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A B S T R A C T

Experimental testing of large marine structures in hydrodynamic laboratories requires an accurate reproduction
of waves over a large area of the basin. However, with a uniform motion of the wavemaker, wave interactions
with the basin’s boundaries can result in an inhomogeneous wave field, even before beach reflection takes
place. In this paper, the main geometrical parameters causing inhomogeneities are investigated. For that
purpose, a fast linear model is implemented and applied to describe wave fields in basins of arbitrary geometry
but constant water depth. Comparisons with experiments in SINTEF’s Ocean Basin demonstrate the validity of
the model for regular waves. Finally, an efficient method to reduce wave field inhomogeneities by optimizing
the motion of the paddles of a multiflap wavemaker is presented and validated experimentally.
1. Introduction

Model testing continues to be an unavoidable tool in investigating
the behaviour of floating structures in the ocean, even though the use
of numerical simulations is constantly growing as they always become
more accurate and less time-consuming. Among other reasons, this is
particularly true when introducing new and complex structural designs.
An example of such new designs is large structures such as floating
bridges, that cover large areas and are sensitive to variations of wave
parameters across their length. Indeed, Cheng et al. (2018) have shown
that the variability of wave conditions across the pontoons of an end-
anchored curved floating bridge has a significant effect on the motions
and the moments in the structure. Dai et al. (2021) added that for the
same type of bridge, inhomogeneity of the wave field strongly affects
fatigue damage of mooring lines. In addition to floating bridges, other
examples of structures covering large areas include arrays of wave
energy converters (Rodrigues, 2021), aquaculture farms, floating solar
islands, or offshore wind farms. Unlike conventional designs, testing
of such large structures requires an accurate reproduction of waves not
only in the centre of the basin, but over a large area. Therefore, for such
tests, the notion of wave field homogeneity is of critical importance.
Herein, we define an inhomogeneous wave field as a wave field for
which wave statistics, including the directional spectrum, vary in space.

Analytical expressions of transfer functions for waves generated by
wavemakers have long been established. However, they exist only for
specific basin geometries. They were first derived within the assump-
tion of two-dimensional wave propagation, both at first order (Biésel
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and Suquet, 1951), and at second order (Schäffer, 1996). The theory
was extended to directional waves at second order, but for a basin of
infinite horizontal extend with infinitely wide wavemakers (Schäffer
and Steenberg, 2003). However, most ocean basins have more complex
geometries: the wavemaker has a finite width, and because of the
lateral boundary conditions, the wave field becomes inhomogeneous.

A common design for rectangular ocean basins is to have one wave-
maker with a vertical wall on both sides. The length of the wavemaker
becomes virtually infinite in this design, which is theoretically ideal
for simply propagating waves (Dalrymple, 1989). However, transverse
sloshing modes can then appear, and waves scattered by the model to
be tested can also be reflected by the side walls. Thus, another common
design is to have wavemakers on two adjacent sides and beaches on the
opposite sides. The purpose of the beaches is to absorb waves generated
by the wavemakers, as well as those reflected by the model to be tested.
Replacing a side wall with a beach has another effect: it results in
the diffraction of the incident wave, leading to an additional three-
dimensional wave pattern. This affects the homogeneity of the wave
field in the whole basin and restricts the working area (Gilbert and
Huntington, 1991).

For a wavemaker of finite width in an infinite basin – or equiva-
lently for a basin with perfect wave absorbers on both sides of the wave-
maker – Matsumoto and Hanzawa (1996) have shown that homogene-
ity of the wave field could be improved with a multiflap wavemaker
by having a non-uniform distribution of the flaps’ motion. They solved
analytically the 2D Helmholtz equation in their domain, and validated
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Fig. 1. Definition of the Cartesian coordinate system and main quantities.

he method experimentally. O’Dea and Newman (2007) confirmed
hose results, studying various 3D wavemakers using WAMIT® (WAMIT

Inc., 2020). Ota et al. (2021) used a similar technique, but with time-
dependent Green functions, to study a basin with wavemakers installed
along the whole perimeter.

O’Boyle et al. (2017) worked on optimizing the shape of the tran-
sition walls between the wavemaker and the side beaches of their
shallow-water basin. Their target was to find a compromise between
absorbing waves radiated by the tested model, and diffraction of the
incident waves. They used a combination of experiments and numerical
modelling using Boussinesq equations.

The homogeneity of the wave field in SINTEF’s Ocean Basin was
documented experimentally by Rabliås and Kristiansen (2022) for long-
crested regular waves in deep water. In the case of long-crested regular
waves, the definition of a homogeneous wave field becomes having a
uniform wave direction and amplitude across the area of interest. Mea-
suring free-surface elevation across the whole basin, discrepancies of up
to 30% of wave amplitude were observed exhibiting clear interference
patterns.

This paper investigates the sensitivity of wave field homogeneity to
geometrical details of ocean basins, and proposes a method to reduce
the wave field inhomogeneities. An efficient Green-function method
for wave propagation in basins of constant water depth with complex
geometries is presented, extending the formulation of Barailler and
Gaillard (1967) and Nishimura et al. (1994). The method solves ana-
lytically the depth-dependency of the velocity potential, thus allowing
to solve directly for the free-surface elevation in a two-dimensional
domain. This greatly reduces the computational complexity of the
problem compared to 3D BEM solvers. Results obtained with this
model are systematically compared with the experiments of Rabliås
and Kristiansen (2022). Moreover, it is used to investigate the cause of
those inhomogeneities, as well as their consequences on model tests.
Further, a correction method to improve wave field homogeneity is
proposed. New experiments have been conducted for the present article
in SINTEF Ocean’s basin during the summer of 2022, with regular
waves of various periods and steepnesses, in order to validate the
method and quantify its effect.

