t), (Approximate time continuity),

where κ := ‖K‖L1(R) and where the factor Cf (t) only depends on f and t .

Proof. Consider ε > 0 fixed. We will be using the following properties of the mappings SB
t and 

SK
t

‖SB
t (f )‖Lp(R) ≤‖f ‖Lp(R), ‖SK

t (f )‖Lp(R) ≤ etκ‖f ‖Lp(R), (3.27)

|SB
t (f )|T V ≤|f |T V , |SK

t (f )|T V ≤ etκ |f |T V , (3.28)

‖SB
t (f ) − f ‖L1(R) ≤ t |f |2T V , ‖SK

t (f ) − f ‖L1(R) ≤ tκ‖f ‖L1(R), (3.29)

valid for all t ≥ 0, p ∈ [1, ∞] and f ∈ BV (R). The inequalities involving SB
t are well known 

and can be found for example in [11]. As for the inequalities involving SK
t , these estimates 

follow directly from the definition of SK
t (3.25) together with Young’s convolution inequality 

and 1 + tκ ≤ etκ . We start by proving the Lp and T V bound of the proposition. For this we fix 
t ≥ 0 and pick n ∈N0 and s ∈ [0, ε) such that t = s + nε, and pick an arbitrary f ∈ BV (R). By 
iteration of the two inequalities in (3.27) we attain

‖Sε,t (f )‖Lp(R) = ‖SB
s ◦ [SK

ε ◦ SB
ε ]◦n(f )‖Lp(R) ≤ enεκ‖f ‖Lp(R), (3.30)

for all p ∈ [1, ∞], and by iteration of the inequalities in (3.28) we similarly get

|Sε,t (f )|T V = |SB
s ◦ [SK

ε ◦ SB
ε ]◦n(f )|T V ≤ enεκ |f |T V . (3.31)

This gives the first two bounds of the proposition. For the time continuity, we pick t̃ ∈ [0, t] and 
ñ ∈N and s̃ ∈ [0, ε) such that t̃ = s̃ + ñε. Suppose first that t − t̃ ≤ ε, and set f̃ = Sε,ñε(f ). Then 
either Sε,t (f ) = SB

s−s̃
(f̃ ) or Sε,t (f ) = SB

s ◦ SK
ε ◦ SB

ε−s̃
(f̃ ) corresponding to the two situations 

n = ñ and n = ñ + 1; we will only deal with the latter as the other case is dealt with similarly. 
By the triangle inequality we then have

‖Sε,t (f ) − Sε,t̃ (f )‖L1(R) ≤‖SB
s ◦ SK

ε ◦ SB
ε−s̃ (f̃ ) − SK

ε ◦ SB
ε−s̃ (f̃ )‖L1(R)

+ ‖SK
ε ◦ SB

ε−s̃ (f̃ ) − SB
ε−s̃ (f̃ )‖L1(R) + ‖SB

ε−s̃ (f̃ ) − f̃ ‖L1(R).

The three terms on the right-hand side can be directly dealt with using the two inequalities (3.29)
followed by the estimates (3.30) and (3.31). Doing so in a straightforward manner results in the 
bound

se2nεκ |f |2T V + εκeñεκ‖f ‖L1(R) + (ε − s̃)e2ñεκ |f |2T V ≤ εe2tκ (2|f |2T V + κ‖f ‖L1(R)).

Thus, setting for example Cf (t) = e2tκ (2|f |2T V +κ‖f ‖L1(R)) the time continuity estimate holds 
whenever t − t̃ ≤ ε. By breaking any large time step into steps of size no larger than ε, the general 
case follows by the triangle inequality. �
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The Lp bound provided by the previous proposition was attained by applying Young’s convo-
lution inequality on the operator K∗; in doing so, we miss possible cancellations that might take 
place as K , after all, is an odd function. While efficient Lp bounds might not be feasible for gen-
eral p ≥ 1, these cancellations are easily exploited for the L2 norm as seen from the following 
lemma. This L2 control is crucial for the analysis of Section 4.

Lemma 3.3. With Sε,t as defined in (3.26), we have for all ε > 0, t ≥ 0 and f ∈ L2 ∩ L∞(R)

‖Sε,t (f )‖L2(R) ≤ e
1
2 εtκ2‖f ‖L2(R),

where κ := ‖K‖L1(R).

Proof. Consider ε > 0 and t ≥ 0 fixed. As K is odd, real valued and in L1(R), it is readily 
checked that K∗ is a skew-symmetric operator on L2(R), and consequently 〈f, K ∗ f 〉 = 0 for 
all f ∈ L2(R). In particular,

‖SK
ε (f )‖2

L2(R)
= 〈f,f 〉 + ε2〈K ∗ f,K ∗ f 〉 ≤ (1 + ε2κ2)‖f ‖2

L2(R)
.

Combined with 1 + ε2κ2 ≤ eε2κ2
and the fact that ‖SB

ε (f )‖L2(R) ≤ ‖f ‖L2(R) (left-most inequal-
ity in (3.27)), the result follows by iteration. �

When u0 ∈ BV (R), we can use Sε,t to construct a family of approximate entropy solu-
tions of (1.1) as follows. For an arbitrary, but fixed, u0 ∈ BV (R), let the family (uε)ε>0 ⊂
L∞

loc([0, ∞), L∞(R)) be defined by

uε(t) = Sε,t (u0), (3.32)

where uε(t) is compact notation for x �→ uε(t, x). Although (uε)ε>0 is considered a family in 
L∞

loc([0, ∞), L∞(R)), we stress that each member is for all t ≥ 0 well defined in L∞(R). For 
small ε > 0 these functions are not far off from satisfying the entropy inequality (1.4), as we now 
show.

Lemma 3.4. With (uε)ε>0 as defined in (3.32) for some u0 ∈ BV (R), we have for every entropy 
pair (η, q) of (1.1) and non-negative ϕ ∈ C∞

c (R+ ×R) the approximate entropy inequality

∞∫
0

∫
R

η(uε)ϕt + q(uε)ϕx + η′(uε)(K ∗ uε)ϕdxdt ≥ O(ε).

Proof. Fixing ε > 0, we observe from the definition of Sε,t (3.26) that uε is an entropy solution 
of Burgers’ equation on the open sets (tεn−1, t

ε
n) ×R for n ∈ N , where tεn = nε; thus

tεn∫
tεn−1

∫
R

η(uε)ϕt + q(uε)ϕxdxdt ≥ 0, (3.33)
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for every non-negative ϕ ∈ C∞
c ((tεn−1, t

ε
n) × R) and every entropy pair (η, q) of Burgers’ equa-

tion, which coincides with the entropy pairs of (1.1) as the convection term of the two equations 
agree. Moreover, by the time continuity of SB

t (3.28) and the T V bound from Proposition 3.2, 
we see that uε ∈ C([tεn−1, t

ε
n), L1

loc(R)); at t = tεn it is discontinuous from the left, as the left limit 
is given by uε(tεn−) = SB

ε (uε(tεn−1)), while we have defined

uε(tεn) = uε(tεn−) + εK ∗ uε(tεn−). (3.34)

The continuity in time allows us, by a similar trick used to attain (3.22), to extend (3.33) to

tεn∫
tεn−1

∫
R

η(uε)ϕt + q(uε)ϕxdxdt ≥
∫
R

η(uε(tεn−))ϕ(tεn, x)dx −
∫
R

η(uε(tεn−1))ϕ(tεn−1, x)dx,

(3.35)
for all non-negative ϕ ∈ C∞

c (R+ ×R). For the remainder of the proof, consider the entropy pair 
(η, q) and ϕ ∈ C∞

c (R+ ×R) fixed. Summing (3.35) over n ∈N and using ϕ(0, x) = 0, we get

∫
R+×R

η(uε)ϕt + q(uε)ϕxdxdt ≥
∞∑

n=1

∫
R

[
η(uε(tεn−)) − η(uε(tεn))

]
ϕ(tεn, x)dx. (3.36)

By Proposition 3.2, the family (uε)ε>0 is uniformly bounded on the support of ϕ, and so we 
can assume without loss of generality that |η′|, |η′′| < C1 for some large C1. Using the relation 
(3.34), the square bracket from (3.36) can thus be estimated

η(uε(tεn−)) − η(uε(tεn)) ≥ −εη′(uε(tεn−))
[
K ∗ uε(tεn−)

]
− C1ε

2

2
|K ∗ uε(tεn−)|2,

which, again by the uniform bound of uε on the compact support of ϕ, further implies

∫
R

[
η(uε(tεn−)) − η(uε(tεn))

]
ϕ(tεn, x)dx ≥ −ε

∫
R

η′(uε(tεn−))
[
K ∗ uε(tεn−)

]
ϕ(tn, x)dx − C2ε

2,

(3.37)
for some C2 > 0 independent of n and ε. Combining the uniform time regularity of Proposi-
tion 3.2 and the compact support of ϕ, we see that the function

gε(t) :=
∫
R

η′(uε(t))
[
K ∗ uε(t)

]
ϕ(t, x)dx, (3.38)

satisfies for all t ≥ t̃ ≥ 0 an inequality |gε(t) − gε(t̃)| ≤ C3(t − t̃ + ε) for some sufficiently large 
C3 independent of ε. Thus, the integral on the right-hand side of (3.37) can be bounded from 
below as such
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− ε

∫
R

η′(uε(tεn−))
[
K ∗ uε(tεn−)

]
ϕ(tn, x)dx

= −
tεn∫

tεn−1

∫
R

η′(uε(tεn−))
[
K ∗ uε(tεn−)

]
ϕ(tn, x)dxdt

≥ −
tεn∫

tεn−1

∫
R

η′(uε(t))
[
K ∗ uε(t)

]
ϕ(t, x)dxdt − 2C3ε

2.

