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Abstract: Embedding physical knowledge in system identification increases the generalization
capabilities of the identified models. For complex engineering systems, such as a process plant,
the most complete and detailed quantitative description of the existing physical and structural
knowledge is often provided by a simulator. We describe the procedure of fusing simulated
data with measurement data via L2 regularization for models that are linear in the parameters.
We characterize how the MSE minimization problem in this framework is nontrivial, and show
that for certain realizations of the data there is no unique minimum of the MSE w.r.t. the
regularization parameter. In these cases the MSE can even increase to larger values than both the
variance and the bias, which is counter-intuitive. We show how this issue appears less frequently
with more data, even though multiple minima can occur for any realization of the data. However,
we show also that the Stein effect is present regardless, so that it is always possible to decrease
the MSE with careful selection of the regularization parameter, i.e., information fusion may
always be beneficial.
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1. INTRODUCTION

We assume to have noisy measurement data from a real-
world process that we want to model as accurately as
possible, as well as having domain knowledge about the
process that can be used to assist in model estimation.
This estimated model will be referred to as ”the model”,
having parameters β. The domain knowledge will here be
simulation data that contains bias due to modeling errors,
which poses some challenges when used for regularization.
The simulated data implies a prior distribution on β. Even
though the simulator is technically also a model, it will be
referred to as ”the simulator” to minimize confusion.

In many data-driven modeling problems there exists struc-
tural information about the process that is being modeled.
A common problem is how to embed physics-based priors
in system identification tasks, such as knowing that the
exponential decay of the impulse response should be within
certain bounds. The question is thus how to utilize this
structural information to obtain models that have the
highest generalization capabilities possible. Some existing
methodologies include gray-box modeling principles such
as hybrid modeling, constrained black-box modeling, or
semi-physical modeling (Glassey and Von Stosch, 2018;
Sohlberg and Jacobsen, 2008). For example, in regularized
system identification, kernels can be designed to reflect
prior knowledge on the physical system (Pillonetto et al.,
2022). In some of these approaches, the physical informa-
tion is hard coded (e.g., the structure of the semi-physical
model), and this constraint may reduce the flexibility

of the subsequent identification steps, possibly worsening
underfitting phenomena. In other words, prior knowledge
about the physics of the system is in most cases uncertain
to some degree and should intuitively be treated that
way. Many gray-box modeling techniques do not give this
flexibility which may inhibit discovering certain features
of the process.

We also note how such physical knowledge may be repre-
sented by first principles embedded in a simulator (e.g., fi-
nite element (FE) or computational fluid dynamics (CFD)
methods). The data obtained through this simulator can
be seen as an instance of a physical knowledge prior, and is
in a sense a prior itself. The idea that ”data from a simula-
tor may be seen as a prior on β” is not new (Kedem et al.,
2017; Saadallah et al., 2022). This interpretation intro-
duces the following information theoretic subtlety: embed-
ding simulation data may be seen as a data fusion problem.
When fusing data, the different information sources should
be weighted according to their trustworthiness, with the
weight inversely proportional to the uncertainty. FE and
CFD simulators are however typically deterministic (at
least for fixed parameters), and their uncertainty lies in
their bias. Both the simulator and the model will have
modeling errors. The difference between these modeling
errors is the bias of the simulator with respect to the
parameters β. In other words, this bias is what constitutes
the uncertainty of the simulator when it is used as a prior
for β. Thus, given that the simulation bias is not zero,
there is the need to establish a statistically rigorous link



between this type of uncertainty and the weight given to
the simulation data.

In this article, we address this problem, specifically ana-
lyzing the L2 regularized least-squares (ReLS) estimator of
the parameters of data-driven models when prior informa-
tion is biased simulation data. We derive analytical results
for models that are linear in the parameters. Our contribu-
tions show that even within this relatively restricted model
structure set, situations may arise where the mean squared
error (MSE) of the ReLS estimator has several local min-
ima w.r.t. the regularization parameter, which contradicts
general intuitions about the bias-variance trade-off. For
a scalar parameter model one may characterize the min-
imum of the MSE in a closed form, while for the case
of vectorial parameter models the problem is significantly
more complex and may not have analytical solutions.
Although motivated by regularized system identification
with simulation data, the results apply to any data-fusion
problem using this ReLS estimator where bias is present.

