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Aims Echocardiography is a cornerstone in cardiac imaging, and left ventricular (LV) ejection fraction (EF) is a key parameter for 
patient management. Recent advances in artificial intelligence (AI) have enabled fully automatic measurements of LV volumes 
and EF both during scanning and in stored recordings. The aim of this study was to evaluate the impact of implementing AI 
measurements on acquisition and processing time and test–retest reproducibility compared with standard clinical workflow, 
as well as to study the agreement with reference in large internal and external databases.  

Methods 
and results 

Fully automatic measurements of LV volumes and EF by a novel AI software were compared with manual measurements in 
the following clinical scenarios: (i) in real time use during scanning of 50 consecutive patients, (ii) in 40 subjects with repeated 
echocardiographic examinations and manual measurements by 4 readers, and (iii) in large internal and external research 
databases of 1881 and 849 subjects, respectively. Real-time AI measurements significantly reduced the total acquisition 
and processing time by 77% (median 5.3 min, P < 0.001) compared with standard clinical workflow. Test–retest reprodu-
cibility of AI measurements was superior in inter-observer scenarios and non-inferior in intra-observer scenarios. AI mea-
surements showed good agreement with reference measurements both in real time and in large research databases.  

Conclusion The software reduced the time taken to perform and volumetrically analyse routine echocardiograms without a decrease in 
accuracy compared with experts.  
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Introduction 
Echocardiography is a cornerstone in cardiac imaging. Left ventricular 
(LV) ejection fraction (EF), the proportion of blood ejected during systole, 
is the single most used and well-studied echocardiographic parameter of 
LV systolic function and a key variable for guideline-directed decisions of 
treatment strategies and prognostication in patients with heart failure, 
myocardial infarction, valvular disease, arrhythmias, and anti-cancer treat-
ment.1–6 Volumetric LV measurements should also be taken into account 
when evaluating LV function.7 A low LV EF may be accompanied by a 
large volume, while a very high EF may be characterized by a very small 
LV volume.7,8 However, present methods for quantification of LV EF 
are time-consuming with significant inter-observer variability which chal-
lenges clinical interpretation.9 Due to the tedious and repetitive work, 
quantitative measurements of LV volumes and EF are not always per-
formed and rarely performed in repeated cardiac cycles. In busy clinical 
work, LV volumes and EF measurements may be replaced by a visual 
semi-quantitative assessment, hampered by even larger observer-related 
variability and lower sensitivity to detect LV dysfunction.10 Thus, to im-
prove the clinical value of echocardiography, it is mandatory to improve 
reproducibility and the proportion of accurately quantified measure-
ments of LV volumes and EF. This has the potential to benefit millions 
of patients worldwide.11 

It has recently been shown that deep convolutional neural networks, 
a subcategory of artificial intelligence (AI) algorithms, allow for auto-
matic measurements of LV volumes and EF.12–15 We have developed 
a method for fully automatic analyses of LV volumes at end-diastole 
and end-systole as well as EF from apical four- and two-chamber 
views.16 The method can automatically perform all tasks needed within 

milliseconds and is thus able to run in real time during echocardiograph-
ic scanning as well as to retrospectively extract the same quantitative 
measurements from large databases. In the current study, we extended 
this algorithm with the development of dedicated segmentation net-
works for end-diastolic and end-systolic frames as well as a procedure 
for averaging three cardiac cycles in two view planes. 

The aims of the study were to evaluate whether the novel AI method 
could be used to improve quantification of LV volumes and EF by reducing 
the acquisition and processing time and test–retest variability while provid-
ing measurements in agreement with reference. Study objectives were to 
evaluate if assessment of LV volumes and EF by the AI method would re-
duce acquisition and processing time when used in real time compared 
with standard clinical workflow, provide measurements with improved 
test–retest reproducibility compared with inter- and intra-observer ana-
lyses, and provide good agreement with echocardiographic reference 
methods in large internal and external databases when all recordings 
were acquired by experienced users. 