(3.39)

Picking the smallest N(ε) ∈ N such that suppϕ ∩ (εN(ε), ∞) × R = ∅, we combine (3.36), 
(3.37) and (3.39) to deduce∫

R+×R

η(uε)ϕt + q(uε)ϕx + η′(uε)(K ∗ uε)ϕdxdt ≥ CN(ε)ε2,

for some sufficiently large C > 0. And as N(ε)ε2 ∼ ε the proof is complete. �
With the previous result at hand, it is natural to look for a limit function of (uε)ε>0 as ε → 0; 

this would be a suitable candidate for an entropy solution of (1.1) with initial data u0 ∈ BV (R). In 
the next proposition, we do exactly this and collect a few properties about the resulting solution.

Proposition 3.5. For any initial data u0 ∈ BV (R), let (uε)ε>0 be as defined in (3.32). Then, for 
all t ≥ 0 the following limit holds in L1

loc(R)

uε(t) → u(t), ε → 0, (3.40)

where u is an entropy solution of (1.1) with initial data u0. Moreover, u is an element of 
C([0, ∞), L1(R)) ∩ L∞

loc([0, ∞), L∞(R)) and satisfies for all t ≥ 0

‖u(t)‖L∞(R) ≤ etκ‖u0‖L∞(R), (3.41)

‖u(t)‖L2(R) ≤‖u0‖L2(R), (3.42)

where κ := ‖K‖L1(R).

Proof. We first prove the limit (3.40) for a special subsequence of (uε)ε>0 and then generalize 
afterwards. Fixing t ≥ 0, we see from Proposition 3.2 that the functions (uε(t))ε>0 satisfy for 
any p ∈ [1, ∞]

‖uε(t)‖Lp(R) ≤ etκ‖u0‖Lp(R), (3.43)

and in particular, they are uniformly bounded in L1(R). Moreover, they are equicontinuous with 
respect to translation
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‖uε(t, · + h) − uε(t, ·)‖L1(R) ≤ hetκ |u0|T V ,

for all h > 0, and so by the Kolmogorov–Riesz compactness Theorem, any infinite subset of 
(uε(t))ε>0 is relatively compact in L1

loc(R); as we have skipped developing a tightness estimate 
for (uε(t))ε>0, we can not claim the family to be relatively compact in L1(R). The family (uε)ε>0
is not equicontinuous in time and so we can not directly apply the Arzelà-Ascoli theorem, how-
ever, the family is for small ε arbitrary close to be equicontinuous and so the proof of the theorem 
is still applicable; for clarity we perform the steps. By a standard diagonalization argument, we 
can select a sub-sequence (uεj )j∈N ⊂ (uε)ε>0 such that limj→∞ εj = 0 and uεj (t) converges 
in L1

loc(R) for every t ∈ E with E being a countable dense subset of R+. Next, we claim that 
uεj (t) converges in L1

loc(R) for every t ≥ 0. Indeed, fix r > 0 for locality and pick s ∈ E such 
that |s − t | < ε for some arbitrary ε > 0. By the time regularity estimate of Proposition 3.2, we 
have

lim sup
j,i→∞

r∫
−r

|uεj (t) − uεi (t)|dx

≤ lim sup
j,i→∞

r∫
−r

|uεj (t) − uεj (s)| + |uεj (s) − uεi (s)| + |uεi (s) − uεi (t)|dx

≤ lim sup
j,i→∞

(2ε + εj + εi)Cu0(t + ε) + lim sup
j,i→∞

r∫
−r

|uεj (s) − uεi (s)|dx

=2εCu0(t + ε),

and since r and ε were arbitrary, we conclude that uεj (t) converges in L1
loc(R) to some u(t). 

Moreover, as uεj (t) converges locally to u(t), the bound (3.43) necessarily carries over to u(t), 
and so in particular

‖u(t)‖Lp(R) ≤ etκ‖u0‖Lp(R),

and further by Fatou’s lemma we infer for all t ≥ t̃ ≥ 0

‖u(t) − u(t̃)‖L1(R) ≤ lim inf
j→∞ ‖uεj (t) − uεj (t̃)‖L1(R)

≤ lim inf
j→∞ (t − t̃ + εj )Cu0(t)

= (t − t̃ )Cu0(t).

(3.44)

Thus u ∈ C([0, ∞), L1(R)) ∩L∞
loc([0, ∞), L∞(R)). Next, we prove that u is, in accordance with 

Definition 1.1, an entropy solution of (1.1) with initial data u0; the latter part follows from u(0) =
u0 and (3.44). To see that u satisfies the entropy inequalities (1.4), we pick an arbitrary entropy 
pair (η, q) of (1.1) and a non-negative ϕ ∈ C∞(R+ ×R) and recall Lemma 3.4 to calculate
c
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∞∫
0

∫
R

η(u)ϕt + q(u)ϕx + η′(u)(K ∗ u)ϕdxdt

= lim
j→0

∞∫
0

∫
R

η(uεj )ϕt + q(uεj )ϕx + η′(uεj )(K ∗ uεj )ϕdxdt

≥ lim
j→0

O(εj ) = 0,

(3.45)

where the second line holds as the integrand converges in L1(R); after all, (uεj )j∈N is uniformly 
bounded on the compact support of ϕ. By Proposition 3.1 we conclude that u is the unique 
entropy solution of (1.1) with u0 as initial data. What remains to show, is the general limit (3.40)
and the L2 bound of u (3.42); the latter follow by Lemma 3.3 and Fatou’s lemma. We prove (3.40)
by contradiction; if this limit does not exist, then there is a subsequence (uεj )j∈N ⊂ (uε)ε>0, a 
t > 0 and an r > 0 such that

lim inf
j→∞

r∫
−r

|u(t) − uεj (t)|dx > 0.

But as argued above, the infinite set (uεj )j∈N must be precompact in L1
loc(R) for every t ≥

0, and thus we can pick a subsequence converging for every t ≥ 0 in L1
loc(R) to the unique 

(Proposition 3.1) entropy solution u which contradicts the above limit inferior. �
The existence of entropy solutions for general L∞ data now follows from the previous 

proposition together with the weighted L1-contraction provided by Proposition 3.1. As entropy 
solutions with BV data are L1-continuous in time, said contraction extends to all t ≥ 0.

Corollary 3.6. For any initial data u0 ∈ L∞(R), there exists a corresponding entropy solution 
u ∈ C([0, ∞), L1

loc(R)) of (1.1) satisfying for all t ≥ 0

‖u(t)‖L∞(R) ≤ etκ‖u0‖L∞(R), (3.46)

where κ := ‖K‖L1(R). If u0 ∈ L2 ∩ L∞(R), it also satisfies for all t ≥ 0

‖u(t)‖L2(R) ≤‖u0‖L2(R). (3.47)

Proof. For u0 ∈ L∞(R), let (uj )j∈N be a sequence of entropy solutions of (1.1) whose corre-

sponding initial data (uj
0)j∈N ⊂ BV (R) satisfies supj ‖uj

0‖L∞(R) ≤ ‖u0‖L∞(R) and uj
0 → u0 in 

L1
loc(R) as j → ∞. For a fixed T > 0, set

M = eT κ‖u0‖L∞(R),

and observe from (3.41) that supj ‖uj (t)‖L∞(R) ≤ M for all t ∈ [0, T ]. Using (3.6), we find for 
any r > 0
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lim sup
j,i→∞

sup
0≤t≤T

r∫
−r

|uj (t, x) − ui(t, x)|dx ≤ lim sup
j,i→∞

∫
R

|uj

0(x) − ui
0(x)|wr

M(T , x)dx = 0,

where we used that wr
M is increasing in t . This shows that (uj )j∈N is Cauchy in the Fréchet space 

C([0, ∞), L1
loc(R)) and so the sequence converges to some u ∈ C([0, ∞), L1

loc(R)). Moreover,

‖u(t)‖L∞(R) ≤ lim inf
j→∞ ‖uj (t)‖L∞(R) ≤ etκ‖u0‖L∞(R),

by (3.41), and so u ∈ L∞
loc([0, ∞), L∞(R)) too. That u takes u0 as initial data in L1

loc-sense 

follows from the time-continuity of u and u(0) = limj→∞ u
j
0 = u0 where the limit is taken in 

L1
loc(R). Moreover, as each member (uj )j∈N satisfies the entropy inequalities (1.4), the same 

can be said for u by a similar calculation as (3.45). Thus the corollary is proved, save for the L2

estimate; this is attained through Fatou’s lemma and (3.42) as we may assume supj ‖uj

0‖L2(R) ≤
‖u0‖L2(R). �
3.3. L2 continuity and stability of entropy solutions

For clarity, we summarize what of Theorem 2.1 has been proved so far and what remains to 
be proved. Combining Proposition 3.1 and Corollary 3.6, we conclude that there exists a unique 
entropy solution of (1.1) in accordance with Definition 1.1 for every initial data u0 ∈ L∞(R) and 
thus also for u0 ∈ L2 ∩ L∞(R). Furthermore, Corollary 3.6 guarantees that these solutions are 
continuous from [0, ∞) to L1

loc(R) so that the restriction u(t) := u(t, ·) ∈ L1
loc(R) makes sense 

for all t ≥ 0. The same corollary also provides the bounds (2.1) of Theorem 2.1.
It remains to prove that entropy solutions with L2 ∩ L∞ data are continuous from [0, ∞) to 

L2(R) and that they satisfy the stability result of Theorem 2.1. To do so, we shall exploit the 
height bound of Corollary 2.5. As explained at the beginning of Section 4, Corollary 2.5 can be 
proved for the case u0 ∈ L2 ∩ L∞(R) independently of this subsection; thus we may here use 
the height bound (2.4) for entropy solutions of (1.1) without risking a circular argument. From 
here til the end of the section, we take the above properties of entropy solutions for granted. We 
begin with a variant of Proposition 3.1 which makes use of the discussed height bound.