2. Numerical method

A panel method code was developed and adopted to solve for the
free-surface elevation in an Ocean basin, using linear potential flow
theory. Assumptions behind the model and its principle are presented
in this section, as well as two verification cases.

2.1. Formulation of the problem

The problem here is to find the free-surface elevation 𝜁 (𝑥, 𝑦, 𝑡) and
he velocity potential 𝛷(𝑥, 𝑦, 𝑧, 𝑡) in a three-dimensional basin, given the
2

d

isplacement of each flap of a wavemaker with 𝑁 flaps, 𝑋𝑖(𝑧, 𝑡), where
∈ [[1, 𝑁]]. In the present article, wavemaker refers to the entire wave
achine, while flap is used to refer to an individual wave paddle. The

oordinate system is taken so that 𝑧 is positive upwards (see Fig. 1). For
he purpose of the present numerical model, the following assumptions
re made:

• Linear potential flow theory (incompressible and inviscid fluid,
low wave steepness and small paddle motion)

• Uniform water depth ℎ
• Rapidly decaying evanescent modes (as described below) are

neglected

As linear potential flow theory is assumed, the problem can be
olved for a given wave frequency, and the contributions of all fre-
uency components summed afterwards. The formulation will be pre-
ented for a given angular frequency 𝜔. The complex free-surface
levation can then be written 𝜁 (𝑥, 𝑦, 𝑡) = 𝜂(𝑥, 𝑦)𝑒−𝑖𝜔𝑡. For a constant
ater depth ℎ, 𝜂 satisfies a 2D Helmholtz equation (Mei et al., 2005):

𝛥 + 𝑘2)𝜂 = 0 (1)

here 𝛥 is the 2D Laplacian with respect to (𝑥, 𝑦), 𝑘 is a solution
f the linear dispersion relationship 𝜔2 = 𝑔𝑘 tanh(𝑘ℎ), and 𝑔 is the
cceleration of gravity. An infinity of complex solutions 𝑘𝑗 exists for the
avenumber, each one associated with wave components following a
ifferent Helmholtz equation. There is however only one real solution
f the dispersion relationship: let it be 𝑘0. All the other solutions are
maginary, and for them, ∀𝑗 ≥ 1, |𝑘𝑗 | > 𝜋

2ℎ . Thus, solutions of the
Helmholtz equation associated with an imaginary wavenumber are
rapidly decaying evanescent modes, decreasing faster than exp

(

− 𝜋𝑥
2ℎ

)

,
and will be neglected here. Because of this rate of decay, those modes
are only present within a distance of the wavemaker smaller than twice
or three times the water depth, and neglecting them does not affect
results beyond this limit. Then, the free-surface elevation is solution of
the 2D Helmholtz equation:

(𝛥 + 𝑘20)𝜂 = 0 (2)

The boundaries of the basin can be either wavemakers, vertical
walls, or wave absorbers. Even though the model detailed here can
include partial directional reflection, all wave absorbers will be con-
sidered perfectly absorbing for this study.

For a perfectly absorbing wave absorber, a radiation condition has
to be enforced. This condition is the same as for an infinite basin in
the horizontal direction. Thus, perfectly absorbing boundaries can be
equivalently replaced by openings into an infinite domain, where a
radiation condition is enforced at infinity. This property is used for all
such boundaries.

Walls and wavemakers have the same linear impermeability condi-
tion, 𝜕𝑛𝛷 = 𝜕𝑡𝑋, where 𝑋 is the displacement of the flap, 𝜕 indicates
a partial derivative, and 𝑛 is the normal to the boundary, oriented
towards the fluid. As the problem is written in terms of free-surface
elevation, all boundary conditions should also be rewritten in terms of
free-surface elevation. For a wall, 𝑋 = 0, and the condition simply be-
comes 𝜕𝑛𝜂 = 0. For a wavemaker, some additional steps are necessary,
nd the derivations will be presented in Section 2.2.2.

If velocities or accelerations are of importance, then the velocity
otential can be derived back from the free-surface elevation, as

=
−𝑖𝑔
𝜔

cosh(𝑘0(𝑧 + ℎ))
cosh(𝑘0ℎ)

𝜂𝑒−𝑖𝜔𝑡 (3)

2.2. Numerical model

2.2.1. Principle of the panel method
To obtain the solution for the free-surface elevation 𝜂, the problem

s reformulated using a boundary integral method, by introducing a
istribution of sources and dipoles along the physical boundaries of
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Fig. 2. Definition of the domain for the boundary value problem.

the domain, as shown in Fig. 2. If the domain is unbounded, then
its boundary 𝜕 has to extend to infinity. The boundaries are later
discretized using a lowest-order boundary element method. As the
equation to be solved is the Helmholtz equation on a 2D domain, the
panels that are distributed along its boundaries are 1D. The Green
function for the Helmholtz equation satisfying Sommerfeld’s radiation
condition at infinity is given for a source 𝑃 and a point 𝑄 by

𝐺𝑃 (𝑄) = − 𝑖
4
𝐻 (1)

0 (𝑘0𝑟) (4)

where 𝑟(𝑃 ,𝑄) = |𝑄 − 𝑃 |, and 𝐻 (1)
0 is the zeroth-order Hankel function

of the first kind (Sommerfeld, 1949).
An expression of the free-surface elevation is then obtained by