Methods 
Study populations 
The study design and the study populations are illustrated in Figure 1. The 
total acquisition and processing time and agreement with manual reference 
measurements were evaluated in a prospective trial (Data set 1) of 50 con-
secutive patients where the AI measurement support software was used in 
real time during echocardiographic scanning and compared with standard 
diagnostic procedure. Test–retest reproducibility of AI and reference mea-
surements was compared retrospectively in a data set (Data set 2) of  
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40 participants. Agreement with reference measurements was further eval-
uated in a large internal database (Data set 3) from the fourth wave of the 
Trøndelag Health Study (HUNT4) including 2462 participants from the 
echocardiographic substudy (HUNT4Echo) and a large external database 
(Data set 4) including a random sample of 1032 participants from the sev-
enth survey of the Tromsø Study (Tromsø7). Full details are shown in the  
Supplementary Material. 

Overview of imaging data and reference 
measurements 
Data sets 1 and 2 consisted of repeated echocardiograms where each 
subject was scanned twice by two different operators without time delay, 
while Data sets 3 and 4 included single echocardiograms only. All echo-
cardiographic examinations were performed using GE Vivid E95 scanners 
(GE HealthCare, Horten, Norway), with M5S or 4Vc phased-array 

transducers, except in Data set 4 (Tromsø7) where Vivid E9 was used. 
Measurements of LV volume and EF were done in apical four-chamber 
view and apical two-chamber view. The reference measurements were 
obtained using Simpson’s biplane method in all data sets, except for 
Data set 4 where a semi-automatic, tracking-based method (GE Healthcare, 
‘AutoEF’) was used with manual adjustments. Three-dimensional (3D) echo-
cardiograms were available from Data sets 1 and 3 and analysed using the LVQ 
package. Additional details are shown in the Supplementary Material. 

Echocardiographic details of the different data 
sets 
The repeated echocardiograms in Data set 1 were performed by three cardi-
ologist experts in echocardiography (E.H., B.G., and H.D.) selected based on 
their hospital position. In random order, one of the experts performed the 
AI-supported examination without any preliminary training. The 2D 

Figure 1 Study design. Flowchart showing distribution of subjects in the different substudies. Abbreviations: AI, artificial intelligence; EF, ejection 
fraction; HUNT, Trøndelag Health Study; n, number of subjects.  

Video 1 Demonstration of the AI measurement support software in real time use.   
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B-mode images were streamed from the ultrasound scanner to a separate 
computer running the AI measurement support software in real time, over-
seen by the operator (Video 1). Immediately after, one of the other experts 
performed the second acquisition blinded to all details from the first examin-
ation, and subsequently, measurements of LV volumes and EF were obtained 
offline. For the AI-assisted examination, time registration started with place-
ment of the transducer on the chest and ended when both the four-chamber 
view and the two-chamber view recordings and measurements were ap-
proved and stored. Correspondingly, the time used for acquisitions and ana-
lyses was measured for the reference examination. Time needed to record the 
two apical views was registered (from transducer was placed on the chest until 
both recordings were stored). In a separate sitting, time required for offline 

manual measurements, from the start of analysis of the first recording until ap-
proval of biplane results, was registered and added to the acquisition time to 
quantify the total acquisition and processing time. Figure 2 shows the user 
interface that displayed the segmentation masks on top of the B-mode image 
for three consecutive cardiac cycles, as well as the automatically calculated vo-
lumes and EF during scanning. As the AI method was used for study purposes 
only, no patients were put at risk. 

Details regarding acquisition of echocardiographic data in Data set 2 
(the test–retest reproducibility study) and Data set 3 (HUNT4Echo) 
have recently been published.17,18 The repeated echocardiograms in 
Data set 2 were analysed by four experienced operators, while two ex-
perienced sonographers obtained the reference measurements in Data 

Figure 2 Summary screen of the segmentation masks with LV volumes and EF measurements. The upper panel shows the segmentation masks with 
measurements of LV volumes at end-diastole and end-systole as well as EF for three consecutive cardiac cycles obtained from apical four-chamber view. 
The lower panel shows the similar results for apical two-chamber view. At the bottom of the lower panel, the AI measurements based on biplane 
recordings are shown.   
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set 3. The image data in Data set 4 were acquired by one sonographer and 
one cardiology fellow (M.S.) performed all reference measurements. The 
3D recordings in Data sets 1 and 3 were analysed by the same operators 
as stated above. 

