
A Metamodel for Web Application Security

Evaluation

Shao-Fang Wen and Basel Katt

Norwegian University of Science and Technology

Gjøvik, Norway

shao-fang.wen, basel.katt@ntnu.no

Abstract—In the digital era, web applications have become a

prevalent tool for businesses. As the number of web applications

continues to grow, they become enticing targets for malicious

actors seeking to exploit potential security vulnerabilities.

Organizations face constant risks associated with vulnerabilities in

their web-based software systems, which can result in data

breaches, service disruptions, and a loss of trust. Consequently,

organizations require an effective and efficient approach to assess

and analyze the security of acquired web-based software, ensuring

sufficient confidence in its utilization. This research aims to

enhance the quantitative evaluation and analysis of web

application security through a model-based approach. We focus on

integrating the Open Web Application Security Project's

(OWASP) Application Security Verification Standard (ASVS) into

a structured and analyzable metamodel. This model aims to

effectively assess the security levels of web applications while

offering valuable insights into their strengths and weaknesses. By

combining the ASVS with a comprehensive framework, we aim to

provide a robust methodology for evaluating and analyzing web

application security.

I. INTRODUCTION

Web applications have emerged as the dominant technology

for delivering services and disseminating information online.

Numerous businesses across various sectors have embraced this

digital platform, transitioning their operations to the web.

Examples include social networks, webmail services, banks, and

other entities that perform critical operational functions and store

sensitive data. The extensive utilization of web applications in

contemporary society has attracted the attention of hackers, who

seek to exploit vulnerabilities in these applications to carry out

malicious activities. Such actions can lead to disruptions and

impair the efficiency and effectiveness of business operations

[5]. Given the prevalence and importance of web applications in

today's landscape, organizations strive for assurance that their

software is developed with a strong emphasis on security and

reliability. They aim to implement the necessary security

mechanisms while minimizing risks to their assets, seeking

confidence in the overall robustness of their applications.

To instill the required confidence in web-based software,

organizations require a comprehensive methodology for

evaluating and analyzing its security. The objective of security

evaluation is to deliver precise and dependable results that

decision-makers can rely on with confidence. [6]. This process

involves the identification and analysis of security threats,

vulnerabilities, and risks, while also assessing the effectiveness

of security controls and procedures in mitigating them. [9]. To

enable stakeholders to effectively utilize this data, it is crucial to

present it in a format that aligns with their requirements.

Quantitative security evaluation is a specialized discipline that

employs computational and mathematical techniques to assess

the security level of a system. By leveraging these techniques,

stakeholders can gain valuable insights into the quantitative

aspects of security evaluation [6, 11]. Quantitative security

evaluation endeavors to provide a more precise assessment of

the level of effort needed to protect a system and the potential

risk of compromise [23]. This type of security assessment model

facilitates the generation of quantifiable security scores, offering

a clear indication of the effectiveness of a system's protective

measures [6].

This paper aims to contribute to the field of research by

focusing on the modeling of web application security evaluation,

with a particular emphasis on its suitability for quantitative

analysis. Specifically, we strive to create a comprehensive and

analyzable metamodel that is built upon the Open Web

Application Security Project’s (OWASP) Application Security

Verification Standard (ASVS) [15] to guarantee the optimum

security of web applications. OWASP ASVS is widely used for

web application security assessment the security requirements

elicitation, as it provides a comprehensive overview of all

security-related topics [8, 22]. While the ASVS offers

advantages for security assessments, there exists a gap in

research concerning the generation of meaningful data for

analysis. To address this limitation, our model-based approach

enables the transformation of ASVS data into informative and

comprehensible information. By merging meaningful data sets

with robust analytics, security stakeholders can make informed

choices that drive organizational decision-making [26]. This

paper also showcases the practical application of these models

for analyzing security strengths, weaknesses, and quantitative

aspects by aggregating ASVS verification results. Through

practical demonstrations and illustrations, we highlight the

utilization of these models to assess and evaluate the security

posture of web applications.

The rest of this paper is organized as follows. Section 2

outlines the OWASP ASVS framework. In Section 3, we

provide an overview of related work. In Section 4, the proposed

web application security evaluation metamodel is discussed in

detail. Subsequently, Section 5 provides an example of data

analytics based on this model to better illustrate it. Lastly, the

conclusion and future works are presented in Section 6.

II. OWASP APPLICATION SECURITY VERIFICATION

FRAMEWORK

The OWASP is a non-profit, community-driven organization

that promotes software security through educational materials,

open-source software, and other initiatives. The OWASP ASVS

is an open standard for performing web application security

verification, which is designed to methodically test application

and environment-level technical security controls. With this, it

is possible to identify various potential vulnerabilities, for

example, Cross-Site Scripting (XSS) and SQL injection. The

ASVS Project has designed its standard for practical,

“commercially workable”. With extensive coverage and

flexibility, the ASVS can be applied in various situations, from

intimate internal security measuring to instructing developers

how to suitably implement safety functions or evaluating third-

party software and contractual development agreements. The

latest stable version of ASVS is 4.0.3 released in October 2021.

Fig. 1 depicts the whole data structure of ASVS. The ASVS

contains 286 verification requirements that are grouped into 14

higher-level categories (named “Chapter”) and sub-categories

(named “Section”) that are of similar functionality.

Additionally, from version 4.0, ASVS provides a

comprehensive mapping to the Common Weakness

Enumeration (CWE) [15]. CWE is a list of weaknesses in

software that can lead to security issues. While the CWE list is

long, it is also prioritized by severity of risk, providing

organizations and developers with a good idea about how to

best secure applications. Where applicable, ASVS requirements

are also mapped to (or aligned with) different security

standards, including OWASP Proactive Control [15] and the

U.S. National Institute of Standards and Technology (NIST)

Digital Identity Guidelines (NIST 800-63) [15]. The former

describes the most important control and control categories

that every architect and developer should absolutely, while the

latter introduces modern, evidence-based, and advanced

authentication controls.