Regarding how this paper relates to existing literature,
we note that regularization is commonly used to reduce
overfitting to the training set of a model, and can be
understood by the bias-variance trade-off (Pillonetto et al.,
2022). The idea is to reduce the variance of the model by
introducing some bias, which in total reduces MSE. The
relationship between bias and variance of an estimator is
typically depicted as in Fig. 1. The standard way of select-
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Fig. 1. A typical depiction of the bias-variance trade-off,
and the effect it has on MSE. The bias grows as the
regularization parameter is increased, while for λ = 0
the MSE equals the variance of the estimator.

ing the regularization parameter λ is by cross-validation,
a trial-and-error grid search technique, or through Stein
Unbiased Risk Estimators. In this paper we focus on
understanding how to optimally choose λ for fusing data
from a field plant with data from a simulator. However,
selecting λ may be non-trivial, since situations as in Fig. 2
may occur, as we describe. The presence of multiple local
minima makes selecting the optimal regularization level
λ logically more complex than in the standard situation
depicted in Fig. 1.

The field of data fusion approaches this problem quite
generally. For example, Saadallah et al. (2022) describe
different paradigms of fusion, and show conditions for
when model-level fusion reduces variance, though they
note that bias may eliminate this benefit. It is clear that
simulation data is often given a role identical to measured
data; for instance Saadallah et al. (2022) give examples
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Fig. 2. A depiction of how the MSE might change with
increasing regularization for certain data realizations.
The bias term may not grow monotonically with
the regularization parameter, causing multiple local
minima (and, potentially, multiple global minima).

where simulation data is even used as the ground truth.
However, for complex industrial processes (as an example,
submerged arc furnaces (Sparta et al., 2021)), this is not
a viable assumption, since FE and CFD models may be
too idealistic (which suggests that such simulators provide
biased information).

The book by Kedem et al. (2017) also discusses the prob-
lem of fusing simulation data with field data, via the
concept of out of sample fusion. Although this relates to
the data fusion field, it has a greater emphasis on statistical
theory. Out of sample fusion indeed relies heavily on the
validity of a density ratio model, and does not explicitly
treat the simulator as a prior (although arguably implic-
itly), nor addresses the potential bias in simulators.

Regularization applied to system identification problems
is well-covered in a recent book (Pillonetto et al., 2022).
This book treats regularization more with the purpose of
estimating sparse models from flexible model structures
that avoid overfitting, particularly kernel-based, and em-
bedding physics through kernel design.

Regularization using prior knowledge on the steady states
of a dynamic system using kernel methods, FIR models
and subspace methods are addressed in Fujimoto and
Sugie (2018); Khosravi and Smith (2021) and Yoshimura
et al. (2019), respectively. The former assumes a Gaussian
prior on the steady states, and is quite comparable to
this work, though our focus is more on how to embed the
nature of the uncertainty within the problem of choosing
the regularization levels. The latter two assume the prior
information to be exact, and discuss the problem more as
a model-level fusion problem.

Regularizing estimators through embedding prior physical
knowledge is the concept behind physics-informed neural
networks (Raissi et al., 2019). These methods can be
shown to converge to the PDEs that constitute the prior
knowledge (Shin et al., 2020). The regularization level
is adjusted by varying the number of collocation points
where the PDEs are enforced. However, if this prior is
inaccurate, this means converging to something biased.
In the data-from-different-sources fusion framework we
consider here, convergence to the prior is not the goal.

Finally, we note that the developments in this work are
useful towards including prior information in models that



are linear in the parameters, such as in the SINDy frame-
work (Brunton et al., 2016), or in ARMAX models (Ljung,
1998). This work is a first step towards an information the-
oretic framework that considers the prior to be simulation
data, with the assumption that it is biased (even if the
bias is unknown).

2. A NAÏVE APPROACH FOR TREATING
SIMULATION BIAS

As mentioned above, the uncertainty of deterministic
simulators may be assumed to reside in their bias, and
the relative importance of the simulation data when fusing
it with field data should be connected to the uncertainty
of the simulator (thus to its bias). Generally, both the
simulator and the model to be identified will contain
modeling errors that are unequal. Since the simulated data
is used to estimate parameters β, the bias we consider is
the bias of the simulator with respect to the model to be
estimated, thus it is depending on the model structure.