Further, two internal cardiologist experts reanalysed a sample of 100 
echocardiograms from Data set 3 (B.G. and E.H.), and two external cardi-
ologist experts reanalysed a similar sample of 100 echocardiograms from Data 
set 4 (A.R. and S.M.). Full details are shown in the Supplementary Material. 

Details of the AI measurement method 
The AI-based measurement method in this study builds upon the work pre-
sented in Smistad et al.16 For the measurements performed in real time (Data 
set 1), a dedicated view classification network was used to automatically iden-
tify the view plane of the recording.19 Automatic view classification was not 
used in the remaining data sets, where the AI measurements were performed 
in the same recordings that were used for reference measurements, except 
for the reproducibility data set (Data set 2) where the recordings measured 
by the majority of the four operators were used. 

Additionally for all AI measurements, we used two convolutional neural 
networks in sequence: a timing network and a segmentation network. The 
segmentation network was built on the U-net architecture described in 
Leclerc et al. and Smistad et al.13,20,21 The ultrasound image was used as in-
put and the network classified the pixels as corresponding to the LV cavity, 
the left atrial cavity, LV myocardium, or background. An automatic tracing 
of the endocardial border was generated from the output of the network 
and made available for inspection by the clinician. Although it is possible to 
measure all frames of every recording, the validation was focused on aggre-
gated end-diastolic and end-systolic measurements from three cardiac cy-
cles in two view planes in line with the recommendations.22 The biplane 
volumes were calculated by the method of disk summation using automatic 
tracings from all possible combinations of three cardiac cycles in two view 
planes. LV EF was calculated from the averaged end-diastolic volumes 
(EDV) and end-systolic volumes (ESV) (see Supplementary Material). 

Subjects whose recordings were utilized for training of the segmentation 
networks were excluded from the analyses (Figure 1). The method was 

validated on the data sets by direct application without further adjustment. 
Additional details are provided in the Supplementary Material. Importantly, 
no changes were made to the AI software during the study period. 

Statistical analyses 
Data distribution was evaluated by inspection of histograms and quantile– 
quantile plots. Normally distributed continuous data are presented as 
mean (SD), while non-normally distributed data are presented as median 
[interquartile range (IQR)]. Proportions are presented as numbers and per-
centages. As the acquisition and processing time in Data set 1 was skewed, 
we compared the groups by Wilcoxon signed-rank test. 

For the inter- and intra-observer scenarios in Data set 2, each subject’s 
mean variance was calculated from all squared differences divided by two. 
Variance ratios were sampled with replacement 100,000 times for the gen-
eration of bootstrap estimates of 95% confidence intervals (CI) for the su-
periority and non-inferiority analyses (corresponding to two one-sided 
tests with α = 0.025). The chosen number of bootstrap samples was based 
on the trade-off between high number of iterations and computation time. 
For the non-inferiority testing, we specified a delta margin of 46% increase 
in variance, corresponding to a 21% increase in standard error of measure-
ment (SEM), as acceptable given the advantage of reduced total time for ac-
quisition and processing. The delta margin was based on the observed 
between examinations intra-observer SEM from our sample of four obser-
vers in Data set 2, where the highest SEM was 32, 42, and 21% higher than 
the mean SEM for EDV, ESV, and EF, respectively. The minimal detectable 
change was calculated by 2.77 × SEM. 

Comparison of methods in Data sets 1, 3, and 4 were performed by Bland– 
Altman analyses with limits of agreement (LOA). For the expert reanalysis 
data in Data sets 3 and 4, the mean of two experts’ measurements was 
used as reference. Comprehensive details are shown in the Supplementary 
Material. 

Statistical analyses were performed in Python (Python Software 
Foundation, Delaware, USA) using open-source packages Pandas, NumPy, 
and SciPy. A P < 0.05 was considered statistically significant. 
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Table 1 Basic characteristics of the study population  

Data set 1 Data set 2 Data set 3 Data set 4  
(real time) (HUNT4 rep) (HUNT4) (Tromsø7)  

Number of subjects  50  40  1881  849 

Age, years  60.6 (16.9)  61.5 (12.7)  61.0 (12.8)  56.1 (8.8) 

Female sex  17 (34.0%)  19 (47.5%)  921 (49.0%)  460 (54.2%) 

Height, cm  ..  172.4 (9.2)  172.5 (9.2)  171.0 (9.4) 