Fig. 1. ASVS data structure

III. RELATED WORK

There is a wealth of research on security assurance and

evaluation methods. Over the years, numerous frameworks and

standards have been developed to analyze security. Common

Criteria (CC) [9] is one of the most well-known efforts in this

area. CC is an international ISO/IEC 15408 standard for the

security evaluation of IT products. The standard outlines a clear

set of guidelines and specifications that provide organizations

with the necessary information to accurately specify their

security functional requirements and security assurance

requirements. [4, 28]. In addition, there are several security

maturity models available for the software security domain,

such as the Building Security In Maturity Model (BSIMM) [12]

and OWASP Software Assurance Maturity Model

(OpenSAMM) [17]. BSIMM is a research initiative that

investigated the various approaches to software security

employed by businesses, leading to the development of a

framework featuring 116 activities and 12 practices. Like

BSIMM, openSAMM is an open software security framework

developed by OWASP, which provides guidelines on which

software security practices should be used and how to assess

them. Such maturity models provide frameworks, especially in

a qualitative fashion, to evaluate the security posture of the

process and culture practiced in an organization.

Although various research studies have been conducted on web

application security evaluation, few attempts have been made

to establish a generic approach that quantifies the results

systematically. Below are several papers that discuss this

research area. The authors in [7] presented a security evaluation

framework for web-portal security assessment, which integrates

ISO/IEC 15408 [10] and OWASP evaluation model Common

Criteria Web Application Security Scoring (CCWAPSS) [3].

This framework facilitates numerical rankings via the use of a

scoring system to assess the significance of each factor within

the criteria. By doing so, it provides practical security

evaluations that web portal developers can quickly understand

and implement. Okamura et al [13] discussed a quantitative

security evaluation approach for software systems from the

vendor's viewpoint, centering on the analysis of collectible

vulnerability data. They apply a stochastic model using a non-

homogeneous Poisson process to explain this data, and then use

numerical examples to evaluate the security measures relative

to the content management system of an open-source project.

Yautsiukhin et al. [27] introduced a method of computing the

security qualities of software architectures with the adoption of

security patterns. The core metric used in this evaluation was

threat coverage, and an algorithm was proposed to aggregate

low-level measures associated with these patterns into a single

high-level indicator. Lastly, Banaei and Khorsandi [2]

presented a hierarchical structure for web service security,

complete with a model that evaluates various aspects of security

from an analytical perspective. We use the Analytical Hierarchy

Process (AHP) Theory to prioritize weighted averaging of

critical security properties, such as authorization,

confidentiality, and availability — all to provide greater levels

of customization in terms of provider/consumer needs.

Furthermore, alternative methods for quantitative security

assurance of IT systems have been proposed by some

researchers. These concepts could be applied in software

systems/web applications. For instance, Katt and Prasher [25]

outlined a quantification method to evaluate the security

assurance of systems. This framework measures two parts: (1)

the confidence that existing mechanisms are sufficient to meet

security requirements; and (2) which potential security threats

might leave a system vulnerable. The framework has been

validated through case studies on public REST APIs.

Ouedraogo et al. [14] utilized quantitative risk measurement

techniques to create indicators that can be used to assess IT

infrastructure security, alongside aggregation procedures. The

primary algorithms used to perform operational aggregation are

the recursive minimum, maximum, and weighted sum

algorithms. Each of these tools has been designed to take into

consideration a wide range of datasets when consolidating

information. Pham and Riguidel [18] introduced an

aggregational method that can be applied in the calculation of

the security assurance value of the whole system when

combining several entities, which have been evaluated

independently. The effects of the emergent relations are taken

into account in the calculation of the security assurance value

of an attribute in the context of a system.

IV. THE PROPOSED SECURITY EVALUATION AND ANALYSIS

MODEL

To achieve a comprehensive security evaluation and analysis, it

is crucial to examine the strengths and weaknesses of the

system's security. Our approach focuses on quantifying

OWASP ASVS by dividing it into two fundamental

components: security strength evaluation and security weakness

evaluation. The objective is to obtain measurable insights that

enhance our understanding of the ASVS verification results. By

assessing both aspects, we can obtain a more holistic

perspective on the system's security posture. The proposed

security evaluation and analysis model for a System of Interest

(SoI) is depicted in Fig. 2. In essence, the security-strengths

model offers a quantifiable measure of the SoI’s resilience

against attacks, assuring its security. On the other hand, the

weaknesses model focuses on identifying the potential

consequences that may arise when the security mechanisms are

inadequately implemented. By incorporating both models, a

more holistic understanding of the system's security can be

achieved, enabling organizations to address vulnerabilities and

enhance their overall security posture.

In the subsequent sections, we outline our methodology for

modeling the evaluation component of the system. We explore

the structural representation of the security mechanisms and

elucidate how the weaknesses in system security can be derived

from the ASVS.

A. Security Strength Evaluation Model

The security strength of a system refers to its level of

preparedness and resilience in implementing security measures

to counter potential threats [20]. To evaluate the security

strength, we utilize a hierarchical structure consisting of five

levels, as depicted in Fig. 3. This allows us to comprehensively

assess the system's security capabilities. The evaluation is

divided into three aspects: structure, environment, and process.

Each aspect incorporates a two-level categorization system,

enabling the classification of security mechanisms based on

their connection to the ASVS requirements. The evaluation

process starts by assigning scores to the ASVS requirements

and then aggregating these scores using an Average scheme.