Green’s theorem:

𝜂(𝑃 ) = ∫𝜕

[

𝜂(𝑄)∇𝐺𝑃 (𝑄) ⋅ �̂� − 𝐺𝑃 (𝑄)𝜕𝑛𝜂(𝑄)
]

𝑑𝑠 (5)

As for perfectly reflecting walls, 𝜕𝑛𝜂 = 0, they are described as distribu-
tions of dipoles only. Wavemakers that are not on a symmetry axis are
still described by a distribution of both sources and dipoles. Compared
to the method derived in Barailler and Gaillard (1967) and Nishimura
et al. (1994), wavemakers are part of the boundary, so that no explicit
incident wave field is needed. Moreover, the domain here does not need
to be convex, and can include internal walls, as shown in Fig. 2.

Panels of finite length 𝛥𝑠 with constant source and dipole strengths
are considered. Let 𝑊𝑖 be a panel, and 𝑃𝑖 its centre. Assuming that the
length of the panel is 𝛥𝑠𝑖 ≪ 𝜆 = 2𝜋

𝑘0
, the approximation ∀𝑄 ∈ 𝑊𝑖, 𝜂(𝑄) =

𝜂(𝑃𝑖) is then made. The contribution 𝜂𝑑𝑖 from the panel 𝑊𝑖 to the
free-surface elevation is then:

𝜂𝑑𝑖 (𝑃 ) = 𝜂(𝑃𝑖)∫𝑊𝑖

𝜕𝑛𝑖𝐺𝑃 𝑑𝑠 − 𝜕𝑛𝑖𝜂(𝑃𝑖)∫𝑊𝑖

𝐺𝑃 𝑑𝑠 (6)

However, Eq. (6) is only valid for 𝑃 ∉ 𝑊𝑖. Thus, 𝜂𝑑𝑖 (𝑃𝑖) will be taken
as the limit of 𝜂𝑑𝑖 (𝑃 ) for 𝑃 approaching 𝑃𝑖 normally to the panel. This
yields:

lim
𝑃→𝑃𝑖

𝜂𝑑𝑖 (𝑃 ) =
𝜂(𝑃𝑖)

2
− 𝜕𝑛𝑖𝜂(𝑃𝑖)𝑞

(

𝛥𝑠𝑖
2

, 𝑘0

)

(7a)

where:

𝑞(𝛿, 𝑘0) =
1 𝑘0𝛿

𝐻 (1) (7b)
3

2𝑖𝑘0 ∫0 0
For points a few panel lengths away from the panel, the contribution
from the panel 𝑊𝑖 is considered to be similar to a single source or dipole
placed in its centre, 𝑃𝑖. If there are one or two orthogonal infinite walls,
then symmetry can be used instead of placing panels on those walls.

The contribution from a panel 𝑖 on a point 𝑃 is then:

𝜂𝑑𝑖 (𝑃 ) = 𝜎𝑖𝐺𝑃𝑖 (𝑃 ) + 2𝛾𝑖𝜕𝑛𝑖𝐺𝑃𝑖 (𝑃 ) (8a)

where:

𝛾𝑖 =

[

∑

𝑗≠𝑖
𝜂𝑑𝑗 (𝑃𝑖) − 𝜕𝑛𝑖𝜂(𝑃𝑖)𝑞

(

𝛥𝑠𝑖
2

, 𝑘0

)

]

𝛥𝑠𝑖 (8b)

𝜎𝑖 = −𝜕𝑛𝑖𝜂(𝑃𝑖)𝛥𝑠𝑖 (8c)

To compute 𝑞(𝛿, 𝑘0), as ∀𝑖, 𝑘0𝛥𝑠𝑖 ≪ 1, the following expansion
has been used, obtained by integration from Abramowitz and Stegun
(1964):

∫

𝑥

0
𝐻 (1)

0 =𝑥 + 2𝑖
𝜋

[

ln
(𝑥
2

)

+ 𝛾 − 1
]

𝑥 − 𝑥3

12

− 𝑖
6𝜋

[

ln
(𝑥
2

)

+ 𝛾 − 4
3

]

𝑥3 + (𝑥4)
(9)

Only 𝛾 =
(

⋯ 𝛾𝑖 ⋯
)𝑇 is still unknown here. Using (8) to evaluate

every 𝛾𝑖 yields a system of equations:

G𝛾 = 𝜂𝐼 (10a)

where:

(G)𝑖𝑗 =

{

−𝜕𝑛𝑗𝐺𝑃𝑗 (𝑃 𝑖)
𝛥𝑠𝑖
2 , if 𝑖 ≠ 𝑗

1, if 𝑖 = 𝑗
(10b)

(𝜂𝐼 )𝑖 =
∑

𝑗≠𝑖
𝜎𝑗𝐺𝑃𝑗 (𝑃 𝑖)𝛥𝑠𝑖 + 𝜎𝑖𝑞

(

𝛥𝑠𝑖
2

, 𝑘0

)

(10c)

Having found 𝛾, Eq. (8) is then used to find the free-surface eleva-
tion at any point of the basin.