Weight, kg  ..  84.3 (16.1)  78.2 (14.1)  78.7 (15.1) 

Systolic BP, mmHg  138.2 (18.5)  131.2 (17.7)  130.7 (18.4)  128.3 (20.4) 

Diastolic BP, mmHg  83.7 (11.6)  74.5 (10.6)  75.3 (9.9)  75.4 (10.9) 

Heart rate, bpm  76.5 (16.0)  71.6 (12.4)  68.7 (12.0)  67.2 (11.0) 

Coronary heart disease  16 (32.0%)  1 (2.5%)  83 (4.4%)  60 (7.1%) 

Atrial fibrillation/flutter  8 (16.0%)  8 (20.0%)  279 (14.8%)  43 (5.1%) 

Hypertension  20 (40.0%)  13 (32.5%)  331 (17.6%)  165 (19.4%) 

Heart failure  5 (10.0%)  2 (5.0%)  50 (2.7%)  10 (1.2%) 

Valvular disease  12 (24.0%)  4 (10.0%)  60 (3.2%)  .. 

Diabetes mellitus  7 (14.0%)  5 (12.5%)  59 (3.1%)  36 (4.2%) 

COPD/asthma  6 (12.0%)  4 (10.0%)  115 (6.1%)  140 (16.5%) 

Data are presented as mean (SD) or numbers (%) as relevant. 
BP, blood pressure; COPD, chronic obstructive pulmonary disease; HUNT, Trøndelag Health Study; rep, test–retest reproducibility.   
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Ethical approval 
All parts of the study were approved by the Regional Committee for 
Medical and Health Research Ethics (REK) (Real-time, REK 2019/1059; 
HUNT4, REK 2018/2416; Tromsø7, 2009/2536). All participants provided 
their written informed consent prior to inclusion, with specific details of 
the AI method in Data set 1 and with broad consents in Data sets 2–4. 
The study was conducted in compliance with the ethical principles of the 
Declaration of Helsinki. Personal data security and data handling were ap-
proved by the institutional personal data officers and handled according 
to regulations. The National Association of Heart and Lung Diseases was 
involved in all aspects of the study. 

Results 
The baseline characteristics of the study populations are shown in 
Table 1. Mean age ranged from 56 to 61 years, and females constituted 
34–54% of the population in the different data sets. Further, cardiac dis-
eases such as coronary heart disease and atrial fibrillation ranged 2.5– 
32% and 5.1–20%, respectively. The AI measurements were feasible 
in 100, 98, and 95% of the manually measured recordings from Data 
sets 1–2, 3, and 4, respectively. The main echocardiographic measure-
ments by AI and reference are summarized according to the originating 
data sets in Table 2. Mean LV EDV and EF were ≤132 mL and ≥53% by 
echocardiographic reference method in all data sets, respectively. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2 Echocardiographic measurements by AI measurement support software and reference in the different data 
sets  

Data set 1 Data set 2 Data set 3 Data set 4  
(real time) (HUNT4 repa) (HUNT4) (Tromsø7)  

EDV AI, mL  120.5 (38.6)  106.7 (26.6)  100.6 (26.7)  96.9 (24.5) 

ESV AI, mL  61.2 (31.6)  49.2 (17.0)  46.9 (15.4)  43.5 (14.0) 

EF AI, %  50.9 (9.7)  54.2 (7.3)  53.6 (6.8)  55.4 (6.4) 

EDV reference, mL  132.1 (41.1)  115.8 (30.5)  108.9 (32.7)  90.4 (23.8) 

ESV reference, mL  65.2 (36.3)  50.4 (18.9)  44.7 (17.2)  40.8 (13.5) 

EF reference, %  52.8 (10.7)  57.1 (6.2)  59.1 (6.6)  55.1 (7.1) 

EDV differenceb, mL  −11.6 (17.5)  −9.1 (8.4)  −8.3 (14.4)  6.5 (14.0) 

ESV differenceb, mL  −4.0 (14.6)  −1.2 (6.0)  2.2 (8.8)  2.7 (11.2) 

EF differenceb, %  −1.9 (7.6)  −2.9 (4.0)  −5.5 (6.5)  0.3 (8.6) 

Mean (SD) for absolute values of measurements grouped by data set. 
AI, artificial intelligence; EDV, end-diastolic volume; EF, ejection fraction; ESV, end-systolic volume; HUNT, Trøndelag Health Study; rep, test–retest reproducibility. 
aValues are averages of all available measurements by each method for all subjects. 
bPaired differences calculated as AI minus reference.  