This allows for the rating of evaluation components at each

level of the hierarchy. Score aggregation is a valuable technique

as it helps minimize subjective bias in evaluating claims and

provides a more objective approach to assessing the accuracy of

these claims [1]. The overall score of the SoI is determined by

calculating a weighted average using the scores of evaluation

components and their corresponding weighting factors. This

calculation results in a single value that serves as an objective

measure of the system's security level. The specific notation and

detailed evaluation process will be discussed in the subsequent

sections.

Fig. 3. Illustration of the layers that make up the hierarchical approach for

the security-strength evaluation.

1)Evaluation of ASVS Requirements: Initially, each ASVS

verification requirement is mapped to one verification case to

determine its fulfillment. Results for verification cases are

quantified as 1, 0, and 0.5, depending on the level of fulfillment.

The score 1 is given to the cases that pass the verification,

indicating the corresponding requirements are fully fulfilled,

while 0 means the requirements are not fulfilled (i.e., the

verification case failed). A score of 0.5 implies the requirement

is considered a partial fulfillment. Partial fulfillment means that

the actual result matches its expected result, however, there

might be unnecessary (or superfluous) exceptions/ messages

that are caught during the test-case execution. Such a test

execution state is usually applied in the context of manual

testing, heavily reliant on the tester’s judgment [19].

At this step, we use S(ASVSi) to denote the score of the ith ASVS

requirement, which can be expressed as:

Fig. 2. The complete security evaluation metamodel

S(𝐴𝑆𝑉𝑆𝑖) ∈ {0, 1, 0.5 }

2)Evaluation of Security Mechanisms: A deficiency we identify

in ASVS is the lack of capability of system diagnosis for

subject-of-matter at a granular level. Rather than analyzing

scattered descriptive statements, we suggest that security

requirements should be organized into a synthesizable and

analyzable format. In the security evaluation and analysis

approach, we attempt to use a more fine-grained "Security

Mechanism" than descriptive ASVS requirements. Security

mechanisms can be treated ted the fundamental means and

methods that are designed to achieve security-relevant

purposes. While ASVS requirements are designed for

verification, security mechanisms, on the other hand, are for

analysis purposes. To provide analyzability, the mechanism

must be small and simple enough to be evaluated. The

exemplary security mechanisms for “Password Security” with

the associated ASVS requirements can be found in Table I.

Now to calculate the scores of security mechanisms, let

C(SecurityMechanismi) denotes a set of ASVS scores

associated with the ith security mechanism, defined by the

following equation:

C(𝑆𝑒𝑐𝑢𝑟𝑖𝑦𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚𝑖) = {S(𝐴𝑆𝑉𝑆𝑗) → 𝑆𝑒𝑐𝑢𝑟𝑖𝑦𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚𝑖}

We use S(SecurityMechanismi) to represent a measurement to

reflect the actual (calculated) score of the security mechanism.

Following equation represents the calculation of the ith security

mechanism, which uses the average function to derive the score.

S(𝑆𝑒𝑐𝑢𝑟𝑖𝑦𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚𝑖) =
∑ C(𝑆𝑒𝑐𝑢𝑟𝑖𝑦𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚𝑖)

|C(𝑆𝑒𝑐𝑢𝑟𝑖𝑦𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚𝑖)|

3)Evaluation of Criterion and Element Levels: The term

“criteria" as used in this model refers to a higher, more abstract

level of meaning that can be thought of as a standard in the SoI's

application domain. These criteria are part of the "target" that

the work is planned to achieve. These criteria are selected,

tested, and measured to confirm the sufficiency of system

security to be offered to users. Table II lists the corresponding

evaluation criteria for each evaluation aspect. Evaluation

criteria are then narrated in detail by a set of evaluation

elements. Some examples of evaluation elements are presented

in Table III.

TABLE II. CORRESPONDING EVALUATION CRITERIA FOR EACH EVALUATION

ASPECT

Evaluation Aspect Evaluation Criteria

Software Structure Authentication

Access Control

Input Validation and Output Encoding

Session Management

Cryptography

Error Handling and Logging

Web Service and API Security

Software Environment Environment Management

Communication Hardening

Configuration Hardening

Software Process Security Requirement

Secure Design

Secure Coding

Secure Code Review

Secure Build and Deployment

TABLE III. EVALUATION ELEMENTS IN EVALUATION CRITERIA

Evaluation Criteria Evaluation Element

Authentication Authentication Architecture

Password Security

Authenticator Security

Credential Storage

Authentication Logging

Service Authentication

Access Control Access Control Architecture

Operation Level Access Control

HTTP Request Access Control

Access Control Logging

Similar to the algorithm is the previous level, the score of the ith

element-level component, denoted by S(Elementi) is calculated

using the following formulas:

S(𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑖) =
∑ C(𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑖)

|C(𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑖)|

where:

C(𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑖) = {S(𝐴𝑆𝑉𝑆𝑗) → 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑖}

Consequently, the formula for calculating the score of the ith

criterion-level components is as follows:

S(𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛𝑖) =
∑ C(𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛𝑖)

|C(𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛𝑖)|

where:

C(𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛𝑖) = {𝑆(𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑗) → 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛𝑖}

TABLE I. EXEMPLARY SECURITY MECHANISMS WITH ASSOCIATED ASVS REQUIREMENTS

Security Mechanism ASVS Requirement

Password strength policy V2.1.1-Verify that the user-set passwords are at least 8 characters in length (after multiple spaces are combined).

V2.1.2-Verify that passwords of at least 64 characters are permitted, and that passwords of more than 128

characters are denied.

V2.1.4-Verify that any printable Unicode character, including language-neutral characters such as spaces and
Emojis, are permitted in passwords.