Lemma 3.7. There is a function � : [0, ∞)3 → [0, ∞), increasing in all arguments, such that 
for any pair of entropy solutions u, v of (1.1) with respective initial data u0, v0 ∈ L2 ∩ L∞(R)

one has for any t, r ≥ 0 and N ≥ max{‖u0‖L2(R), ‖v0‖L2(R)} the inequality

‖u(t) − v(t)‖L1([−r,r]) ≤ �(t,N, r)‖u0 − v0‖L2(R). (3.48)

Proof. Let u, v, u0, v0 and N be as described in the lemma. By (2.4) from Corollary 2.5, and the 
property of N , we have for all t > 0

‖u(t)‖L∞(R) + ‖v(t)‖L∞(R)

2
≤ CN

2
3

(
1 + 1

t
1
3

)
=: m(t), (3.49)
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where C := max{2 11
12 3

1
3 ‖K‖

1
3
L1(R)

, 2
5
4 }. With F(u, v) := 1

2 sgn(u − v)(u2 − v2), we have for any 
non-negative ϕ ∈ C∞

c ((0, ∞) ×R) the inequality

0 ≤
∞∫

0

∫
R

|u − v|ϕt + F(u, v)ϕx + |u − v|(|K| ∗ ϕ)dxdt. (3.50)

This is attained by following the first half of the proof of Proposition 3.1 without using the bound 
|F(u, v)| ≤ M|u − v| as done in the first inequality of (3.14); one may instead, when ‘going to 
the diagonal’, subtract F(u(t, x), v(t, x)) from F(u(t, x), v(s, y)) and use

|F(u(t, x), v(s, y)) − F(u(t, x), v(x, y))| � |v(s, y) − v(t, x)|,

which follows from local Lipschitz continuity of F and the fact that u and v are globally bounded 
(as pointed out after Corollary 2.5). With (3.50) established, we may now filter out (u +v)/2 from 
F using the more precise bound (3.49), that is

|F(u(t, x), v(t, x))| ≤ m(t)|u(t, x) − v(t, x)|.

Doing so, and additionally setting ϕ(t, x) = θ(t)φ(t, x) for two arbitrary non-negative functions 
θ ∈ C∞

c ((0, T )) and φ ∈ C∞
c ((0, T ) × R), with T > 0 also arbitrary, we conclude from (3.50)

that

0 ≤
T∫

0

∫
R

|u − v|θ ′φdxdt +
T∫

0

∫
R

|u − v|θ
[
φt + m(t)|φx | + |K| ∗ φ

]
dxdt. (3.51)

Observe that (3.51) resembles (3.18); for brevity, we skip minor details in the following steps due 
to their similarity of those following (3.18). Let f : R → [0, 1] be a smooth and non-increasing 
function satisfying f (x) = 1 for x ≤ 0 and f (x) = 0 for sufficiently large x, and set

g(t, x) := f (|x| + M(t) − M(T )),

where we have here defined M(t) by

M(t) :=
t∫

0

m(s)ds = CN
2
3

(
t + 3

2 t
2
3

)
.

Analogous to (3.20), we then set

φ(t, x) =
(
e(T −t)|K|∗g(t, ·)

)
(x), (3.52)

and while this φ is not of compact support, both it, and its derivatives, are integrable on (0, T ) ×R
and so by an approximation argument it can be used in (3.51). By similar arguments as those 
following (3.20) we find also here that the second integral in (3.51) is non-positive, and so we 
433



O.I.H. Mæhlen and J. Xue Journal of Differential Equations 364 (2023) 412–455
may remove it. Letting then θ approximate 1(0,T ) in a similar (smooth) manner as done by the 
sequence (3.21), we may from (3.51) conclude

∫
R

|u(T , x) − v(T , x)|φ(T , x)dx ≤
∫
R

|u0(x) − v0(x)|φ(0, x)dx, (3.53)

where we used that t �→ |u(t, ·) − v(t, ·)|φ(t, ·) is L1-continuous which can be seen by a triangle 
inequality argument. Note that φ(0, x) = f (|x|), and so letting f → 1(−∞,r) in L1 sense, the 
left-hand side of (3.53) becomes the left-hand side of (3.48). When f → 1(−∞,r) we also get 
from (3.52) that

φ(0, x) →
(
eT |K|∗1(−∞,r)(| · | − M(T ))

)
(x), (3.54)

in L1 sense. Denoting the right-hand side of (3.54) also by φ(0, x), it follows by Young’s convo-
lution inequality that

‖φ(0, x)‖L2(R) ≤ eT κ [2r + 2M(T )] 1
2 = eT κ

[
2r + 2CN

2
3

(
T + 3

2T
2
3

)] 1
2
, (3.55)

where κ := ‖K‖L1(R). Applying then the Cauchy–Schwarz inequality to the right-hand side of 
(3.53), and using the above L2 bound for φ(0, x), we attain (3.48) (with T substituting for t) for 
�(T , N, r) given by the right-hand side of (3.55). �

We follow up with a tightness bound for entropy solutions with L2 ∩ L∞ data.

Lemma 3.8. There is a function � : [0, ∞)2 × R → [0, ∞), increasing in all arguments, such 
that if u is an entropy solution of (1.1) with initial data u0 ∈ L2 ∩ L∞(R), then for any t, r ≥ 0
and N ≥ ‖u0‖L2(R) ∫

|x|>r

u2(t, x)dx ≤
∫
R

u2
0(x)�(t,N, |x| − r)dx. (3.56)

Moreover,

lim
ξ→−∞�(t,N, ξ) =0, �(t,N, ξ) = e2tκ , ξ > 0,

where κ := ‖K‖L1(R), and in particular, ξ �→ �(t, M, ξ) is a bounded function.

Proof. Pick arbitrary initial data u0 ∈ L2 ∩ L∞(R) and let u denote the corresponding en-
tropy solution of (1.1). Writing out the entropy inequality (1.4) for u using the entropy pair 
(η(u), q(u)) = (u2, 23u3) and a non-negative test function ϕ ∈ C∞

c ((0, T ) ×R), with T ∈ (0, ∞)

fixed, we get
434



O.I.H. Mæhlen and J. Xue Journal of Differential Equations 364 (2023) 412–455
0 ≤
T∫

0

∫
R

u2ϕt + 2
3u3ϕx + 2u(K ∗ u)ϕ dxdt. (3.57)

By the height bound (2.4) of Corollary 2.5, we have ‖u(t)‖L∞(R) ≤ m(t) where m(t) is as defined 
in (3.49), and so the second term of the above integrand satisfies

2
3u3ϕx ≤ u2

[
2
3m(t)|ϕx |

]
.

Additionally, the third part of the integrand satisfies∫
R

2u(K ∗ u)ϕ dx =
∫
R

∫
R

2u(t, x)u(t, y)K(x − y)ϕ(t, x)dydx

≤
∫
R

∫
R

[
|u(t, x)|2 + |u(t, y)|2

]
|K(x − y)|ϕ(t, x)dydx

=
∫
R

u2
[
κϕ + |K| ∗ ϕ

]
dx.

Inserting these two bounds in (3.57) we get for any non-negative ϕ ∈ C∞
c ((0, T ) ×R)

0 ≤
T∫

0

∫
R

u2
[
ϕt + 2

3m(t)|ϕx | +K ∗ ϕ
]

dxdt, (3.58)

where we introduced the measure K := κδ + |K|, where δ is the Dirac measure. Like in the pre-
vious proof, we proceed in a manner similar to the second half of the proof of Proposition 3.1, 
though some necessary changes are made. We set ϕ(t, x) = θ(t)ρ(x)φ(t, x) for three smooth 
non-negative functions on [0, T ] × R with θ and ρ having compact support in (0, T ) and R
respectively. Additionally, while φ need not be compactly supported, we require φ and its deriva-
tives to be bounded. Inserting this in (3.58) we get

0 ≤
T∫

0

∫
R

u2θ ′ρφdxdt +
∞∫

0

∫
R

u2θ
[
ρφt + 2

3m(t)|(ρφ)x | +K ∗ (ρφ)
]

dxdt. (3.59)

Letting θ approximate 1(0,T ) in a similar (smooth) manner as done by the sequence (3.21), we 
may from (3.59) conclude that∫

R

u2(T , x)ρ(x)φ(T , x)dx ≤
∫
R

u2
0(x)ρ(x)φ(0, x)dx

+
∞∫ ∫

u2
[
ρφt + 2

3m(t)|(ρφ)x | +K ∗ (ρφ)
]

dxdt,

(3.60)
0 R
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where we used that t �→ u2(t, ·)ρ(·)φ(t, ·) is L1-continuous which can be seen by a triangle in-
equality argument. Next, we set ρ(x) = ρ̃(x/N) where ρ̃ ∈ C∞

c (R) is non-negative and satisfies 
ρ̃(0) = 1. Letting N → ∞, (3.60) yields by the dominated convergence theorem

∫
R

u2(T , x)φ(T , x)dx ≤
∫
R

u2
0(x)φ(0, x)dx +

∞∫
0

∫
R

u2
[
φt + 2

3m(t)|φx | +K ∗ φ
]

dxdt, (3.61)

where the convergence of the integrals follows from the boundness of φ (and its derivatives) 
combined with ‖u(t)‖L2(R) ≤ ‖u0‖L2(R) for all t ∈ [0, T ]. To rid ourselves of the last integral in 
(3.61), we perform a similar trick as done for (3.18) and (3.51), but with a different f ; we here 
let f : R → [0, 1] be a non-decreasing function with bounded derivatives. Define further g by

g(t, x) := f (|x| + M(T ) − M(t)),

where M(t) denotes

M(t) :=
t∫

0

2
3m(s)ds = CN

2
3

(
2
3 t + t

2
3

)
, (3.62)

and analogues to (3.20), we set φ to be

φ(t, x) =
(
e(T −t)K∗g(t, ·)

)
(x).