Let Dm denote data measured from the plant, and Ds data
from the simulator. When Ds is biased, one may think to:
1) estimate its bias (say ε) by somehow comparing Ds to
Dm, 2) subtract this inferred bias ε from the data Ds, and
3) treat the detrended data Ds − ε as if it was unbiased.
There are several reasons for why this may be statistically
suboptimal. In fact, we have yet to find rigorous statistical
reasons for why this should add any information about the
process, meaning that it should only be performed if it is
convenient for subsequent estimation steps. Furthermore,
treating this approach in a statistically rigorous way seems
non-trivial: subtracting an estimated bias that correlates
with both data sources requires careful handling of the
relative uncertainties.

Another idea may be to estimate the variance of the sim-
ulator - e.g., varying the inputs and parameters that gen-
erate the simulations, to analyze sensitivity, and thus find
a relation between simulation parameter uncertainty and
the simulation output uncertainty. Such tests will never
reveal uncertainties originating from modeling errors, and
may thus give a wrong view of the uncertainty. In other
words, making two step approaches, such as those men-
tioned, statistically rigorous and efficient seems to require
systematical execution of a large number of simulations,
which may be unfeasible.

It therefore seems to be the need for frameworks where
the simulations are taken as they are and treated as an
opportune form of prior information.

3. PROBLEM FORMULATION

Our goal is to formulate a framework that enables ad-
dressing the simulation bias discussed above in some sta-
tistically optimal way. Towards this we assume a scenario
where there exists two data sets: Dm (measurement data)
of size nm, and Ds (simulated data) of size ns. Both data
sources shall be used to estimate β. For the sake of deriving
analytical results, we consider only models that are linear
in the parameters, and without loss of generality (but for
the sake of notational clarity) with scalar outputs. The
model is assumed to coincide with the measurements, only
disturbed by additive noise, meaning that the modeling

error is zero. To assist explaining the general formulation
below, the following example is given:

Example: Model and metamodel of a separable FIR Let
the measurement dataDm correspond to a number of time-
series measurements from a scalar, nonlinear finite impulse
response (FIR) model, linear in the parameters, with zero-
mean i.i.d. measurement noise w, thus of the kind

yt =

p∑
i=1

βifi(xt−i) + w = fT
t β + w (1)

where xt, yt ∈ R are the input and output signals, the fi’s
are generic nonlinear functions, the βi’s are the parameters
to be estimated, and ft is the vector obtainable by stacking
the various fi(xt−i)’s. Let thenXm be the matrix obtained
through stacking the row vectors fT

t , and ym be the
column vector obtained through stacking the outputs yt.
This means letting the measurement data be

ym = Xmβ +w, (2)

where w is a vector whose components are equal to w.
In the following the measurement data is indicated by
Dm = {ym, Xm}.
As for the simulated data Ds, suppose that there exists a
simulator modeling steady states of (1), i.e., assume to be
able to simulate, for any generic input xs that is constant
in time, the corresponding steady state outputs ys. The
FIR model implies that the simulation data obeys

ys =

p∑
i=1

βifi(xs) + ε, (3)

which is thus a metamodel (model of a model) of the
steady states of model (1) whose parameters βi are cor-
rect, but whose additive disturbance ε is the unknown
simulation bias. Given a set of steady states xs =
{xs,1, . . . , xs,ns

}, applying (3) to each xs,i leads to

ys = Xsβ + ε, (4)

where ys ∈ Rns , Xs ∈ Rns×p, the parameters βi are as
in (1), and the term ε ∈ Rns is the simulation bias. The
simulated data Ds = {ys, Xs} may be seen as uncertain
information about the equilibria of (1). In other words,
the simulations provide implicit information on β, despite
the bias.

3.1 The model and the simulator metamodel

Based on the assumptions above, the model to be esti-
mated is generally expressed as

y(t) = f(x(t))Tβ , (5)

where y ∈ R,x ∈ Rm,β ∈ Rp and f : Rm → Rp. As in
the example above, we form the regressor of the model
f(xi) for all nm measurements in Dm, denoted Xm, and
the dependent variables are denoted ym, thus

ym = Xmβ +w , (6)

wherew is zero-mean noise, and ym ∈ Rnm , Xm ∈ Rnm×p.
For the analysis later on to hold, we assume that Xm is
full rank, making XT

mXm positive definite (PD).