Figure 3 Acquisition and processing time by AI measurements compared with standard clinical workflow. Median acquisition and processing time for 
evaluation of left ventricular volumes and ejection fraction in our sample of 50 subjects examined both with standard clinical methodology (reference) 
and with real time AI support (AI). Error bars represent interquartile range. The time required for post-acquisition manual measurements is relieved as 
quality-controlled quantitative measurement results are available at the end of the AI-supported examination.   
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Acquisition and processing time 
The time used for the combination of echocardiographic image acqui-
sition and analyses of LV volumes and EF in Data set 1 was significantly 
reduced by the AI measurement support software (Figure 3). The total 
acquisition and processing time per patient was median (IQR) 1.9 min 
(1.2–2.9) for the AI-assisted examination and 7.5 min (6.1–9.3) for the 
reference examination. Median (IQR) reduction was 5.3 min (4.0–7.9), 
corresponding to 77% (65–85%) of the time saved using real time AI 
measurements compared with manual measurements. Additionally, 
the total acquisition and processing time was lower using AI in 49 of 
50 patients (P < 0.001). It was a minor increase in acquisition and pro-
cessing time for the LV volume and EF measurements of median (IQR) 
0.5 min (−0.3 to 1.6) when AI measurements were implemented, 
whereas a large time reduction was achieved by eliminating the need 
for post-acquisition analyses. 

Variability of test–retest measurements 
Figure 4 shows that the AI measurements were superior to reference mea-
surements of LV volumes and EF in Data set 2 with respect to test–retest 
variability between different operators (inter-observer scenario). 
Additionally, the AI measurements were non-inferior to test–retest 
measurements within operators (intra-observer scenario) using the del-
ta margin of 1.46. In the latter, the finding of variance ratios below 1 indi-
cated a tendency towards superiority of AI measurements even in the 
intra-observer scenario, but this was not statistically significant. The 
minimal detectable changes for manual measurements of LV EDV in 
the inter- and intra-observer scenarios were 42.7 and 35.8 mL. The 
corresponding values for LV ESV were 25.8 and 21.1 mL, while for 
LV EF, the corresponding values were 16.2 and 12.8% points. By the 
AI method, all the corresponding minimal detectable changes were 
lower (EDV 30.8 mL, ESV 16.3 mL, and EF 12.0% points, respectively). 

Agreement in real time and large internal 
and external databases 
The averaged differences between AI measurements and reference 
ranged from −11.6 to 6.5 mL for LV EDV, −4.0 to 2.7 mL for LV 
ESV, and −5.5 to 0.3% points for EF (where negative values indicate 
underestimation by AI). Supplementary data online, Figure S4 demon-
strates the high correlation of LV volume measurements by the two 
echocardiographic methods in Data sets 1, 3, and 4, as well as the 
low proportion of participants with reduced EF in Data set 4. 

The agreement of AI measurements with reference in the different 
data sets is presented in Figure 5. In the real time study, there were 
no signs of association of the agreement between methods and the 
size of the measures, while there was a tendency for underestimation 
of large volumes in Data set 3 and overestimation of large volumes in 
Data set 4, compared with the reference measurements. A total of 
334 subjects from Data sets 1, 3, and 4 had LV EF <50%. As shown 
in the Supplementary Material, the biases and LOA for LV volumes 
and EF in this group were mainly in line with the previously presented 
results, while the LOA for the ESV measurements in the population 
studies were somewhat wider, and AI measurements overestimated 
EF (9.1% points) in Data set 4. 

Agreement with 3D echocardiography 
The agreement of AI measurements from 2D echocardiography with 
reference measurements from 3D echocardiography was in line with 
the 2D results. Shortly, AI measurements were somewhat underesti-
mated compared with 3D references with biases in Data sets 1 and 3 
for EDV (10 and 15 mL, respectively), ESV (4 and 2 mL, respectively), 
and EF (1 and 4% points, respectively). Bland–Altman plots of the com-
parison are provided in Figure 6. 