We conclude by similar arguments as those following (3.20) that the square bracket in (3.61) is 
non-positive. Thus, removing the non-positive integral in (3.61) we get∫

R

u2(T , x)f (|x|)dx ≤
∫
R

u2
0(x)

(
eTK∗f (| · | + M(T ))

)
(x)dx, (3.63)

where we used the explicit expressions for φ(T , x) and φ(0, x). Letting f → 1(r,∞) pointwise 
a.e. it is clear that the left-hand side of (3.63) converges to 

∫
|x|>r

u2(T )dx. As for the right-hand 

side, we get the cumbersome term eTK∗1(r,∞)(| · | +MT ) which we now simplify. Let the Borel 
measure νT be defined by the relation νT ∗ = eTK∗ and observe that we for x ∈ R have

(
νT ∗ 1(r,∞)(| · | + M(T ))

)
(x) =

∫
|x−y|+M(T )>r

dνT (y) ≤
∫

|x|−r+M(T )>−|y|
dνT (y). (3.64)

Thus, we define �(T , N, |x| − r) to be the latter expression after substituting for M(T ) using 
(3.62). Inserting this in (3.63) we get exactly (3.56) with T substituting for t . The properties of 
� stated in the lemma can be read directly from (3.64) when setting ξ = |x| − r together with 
the fact that T �→ νT is increasing (in the canonical sense) and 

∫
R dνT = eTK∗1 = e2T κ . �

We may now prove the remaining part of Theorem 2.1.
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Proposition 3.9. Let two sequences (tk)k∈N ⊂ [0, ∞) and (u0,k)k∈N ⊂ L2 ∩L∞(R) admit limits

lim
k→∞|tk − t | =0, lim

k→∞‖u0,k − u0‖L2(R) = 0,

with t ∈ [0, ∞) and u0 ∈ L2 ∩ L∞(R). Letting (uk)k∈N and u denote the entropy solutions of 
(1.1) corresponding to the initial data (u0,k)k∈N and u0 respectively, we have

lim
k→∞‖uk(tk) − u(t)‖L2(R) = 0.

In particular, entropy solutions of (1.1) with L2 ∩L∞ data are continuous from [0, ∞) to L2(R).

Proof. Suppose first that t > 0. As tk → t there is a T ∈ (0, ∞) such that (tk)k∈N ⊂ [0, T ]. 
Similarly, there is an N such that N ≥ ‖v0‖L2(R) for every v0 ∈ {u0,1, u0,2, . . . , u0}; observe that 
such an N satisfies N ≥ ‖v(t)‖L2 for all t ∈ [0, T ] and v ranging over the corresponding entropy 
solutions. As the function � from Lemma 3.8 was increasing in its arguments, we infer for all 
k ∈N and r > 0 that ∫

|x|>r

u2
k(tk, x)dx ≤

∫
R

u2
0,k(x)�(T ,N, |x| − r).

Furthermore, as ξ �→ �(T , M, ξ) is bounded while u2
0,k → u2

0 in L1(R) as k → ∞, it follows 
that

lim sup
k→∞

∫
|x|>r

u2
k(tk, x)dx ≤

∫
R

u2
0(x)�(T ,M, |x| − r), (3.65)

for any r > 0. Since u2
0 is integrable and limξ→−∞ �(T , M, ξ) = 0, we may for any ε > 0 pick 

a sufficiently large r > 0 such that the right-hand side of (3.65) is smaller than ε2. For such a 
couple of constants ε, r > 0 we find

lim sup
k→∞

‖uk(tk) − u(t)‖L2(R) ≤ 2ε + lim sup
k→∞

‖uk(tk) − u(t)‖L2([−r,r]). (3.66)

To deal with the rightmost term in (3.66), we yet again let m be the function defined in (3.49)
using the above N . As t > 0, there are only a finite number of elements in (tk)k∈N smaller than 
t/2; without loss of generality, we shall assume there are none. By the height bound (2.4) from 
Corollary 2.5 and m being decreasing in t , it then follows that ‖v‖L∞(R) ≤ m(t/2) for every 
v ∈ {u1(t1), u2(t2), . . . , u(t)}. Thus,

‖uk(tk) − u(t)‖2
L2([−r,r]) ≤2m(t/2)‖uk(tk) − u(t)‖L1([−r,r]),

and by the triangle inequality, we further have

‖uk(tk) − u(t)‖L1([−r,r]) ≤ ‖uk(tk) − u(tk)‖L1([−r,r]) + ‖u(tk) − u(t)‖L1([−r,r]) → 0,
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as k → 0. Here we used the L1
loc-continuity of y �→ u(t) and Lemma 3.7. Thus, the last term of 

(3.66) is zero, and as ε > 0 was arbitrary, we conclude lim supk→∞ ‖uk(tk) − u(t)‖L2(R) = 0.
Suppose next t = 0. As above, uk(tk) converges to u(0) = u0 in L1

loc(R), and in particular, the 
convergence holds in the sense of distributions. Moreover, we have norm convergence as

lim sup
k→∞

‖uk(tk)‖L2(R) ≤ lim sup
k→∞

‖u0,k‖L2(R) = ‖u0‖L2(R),

while ‖u0‖L2(R) ≤ lim infk→∞ ‖uk(tk)‖L2(R) follows from Fatou’s lemma. Thus, we conclude 
‖uk(tk) − u0‖L2(R) → 0 as k → ∞. With the stability result proved, the L2-continuity of t �→
u(t) follows by setting u0,k = u0 for all k ∈ N . �

We end the section by proving Corollary 2.2.

Proof of Corollary 2.2. The solution mapping S is by Proposition 3.9 jointly continuous from 
[0, ∞) × (L2 ∩L∞(R))∗ to L2(R), where (L2 ∩L∞(R))∗ denotes the set L2 ∩L∞(R) equipped 
with its L2 subspace-topology. Seeking to extend S to all of [0, ∞) × L2(R) in a continuous 
manner, we note that we have only one choice: whenever a sequence (u0,k)k∈N ∈ L2 ∩ L∞(R)

converges in L2(R), it follows from Lemma 3.7 that the corresponding entropy solutions (uk)k∈N
form a Cauchy sequence in the Fréchet space C([0, ∞), L1

loc(R)), and thus they converge to a 
unique element u ∈ C([0, ∞), L1

loc(R)) in the appropriate topology. We now argue that u inherits 
all the nice properties of entropy solutions of (1.1) established so far, apart from being bounded 
at t = 0. Denoting u0 ∈ L2(R) for the L2 limit of (u0,k)k∈N , we have by Fatou’s lemma

‖u(t)‖L2(R) ≤ lim inf
k→∞ ‖uk(t)‖L2(R) ≤ lim inf

k→∞ ‖u0,k‖L2(R) = ‖u0‖L2(R).

Moreover, as each uk satisfy the height bound (2.4) this bound also carries over to u, and thus u
is locally bounded in (0, ∞) ×R. Similarly, as each uk satisfy the entropy inequalities (1.4), the 
same is true for u by a limit argument exploiting the uniform bound of (uk)k∈N on the support 
of ϕ and the fact that η and q are smooth; in particular, u is a weak solution of (1.1). Even 
Lemma 3.7 and Lemma 3.8 carries over to u by approximation. In conclusion, u – and all other 
weak solutions obtained this way – satisfy every property used for entropy solutions in the proof 
of Proposition 3.9, and so the proposition extends to these weak solutions. Consequently, S is 
continuous on the larger set [0, ∞) × L2(R), and the proof is complete. �
4. One-sided Hölder regularity for entropy solutions

In this section we show that entropy solutions of (1.1) with L2 ∩ L∞ data satisfy one-sided 
Hölder conditions with time-decreasing coefficients. As Subsection 3.3 exploits Corollary 2.5, 
which is proved using the results established here, we stress that the coming analysis will only 
depend on the results of Subsection 3.1 and 3.2, thus avoiding a circular argument. In Subsection 
4.1 we introduce the necessary building blocks for Subsection 4.2 where the Hölder conditions 
are constructed; Theorem 2.3 is proved at the very end of this section. Central in this section 
is the following object, which in classical terms can be described as a modulus of right upper 
semi-continuity.
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Definition 4.1. We say that a smooth and strictly increasing function ω : (0, ∞) → (0, ∞) is a 
modulus of growth for v : R → R if for all h > 0

ess sup
x∈R

[
v(x + h) − v(x)

]
≤ ω(h).

The requirement that ω be smooth and strictly increasing is for technical convenience. Note 
also that we did not require ω(0+) = 0; this is to include the expression (4.10) when s = 0.

4.1. Preliminary results

The classical Oleˇınik estimate [6] for entropy solutions of Burgers’ equation is for (t, x) ∈
R+ ×R and h ≥ 0 given by

u(t, x + h) − u(t, x) ≤ h

t
. (4.1)

For a fixed t > 0, this one-sided Lipschitz condition (or modulus of growth) restricts how fast 
x �→ u(t, x) can grow, but not how fast it can decrease, thus allowing for jump discontinuities 
(shocks) whose left limit is above the right. Interestingly, when the initial data of Burgers’ equa-
tion satisfies u0 ∈ Lp(R) for some p ∈ [1, ∞), one can for the corresponding entropy solution u
use (4.1) to attain

‖u(t)‖p+1
L∞(R)

≤ p+1
t

‖u(t)‖p

Lp(R)
≤ p+1

t
‖u0‖p

Lp(R)
, (4.2)

where the rightmost inequality is just the classical Lp bound for Burgers’ equation, and thus, the 
height of u(t) = u(t, ·) tends to zero as t → ∞. We omit the proof of (4.2), which is similar to 
that of the next lemma where we provide a general method for bounding the height of a function 
u ∈ L2(R) admitting a modulus of growth ω. We focus on L2(R) because other Lp norms might 
fail to be non-increasing for entropy solutions of (1.1); the generalization of (4.1) will require a 
generalization of (4.2), so p = 2 is the natural choice as ‖u(t)‖L2(R) ≤ ‖u0‖L2(R) for entropy 
solutions of (1.1). In the coming lemma we also provide for later convenience a bound on the 
following seminorm defined for v ∈ L∞(R) by

|v|∞ := ess sup
x,y∈R

v(x) − v(y)

2
. (4.3)

As |v|∞ ≤ ‖v‖L∞(R), any bound on ‖v‖L∞(R) obviously carries over to |v|∞. Note however, 
that the next lemma bounds |v|∞ sharper than it does ‖v‖L∞(R). Finally, we mention that the 
extra assumptions posed on ω in the lemma are only for technical simplicity, as the lemma holds 
more generally.