2.2.2. Source strength
At a wavemaker, an impermeability condition applies: the normal

speed of water particles follows that of the wavemaker. This condition
gives the source strength 𝜎 = −𝜕𝑛𝜂𝛥𝑠. It should be noticed that both
propagative and evanescent modes are generated. Evanescent modes
can have two different origins. Some exist also in two-dimensional
basins, that appear because the wavemaker’s vertical profile does not
equal that of the velocity profile of a freely propagating wave. Those
modes are all rapidly decaying and are the ones that will be ne-
glected. Other evanescent modes appear in three-dimensional basins,
and are due to lateral variations of the wavemaker motion (flaps of
finite width, or finite length of the wavemaker for instance). Those
modes can decay slowly, and are intrinsically part of the solution
computed by the present numerical model. The contribution of the
propagative and the second type of evanescent modes on 𝜕𝑛𝜂 can
be isolated by taking the projection of the boundary condition onto
the mode 𝑧 ↦ cosh

(

𝑘0(𝑧 + ℎ)
)

. Let the horizontal displacement of a
flap be 𝑋(𝑧, 𝑡) = 𝑋𝑎𝑆(𝑧)𝑒−𝑖𝜔𝑡, where 𝑆 is a vertical profile, and 𝑋𝑎 is
the amplitude of the flap displacement. Then, the projected boundary
condition yields:

𝜕𝑛𝜂 = 𝑋𝑎𝑘0𝑐0 (11)

where 𝑐0 is the Biésel transfer function (Biésel and Suquet, 1951):

𝑐0 = sinh(𝑘0ℎ)
∫ 0
−ℎ 𝑆(𝑧) cosh 𝑘0(𝑧 + ℎ)𝑑𝑧

0 2
(12)
∫−ℎ cosh 𝑘0(𝑧 + ℎ)𝑑𝑧
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Fig. 3. Convergence study on the excitation force from a regular long-crested wave
on a bottom mounted vertical cylinder – 𝑇 = 1.5 s, 𝐷 = 10 m, ℎ = 5 m – 𝐹𝑛𝑢𝑚 and 𝐹𝑡ℎ
being the excitation forces obtained respectively numerically and theoretically.

2.2.3. Partial and directional reflection
In addition to considering perfectly reflecting or absorbing walls or

beaches respectively, the present method allows for considering partial
reflection. This can be done to a first approximation by multiplying
the dipole strengths with a known reflection coefficient 𝑅(𝜔), whose
phase has then to be set to consider the phase of the reflected wave.
The directionality of the reflection can also be included. To this end, a
simplification can be made by considering that the contribution from
each panel is locally a long-crested wave coming from a given angle,
and then multiplying the contribution of each one of those panels by
𝑅(𝜔, 𝜃) in the expression of 𝛾𝑖 in Eq. (8). Using this feature to model
reflections is left for future studies, and the method is not used in this
article, as the goal here is to describe the wave field before reflection
from the beaches reaches the wave probes.

2.3. Verification

Verification of the numerical solver is done on two test cases where
analytical solutions exist.

2.3.1. Free-surface diffraction from a cylinder
Simulation results for the diffraction of an incident long-crested

wave by a vertical, surface-penetrating circular cylinder standing on a
flat seabed were compared to the analytical solution of MacCamy and
Fuchs (1954). Panels with dipoles were placed along the border of the
circular cylinder. The width of each panel was taken as 𝛥𝑠 = 𝜆∕𝑛, where
𝜆 is the wavelength of the incident wave at the frequency of interest,
and 𝑛 is the number of panels per wavelength.

The excitation force on the cylinder was computed by direct pres-
sure integration from the numerical solution. For a wall, the integrated
force on a panel 𝐹𝑖 can be directly found from the dipole strength

𝐹𝑖 = 2𝛾𝑖𝑛𝑖 × 𝜌𝑔 ∫

0

−ℎ

cosh(𝑘0(𝑧 + ℎ))
cosh(𝑘0ℎ)

𝑑𝑧𝑒−𝑖𝜔𝑡 (13)

where 𝑛𝑖 is the normal to the panel 𝑖. The excitation force 𝐹𝑒𝑥𝑐 is then
obtained by summing the contribution of the forces on each panel.
Results converge towards the theoretical solution (see Fig. 3). The order
of convergence is first order, which is consistent with our lowest-order
panel method. For the wave field, it can also be seen that the numerical
solution converges towards the analytical one (see Fig. 4).

As the panels are 1D, even with a dense mesh, simulations remain
fast. Hence, a first-order convergence speed was deemed acceptable.
𝑛 = 20 panels per wavelength were used in the simulations performed
in the following.
4

Fig. 4. Comparison of theoretical (top-half) and numerical (bottom-half) solutions for
a regular long-crested wave diffracted by a vertical cylinder extending all the way to
the seabed – 𝑇 = 1.5 s, 𝐷 = 10 m, ℎ = 5 m.

Fig. 5. Definition of the numerical domain for modelling waves generated by a finite
wavemaker – Wavemaker at 𝑥 = 0 m with a width of 𝑙𝑝 = 30 m.

Fig. 6. Comparison of theoretical (top-half) and numerical (bottom-half) wave ampli-
tudes for a wave generated by a finite wavemaker (black line at 𝑥 = 0 m, on a wall
represented by the grey line) in an infinite basin in the x+ and y directions – 𝑇 = 1.5 s,
ℎ = 5 m.