V2.1.7-Verify that passwords submitted during account registration or password change are checked against an

available set of, at least, the top 3000 passwords.

V2.1.10-Verify that the application does not require periodic credential rotation.

Password input functionality V2.1.11-Verify that "paste" functionality, browser password helpers, and external password managers are
permitted.

Password changing

functionality

V2.1.5-Verify users can change their password.

V2.1.6-Verify that password change functionality requires the user's current and new password.

Password processing logic V2.1.3-Verify that passwords are not truncated.

4)Evaluation of Aspect Level. Although ASVS provides a

categorical view of the security evaluation, it does not come up

with a broader perspective and more strategic point of view.

Instead of facing the process-technology intertwining

information at the first sight, a common analysis approach is to

start by analyzing macro aspects, from which a governing

thought is arrived at. This is the most important idea that needs

to be captured first. “Aspects” are the viewpoints about how

stakeholders can describe the security strength at the highest

level.

While defining the aspects, we include the three predominant

attributes of SoI, that is, software structure, software

environment, and software process. The software structure is

the core subset of the software system, meaning any source code

or object code made to perform a specific task(s). The

evaluation of the software structure aims to access the

sufficiency of the technical security mechanisms of the software

system itself, including security architectures and security

functionalities. The evaluation criteria under the software

structure are, for example, authentication, access control, and

cryptography. The evaluation of the software environment

entails an examination of the environmental factors that

contribute to the production and maintenance of the software

system. organizational and physical facilities (for example,

development, production, delivery, and operation) are among

these factors.

In addition to the security aspect described above, developing

and maintaining secure systems rely on the processes linking

people and technologies. Therefore, a secure system should also

provide evidence that it is developed and operated using

adequate software processes, and conformance to

implementation standards. The evaluation of software

processes is not necessarily tied to the specific functionality of

the software structure and environments, but rather to deal with

the organizational processes used in the development and

operation of core functionalities and infrastructures,

conformance to coding standards, adequate testing, verification

and validation, and suitable specification and documentation for

all system aspects. While evaluating the software systems,

stakeholders could decide whether to take the aspect of the

software process into the security evaluation. For example, in

the context, of the open-source software (OSS) security

evaluation, investigating the software-process aspect is

generally not possible.

The formula for calculating the score of the ith aspect-level

components is as follows:

S(𝐴𝑠𝑝𝑒𝑐𝑡𝑖) =
∑ C(𝐴𝑠𝑝𝑒𝑐𝑡𝑖)

|C(𝐴𝑠𝑝𝑒𝑐𝑡𝑖)|

where:

𝐶(𝐴𝑠𝑝𝑒𝑐𝑡𝑖) = {𝑆(𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛𝑗) → 𝐴𝑠𝑝𝑒𝑐𝑡𝑖}

5)Evaluation of SoI. Based on the definitions established

earlier, we can compute the overall score for the SoI by

aggregating the scores of the individual aspects and deriving a

single, comprehensive measure. The higher the value, the more

reliable the security strength is considered. Assessing this score

provides useful insight into assessing trustworthiness within an

organization. The SoI score is obtained through a weighted

average aggregation process, which is highly intuitive and

comprehensible. This method allows us to prioritize certain

aspects more than others in the evaluation procedure, based on

their relative importance. The exact weighting values are

calculated or assigned based on the opinions of stakeholders by

applying decision-making techniques that must be carried out

based on the verification context. Finally, we standardize the

score by scaling the value in the range of [0, 10].

The overall score of the SoI, represented by S(SoI) is calculated

by the following formula:

S(𝑆𝑂𝐼) = ∑ S(𝐴𝑠𝑝𝑒𝑐𝑡𝑖) × 𝑤𝑖 × 10

3

𝑖=1

where:

wi: the weight corresponding to the ith evaluation aspect

(0<wi<1 and ∑ 𝑤𝑖 = 1)

In order to improve clarity, we have incorporated a discrete

rating system into the final SoI score. This approach makes it

easier for users to understand the ratings. Table IV is adapted

from the NVD Vulnerability Severity Ratings [24]. In NVD, the

higher score represents greater severity. However, our table

shows the opposite definition, i.e., levels of security. With this

table, we can be used to convert the score to a textual form.

TABLE IV. SECURITY LEVEL

Score Security level

[0.0 – 1.0) No Security

[1.0 – 4.0) Low Security

[4.0 – 7.0) Moderate Security

[7.0 – 9.0) Good Security

[9.0 – 10.0] Excellent Security

B. Security Weakness Evaluation Model

The security weakness evaluation aims to describe the

consequence of the found weakness in the SoI. This involves

defining the taxonomy of effects, including security risks,

potential threats, and the impact scopes (i.e., the violated

security properties), covering the relationships among them.

The comprehensive mapping to CWE in ASVS allows us to

derive a set of (negative) components, resulting from the

weakness (depicted in Fig. 4), including impact scopes (i.e., the

violated properties), technical impacts, threats, and security

risks. Our modeling approach leverages existing CWE

databases and well-known threat and vulnerability analysis

methodologies to help derive a threat and security risk catalog

for each ASVS element. The following sections explain the

components, along with the associated derivation rules and

evaluation formulas.

Fig. 4. Security Weakness Evaluation Model

1)Evaluation of CWE. Scores for security weakness

components are calculated starting from the CWE identities, by

adding up individual values throughout all calculation tasks. In

security weakness evaluation, we focus on analyzing the

severity of the weakness to the SoI. The summation function

counts every occurrence in the ASVS verification that

represents the significance of the weakness component.

Let CWE i denote a CWE ID that existed in the CWE repository.

The following Equation defines the set of ASVS scores mapped

to a given CWE.