Figure 4 Test–retest reproducibility of AI measurements compared with manual measurements. Test–retest reproducibility presented as variance 
ratios with bootstrap CI for AI measurements compared with reference. The horizontal lines and numbers in parentheses represent 95% CI for su-
periority. The upper (right) ends of the horizontal lines represent 97.5% one-sided CI for non-inferiority. Upper panel: All 95% CI were below the 
variance ratio of 1.0, indicating superiority of AI compared with the inter-observer scenarios. Lower panel: The upper ends of the CI were between 
1.0 and the prespecified margin of 1.46, indicating non-inferiority of AI compared with the intra-observer scenarios. Abbreviations: AI, artificial intel-
ligence; EDV, end-diastolic volume; EF, ejection fraction; ESV, end-systolic volume.   
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Comparison with expert readers in Data 
sets 3 and 4 
The agreement of the AI measurements with the experts’ measurements in 
the reanalysis subsamples from Data sets 3 and 4 is shown in Figure 7. 
Compared with the expert reference, the AI measurements underesti-
mated LV EDV with 8.0 and 18.9 mL in Data sets 3 and 4, respectively. 
The corresponding biases for LV EF were −4.0 and −0.6% points. 
Interestingly, of the 50 largest outliers in Data sets 3 and 4 combined, 9 
were rejected by one of the experts due to insufficient image quality, and 
for 28 (68%) of the 41 remaining subjects, the expert reanalyses were closer 
to the AI measurement than the original reference. The few remaining out-
liers in Figure 7 were mainly due to the AI method failing to identify the anat-
omy of the LV (e.g. inclusion of the left atrium or right ventricle as left 
ventricular myocardium). All were easily identifiable in hindsight by human 
operator quality control (see Supplementary data online, Figure S6). 

Discussion 
This is to the best of our knowledge among the most comprehensive valid-
ation studies of AI measurements of LV volumes and EF and the first to 

evaluate the use of fully automatic segmentation of myocardial structures 
combined with automatic measurements to provide real time measure-
ments of LV volumes and EF during echocardiographic acquisition. The 
main findings are presented in the Graphical Abstract. First, by using 
the AI measurements of LV volumes and EF in real time, 77% (5.3 min) of 
the time used for the combination of echocardiographic acquisition and 
interpretation was saved. Second, the AI measurements demonstrated su-
perior reproducibility of LV volumes and EF compared with inter-observer 
measurements and were non-inferior to repeated measurements within ex-
perienced operators. Furthermore, the AI measurements were feasible and 
well aligned to reference measurements of LV volumes and EF in real time 
and large cross-sectional population studies. Additionally, the comparison 
with 3D echocardiography showed agreement well aligned to the 2D re-
sults. We believe these findings show the great potential of AI measure-
ments of important echocardiographic parameters in real time. 

AI measurements of LV volumes and EF 
in real time 
It has previously been shown by us and others that automatic measure-
ments of archived echocardiograms are feasible and can provide 
acceptable agreement with manual reference measurements.12,23–25 

Figure 5 Agreement of the AI measurement support software and echocardiographic reference measurements of left ventricular volumes and ejec-
tion fraction in real time, internal, and external databases. Estimates of bias and LOA are presented as numbers and stapled lines. Numbers in paren-
theses and shaded areas correspond to 95% CI. Abbreviations: LOA, limits of agreement, otherwise as in Figures 1 and 4.   
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To our knowledge, no previous studies have tested the use of AI mea-
surements in real time during echocardiographic scanning with immedi-
ate feedback to the operator who can decide whether to approve the 
measurements or adjust the recording. A few studies have evaluated AI 
measurements of LV volumes and EF using commercial software on hand- 
held ultrasound devices, as well as semi-automatic AI-supported measure-
ments in post-acquisition analyses.26–29 Importantly, the concept of final-
izing the measurements during echocardiographic scanning allows for 

optimization of the recordings with minimal time delay based on the dir-
ect feedback provided to the user. One important issue that often limits 
interpretation and measurements in clinical echocardiography is image ar-
tefacts, which may be overlooked during image acquisition but have a 
negative impact on the accuracy of quantitative measurements. As the 
segmentation masks and measurements by the novel AI software are 
shown to the operator for every cardiac cycle, the recordings can be ad-
justed to ensure best possible image quality for consistent and accurate 

Figure 6 Agreement between AI measurements from 2D echocardiography and reference measurements from 3D echocardiography. 
Abbreviations: as in Figures 1, 4, and 5.   
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measurements. Once the exam is finished, such adjustments may interfere 
with in-hospital workflow and have a significantly larger cost. 