Lemma 4.2. Let v ∈ L2(R) admit a modulus of growth ω that satisfies ω(0+) = 0 and ω(∞) =
∞. Then v ∈ L2 ∩ L∞(R) and moreover

‖v‖2
L2(R)

≥F
(
‖v‖L∞(R)

)
, (4.4)

1
2‖v‖2

L2(R)
≥F

(
|v|∞

)
, (4.5)
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where F is the strictly increasing and convex function

F(y) := 2

y∫
0

y1∫
0

ω−1(y2)dy2dy1. (4.6)

Proof. By Lemma A.1 from the appendix we may assume v to be left-continuous, and in 
particular, well defined at every point. Then, for all x ∈ R such that v(x) ≥ 0 we have for 
h ∈ (0, ω−1(v(x))]

v(x − h) ≥ v(x) − ω(h) ≥ 0,

and similarly, for all x ∈R such that v(x) < 0 we have for h ∈ (0, ω−1(−v(x))]

v(x + h) ≤ v(x) + ω(h) ≤ 0.

Squaring each of these inequalities (the bottom one would flip direction) and integrating over 
h ∈ (0, ω−1(|v(x)|)], yields in both cases

‖v‖2
L2(R)

≥
ω−1(|v(x)|)∫

0

(|v(x)| − ω(h))2dh, (4.7)

where the left-hand side has been replaced by the upper bound ‖v‖2
L2(R)

. Performing the change 

of variables h = ω−1(y) the right-hand side of (4.7) can further be written

|v(x)|∫
0

(|v(x)| − y)2dω−1(y) =2

|v(x)|∫
0

(|v(x)| − y)ω−1(y)dy

=2

|v(x)|∫
0

y∫
0

ω−1(z)dzdy,

where we integrated by parts twice. This last expression is exactly F(|v(x)|), and so letting this 
replace the right-hand side of (4.7) followed by taking the supremum with respect to x ∈ R
yields (4.4). For (4.5), we write v+ and v− for the positive and negative part of v respectively, 
and observe that v ∈ L2 ∩ L∞(R) implies |v|∞ = 1

2 (‖v+‖L∞(R) + ‖v−‖L∞(R)) and ‖v‖2
L2(R)

=
‖v+‖2

L2(R)
+ ‖v−‖2

L2(R)
. Furthermore, as both v+ and −v− admit ω as a modulus of growth, we 

can use (4.4) followed by Jensen’s inequality to calculate

1
2‖v‖2

L2(R)
= 1

2

[
‖v+‖2

L2(R)
+ ‖v−‖2

L2(R)

]
≥ 1

2

[
F

(
‖v+‖L∞(R)

)
+ F

(
‖v−‖L∞(R)

)]
≥F

(
1
[
‖v+‖L∞(R) + ‖v−‖L∞(R)

])

2
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=F
(
|v|∞

)
. �

The calculations of the next subsection, where Theorem 2.3 is proved, can be boiled down to 
the three lemmas of this subsection (Lemma 4.2 being the first). The remaining Lemma 4.3 and 
Lemma 4.4, induce a natural evolution of a modulus of growth from the mappings SB

t and SK
t , 

introduced in (3.24) and (3.25). The relevance of these results should come as no surprise; the 
previous section showed that entropy solutions could be approximated by repeated compositions 
of said mappings.

Lemma 4.3. Suppose v ∈ BV (R) admits a concave modulus of growth ω. Then for any ε > 0, 
the function w = SB

ε (v), admits the modulus of growth

h �→ ω(h)

1 + εω′(h)
. (4.8)

Proof. As SB
t maps BV to itself, both v and w admits essential left and right limits at point. 

Thus, we assume without loss of generality that they are left continuous. For x ∈ R, h > 0 and 
t ∈ [0, ε], introduce the two (minimal) backward characteristics of SB

t (v) emanating from (ε, x)

and (ε, x + h) respectively

ξ1(t) = x + (t − ε)w(x),

ξ2(t) = x + h + (t − ε)w(x + h).

As v and w are left continuous, it follows from Theorem 11.1.3 in [6] that

v(ξ1(0)) ≤w(x), w(x + h) ≤v(ξ2(0)+).

Moreover, by the Oleˇınik estimate of w (4.1), we find

ξ2(0) − ξ1(0) =h − ε[w(x + h) − w(x)] ≥ 0,

and so exploiting ω we can calculate

w(x + h) − w(x) ≤ v(ξ2(0)+) − v(ξ1(0))

≤ ω(h − ε[w(x + h) − w(x)])
≤ ω(h) − εω′(h)(w(x + h) − w(x)),

(4.9)

where the last inequality holds as ω is concave. We conclude that

w(x + h) − w(x) ≤ ω(h)

1 + εω′(h)
,

for all x ∈ R and h > 0. That (4.8) is positive, smooth and strictly increasing follows from ω
being positive, smooth, strictly increasing and concave. �
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We follow immediately with a similar result for the operator SK
t , which will depend on the 

fractional variation |K|T V s as defined in (1.5) and the seminorm | · |∞ defined in (4.3).

Lemma 4.4. Let s ∈ [0, 1] and assume |K|T V s < ∞. Suppose v ∈ L∞(R) admits a modulus of 
growth ω. Then for any ε > 0, the function w = SK

ε (v) admits the modulus of growth

h �→ ω(h) + ε|K|T V s |v|∞hs. (4.10)

Proof. For simple notation, we introduce the shift operator Th : f �→ f (· + h). As shifts com-
mute with convolution, and since 

∫
R ThK − Kdx = 0, we start by noting that for any k ∈R

(Th − 1)(K ∗ v) = [(Th − 1)K] ∗ (v − k).

Next, we introduce v = ess supx v(x) and v = ess infx v(x), and we observe that

‖v − k‖L∞(R) = max{v − k, k − v}.

Thus, we minimize by setting k = 1
2 (v+v) and get ‖v−k‖L∞(R) = 1

2 (v−v) = |v|∞. By Young’s 
convolution inequality and the above calculations we infer

‖(Th − 1)(K ∗ v)‖L∞(R) ≤ ‖K(· + h) − K‖L1(R)‖v − k‖L∞(R)

≤ |K|T V s |v|∞hs.

For any h > 0 we then conclude

(Th − 1)w = (Th − 1)v + ε(Th − 1)(K ∗ v) ≤ ω(h) + ε|K|T V s |v|∞hs,

where the last inequality holds pointwise a.e. in R. �
4.2. Deriving a modulus of growth for entropy solutions

Throughout this subsection we consider s ∈ [0, 1] fixed and assume that |K|T V s is finite. 
Further, we let μ, κs ∈ (0, ∞) denote arbitrary fixed values, though we impose the requirement 
κs ≥ |K|T V s . The role of μ and κs will essentially be that of placeholders for the L2 norm of the 
initial data and of |K|T V s respectively, but note that μ and κs are strictly positive (even if the 
quantities they represent might be zero). This positivity is for technical convenience as some of 
the coming expressions would otherwise need a limit sense interpretation.

We shall for an arbitrary entropy solution u of (1.1) with L2 ∩ L∞ data, seek an expression 
a(t) such that h �→ a(t)h

1+s
2 serves as a modulus of growth (Definition 4.1) for x �→ u(t, x). 

We begin with an important result, which among other things rephrases Lemma 4.2 for the more 
explicit case ω(h) = ah

1+s
2 . For this purpose, we introduce the constant

cs =
[

(2 + s)(3 + s)

2(1 + s)2

] 1+s
4+2s

, (4.11)
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and the function

H(a) = (2cs)
2

1+s μ
2

2+s

a
2

2+s

, (4.12)

defined for all a > 0. We also recall definition (4.3) of the seminorm | · |∞. The essential part 
of the next lemma is in allowing us to extend the domain for which a homogeneous modulus of 
growth is valid. This will be vital when proving the following proposition.

Lemma 4.5. With fixed a > 0, define ω(h) = ah
1+s

2 . Suppose v ∈ L2(R) satisfies ‖v‖L2(R) ≤ μ

and admits ω as a modulus of growth for h ∈ (0, H(a)). Then v admits ω as a modulus of growth 
for all h ∈ (0, ∞) and moreover

‖v‖L∞(R) ≤2
1+s
4+2s csμ

1+s
2+s a

1
2+s , (4.13)

|v|∞ ≤ csμ
1+s
2+s a

1
2+s . (4.14)

Proof. We begin by proving the two inequalities, so let us assume for now that v admits ω as a 

modulus of growth for all h ∈ (0, ∞). Since ω−1(y) = a− 2
1+s y

2
1+s the function F from (4.6) can 

here be written

F(y) =
[

2(1 + s)2

(3 + s)(4 + 2s)

]
y

4+2s
1+s

a
2

1+s

= 1

2

(
y

csa
1

2+s

) 4+2s
1+s

,

with inverse

F−1(y) = 2
1+s
4+2s csa

1
2+s y

1+s
4+2s .

Combined with ‖v‖L2(R) ≤ μ, (4.4) and (4.5) give ‖v‖L∞(R) ≤ F−1(μ2) and |v|∞ ≤ F−1( 1
2μ2), 

which coincides with (4.13) and (4.14) respectively. Next, assume we only know that v admits 
ω as a modulus of growth for h ∈ (0, H(a)). The steps in the proof of Lemma 4.2 can still be 

carried out if one lets the role of ω−1(y) = a− 2
1+s y

2
1+s be taken by the truncated version

y �→ min
{
a− 2

1+s y
2

1+s ,H(a)
}
,

to yield the inequalities ‖v‖L∞(R) ≤ F̃−1(μ2) and |v|∞ ≤ F̃−1( 1
2μ2) with

F̃ (y) := 2

y∫
0

y1∫
0

min
{
a− 2

1+s y
2

1+s

2 ,H(a)
}

dy2dy1.