C(𝐶𝑊𝐸 𝑖) = {S(𝐴𝑆𝑉𝑆𝑗) → 𝐶𝑊𝐸 𝑖}

For each ASVS with a score of 0 (i.e., not fulfilled

requirements), the corresponding CWE is assigned the value 1.

The total score for CWE i is calculated by accumulating the

ASVS score with the following formula:

S(𝐶𝑊𝐸 𝑖) = ∑ 𝑒𝑗

𝑗∈𝐶(𝐶𝑊𝐸 𝑖)

where:

𝑒𝑗 = {
1, 𝑖𝑓 S(𝐴𝑆𝑉𝑆𝑗) = 0,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

2)Evaluation of Impact Scope. Each SoI comprises the main

security objective that needs to be achieved, like confidentiality

and availability, which are commonly captured by a Security

Property. For every security property, the impact must be

evaluated. The Impact Scope element identifies the security

property that is violated due to the existence of the weakness.

As for the evaluation component, the “Impact Scope’ is used to

evaluate the severity of weakness with generic/abstract security

requirements for the SoI. In the CWE model, the impact scope

can be found in the attributes of “Common Consequences”. For

example, CWE-116: “Improper Encoding or Escaping Output”

impacts the security properties of Integrity, Confidentiality,

Availability, and Access Control. Other impact scopes defined

in CWE are Authentication, Authorization, and Non-

repudiation.

To determine the score of “Impact Scope”, we add up the

corresponding CWE scores with the following equation:

S(𝐼𝑚𝑝𝑎𝑐𝑆𝑐𝑜𝑝𝑒𝑖) = ∑ C(𝐼𝑚𝑝𝑎𝑐𝑡𝑆𝑐𝑜𝑟𝑒𝑖)

where:
C(𝐼𝑚𝑝𝑎𝑐𝑆𝑐𝑜𝑝𝑒𝑖) = {𝑆(𝐶𝑊𝐸 𝑗) → 𝐼𝑚𝑝𝑎𝑐𝑆𝑐𝑜𝑟𝑒𝑖}

3)Evaluation of Technical Impact. Technical Impact is the

potential result that can be produced by the weakness, assuming

that the weakness can be successfully reached and exploited.

This is expressed in terms that are more fine-grained than

confidentiality, integrity, and availability. The technical impact

is an important criterion that can be useful to any organization

that needs reasonable security assurance for their software-

based solutions. The CWE-Common Consequence also

describes the Technical Impact that arises if an adversary

succeeds in exploiting this weakness. Security weaknesses can

cause a lot of damage if they are successfully exploited. This

information then evaluates the different types of damage that

can be caused, and how severe the damage can be. Examples of

technical impact are: modify data, read data, unreliable

execution, resource consumption and execute unauthorized

commands.

Similar to “Impact Scope”, the “Technical Impact” score is

yielded by summing the results of the relevant CWEs:

S(𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙𝐼𝑚𝑝𝑐𝑡𝑖) = ∑ C(𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙𝐼𝑚𝑝𝑎𝑐𝑡𝑖)

where:

C(𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙𝐼𝑚𝑝𝑎𝑐𝑡𝑖) = {S(𝐶𝑊𝐸 𝑗) → 𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙𝐼𝑚𝑝𝑎𝑐𝑡𝑖}

4)Evaluation of Threat. To have a clear picture of the dangers,

it is important to formulate an assessment of the threats to the

SoI. Threat assessment is often performed on a higher level, by

especially addressing legal or business-related issues. In our

test-based approach, threats are identified and evaluated based

on the catalogs of known CWEs, deriving from the relevant

verification results of ASVS. CWE with its Common

Consequences provides a point where we could start. In terms

of threat categories, we use the STRIDE framework [21], which

is a mature and optimal approach, to classify threats in areas

where mistakes are often made. The acronym “STRIDE” stands

for the threat categories of Spoofing, Tampering, Repudiation,

Information Disclosure, Denial of ‘Service, and Elevation of

privilege.

The CWE Schema offers an alternative method for mapping

between the CWE and the STRIDE, mediated by the attribute

of “Technical impact”. We map CWE in the dataset against

STRIDE using the “Technical Impact” attribute elicited from

the previously mapped CWE. Each STRIDE category had a

relationship with one or more enumerations of the Technical

Impact. The mapping of STRIDE to CWE Technical Impact is

presented in Table V.

Based on the mapping table, threat scores are calculated as:

S(𝑇ℎ𝑟𝑒𝑎𝑡𝑖) = ∑ C(𝑇ℎ𝑟𝑒𝑎𝑡𝑖)

where:

C(𝑇ℎ𝑟𝑒𝑎𝑡𝑖) = {S(𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙𝐼𝑚𝑝𝑎𝑐𝑡𝑗) → 𝑇ℎ𝑟𝑒𝑎𝑡𝑖}

5)Evaluation of Security Risk. While the mapped CWE list in

ASVS is extensive, it can be grouped and ranked by risk

severity. The OWASP Top 10 categories provide an easy, clear

at-a-glance summary of the ten most critical application

vulnerabilities, which are arranged according to their impact

and the security risk involved. The condensing of the numerous

kinds of CWS into a small number of categories gives an easier

way to analyze the security weakness in the software system.

Instead of making an effort to eradicate all vulnerabilities, one

can decide which of the ten risks is either more or less hazardous

to the organization. This provides analyzers with a good idea

about how to draw stakeholders’ attention to certain issues that

are the most common problems at the time.