We showed a highly significant reduction in the total acquisition and 
processing time of 77% (median 5.3 min) by using real time AI measure-
ments of LV volumes and EF compared with standard care. Importantly, 
this may increase the proportion of examinations with adequate quan-
titative image analysis and thus impact clinical practice. Increasing the 
proportion of properly quantified echocardiograms is mandatory to 

increase its diagnostic yield and thereby improve the care for large pa-
tient groups across the world. 

Variability of LV measurements by AI and 
manual references 
Manual measurements of EF are associated with considerable inter- 
observer variability with LOA rarely below ±15% points in 

Figure 7 Agreement between the AI measurements and averaged expert measurements of left ventricular volumes and ejection fraction in the re-
analysis subsamples. Abbreviations: as in Figures 1, 4, and 5.   
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reanalyses of the same images.29–31 Data from test–retest scenarios 
including separate recordings are rarely presented. In Data set 1, we 
evaluated the agreement between methods when measurements 
were done in two separate echocardiograms. The presented LOA 
for volumetric measurements were acceptable, considering previous 
findings showing that repeated analyses of the same recordings 
underestimate the more clinically meaningful inter-observer variabil-
ity of separate examinations with ∼40%.9 The biases and LOA were 
numerically lower when 3D echocardiography was used as reference 
in the real time study. However, these differences were clinically not 
meaningful. 

The results from Data set 2 showed superior test–retest reproduci-
bility of AI measurements in inter-observer scenarios. This adds to the 
findings by others who have reported reduced variability of AI mea-
surements compared with standard care.23,24 The clinical impact of 
these studies is further supported by reports of even higher variability 
by visual assessment of EF,10 and due to time constraints, the recom-
mended approach of measuring LV EF and volumes in more than one 
cardiac cycle is rarely performed in the everyday clinic.22 As AI mea-
surements were performed in three cardiac cycles as opposed to 
single-cycle reference measurements, the observed time reduction is 
even more impressive. The delta margin used in the analyses was based 
on the variability between the four operators. Even if we had specified a 
stricter delta margin, this would not have altered the conclusions, as 
shown by Figure 4. 

Inter-observer variability also challenges the development and valid-
ation of the segmentation networks underlying the AI measurements 
used in this study (see Supplementary Material). There is no clear con-
sensus on how to trace the endocardial border, and it may be difficult to 
differentiate between compact myocardium and trabeculations.22 The 
initial version of the AI software was trained on data from the open 
CAMUS data set, which in our opinion included too much of the trabe-
culations and papillary muscles into the myocardium, with subsequent 
underestimation of LV volumes.13,16 This also highlights the importance 
of ensuring the representativeness of the training data and the chal-
lenges of manual measurements of LV volumes and EF. 

The findings of different biases of volumetric AI measurements vs. 
reference in the different databases were expected and indicate sys-
tematic differences between the observers performing the reference 
measurements. The finding of somewhat wider LOA for LV EF in the 
external Data set 4 compared with the internal data set may be due to 
observer variability but also to the fact that measurements were per-
formed using a different method (AutoEF). In the expert reanalyses of 
a subsample of Data set 4 using Simpson’s method, the width of the 
LOA for LV EF was ±11.6% points compared with ±16.8% points 
in the original full Data set 4 and not significantly wider than in the ex-
pert reanalyses of the internal Data set 3. However, as this was a se-
lected subsample, comparison should be done with caution. These 
findings indicate good generalizability of the AI measurements to 
the external data set and that the excess random variation in Data 
set 4 may be partly explained by different operators performing the 
reference measurements and the use of different methods for 
measurements.32 

Considering the observer variability of manual measurements, the 
between-data set biases were within the ranges of what could be ex-
pected by a well-functioning AI software. In Data set 2 (test–retest re-
producibility), mean LV EF measured by the four observers ranged from 
53.5 to 60.1%, and the AI measurements were within this range. Similar 
findings were also made for LV volumes. The relatively high minimal de-
tectable changes observed in Data set 2 may relate to inclusion of a sig-
nificant number of individuals with atrial fibrillation, obesity, and 
challenging image quality.17 In the expert reanalyses in Data sets 3 
and 4, mean LV EDV was within 7 mL from the AI measurement for 
three of four experts, while the fourth expert measured on average 
32 mL larger volumes. Overall, agreement with expert measurements 

was good, with mean LV EF as measured by the four separate experts 
ranging from 6% points higher to 1% points lower than the AI 
measurements. 