As F̃ is strictly increasing and agrees with F on (0, aH(a)
1+s

2 ), we necessarily have both 
F̃−1(μ2) = F−1(μ2) and F̃−1( 1

2μ2) = F−1( 1
2μ2) provided F−1(μ2) < aH(a)

1+s
2 . As F−1(μ2)

is exactly the right-hand side of (4.13), we see that the latter inequality holds since
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F−1(μ2) = 2
1+s
4+2s csμ

1+s
2+s a

1
2+s < 2csμ

1+s
2+s a

1
2+s = aH(a)

1+s
2 .

Thus, the bounds for ‖v‖L∞(R) and |v|∞ attained now coincide again with (4.13) and (4.14). 
It then follows that v admits ω as a modulus of growth for all h ∈ (0, ∞); indeed, for any h ∈
[H(a), ∞) we have the two trivial inequalities

ess sup
x∈R

[
v(x + h) − v(x)

]
≤2|v|∞, aH(a)

1+s
2 ≤ ah

1+s
2 ,

and so we would be done if 2|v|∞ ≤ aH(a)
1+s

2 , which is precisely the already established in-
equality (4.14) multiplied by two. �

The next proposition combines Lemma 4.3 and 4.4 to attain a corresponding result for the 
operator SB

ε ◦ SK
ε . While it in Section 3 was natural to work with iterations of SK

ε ◦ SB
ε , it will 

here be easier to work with its counterpart SB
ε ◦ SK

ε . We now introduce the useful limit value a
defined by

a =
(

2csκs

1 + s

) 2+s
3+2s

μ
1+s
3+2s . (4.15)

This quantity will naturally occur in our calculations to come; it relates to the sought coefficient 
a(t) through the relation limt→∞ a(t) = a.

Proposition 4.6. For every A > a, there are constants CA, εA > 0 such that: if v ∈ BV (R) sat-

isfies ‖v‖L2(R) ≤ μ and admits the modulus of growth h �→ ah
1+s

2 for some a ∈ [a, A], then for 
every ε ∈ (0, εA] the function w = SB

ε ◦ SK
ε (v) admits the modulus of growth

h �→
(
a − εf (a) + ε2CA

)
h

1+s
2 , (4.16)

where f (a) ≥ 0 is given by

f (a) =
[

(1 + s)a
2−s
2+s

2
2

1+s c
1−s
1+s
s μ

1−s
2+s

][
a

3+2s
2+s − a

3+2s
2+s

]
. (4.17)

Proof. For fixed A > a, let v ∈ BV (R) and a ∈ [a, A] be as described in the lemma. We fix the 
pair v and a for convenience, but it should be clear from the proof that the construction of CA

and εA do not in fact depend on said pair. Introduce for ε > 0 the auxiliary function ṽ = SK
ε (v). 

Combining Lemma 4.4 and (4.14), ṽ admits the concave modulus of growth

ω̃(h) = ah
1+s

2 + εcsκsa
1

2+s μ
1+s
2+s hs,

where |K|T V s was replaced by the larger κs introduced at the beginning of this subsection. 
And since ṽ ∈ BV (R), as follows from (3.27) and (3.28), we can further apply Lemma 4.3

to w = SB
ε (ṽ), which combined with ω̃′(h) > ( 1+s

2 )ah
s−1

2 , allows us to conclude that w admits 
the modulus of growth
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ω(h) = ah
1+s

2 + εcsκsa
1

2+s μ
1+s
2+s hs

1 + ε( 1+s
2 )ah

s−1
2

=ah
1+s

2 + −ε( 1+s
2 )a2hs + εcsκsa

1
2+s μ

1+s
2+s hs

1 + ε( 1+s
2 )ah

s−1
2

=ah
1+s

2 − ε

[
(1 + s)a2 − 2csκsa

1
2+s μ

1+s
2+s

2h
1−s

2 + ε(1 + s)a

]
︸ ︷︷ ︸

B(a,h,ε)

h
1+s

2 ,

(4.18)

where B(a, h, ε) denotes the square bracket. With a as given by (4.15), this square bracket can 
further be factored

B(a,h, ε) =
[

(1 + s)a
1

2+s

2h
1−s

2 + ε(1 + s)a

][
a

3+2s
2+s − a

3+2s
2+s

]
. (4.19)

Since a ≥ a it follows that B(a, h, ε) is non-negative and thus non-increasing in h > 0. Conse-
quently, we read from (4.18) the inequality

ω(h) ≤
(
a − εB(a,h, ε)

)
h

1+s
2 , 0 < h <h. (4.20)

Since (4.20) can be viewed as implying that w admits a homogeneous modulus of growth on 
bounded intervals, we would like to make use of Lemma 4.5; however, we do not necessarily 
have ‖w‖L2(R) ≤ μ (as is assumed by said lemma). We deal with this small inconvenience as 
follows: define w̃ by

w̃ :=ρ−1w, ρ := max
{

1,μ−1‖w‖L2(R)

}
, (4.21)

that is, w̃ is the renormalized version of w if the L2 norm of w exceeds μ. We proceed by proving 
the proposition for w̃ and then extend the result to w. Observe that ω must serve as a modulus of 
growth also for w̃ since ρ ≥ 1, and consequently by (4.20), w̃ further admits for any fixed h > 0
the modulus of growth

h �→
(
a − εB(a,h, ε)

)
h

1+s
2 , (4.22)

for the restricted values h ∈ (0, h). Lemma 4.5 then tells us that w̃ must additionally admit (4.22)
as a modulus of growth for all h > 0 provided

H
(
a − εB(a,h, ε)

)
≤ h, (4.23)

where the function H is as defined by (4.12). We now show that there is an appropriate constant 
DA so that h = H(a) + εDA satisfies (4.23). To do so, we start by introducing the closed set of 
points (a, h, ε) defined by

SA = [a,A] × [H(A),∞) × [0,∞),
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where we abuse notation slightly by reusing a as a dummy variable for referring to elements 
in [a, A] (although the original a ∈ [a, A] is fixed). From (4.19) we see that both (a, h, ε) �→
B(a, h, ε) and its partial derivatives are bounded on the set SA. We exploit the additional smooth-
ness of B later; for now we need only ‖B‖L∞(SA) < ∞. Pick εA > 0 such that

εA‖B‖L∞(SA) ≤ 1
2a,

and observe that the argument of H in (4.23) must then lie in [ 1
2a, A] for all (a, h, ε) ∈ [a, A] ×

[H(a), ∞) × [0, εA] ⊂ SA. Moreover, as H is smooth on [ 1
2a, A] we conclude for any such 

triplet (a, h, ε) that

H
(
a − εB(a,h, ε)

)
≤ H(a) + ε‖H ′‖

L∞([ 1
2 a,A])‖B‖L∞(SA) =: H(a) + εDA.

Thus, the choice h := H(a) + εDA satisfies (4.23) for every a ∈ [a, A] and ε ∈ (0, εA], and so 
substituting for h in (4.22), we conclude that w̃ admits the modulus of growth

h �→
(
a − εB(a,H(a) + εDA, ε)

)
h

1+s
2 , (4.24)

for all h > 0, provided ε ∈ (0, εA] and a ∈ [a, A] (the latter already assumed). Recalling that the 
partial derivatives of B are bounded on SA, we can write

B(a,H(a) + εDA, ε) ≥ B(a,H(a),0) − ε
[
DA‖ ∂B

∂h
‖L∞(SA) + ‖ ∂B

∂ε
‖L∞(SA)

]
, (4.25)

and so letting CA denote a constant no smaller than the square bracket in (4.25), we combine this 
inequality with (4.24) to further conclude that

h �→
(
a − εB(a,H(a),0) + ε2CA

)
h

1+s
2 , (4.26)

also serves as a modulus of growth for w̃, again with ε ∈ (0, εA] and a ∈ [a, A]. Using the 
explicit expressions (4.19) and (4.12) one attains the identity B(a, H(a), 0) = f (a), where f
is defined in (4.17), and so the proposition has been proved for the renormalized function w̃. It 
remains to extend the result to w; assume from here on out that ε ∈ (0, εA]. Introducing ã =
(a − εf (a) + ε2CA) for brevity, it is clear from the relation w = ρw̃, where ρ is as defined in 
(4.21), that w admits h �→ ρãh

1+s
2 as a modulus of growth, as the same can be said for w̃ and 

h �→ ãh
1+s

2 . Moreover, by a similar and coarser calculation as in the proof of Lemma 3.3, we 
have ‖w‖L2(R) ≤ (1 + ε2κ2)‖u‖L2(R) where κ = ‖K‖L1(R), and so ρ ≤ 1 + ε2κ2. Thus

ρã ≤ (1 + ε2κ2)ã = a − εf (a) + ε2[CA + κ2ã] ≤ a − εf (a) + ε2C̃A,

where C̃A := [CA +κ2(A +ε2
ACA)], and so this calculation shows that the proposition also holds 

for w after choosing a larger constant CA. �
Together with a few results from Section 3, the previous proposition equips us with all we need 

to construct moduli of growth for entropy solutions of (1.1). Roughly speaking, we can for small 
ε > 0 iterate Proposition 4.6 repeatedly to construct a modulus of growth for an approximate 
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entropy solution (3.32), and further letting ε → 0 this construction carries over to the entropy 
solution itself. To formalize, we shall introduce some notation and assume from here on that 
a pair of constants εA, CA, as described by Proposition 4.6, has been chosen for each A > a. 
Define the function

gε
A(a) := a − εf (a) + ε2CA, (4.27)

which is parameterized over A > a and ε ∈ (0, εA] and where

f (a) =γ a
2−s
2+s

(
a

3+2s
2+s − a

3+2s
2+s

)
, γ = 1 + s

2
2

1+s c
1−s
1+s
s μ

1−s
2+s

. (4.28)