In our model, “Security risk” is derived from the

“Memberships” attribute in CWE. The evaluation of security

risks involves the quantification of risks and the associated

Criticality factor. When security risks are identified, it is

difficult to remove all of them simultaneously due to the limited

resources available for vulnerability mitigation. Criticality is a

numerical value that we give to a security risk that

communicates how serious it is and determines the mitigation

to be applied first. The higher the criticality, the more urgent the

need to act. A common criticality assessment method is based

on the probability of failure and consequences. Criticality can

be calculated using the following equation:

𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑖𝑡𝑦 = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 × 𝑆𝑒𝑟𝑣𝑒𝑟𝑖𝑡𝑦

The equation to derive the score of a security risk is defined as:

S(𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦𝑅𝑖𝑠𝑘𝑖) = ∑ C(𝐶𝑊𝐸 𝑗) × 𝑐𝑖

= ∑ C(𝐶𝑊𝐸 𝑗) × 𝑝𝑖 × 𝑠𝑖

where:

ci: the criticality that corresponds to the ith SecurityRisk

pi: the probability that corresponds to the ith SecurityRisk

si: the severity that corresponds to the ith SecurityRisk

To evaluate the criticality, we refer to the data factors listed for

each of the OWASP Top 10 categories [16], which are

systematically derived using CVSS v3. Two data factors are

considered: “Average Incidence Rate” and “Average Weighed

Impact”. The former represents the Probability while the latter

is the Severity.

V. SAMPLE CASE STUDY

To showcase the effectiveness of the suggested methodology, a

manual security evaluation and analysis were performed on a

particular web application. It should be noted that certain

mechanisms were not implemented in the software, leading to

non-compliance with the requirements specified by ASVS. For

example, requirements of V2.6.1 to V2.6.3 in the

Authentication criteria define the security mechanism of “Look-

up secrete security”. However, the application does not feature

the specified functionality. Therefore, the relevant requirements

may be excluded from the verification scope. As a result of this,

these requirements were marked as "Not Applicable."

Examples of non-applicable ASVS requirements in this case

study are listed in Table VI. In summary, there are 261 out of

286 ASVS requirements have been determined to be

"applicable" to the security verification.

The evaluation process commences with the utilization of the

assessment model to calculate the security strength. This

involves aggregating the verification findings from the ASVS.

The summary of the SoI and evaluation aspect scores is

presented in Table VII. The SoI score of 7.721 signifies a "Good

Security" rating for the system. Weight factors for the three

evaluation aspects are determined through a subjective

weighting approach. In this particular case, stakeholders

assigned a higher weight to the "Software Structure" aspect

among the three aspects.

TABLE VI. EXAMPLES OF NON-APPLICABLE VERIFICATION CASES

Criteria Element Security

Mechanism

ASVS

Req.

Authentication Authenticator

Security

Look-up secrete

security

V2.6.1-

V2.6.3

Out-of-band

verifier security

V2.7.1-

V2.7.6

OTP verifier

security

V2.8.1-

V2.8.7

Input

Validation and

Sanitization

Input

Validation

Input validation for

LDAP Query

V5.3.7

XPath query

parameterization

V5.3.10

Privacy and

Data Protection

Server-side

Data

Protection

Health Data

Encryption

V6.1.2

Financial Data

Encryption

V6.1.3

Web Service

and API

Security

SOAP Web

Service

Security

Add integrity

check to SOAP

payload

V13.3.2

GraphQL GraphQL logic V13.4.1-
V13.4.2

TABLE VII. SUMMARY OF EVALUATION-ASPECT SCORES

Score of

SoI

Security

Level

Evaluation

Aspect

Weight Score

7.721
Good

Security

Software
Structure

0.6 0.45

Software

Environment

0.3 0.26

Software Process 0.1 0.06

In Fig. 5, we provide an illustrative example of the "next level"

analysis of security strength, specifically focusing on the

software structure aspect. The figure presents the evaluation

criterion scores alongside the distribution of verification-case

fulfillment. Among the 11 evaluation criteria, "Files and

Resource Security" attains the highest score of 1.00, indicating

strong compliance. Conversely, "Intrusion Detection and

Prevention" obtain the lowest score of 0.438, suggesting areas

for improvement. The evaluation criterion "Authentication" has

the highest number of verification cases and achieves a

moderate score of 0.708. This analysis provides valuable

insights into the specific strengths and weaknesses within the

software structure aspect of the security evaluation.

The security strength model incorporates a hierarchical

structure that allows for a comprehensive breakdown and

facilitates the identification of implemented and functioning

security mechanisms. Fig. 6 illustrates the drill-down scenarios

in the security strength analysis, revealing specific areas of

concern. For example, upon closer examination of the low-

scoring "Credential Update" (score = 0.25), it is revealed that

TABLE V. MAPPING OF STRIDE CATEGORIES BASED ON CWE -TECHNICAL

IMPACT

STRIDE Category CWE/Technical Impact

Spoofing Gain Privileges or Assume the identity

Tampering Modify Application Data
Modify Memory

Modify Files or Directories

Unexpected State
Alter Execution Logic

Repudiation Hide Activities

Information Disclosure Read Application Data

Read Memory
Read Files or Directories

Denial of Service DoS: Instability

DoS: Resource Consumption (CPU)
DoS: Resource Consumption (Memory)

DoS: Crash or Exit or Restart

DoS: Resource Consumption (Other)

Elevation of Privilege Execute Unauthorized Code or

Commands

Bypass Protection Mechanism

the "Notification Functionality of Credential Update" is

deficient.

Similarly, the evaluation highlights that the "Password Input

Functionality" (score = 0) is not adequately addressing

"Password Security." Furthermore, within the "Privacy and

Data Protection" criteria, it is observed that "Cache Data

Protection" is the only security mechanism in the "Server-Side

Data Protection" category that does not meet the required

standards. These detailed findings from the evaluation process

provide valuable insights into specific vulnerabilities and areas

that require attention within the security strength analysis.