Comparing the current results to previous studies presenting agree-
ment as mean, median, and 95th percentile of absolute differences, as 
well as root mean square error, we found that the agreement of AI 
measurements of LV volumes and EF with reference was better than 
presented in two of three relevant studies12,23 and similar to Ouyang 
et al.24 which only presented AI measurements of EF based on a single 
four-chamber view (see Supplementary data online, Table S1). Other 
studies have also shown that AI-supported measurements may be feas-
ible and beneficial in the clinical workflow, although these results are 
not directly comparable to the current study.25,33 

We believe that the presented or similar deep learning algorithms 
will be implemented into clinic in a short time. The advantages of the 
presented AI measurements relate to the ability to run in real time, 
easy evaluation by the operator, robust measurements, and significant 
time saving for the combination of echocardiographic scanning and 
measurements. Prior to broad implementation, future studies should 
evaluate the method across the spectrum of cardiac diseases, LV func-
tion, and image quality. 

Limitations 
A limitation of the study is the relatively low proportion of subjects with 
large LV volumes and/or low EF, severe valvular or myocardial diseases, 
or non-normal anatomy. However, the data were promising indicating 
no signs of reduced feasibility or lower agreement when LV volume ex-
ceeded 200 mL even though the numbers were low. Another minor 
limitation is that the reference measurements in the external Data 
set 4 were performed using a semi-automatic method. However, ex-
pert reanalyses of a subsample of this cohort were performed by the 
recommended Simpson’s biplane method. 

One of the three experts involved in Data set 1 had also annotated 
half of the training data for the segmentation network, which may 
have influenced the agreement between operators in this data set. 
However, none of the experts performing reanalyses in the internal 
and external data sets was involved in generation of training data. As 
all echocardiographic imaging data are vendor-specific, future studies 
must evaluate the performance of the AI measurements on record-
ings made by scanners from other vendors. It would be expected that 
the time savings by the presented method would have been less if 
other automatic or semi-automatic methods were used as reference. 
Still, we believe that the presented method represents a significant 
step forward as measurements from three consecutive cardiac cycles 
can be evaluated in real time by the operator during scanning. Thus, 
this method complies better with the recommendations than other 
available methods. 

Finally, the lack of validation of the AI measurements with respect to 
cardiac magnetic resonance imaging (MRI) is a limitation. Cardiac MRI 
has generally been considered a reference method for volumetric mea-
surements. The minor underestimation of AI measurements from 2D 
echocardiography was less than several previous studies comparing 
2D echocardiography with 3D echocardiography or cardiac MRI but 
well aligned to a recent publication by our group highlighting the im-
portance of guideline-directed chamber-specific recordings when per-
forming 2D echocardiography.18,34,35 However, the comparison with 
3D showed similar results as for 2D echocardiography and adds 
strength to the results. 

Conclusions 
We present one of the most comprehensive validation studies of AI 
measurements of LV volumes and EF of today, proving (i) a significantly 
reduced acquisition and processing time of 77% (median 5.3 min) for  
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echocardiographic acquisition and measurements when used in real 
time, (ii) superior test–retest variability in inter-observer scenarios 
and non-inferior variability in intra-observer scenarios, and (iii) excel-
lent feasibility in large internal and external databases with good agree-
ment with reference within the domain of LV EF 45–60%. The results 
support the implementation of fully automatic real time AI measure-
ments of LV volumes and EF during echocardiographic acquisition to 
improve patient care but future studies should evaluate performance 
of the method across the spectrum of cardiac diseases, LV systolic func-
tion, and image quality. 

Supplementary data 
Supplementary data are available at European Heart Journal - Cardiovascular 
Imaging online. 
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