2.3.2. Waves from a finite wavemaker
The wave field generated by a finite wavemaker of width 𝑙𝑝 in

an infinitely wide basin was also used to compare results from the
simulation to an analytical solution (see Fig. 5 and Fig. 6). The wave-
maker boundary condition here is 𝜕𝑥𝜂|𝑥=0 = 𝑋𝑎𝑘0𝑐0rect

(

(𝑦 − 𝑦0)∕𝑙𝑝
)

: a
rectangle function centred on 𝑦 = 𝑦0, with discontinuities on both sides.
The analytical solution was derived using a Fourier transform in 𝑦 of the
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boundary condition, and solving for each mode thus obtained, similarly
to what is done by Dalrymple (1989). This gives

𝜂(𝑋) = ∫

∞

−∞

1
𝑖𝑘𝑥


(

𝜕𝑥𝜂|𝑥=0
)

𝑒𝑖𝑘.𝑋𝑑𝑘𝑦

=
𝑋𝑎𝑘0𝑐0𝑙𝑝

2𝜋 ∫

∞

−∞

𝑒−𝑖𝑘𝑦𝑦0
𝑖𝑘𝑥

sinc
(𝑘𝑦𝑙𝑝

2

)

𝑒𝑖𝑘.𝑋𝑑𝑘𝑦

(14)

where 𝑋 = (𝑥, 𝑦)𝑇 is any point in the domain,  is the Fourier transform
in 𝑦, 𝑘𝑥 =

√

𝑘20 − 𝑘2𝑦 and 𝑘 =
(

𝑘𝑥, 𝑘𝑦
)𝑇 . For the numerical solution, a

symmetry condition was used to describe the effect of the perfectly
reflecting and infinite wall on which the wavemaker is located. The
domain, as presented in Fig. 2, extends to infinity. If one of the walls
that extend to infinity is not on an axis of symmetry, then it needs to
be approximated by a wall of finite length. In this case, the solution
slightly differs from the theory, but approaches it as the width of the
wall increases. For this case also, the numerical solution matches the
analytical one (see Fig. 5).

Oscillations in wave amplitude can be observed along the wave-
maker, even far from its extremities. As those oscillations appear not
only in the numerical, but also in the theoretical solution, they are
not due to numerical errors. As wave components decay if |𝑘𝑦| > 𝑘0,
wave propagation in the x-direction acts as a low-pass filter, and an
effect similar to the Gibbs phenomenon appears (Wilbraham, 1848). It
explains why the characteristic length of those oscillations has a scale
similar to that of the wavelength. If the boundary condition had directly
applied to the free-surface elevation 𝜂

|𝑥=0, then the wave amplitude
would be uniform right in front of the wavemaker, and oscillations
due to the Gibbs phenomenon would gradually appear further away
from the wavemaker, as the evanescent modes decay. However, as
the boundary condition applies on 𝜕𝑥𝜂|𝑥=0 and not directly on 𝜂

|𝑥=0,
oscillations of |𝜂| can be found even close to the wavemaker. The
larger the wavemaker is compared to the wavelength, the smaller the
amplitude of the oscillations at the centre of the wavemaker is.

2.4. Numerical simulations

Simulations were run with a standard personal laptop (AMD Ryzen™
5 3550H CPU, 16 GB RAM), using MATLAB® (MATLAB, 2022). For an
array of 24 by 20 points, and 𝑛 = 20 panels per wavelength, for 𝑇 = 1.5 s,
the simulation takes 0.05 s. For the optimization process presented in
Section 5, for 143 flaps and an array of 50 × 30 optimization points,
the simulation takes on average 5 s.

3. Experimental setup

3.1. Description of the basin

Two series of experiments were run in the Ocean basin at SINTEF
Ocean. The first one was conducted in 2018 by Rabliås and Kristiansen
(2019, 2022), and brought to light the presence of inhomogeneity
patterns in the wave field. The second was conducted in 2022 by
the authors, for the present article, in order to evaluate a correction
method for those inhomogeneities. The basin is about 60 m by 50 m
(not including the beaches), with wavemakers on two sides. One of
them is a double-hinged flap wavemaker (‘‘BM2’’ in Fig. 7), and the
other one is a single-hinged multiflap wavemaker with 143 flaps, each
43 cm wide (‘‘BM3’’ in Fig. 7). On the two other sides, parabolic beaches
act as wave absorbers. All dimensions are presented in Fig. 7. For the
experiments, a constant water depth of 5 m was used.

As the study focuses on waves before reflection, in the numerical
model of the basin, both beaches are considered perfectly absorbing.
5

Fig. 7. Dimensions of SINTEF’s Ocean basin used for the experiments — BM2 and BM3
indicating respectively the single-flap and the multi-flap wavemakers.

3.2. Instrumentation and test program

Wave measurements were performed with a rectangular wave probe
array, composed of probes separated by a distance of around 2 meters
(4 by 5 probes on a grid of 2 m by 2 m in the first test campaign, 3 by
4 probes on a grid of 2.17 m by 2.45 m in the second one), and a small
circular array used to measure directional properties of waves. Each
wave was then repeated several times, moving the wave probe arrays
between each repetition, in order to map a large area of the basin. The
free surface was brought to rest between tests.

In the first test campaign, five regular long-crested waves were run,
at different wave periods, with the double-hinged flap wavemaker BM2
(see Table 1). Some results are presented in Section 4. As the implemen-
tation of a correction requires a multiflap wavemaker, it is the other
wavemaker, BM3, which was used in the second test campaign. Both
the description of the correction method and the results are presented
in Section 5. The correction was tested for two wave periods and two
wave steepnesses (see Table 2). The steepness is characterized by 𝐻∕𝜆,
where 𝐻 is the wave height and 𝜆 is the wavelength. The correction
was also compared to a correction appropriate for an infinitely wide
basin, similar to the already existing correction methods (Matsumoto
and Hanzawa, 1996).