The impact of identified CWEs on security properties is

analyzed and represented in a bar chart, showcasing the scope

of their effects. Fig. 7 illustrates this impact analysis, where the

horizontal axis represents the number of CWEs. Unlike the

positive connotation of security strength scores, in the

evaluation of security weaknesses, higher scores indicate more

severe weaknesses, threats, or security risks.

Therefore, all weakness components result in a negative effect

on the overall result. From the figure, it is evident that the

system's flaws have the most significant impact on the security

properties of "Access Control" and "Confidentiality." This

analysis helps prioritize the areas requiring immediate attention

and highlights the vulnerabilities that have the most significant

potential impact on the system's security.

We conducted an assessment to determine the relationship

between CWEs and OWASP's Top 10 security risks, and the

results are summarized in Table VIII and depicted in Fig. 8. Our

evaluation revealed that six out of the ten critical risks are

associated with the SoI. These six risks were further ranked

based on their scores. Upon analyzing the table, it is evident that

although the number of CWEs related to "Identification and

Authentication Failure" is the highest (10), its criticality rating

is relatively low (0.17). Consequently, this risk is ranked second

according to the calculated score (1.66). Among the six risks,

"Broken Access Control" is identified as the most critical one,

Fig. 5. Analysis of evaluation criteria scores

Fig. Fig. 6. Drill-down analysis based on the security strength evaluation model

receiving a score of 1.81, while "Insecure Design" is determined

to be the least critical. This evaluation provides insights into the

specific CWEs that contribute to the OWASP's Top 10 security

risks, allowing stakeholders to prioritize their efforts in

addressing the most critical risks affecting the system's security.

The analysis of threats is presented in Table IX, showcasing the

severity of threats relevant to the system. Among the six threats

evaluated, "Information Disclosure" emerges as the most

serious. It is identified as a relatively significant threat, with the

most substantial technical impact being "Read Application

Data." This analysis enables stakeholders to understand and

prioritize the threats that pose the highest risk to the system's

security, allowing them to allocate resources and implement

appropriate mitigation measures accordingly.

VI. CONCLUSION

This paper introduces a model for quantifying the security

evaluation of web applications. Through the utilization of

techniques such as aggregation, scoring consolidation, and

analytics, organizations can enhance their understanding of the

security posture of the system of interest. This improved

understanding enables informed decision-making regarding

security measures and risk mitigation strategies. Our approach

enables the integration of ASVS operational data into a

knowledge-based framework, facilitating the extraction of

valuable information regarding the security strength of a system

and the identification of potential vulnerabilities and threats.

This integration enhances the effectiveness of security

evaluations and empowers organizations to take proactive

measures to mitigate risks and enhance their overall security

posture.

By adopting this security evaluation approach, the ASVS

requirements are given thorough consideration, offering a

holistic perspective of system security encompassing aspects

such as "structure," "environment," and "process." This method

involves breaking down the security challenges, pinpointing the

underlying components, and placing special emphasis on

critical or essential security mechanisms at a granular level.

These security mechanisms serve as vital connectors between

the descriptive ASVS requirements and their subsequent

Fig. 7. Analysis of Impact Scopes

TABLE VIII. SUMMARY OF SECURITY RISKS

Security Risk

Number of

CWEs

Criticality Score Rank

A01-Broken Access Control 8 0.23 1.81 1

A02-Cryptographic Failures 3 0.31 0.92 4

A04-Insecure Design 2 0.20 0.41 6

A07-Identification and Authentication Failures 10 0.17 1.66 2

A08-Software and Data Integrity Failures 3 0.16 0.49 5

A09-Security Logging and Monitoring Failures 5 0.32 1.62 3

Fig. 5. Analysis of security risk

analysis, ensuring a comprehensive and effective evaluation of

the system's security. Furthermore, in our test-based approach,

we seamlessly integrate the ASVS framework into the

evaluation process of identified vulnerabilities, which are

mapped to CWE. By leveraging existing CWE databases and

employing effective mapping techniques, we generate threat

and risk catalogs that align with each ASVS element. This

modeling approach leverages the verification results as explicit

inputs for evaluation, enabling a more precise and targeted

assessment of potential negative impacts and ultimately

enhancing the overall analysis outcomes.

To facilitate future research endeavors, it is crucial to

acknowledge the limitations of this study. Firstly, the model

developed in this work primarily emphasizes technical security

mechanisms and may not encompass human factors such as

social engineering attacks or insider threats. Furthermore, it is

important to note that the model does not guide risk mitigation

strategies, as its primary purpose is to serve as an analysis tool

rather than a prescriptive guide. In summary, although the

model presented in this study offers valuable insights for

assessing security posture, it is essential to supplement it with

other frameworks and considerations to establish a

comprehensive security strategy. A potential future direction

would be to enhance the model by developing practical security

metrics and integrating them into a dedicated security analytics

application, as suggested in the research [26]. The proposed

application enhances data analysis capabilities, enabling

organizations to conduct comprehensive assessments of crucial

security elements. By leveraging this tool, organizations gain a

deeper understanding of the necessary actions to ensure security

and compliance. Furthermore, automating the security

evaluation process could be a valuable step to increase

effectiveness and enable real-time monitoring. This represents

a significant advancement in continuously improving the

system's security measures through the provision of well-

structured metrics and analytics.

ACKNOWLEDGMENT

This research work is financially supported by the SFI

Norwegian Centre for Cybersecurity in Critical Sectors

(NORCICS, NFR project number: 310105).