The metamodel of the simulator is implied by the model
structure, and it is needed in order to fuse the information
of the two data sets Dm,Ds, since it defines the connection
between β and the simulations. Deriving the metamodel



may generally be non-trivial for certain model structures
and simulators, but is not the focus of this work. The
metamodel is here denoted with

ys = h(xs)
Tβ , (7)

where ys ∈ R,xs ∈ Rk,β ∈ Rp and h : Rk → Rp. From
Ds we form a regressor, Xs, of the metamodel h(xi) for
all ns simulations, and the dependent variables ys, thus

ys = Xsβ + ε , (8)

where ε is the bias of the simulator and the dimensionali-
ties of β,ys, Xs are as in the example above. Note that the
simulator may simulate the exact same process as what is
measured. In that case we have f = h from (5) and (7).
We do not assume that Xs is full rank.

3.2 The prior problem

We want to work towards answering the following general
questions: 1) Consider the information about β that is
encoded in the simulations (8). How shall this information
be used as a prior when estimating the model (5) with the
data Dm? 2) How does Dm,Ds, the bias ε and noise w
influence the posterior distribution of β?

4. REGULARIZATION BASED ESTIMATION

This section presents an accessible way of solving the
problem above. Regularization is well known to both be
including prior knowledge and reducing MSE. In fact, one
may say that regularization is the result of incorporating
some (uncertain, possibly biased) prior knowledge into a
model. However, regularization is often used to sparsify
models and reduce overfitting without an explicit justifi-
cation of the underlying prior.

Consider the standard least squares (LS) regression prob-
lem of estimating the model parameters β using data from
a physical system via the model (5), i.e.,

β̂ = argmin
β∈Rp

∥ym −Xmβ∥22 . (9)

The most straightforward way to use simulation data for
regularizing (9) (assuming that (7) holds) is to include
a standard L2 norm penalty, regularizing the solution
towards the simulated data, i.e.,

β̂ = argmin
β∈Rp

∥ym −Xmβ∥22 + λ∥ys −Xsβ∥22︸ ︷︷ ︸
regularization

(10)

which is the ReLS estimator. The degree of regularization
is adjusted via the regularization parameter λ ∈ R+. The
analytical solution to (10) is given by

β̂ =
(
XT

mXm + λXT
s Xs

)−1 (
XT

mym + λXT
s ys

)
, (11)

a solution that shows how β fuses data from both the
physical system and the simulator, with the fusion level
depending on the hyperparameter λ.

In this paper we are specifically interested in how to choose
λ. Commonly, λ is chosen to minimize the MSE of the
estimator, as minimizing the expected posterior loss with
a quadratic loss function is equivalent to minimizing the
MSE (Berger, 2013). As highlighted by the Gauss-Markov
theorem (Carroll and Ruppert, 2017), this choice becomes
obvious for problems where the noise on all of the data is
zero-mean Gaussian with known covariance. However, and
as illustrated in Section 1, whenever one of the data sources

contains (unknown) bias, optimally choosing λ becomes a
non-trivial minimization task.

The main questions we seek to explore in the remainder of
the paper are thus:

Q1 How does the presence of bias from the simulator
affect the MSE of (11) as a function of λ?

Q2 Are there analytical solutions for obtaining the λ that
minimizes the MSE of the estimator?

Q3 Under what conditions does the MSE as a function
of λ have the expected shape as seen in Fig. 1?

5. ANALYZING THE REGULARIZED ESTIMATOR

This section analyzes the MSE of the regularized estima-
tor (11). We analyze its derivative w.r.t. λ and show why it
is hard to find general analytical solutions for the optimal
λ. We show that the scalar case has a closed form solution,
and that it behaves as expected. We show that for multiple
parameters, problems such as the one seen in Fig. 2 may
happen for any realization of the data, for specific biases
ε. We also show how increasing the number of data points
reduce the likelihood of several minima. We assume that
w is i.i.d. Gaussian noise with variance σ2.

5.1 The MSE and its derivative

The MSE of the estimator β̂ is

MSE(β̂) =Tr
[
Var(β̂)

]
+Bias(β̂)TBias(β̂) (12a)

where

Bias(β̂) =λM−1XT
s ε (12b)

Var(β̂) =M−1XT
mσ2XmM−1 (12c)

and

M :=XT
mXm + λXT

s Xs .

Note that M is a symmetric PD matrix, i.e., M = MT

and M−T = M−1, since Xm is assumed to be full rank.

As the model is linear in the parameters, the MSE of β̂
does not depend on the true parameter value, but rather
on the bias ε.