In order to quantify repeatability errors, one specific wave was
repeated 18 times during the test campaign, while leaving the wave
probe array at the same position. This test wave was repeated at least
twice per day for the full duration of the test campaign. Repeatability
errors on the amplitude of free-surface elevation were less than ±2%
(the uncertainty here includes both that in the measurements, and in
the generated wave).



Ocean Engineering 283 (2023) 115007S. Laflèche et al.

o

I
S
w

t
a
w

t
u
r

4

i
t

Table 1
Test program for the first test campaign
(Rabliås and Kristiansen, 2022).
Period [s] Wave steepness (𝐻∕𝜆)

1.00 1/38
1.25 1/41
1.50 1/32
1.75 1/39
2.00 1/38

Table 2
Test program for the second test campaign.
Period [s] 𝐻∕𝜆 Correction

1.5 1/45 With, without, and simple correction
2.0 1/45 With, without, and simple correction
1.5 1/20 With and without
2.0 1/20 With and without

3.3. Data processing

In order to describe inhomogeneity patterns, the investigated quan-
tity here is the difference between the measured amplitude of the basic
harmonic component of the wave and the specified target amplitude.
This difference, in percentage, is referred to as the deviation from the
target amplitude. Measurements of amplitudes are taken after a steady
state is reached, but before reflection from the beach reaches the wave
probes.

The time window thus defined is a function of the position of the
probe. More precisely, for a wavemaker at 𝑥 = 0 m, it is a function
of the x-coordinate of the probe. A first estimate of the time window
at a given 𝑥 is obtained from linear theory. The wavemaker motion
starts with a ramp in time. Propagating this ramp, assuming that the
wave is two-dimensional, gives a first estimate of when the steady
state is first reached (grey line in Fig. 8). On the beach facing the
wavemaker, the wave is progressively reflected. Assuming that the
wavefront propagates at the group velocity, and considering either that
the wave is reflected at the beginning of the beach, or at its end, a
time interval for when the reflection reaches the probes can be found
(vertical black lines in Fig. 8).

It can be seen in Fig. 8 that the average value of the free-surface
elevation envelope, on a cross-section with constant 𝑥, follows the
theoretical envelope found for a 2D wave and reaches a steady state,
until reflection arrives. The time instant at which the reflection reaches
the probes is defined as the time when the average envelope deviates
by more than 1% of its steady-state value. The time window (grey area
in Fig. 8) is then cut to ensure that its duration is a multiple of the wave
period. The basic harmonic component amplitude is then found from a
Fourier transform on this interval.

4. Description of inhomogeneity patterns

4.1. Description of the measurements results

Results from the Ocean basin tests of Rabliås and Kristiansen (2022)
are provided in Fig. 9, for three wave periods, and with a wave steep-
ness of 𝐻∕𝜆 ≈ 1∕40. The deviation of the measured wave elevations and
target are in general within ±20%. For 𝑇 ≥ 1.5 s, two main interference
patterns seem to appear, on each side of the basin. They seem to follow
similar patterns as interferences between a long-crested and a circular
wave coming from either side.

Let 𝑋0 =
(

𝑥0, 𝑦0
)𝑇 be a given point, and 𝑟 = ‖𝑋 −𝑋0‖ the distance

f any point 𝑋 to it. Let 𝜂1(𝑋) = 𝐴1𝑒𝑖𝑘0(𝑥−𝑥0) be a long-crested wave
system, and 𝜂2(𝑋) = 𝑎2(𝑟)𝑒𝑖(𝑘0𝑟+𝛼0) be a circular wave system originating
from a source at 𝑋 , with 𝛼 being some initial phase difference.
6

0 0
Fig. 8. Time series of the average envelope of the free-surface elevation across three
cross-sections of the basin, for the experiments from Rabliås and Kristiansen (2022)
in SINTEF’s Ocean basin. Waves generated by a single flap wavemaker at 𝑥 = 0 m,
𝑇 = 2 s.

The lines of constructive interferences between those two wave sys-
tems then follow parabolas defined by �̃�𝑛 =

(

�̃�2 − 𝛼2𝑛
)

∕
(

2𝛼𝑛
)

, where
𝛼𝑛 = 𝛼0 + 2𝑛𝜋, and �̃� = 𝑘0(𝑋 −𝑋0).

For large 𝑦 (interference pattern 1 in Fig. 9), constructive interfer-
ences coincide with the patterns obtained with a source placed at the
end of the partial wall before the BM3-beach, at (𝑥 = 9.3 m, 𝑦 = 48.6 m).
ts cause is the absorption by the BM3-beach, as will be demonstrated in
ection 4.3. For small 𝑦 (interference pattern 2 in Fig. 9), they coincide
ith a pattern for a source at (𝑥 = 1.44 m, 𝑦 = 0.24 m). This is explained

by a gap between the wavemaker and the side wall, as will also be
demonstrated in Section 4.3. For 𝑇 = 1 s, no clear pattern emerges.
For this period, 𝜆 = 1.56 m, which is smaller than the distance between
wo wave probes. As the oscillations in wave amplitude seem to have
characteristic length around that of a wavelength, this would explain
hy it is difficult to see any clear pattern for this period.

Although the deviation can be up to more than 20%, the devia-
ions are in general smaller – typically lower than 10% – within the
sual working area used in model testing of floating structures (black
ectangle in Fig. 9).