The function f in (4.28) is indeed the same as in (4.17), and so gε
A(a) is the ‘new Hölder coeffi-

cient’ that Proposition 4.6 provides. In the coming proposition, we carry out the above sketched 
argument consisting in part of repeated iterations of Proposition 4.6, and consequently, we will 
encounter repeated compositions of gε

A. We point out two relevant facts about gε
A. First off, for 

any A > a and sufficiently small ε > 0, the function gε
A maps [a, A] to itself. To see this, note 

from (4.27) that (gε
A)′ is strictly positive on [a, A] for small ε > 0. Moreover, we have

gε
A(a) =a, gε

A(A) =A − εf (A) + ε2CA,

and since f (A) > 0, it is clear that ε > 0 can be made sufficiently small such that

a = gε
A(a) ≤ gε

A(a) ≤ gε
A(A) ≤ A, (4.29)

for all a ∈ [a, A]. Our second fact, rigorously justified in the coming proposition, is that repeated 
compositions of gε

A applied to the starting value a = A will, as ε → 0, result in a smooth function 
aA : [0, ∞) → (a, A], implicitly defined by

t =
A∫

aA(t)

da

f (a)
. (4.30)

That (4.30) yields a unique value aA(t) ∈ (a, A] for each t ∈ [0, ∞) follows as the positive 
integrand has a non-integrable singularity at a = a. Alternatively, the function aA can be viewed 
as the solution of the differential equation{

a′(t) = −f (a(t)), t > 0,

a(0) = A.
(4.31)

For the next proposition, we shall exploit the two constants

MA = max
a∈[a,A] |f

′(a)|, M̃A = max
a∈[a,A] |f (a)f ′(a)|, (4.32)

both well defined as f is smooth on R+. Note that the latter serves as a bound on (aA)′′ =
f (aA)f ′(aA), and so by Taylor expansion, we infer
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|aA(t + ε) − aA(t) + εf (aA(t))| ≤ ε2

2
M̃A, (4.33)

for all t ≥ 0 and ε ≥ 0.

Proposition 4.7. Let u be an entropy solution of (1.1), whose initial data u0 ∈ BV (R) satisfies 
‖u0‖L2(R) ≤ μ and admits a modulus of growth h �→ Ah

1+s
2 for some A > a. Then for all t > 0, 

the function x �→ u(t, x) admits the modulus of growth

h �→ aA(t)h
1+s

2 ,

with aA given by (4.30).

Proof. Consider t > 0 fixed, and assume without loss of generality that ‖u0‖L2(R) < μ; if the 
proposition holds in this case, it necessarily also holds in the case ‖u0‖L2(R) ≤ μ as the implicit 
μ-dependence of aA(t) is a continuous one. Pick a large n ∈N , set ε = t

n
and consider the family 

of functions uk
n ∈ BV (R) defined inductively by{

u0
n = SB

ε (u0),

uk
n = SB

ε ◦ SK
ε (uk−1

n ), k = 1,2, . . . , n.

As u0 admits h �→ Ah
1+s

2 as a modulus of growth, so does u0
n by Lemma 4.3. Observe also 

that each uk
n ∈ BV (R) as follows by induction and the properties of SB

ε and SK
ε listed at the 

very beginning in the proof of Proposition 3.2. Moreover, by similar reasoning as in the proof of 
Lemma 3.3, we have

‖uk
n‖L2(R) ≤ e

k
2 ε2κ2‖u0‖L2(R) ≤ e

t
2n

κ2‖u0‖L2(R), k = 0,1, . . . , n,

where κ = ‖K‖L1(R). Since we have a strict inequality ‖u0‖L2(R) < μ, we can assume n large 
enough such that ‖uk

n‖L2(R) ≤ μ for every k. We define further the coefficients ak
n inductively by{

a0
n = A,

ak
n = gε

A(ak−1
n ), k = 1,2, . . . , n,

where gε
A is given by (4.27). We assume n large enough such that ε = t

n
is both less than εA > 0

and small enough such that gε
A maps [a, A] to itself (see the discussion leading up to (4.29)). 

In particular, each ak
n is in [a, A]. We may now apply Proposition 4.6 inductively to each pair 

(uk
n, a

k
n), starting with (u0

n, a
0
n). As u0

n admits h �→ a0
nh

1+s
2 as a modulus of growth, Proposi-

tion 4.6 infers the same relationship for the pair (u1
n, a

1
n), and by repeating the argument, the 

same can be said for all pairs (uk
n, a

k
n). Most importantly, un

n admits h �→ an
nh

1+s
2 as a modulus 

of growth. The proposition will now follow if we can, as n → ∞, establish the limits

an
n →aA(t), (4.34)

un
n →u(t), (4.35)
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where u(t) = u(t, ·) and the latter limit is taken in L1
loc(R). Indeed, in this scenario we can let 

ϕ denote any non-negative smooth function of compact support that satisfies 
∫
R ϕdx = 1 so to 

calculate for h > 0

ess sup
x∈R

[
u(t, x + h) − u(t, x)

]
= sup

ϕ
〈u(t, · + h) − u(t, ·), ϕ〉

= sup
ϕ

lim
n→∞〈un

n(· + h) − un
n,ϕ〉

≤ sup
ϕ

lim
n→∞an

nh
1+s

2

=aA(t)h
1+s

2 .

(4.36)

We first prove (4.34). Using the explicit form (4.27) of gε
A with ε = t

n
, the constants (4.32) and 

the inequality (4.33) we can calculate for k ≥ 1,∣∣∣ak
n − aA

(
kt
n

)∣∣∣
=

∣∣∣gε
A

(
ak−1
n

)
− aA

(
(k−1)t

n
+ t

n

)∣∣∣
≤

∣∣∣ak−1
n − aA

(
(k−1)t

n

)∣∣∣ + ( t
n
)

∣∣∣f (
ak−1
n

)
− f

(
aA

(
(k−1)t

n

))∣∣∣ + ( t
n
)2

(
CA + 1

2M̃A

)
≤

[
1 + ( t

n
)MA

]∣∣∣ak−1
n − aA

(
(k−1)t

n

)∣∣∣ + ( t
n
)2DA,

(4.37)

with DA := CA+ 1
2M̃A. By repeated use of (4.37), and the fact that a0

n = aA(0) = A, we conclude

|an
n − aA(t)| ≤ ( t

n
)2DA

n−1∑
k=0

[
1 + ( t

n
)MA

]k ≤ 1
n

[
t2DAetMA

]
,

and thus (4.34) is established. To prove (4.35), we recall definition (3.26) of the approximate 
solution map Sε,t and observe the relation

un
n = SB

ε ◦ Sε,t (u0) =: SB
ε (uε(t)), (4.38)

where the definition of uε coincides with (3.32), although we now work with a particular u0
and ε = t

n
. As Proposition 3.5 ensures that limε→0 uε(t) = u(t) in L1

loc(R), the same limit then 
carries over to un

n (as n → ∞) by (4.38) and the time continuity of the map SB
ε (3.29) together 

with the T V bound of uε provided by Proposition 3.2. With the two limits (4.34) and (4.35)
established, the proof is complete. �

We may now prove Theorem 2.3.

Proof of Theorem 2.3. We prove the theorem first for u0 ∈ C∞
c (R), and without loss of general-

ity we assume u0 �= 0. As the positive constant μ (introduced at the beginning of the subsection) 
was arbitrary, we may assume μ = ‖u0‖L2(R). As u0 ∈ C∞(R), we infer from Proposition 4.7
c
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the existence of a sufficiently large A such that u, the entropy solution of (1.1) corresponding to 
u0, admits h �→ aA(t)h

1+s
2 as a modulus of growth for all t > 0.

Observe that we have the following elementary inequality if a − a ≥ 0

(
a − a

) 5+s
2+s =

(
a − a

) 2−s
2+s

(
a − a

) 3+2s
2+s ≤ a

2−s
2+s

(
a

3+2s
2+s − a

3+2s
2+s

)
,

where we for the second factor used that x �→ xp is super-additive when x ≥ 0 and p ≥ 1 (giving 
the desired conclusion for x = a − a and p = 3+2s

2+s
). Using this in (4.30) gives

t ≤
A∫

aA(t)

da

γ
(
a − a

) 5+s
2+s

= 2 + s

3γ
(
aA(t) − a

) 3
2+s

− 2 + s

3γ
(
A − a

) 3
2+s

. (4.39)

Removing the negative term on the right hand side and then rewriting (4.39), further gives

aA(t) ≤ a +
(

2 + s

3γ

) 2+s
3 1

t
2+s

3

=: a(t).

In particular, u must also admit h �→ a(t)h
1+s

2 as a modulus of growth. By Lemma A.2, we see 
that a(t) may equivalently be written

a(t) = C1(s)κ
2+s
3+2s
s μ

1+s
3+2s + C2(s)

μ
1−s

3

t
2+s

3

, (4.40)

where C1(s) and C2(s) are given by (A.1). This expression is exactly (2.3) save for the fact that 
we have required κs (introduced at the beginning of the subsection) to be greater or equal to 
|K|T V s and positive. Thus, we may not directly set κs = |K|T V s if K = 0. However, by a(t)’s 
continuous dependence on κs , it is clear that no problem may occur. Thus, Theorem 2.3 follows 
for C∞

c -initial data.
Next, consider u0 ∈ L2 ∩L∞(R) and let u denote the corresponding entropy solution of (1.1). 

Pick a sequence of entropy solutions (uk)k∈N whose initial data (u0,k)k∈N ⊂ C∞
c (R) satisfies

‖u0,k‖L2(R) ≤‖u0‖L2(R), ‖u0,k‖L∞(R) ≤‖u0‖L∞(R),

and yields the limit limk→∞ u0,k = u0 in L1
loc(R). By Proposition 3.1, we then also get 

limk→∞ uk(t) = u(t) in L1
loc(R). Now Theorem 2.3 carries over to u by a calculation similar 

to (4.36), and so the theorem has been proved for L2 ∩ L∞-initial data.
Finally, that this result can be extended to all weak solutions provided by Corollary 2.2 follows 

by a density argument as above (using the continuity of the solution map S of Corollary 2.2
instead of the weighted L1-contraction of Proposition 3.1). �
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Appendix A. Auxiliary results

In the coming lemma we work with the concept of a modulus of growth as defined by Defini-
tion 4.1.