The problem is to choose the optimal relative weight,
namely

λ∗ = argmin
λ∈R+

MSE(β̂, λ) ,

an operation that is usually done by solving ∂MSE
∂λ

∣∣
λ=λ∗ =

0, and confirming that the extremum is a minimum. To
compute the stationary points, we note that differentiat-
ing (12a) leads to

∂

∂λ
MSE = Tr

[
∂

∂λ
Var

]
+ 2BiasT

∂

∂λ
Bias . (13a)

By applying

∂

∂λ
M−1 = −M−1XT

s XsM
−1 (13b)

we obtain
∂

∂λ
Bias(β̂) =

(
I − λM−1XT

s Xs

)
M−1XT

s ε

(13c)



∂

∂λ
Var(β̂) = −σ2M−1

(
XT

s XsM
−1XT

mXm

+XT
mXmM−1XT

s Xs

)
M−1 .

(13d)

5.2 Conditions for Uniqueness of Minimum

As discussed in Section 1, certain realizations of the data
may lead to multiple minima when dim(β) > 1, as in
Fig. 2. Equation (13a) is analyzed here, where we will be
referring to the terms as the variance and the bias term,
respectively. Well-known properties of the matrix inverse
and positive semi-definite (PSD) matrices are applied
throughout (Horn and Johnson, 2012).

We show that the variance is monotonically decreasing,
as expected. This implies that the bias term is causing
the issue described. Since the variance term in (13a) is
always negative and the bias term is ”mostly” positive, it
holds that if the bias term in (13a) changes sign, then
there will be multiple minima for certain σ2. Thus, a
necessary condition for having a unique minimum for
arbitrary σ2 is that the differentiated bias term is strictly
positive, making the bias monotonically increasing. Such
a necessary condition is described below.

Firstly, the variance differentiated is always negative,
which can be seen from applying A := XT

mXm > 0, Bδ :=
XT

s Xs + δI > 0 for δ > 0. This gives that

XT
s XsM

−1XT
mXm +XT

mXmM−1XT
s Xs

= lim
δ→0+

BδM
−1A+AM−1Bδ

= lim
δ→0+

2(B−1
δ + λA−1)−1 ≥ 0 ,∀λ ≥ 0 (14)

by continuity of the matrix inverse. This makes (13d)
negative semi-definite, considering the negative sign, so
its trace is negative. Furthermore, considering a larger
regularization at λ+∆λ, ∆λ ≥ 0, then

0 ≤ M ≤
(
XT

mXm + (λ+∆λ)XT
s Xs

)
:= M+ (15)

giving that (M+)
−1 ≤ M−1. Then, corresponding to (14),

at λ+∆λ we have that

0 ≤
(
B−1

δ + (λ+∆λ)A−1
)−1 ≤

(
B−1

δ + λA−1
)−1

. (16)

This makes (13d) of the form −CDC, where C,D are
both PSD matrices, showing that the derivative of the
variance increases monotonically to zero as λ → +∞.
Thus, the variance is always positive but its derivative is
always negative, and the variance term is monotonically
decreasing to zero as λ → +∞. This holds for any rank of
Xs. Notice that σ2 only scales the variance term.

The bias term differentiated is less regular, being

BiasT
∂Bias

∂λ
= λεTXsM

−1
(
I − λM−1XT

s Xs

)
M−1XT

s ε .

(17)

Due to the particular form of (17) (∼ zTFz) it suffices to
consider its symmetric part only (as the anti-symmetric
part cancels), namely

λεTXsM
−1

I − λ

2

(
M−1XT

s Xs +XT
s XsM

−1
)

︸ ︷︷ ︸
:=C

M−1XT
s ε

(18)

It is meaningful to consider only I − C in (18) due to the
Rayleigh-Ritz theorem (Horn and Johnson, 2012), which
says that for a symmetric matrix A,

min eig(A)zT z ≤ zTAz ≤ max eig(A)zT z , (19)

where the inequalities are tight. The matrix I − C may
have negative eigenvalues, depending on the properties of
C, since eig (I − C) = 1 − eig(C). Therefore, we go on
analyzing if eig (C) ≤ 1. This set is approximated by the
(real) matrix’ field of values (Givens, 1952), via

F (A) := {zTAz | zT z = 1} =⇒ eig(A) ∈ F (A) .

The following applies to the fields of values here:

F (A) = [min eig(A),max eig(A)]

F (A) + F (B) := {a+ b | a ∈ F (A), b ∈ F (B)}
F (A)/F (B) := {a/b | a ∈ F (A), b ∈ F (B), 0 /∈ F (B)} .