.2. Comparison between experiments and numerical model

Deviations to the target amplitude found experimentally and numer-
cally are next compared. Figs. 10 and 11 present the results across
he whole basin, as well as along three transversal lines, for 𝑇 = 1.5 s
and 𝑇 = 2 s. In order to show the convergence of the method, results
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Fig. 9. Measurements of the deviation from the target amplitude of free-surface elevation for the experiments from Rabliås and Kristiansen (2022) in SINTEF’s Ocean basin for
waves generated by a single flap wavemaker at 𝑥 = 0 m, and first lines of constructive interferences between a long-crested and a circular wave for a source at (𝑥0 = 9.3 m,
𝑦0 = 48.6 m) for the first interference pattern and at (𝑥0 = 1.44 m, 𝑦0 = 0.24 m) for the second.
Fig. 10. Comparison of experimental and numerical results for a single panel BM2 wavemaker in deep water, and the described basin geometry (with walls represented by grey
lines, and the wavemaker by a black line), for various mesh densities (characterized by the numbers of panels per wavelength, n) – 𝑇 = 1.5 s – Gap of 0.24 m at 𝑦 = 0 m.
for various mesh densities have been displayed simultaneously in the
cross-section plots on the right-hand side of the figures. The number
of panels is characterized by the number of panels per wavelength,
n. 17 black curves show the results for values of 𝑛 between 4 and 20.
Consistent with the convergence study from Section 2.3.1, all curves are
superposed, which means that, at 𝑛 = 4, results have already converged.
The further the cross-section is from the wavemaker, the faster the
convergence is: this is also consistent with the assumptions behind the
panel method.

It can be seen that the proposed model predicts well the experi-
mental results, at least for the considered wave periods. For smaller
wave periods, and especially near the wavemaker, small amplitude
oscillations occur, which are not well captured by the probes array (as
explained in the previous paragraph), and are also difficult to predict,
as they can be influenced by small details of the basin’s geometry.
Among the unknowns that could explain the deviation are the exact
7

behaviour of the BM3-beach. Waves are partially reflected by the
beach, due to both its finite length, and the presence of vertical walls
in the middle of the beach (indicated as supporting walls in Fig. 7).
Perforated grids in front of the wall that precedes the BM3-beach
(defined in Fig. 7) also absorb a fraction of the energy from the waves,
while it is modelled as a rigid wall in the present model.

4.3. Sources of inhomogeneities

In order to find out which geometrical features of the basin in-
fluence the inhomogeneity patterns, results sensitivity to geometrical
details of the basin was investigated through the following cases (see
Fig. 12):

(a) For a basin with one of the lateral sides occupied by a per-
fectly absorbing beach (on the right-hand side of Fig. 12.a), an
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Fig. 11. Comparison of experimental and numerical results for a single panel BM2 wavemaker in deep water, and the described basin geometry (with walls represented by grey
lines, and the wavemaker by a black line), for various mesh densities (characterized by the numbers of panels per wavelength, n) – 𝑇 = 2 s – Gap of 0.24 m at 𝑦 = 0 m.
Fig. 12. Amplitude of free-surface elevation obtained by the numerical model for a single panel BM2 wavemaker in deep water and different basin geometries (with walls
represented by grey lines, and the wavemaker by a black line) – 𝑇 = 2 s.
interference pattern appears, similar to the one observed in the
previous section, with deviations of up to and above ±25%. The
root mean square of deviations in the usual working area is 8.3%.
In reality, even between the columns, the BM3-beach does not
8

completely absorb the incident waves. However, the absorption
by the beach is what creates here the interference pattern. Adding
partial reflection from the beach can potentially decrease the
deviations from the target amplitude to a limited extent.
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(b) Adding a partial wall before the BM3-beach shifts the interference
pattern of a distance equal to its length. It also reduces the
deviation levels slightly, but with otherwise minimal change.

(c) Adding the supporting walls has only a minor effect on the
inhomogeneity pattern: it makes the interference pattern more
complex, without significantly changing the maximum deviation
with respect to the target amplitude. Here, interactions between
reflections on the columns and on the beach are not considered.

(d) Adding partial reflection (𝑅 = 30%) from the end of the BM3-
beach at 𝑦 = 53.4 m has even less effect on the pattern.

(e,f) Considering a basin with two infinite walls, but a gap between
the wavemaker and one of the side walls (on the left-hand side
of Fig. 12, see also Fig. 7), another interference pattern appears,
similar to the one for an absorbing side beach, but with a lower
deviation amplitude. Results are highly sensitive to the length
of the gap. For a gap of only 0.24 m (actual value measured
in the basin), the deviation from the target amplitude can be
locally around 8%. Doubling the gap size, the deviation pattern
can be seen for all wave periods, with deviations from the target
amplitude up to 15%.

The dominant cause of inhomogeneity here is the discontinuity in
he boundary on either side of the wavemaker, that is either the beach
modelled by an open boundary condition) or the gap.

.4. Sensitivity to the gap size

The sensitivity of wave quality to the gap size was investigated more
xtensively. It was assumed here that the gap was directly beside the
avemaker, at 𝑥 = 0 m. The goal here is to isolate the effect of the
ap on inhomogeneities. However, the choice of boundary condition
n the right side of the basin affects the results (with a gap on the left
ide and a wavemaker on the top side as in Fig. 12.e–f). One way of
voiding any perturbation from the right side is to put it at infinity:
he problem is then that of an infinitely wide basin and wavemaker in
he 𝑦+ direction, but with a gap between the wall at 𝑦 = 0 m and the
avemaker. For an Ocean basin with a beach on the right side, this case

s indeed representative of the influence of the gap only. However, it is
ot representative of the case of a basin with walls on both sides. Thus,
wo cases were looked at: respectively an infinitely wide wavemaker,
nd a wall as the right side boundary condition. The wave field in both
ases can be solved analytically. For the first case, the solution for a
inite wavemaker the width of the gap, as obtained in Section 2.3.2, is
ubtracted from the solution for a homogeneous regular wave. For the
econd case, the solution is directly that of Dalrymple (1989).