REFERENCES

[1] Andrews, R., G.A. Boyne, and R.M. Walker. 2006. "Subjective and

objective measures of organizational performance: An empirical
exploration". Public service performance: Perspectives on measurement

and management, pages 14-34.

[2] Banaei, O. and S. Khorsandi. 2012. "A new quantitative model for web
service security". in 2012 IEEE 14th International Conference on

Communication Technology. IEEE.

 [3] Charpentier, F., "Common Criteria Web Application Security Scoring
CCWAPSS"; Available from:

https://dl.packetstormsecurity.net/papers/web/ccwapss_1.1.pdf.

(Accessed on Feb. 3, 2023)
[4] Ekclhart, A., et al. 2007. "Ontological mapping of common criteria’s

security assurance requirements". in IFIP International Information

Security Conference. Springer.

[5] Erşahin, B. and M. Erşahin. 2022. "Web application security". South

Florida Journal of Development, volume 3, issue 4, pages 4194-4203.

[6] Gritzalis, D., M. Karyda, and L. Gymnopoulos. 2002. "Elaborating
quantitative approaches for IT security evaluation". Security in the

Information Society: Visions and Perspectives, pages 67-77.

[7] Hai, H.D. and P.T. Nga. 2018. "Evaluating the security levels of the Web-
Portals based on the standard ISO/IEC 15408". in Proceedings of the 9th

International Symposium on Information and Communication
Technology.

[8] Harrison, S., et al. 2016. "A security evaluation framework for UK e-

goverment services agile software development". arXiv preprint
arXiv:1604.02368.

[9] Herrmann, D.S. 2002. "Using the Common Criteria for IT security

evaluation". CRC Press.
[10] ISO/IEC, "Information security, cybersecurity and privacy protection —

Evaluation criteria for IT security — Part 1: Introduction and general

model"; Available from: https://www.iso.org/standard/72891.html.
(Accessed on Jan. 21, 2023)

[11] LeMay, E., et al. 2011. "Model-based security metrics using adversary

view security evaluation (advise)". in 2011 Eighth International
Conference on Quantitative Evaluation of SysTems. IEEE.

[12] McGraw, G., B. Chess, and S. Migues. 2009. "Building security in

maturity model". Fortify & Cigital.
[13] Okamura, H., M. Tokuzane, and T. Dohi. 2013. "Quantitative security

evaluation for software system from vulnerability database".

[14] Ouedraogo, M., et al. 2009. "Security assurance metrics and aggregation
techniques for it systems". in 2009 Fourth International Conference on

Internet Monitoring and Protection. IEEE.

[15] OWASP, "OWASP Proactive Controls"; Available from:
https://owasp.org/www-project-proactive-controls/. (Accessed on Feb.

3, 2023)

[16] OWASP, "OWASP Top10 Introduction"; Available from:
https://owasp.org/Top10/A00_2021_Introduction/. (Accessed on Apr.

27, 2022)

TABLE IX. SUMMARY OF THREAT SCORES WITH CORRESPONDING TECHNICAL IMPACTS

Threat Score Technical Impact Score

Spoofing 12 Gain Privileges or Assume Identity 12

Tampering 15

Modify Application Data 7

Modify Memory 0

Modify Files or Directories 4

Unexpected State 3

Alter Execution Logic 1

Repudiation 4 Hide Activities 4

Information Disclosure 17

Read Application Data 12

Read Memory 0

Read Files or Directories 5

Denial of Service 7

DoS: Instability 0

DoS: Resource Consumption (CPU) 3

DoS: Resource Consumption (Memory) 1

DoS: Crash, Exit, or Restart 1

DoS: Resource Consumption (Other) 2

Elevation of Privilege 11
Execute Unauthorized Code or Command 1

Bypass Protection Mechanism 10

[17] OWASP, "Software Assurance Maturity Model v2.0"; Available from:

https://www.opensamm.org/. (Accessed on Apr. 30, 2022)

[18] Pham, N. and M. Riguidel. 2007. "Security assurance aggregation for it

infrastructures". in 2007 Second International Conference on Systems

and Networks Communications (ICSNC 2007). IEEE.

[19] Reddy, N. "An Excellent Compilation of Software Testing Concepts
(Manual Testing)".

[20] Schechter, S.E. 2004. "Computer security strength and risk: a

quantitative approach". volume: Harvard University.
[21] Shostack, A. 2014. "Threat modeling: Designing for security". volume:

John Wiley & Sons.

[22] Sönmez, F.Ö. 2019. "Security qualitative metrics for open web
application security project compliance". Procedia Computer Science,

volume 151, pages 998-1003.

 [23] Vache, G. 2009. "Vulnerability analysis for a quantitative security
evaluation". in 2009 3rd International Symposium on Empirical Software

Engineering and Measurement. IEEE.

[24] W3C, "RDF 1.1 XML Syntax"; Available from:

https://www.w3.org/TR/rdf-syntax-grammar/. (Accessed on Jan. 26,

2022)

[25] Weldehawaryat, G.K. and B. Katt. 2018. "Towards a quantitative

approach for security assurance metrics". in The 12th International

Conference on Emerging Security Information.
 [26] Wen, S.-F., A. Shukla, and B. Katt. 2022. "Developing Security

Assurance Metrics to Support Quantitative Security Assurance

Evaluation". Journal of Cybersecurity and Privacy, volume 2, issue 3,
pages 587-605.

 [27] Yautsiukhin, A., et al. 2008. "Towards a quantitative assessment of

security in software architectures". in Nordic Workshop on Secure IT
Systems (NordSec), Date: 2008/10/01-2008/10/01, Location:

Copenhagen, Denmark.

[28] Zhou, C. and S. Ramacciotti. 2011. "Common criteria: Its limitations and
advice on improvement". Information Systems Security Association