By applying theorems for eigenvalues and fields of val-
ues (Wielandt, 1972), this yields

eig (C) ⊆ F (λXT
s Xs)/F (M)

where

F (M) ⊆ F (XT
mXm) + F (λXT

s Xs) .

Therefore

eig (C) ⊆ F (λXT
s Xs)

F (XT
mXm) + F (λXT

s Xs)
(22)

which is an interval of positive values. As λ → +∞ the
upper bound from (22) on eig(C) will be larger than 1,
however, the size of the eigenspace associated with the
eigenvalues above 1 should decrease as more data is added.
In other words, there may always be certain biases ε that
make (17) negative, though they are less and less likely to
occur. Further investigations towards this are found below.

5.3 Recognizing the Stein effect

When λ = 0 the bias term and its derivative vanishes.
By the above, it is clear that the derivative of the vari-
ance term is negative, meaning that we are guaranteed
that there exists some (potentially very small) level of
regularization that lowers the MSE of the LS estimator
- independently of how biased the simulated data is. This
is also known as the Stein effect (Pillonetto et al., 2022).

As λ → +∞ the variance term vanishes, and we are left
with ∂

∂λMSE = 2BiasT ∂
∂λBias. As seen in Section 5.2,

generally we can not guarantee that the derivative of
the bias term is positive (this depends on Xs and ε),
meaning that a similar Stein effect (lowering the MSE
by data fusion) is not necessarily present for λ → +∞.
However, when dim(β) = 1, XT

s Xs, X
T
mXm are scalars, so

by equation (22), eig(C) is a scalar always smaller than 1.
Thus, then the bias term is monotonically increasing. In
fact, we may then rewrite (13a) as

∂

∂λ
MSE = −2XT

mXm
σ2XT

s Xs − λ(XT
s ε)

2

M3
.

This has a unique stationary point given by

λ∗ = σ2 XT
s Xs

(XT
s ε)

2
, (23)

which indeed is a minimum by the Stein effect.

5.4 Increasing the sample size

Any MSE curve depends on the specific ε, but the MSE
is more likely to have a unique minimum if more data is
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Fig. 4. Number of minima of the MSE when increasing
the sample size nm, ns ∈ [20, 100] for 10000 random
realizations of Xm,ij , Xs,ij ∼ U[0,1] (uniform distri-
bution), where p = {5, 10}, σ = 1 and εi ∼ U[0,5].
p = dim (β). The lines are the mean of all realizations.
Green: nm increases, ns = 50. Orange: ns increases,
nm = 50.

included, as seen from (22). Adding data to the matrices
Xm, Xs corresponds to adding rows xT . Adding xT to Xi

gives that XT
i Xi → XT

i Xi + xxT . Since xxT is PSD,
adding it to XT

i Xi increases the eigenvalues of XT
i Xi,

but not necessarily all of them or specific ones. This
depends on x together with the eigenspace of Xi (i =
{s,m}). Hence, adding (arbitrary) data to Dm should
generally be more beneficial than adding to Ds, since we
may raise the minimal eigenvalue of XT

mXm, thus the
minimum of F (XT

mXm), while adding data to Ds gives
less precise answers regarding the bounds of (22) since
both the enumerator and denominator are affected. This
is also observed in numerical tests, indicating that the
negative eigenvalues of I − C from (18) both decrease in
quantity and magnitude as more data is used, depicted in
Fig. 3. This seems to correspond to a decreasing number
of minima of the MSE, as depicted in Fig. 4.

6. CONCLUSION

Regularizing towards prior knowledge is, as an approach,
more flexible than many gray-box modeling principles.
However, as shown here, regularizing optimally towards
biased data is a non-trivial problem. The MSE optimiza-
tion problem may exhibit multiple minima, and for certain
regularization levels λ the overall MSE can become larger
than both the MSE at λ = 0 and λ → +∞. This unwanted
behaviour could be present in other regularized models
too, even if the analysis presented here suggests that this

issue diminishes as the dataset size increases. Our main
result is that, generally, using simulations as a prior needs
caution. A further development may then be adopting
Bayesian perspectives by posing the estimation problem
as a kernel regression problem and analyzing how the
assumptions on the bias ε affect the posterior distribution,
to possibly construct more robust approaches for utilizing
simulators in machine learning.
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