Lemma A.1. Let f ∈ L1
loc(R) admit a modulus of growth ω that satisfies ω(0+) = 0. Then f

admits essential left and right limits at each point x ∈ R. In particular, there are functions f −
and f +, respectively left- and right-continuous, that coincides a.e. with f .

Proof. For any x ∈ R the existence of an essential left limit f (x−) of f at x, follows from the 
calculation

ess lim sup
y<0
y→0

f (x + y) − ess lim inf
y<0
y→0

f (x + y)

= ess lim sup
y2<y1<0
y2,y1→0

[
f (x + y1) − f (x + y2)

]
≤ lim sup

y2<y1<0
y2,y1→0

ω(y1 − y2) = 0.

By the Lebesgue differentiation theorem, the function f −(x) := f (x−) can only differ from f
on a null set, and moreover, must be left continuous as the above calculation could be repeated 
for f − with essential limits replaced by limits. A similar argument yields the existence of an 
essential right limit f (x+) of f at each x ∈ R and further that f +(x) := f (x+) is a right-
continuous function agreeing a.e. with f . �

The next lemma deals with quantities appearing throughout the paper and the relations be-
tween them. For convenience, we here list the definition of each relevant quantity; some of them 
given for the first time. The quantities cs and γ were in (4.11) and (4.28) defined to be

cs =
[
(2 + s)(3 + s)

2(1 + s)2

] 1+s
2(2+s)

, γ = 1 + s

2
2

1+s c
1−s
1+s
s μ

1−s
2+s

.

We also introduce the expressions C1(s) and C2(s) by

C1(s) := 2
3+s
6+4s [(2 + s)(3 + s)] 1+s

6+4s

1 + s
, C2(s) := 2

4+2s
3+3s (2 + s)

5+s
6 (3 + s)

1−s
6

2
1−s

6 3
2+s

3 (1 + s)
. (A.1)
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In the coming lemma, we will also see the quantities μ and κs ; these are simply placeholders 
for the expressions ‖u0‖L2(R) and |K|T V s respectively and will not affect the algebra in any 
non-trivial way.

Lemma A.2. With cs, γ, C1(s), C2(s), μ and κs as they appear above, we have the relations

a :=
(

2csκs

1 + s

) 2+s
3+2s

μ
1+s
3+2s =C1(s)κ

2+s
3+2s
s μ

1+s
3+2s , (A.2)

(
2 + s

3γ

) 2+s
3 = C2(s)μ

1−s
3 . (A.3)

Proof. We start with (A.2): inserting for cs on the left-hand side of (A.2) we get

(
2

1 + s

) 2+s
3+2s

(
(2 + s)(3 + s)

2(1 + s)2

) 1+s
2(3+2s)

κ
2+s
3+2s
s μ

1+s
3+2s =

[
2

3+s
6+4s [(2 + s)(3 + s)] 1+s

6+4s

1 + s

]
︸ ︷︷ ︸

C1(s)

κ
2+s
3+2s
s μ

1+s
3+2s ,

and so (A.2) is established. Second, we prove (A.3): if we on the left-hand side of (A.3) insert 
for γ we get

(
(2 + s)

2+s
3 2

2(2+s)
3(1+s)

3
2+s

3 (1 + s)
2+s

3

)
c

(1−s)(2+s)
3(1+s)

s μ
1−s

3 .

Further inserting for cs we obtain

(
(2 + s)

2+s
3 2

2(2+s)
3(1+s)

3
2+s

3 (1 + s)
2+s

3

)(
(2 + s)(3 + s)

2(1 + s)2

) 1−s
6

μ
1−s

3 =
[

2
4+2s
3+3s (2 + s)

5+s
6 (3 + s)

1−s
6

2
1−s

6 3
2+s

3 (1 + s)

]
︸ ︷︷ ︸

C2(s)

μ
1−s

3 ,

and so (A.3) is established. �
Appendix B. Proof of Corollary 2.5 and Corollary 2.6

We prove Corollary 2.5 which provides a decaying L∞ bound for entropy solutions of (1.1).

Proof of Corollary 2.5. By the s = 0 case of Theorem 2.3 we know that u(t) admits the modu-

lus of growth (Definition 4.1) h �→ a(t)h
1
2 , where a(t) is given by

a(t) = 2
4
3 3

1
6 ‖K‖

2
3
L1(R)

‖u0‖
1
3
L2(R)

+
4‖u0‖

1
3
L2(R)

3
1
2 t

2
3

.
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This expression is precisely what is provided by (2.3) when using C1(0) = 2
2
3 3

1
6 , C2(0) =

4/3
1
2 and |K|T V 0 = 2‖K‖L1 . Setting μ = ‖u0‖L2(R) in Lemma 4.5 and using ‖u(t)‖L2(R) ≤

‖u0‖L2(R) we infer from said lemma – more specifically (4.13) – that

‖u(t)‖L∞(R) ≤2
1
4 3

1
4 ‖u0‖

1
2
L2(R)

a(t)
1
2 ,

for all t > 0, where we used that cs = 3
1
4 when s = 0. Using the sub-additivity of y �→ |y| 1

2 we 
infer that

a(t)
1
2 ≤ 2

2
3 3

1
12 ‖K‖

1
3
L1(R)

‖u0‖
1
6
L2(R)

+
2‖u0‖

1
6
L2(R)

3
1
4 t

1
3

,

and so inserting this in the above inequality we get

‖u(t)‖L∞(R) ≤ 2
11
12 3

1
3 ‖K‖

1
3
L1(R)

‖u0‖
2
3
L2(R)

+
2

5
4 ‖u0‖

2
3
L2(R)

t
1
3

,

for all t > 0. �
Next, we prove Corollary 2.6 which established a maximal lifespan for classical solutions of 

(1.1) with L2 ∩ L∞ data.

Proof of Corollary 2.6. Consider s ∈ [0, 1] fixed for now, and assume |K|T V s < ∞. As 
(bounded) classical solutions are entropy solutions, we may associate u ∈ L∞ ∩ C1((0, T ) ×R)

with the global entropy solution admitting u0 as initial data, provided by Theorem 2.1; the dis-
cussion following the proof of Proposition 3.1 justifies this viewpoint. Referring to this solution 
also as u, we have by (2.1) that x �→ u(T , x) is a well defined element of L2 ∩ L∞(R) approxi-
mated in L2 sense by u(t) as t ↗ T . Setting v(t, x) := u(T − t, −x), we see through pointwise 
evaluation that v also is a classical solution of (1.1) (and thus an entropy solution) on (0, T ) ×R
with initial data v0(x) := u(T , −x). From (2.1) we then infer ‖v0‖L2(R) = ‖u0‖L2(R) since

‖v0‖L2(R) = ‖u(T )‖L2(R) ≤ ‖u0‖L2(R) = ‖v(T )‖L2(R) ≤ ‖v0‖L2(R).

Using the identity u0(x) = v(T , −x) for a.e. x ∈ R and applying Theorem 2.3 to v we further 
find for all h > 0 and a.e. x ∈R that

u0(x − h) − u0(x) = v(T ,−x + h) − v(T ,−x) ≤ a(T )h
1+s

2 , (B.1)

where a(T ) is given by

a(T ) = C1(s)|K|
2+s

3+2s

T V s ‖u0‖
1+s
3+2s

L2(R)
+ C2(s)

‖u0‖
1−s

3
L2(R)

T
2+s

3

=: a + q

T
2+s

3

, (B.2)
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and where we have substituted ‖u0‖L2(R) for ‖v0‖L2(R) as the two quantities agree. Dividing 

each side of (B.1) by h
1+s

2 and taking the essential supremum with respect to x ∈ R we get

[u0]s := ess sup
x∈R
h>0

[
u0(x − h) − u0(x)

h
1+s

2

]
≤ a + q

T
2+s

3

, (B.3)

and if [u0]s > a then (B.3) can be rewritten as

T ≤
[

q

[u0]s − a

] 3
2+s

=
(

C2(s)

1 − a

[u0]s

) 3
2+s ‖u0‖

1−s
2+s

L2(R)

[u0]
3

2+s
s

=: F
(

a

[u0]s
)‖u0‖

1−s
2+s

L2(R)

[u0]
3

2+s
s

, (B.4)

where the first equality replaced q by its explicit expression as given by (B.2). We now show that 
this gives for any ρ ∈ (0, 1) the following implication

[u0]3+2s
s >

(
C1(s)

ρ

)3+2s

|K|2+s
T V s ‖u0‖1+s

L2(R)
, =⇒ T ≤ F(ρ)

‖u0‖
1−s
2+s

L2(R)

[u0]
3

2+s
s

. (B.5)

Indeed, using the explicit expression (B.2) for a we see that the left-hand side of (B.5) is equiva-
lent to [u0]s > a/ρ which, as ρ ∈ (0, 1), implies that [u0]s > a and so (B.4) holds. By observing 
that ρ �→ F(ρ) is strictly increasing on (0, 1) and that ρ > a/[u0]s we see that the right-hand side 
of (B.5) then follows from (B.4). With (B.5) established, the corollary follows: for any ρ ∈ (0, 1)

we get such universal constants c and C by setting

c = sup
s∈[0,1]

(
C1(s)

ρ

)3+2s

, C = sup
s∈[0,1]

F(ρ) = sup
s∈[0,1]

(
C2(s)

1 − ρ

) 3
2+s

. (B.6)

The free parameter ρ allows us to shrink one of the two constants at the cost of enlarging the 
other; in particular, c is at its smallest for ρ → 1 while C is at its smallest for ρ → 0. �
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