Two quantities of interest were chosen: the root mean square of the
eviations from target amplitude (in percentage) in all the points of
wo areas, respectively a large area corresponding to that mapped in
he first test campaign (see Figs. 9–11), and the usual working area
black rectangle in Fig. 9). Results for varying gap size and several wave
eriods are provided in Fig. 13. Results for the two walls and gap sizes
f 0.24 m and 0.48 m correspond to the wave fields in Figs. 12.e and
respectively. For 𝑇 = 1 s and the basin with two walls, deviations
re much larger than for any other case. Indeed, as the basin studied
s 48.4 m wide, for 𝑇 = 1 s, the width of the basin is a multiple of
he wavelength. As no damping was included, and steady state was
ssumed, in this case, there is resonance for one of the transversal
odes of the basin. In reality, unlike for the other interference patterns,

uch resonance would take time to build up, and damping would limit
he resonance.

It can be seen that in all cases, inhomogeneities are larger with two
alls. This can be easily explained. A gap can be seen as a missing flap
n the wavemaker. The deviations come from the interference between
long-crested and a missing wave, corresponding to that which the
issing flap would have generated. With two walls, this missing wave is
9

eflected by the wall on the right side, adding to the diffraction pattern.
Fig. 13. Root mean square of deviations from target amplitude in a large area and in
the usual working area, as a function of the gap size, for an infinitely wide basin, and
for a basin with a wall on each side.

As expected, the results confirm the high sensitivity to the gap size.
At 𝑇 = 2 s and for both cases, when the gap size is above 1 m, the

MS of deviations in the working area becomes larger than what was
btained for the perfectly absorbing beach (Fig. 12.a).

. Correction of inhomogeneities

.1. Optimization method

Considering a multiflap wavemaker, deriving a correction to im-
rove the uniformity of waves in a given area of the basin is an
ptimization problem. In it, the variables are the complex amplitudes
f the displacement of each flap, 𝑋𝑎,𝑛 for 𝑛 ∈ [[1, 𝑁]], and the goal

function is some measure of the quality of the generated wave field.
As linear potential flow theory is used, it is possible to first find the
wave field generated by each flap independently, and then obtain the
set of possible wave fields by summing those elementary solutions.

Using elementary wave fields for optimization of the wave gener-
ation is not restricted to this panel method: any other approach for
generating the basis functions could be used, for which the underlying
theory is linear (for instance spectral methods). A disadvantage is that
optimization methods are often black boxes, and hence will probably
give less theoretical insight into the limitations of a given basin than if
an analytical solution was directly derived for the optimal flap motion.
However, analytical solutions are restricted to simple basin geometries,
and cannot be presently used.

The function to be minimized is chosen to be the difference between
estimated and target complex free-surface elevation on an arbitrary
number of points. A standard least square method is then used. The
optimization is done under constraints being the physical limitations
of the flaps in terms of angle and velocity.
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Fig. 14. Example of amplitude and phase of each flap displacement with and without
correction – Small steepness wave (𝐻∕𝜆 = 1∕45) of period 𝑇 = 2 s generated by the
multiflap wavemaker BM3 – Optimization area depicted in Fig. 15.

The method relies on specified complex amplitudes of waves at
various locations. If the chosen points are too sparse (more than a
few wavelengths between them), or if they do not cover the whole
extent of the basin, the optimization could lead to the appearance of
high amplitude components either between them or on the sides of
the optimization area. Assuming linear theory, such high amplitude
components might theoretically help improve the quality of the results.
However, in practice, higher amplitude means getting further from the
assumptions of linear theory, or could even lead to breaking waves.
Thus, the uncertainties they bring usually exceed the potential gains. To
prevent the apparition of those components, or at least control them, a
weight on the flap displacement variance, 𝑐

𝑁
∑𝑁

𝑛=1 |𝑋𝑎,𝑛|
2, can be added

to the goal function. Its constant, 𝑐, should be calibrated in order to
remove the unwanted components, while not altering the desired wave
field.

The optimization problem in itself is relatively simple, and a sim-
ple gradient descent has proven efficient. It was compared to the
MATLAB® function fmincon (MATLAB, 2022), which uses an interior-
point method, with similar results.

In the present work, the optimization was conducted on an array of
50 × 30 points distributed evenly in a centred area of the basin (black
rectangle in Fig. 15). All points from the array had the same weight
in the calculation of the RMS. The weight on the flap displacement
amplitudes was taken as 𝑐 = 0.05.

5.2. Results for low steepness regular waves

The goal of the second experimental campaign described in Sec-
tion 3.2 and carried out in 2022 was to test the efficiency of the
correction, with waves from a multiflap wavemaker. For the case with-
out correction, all flaps move synchronously with an amplitude found
directly from the transfer functions obtained by Biésel and Suquet
(1951) within the assumption of two-dimensional wave propagation.
For the correction, the optimization method previously described was
applied to find the complex flap displacement amplitudes. An example
of result from the optimization is presented in Fig. 14.

Results from experiments with and without correction are compared
in Fig. 15, for two wave periods, and waves propagating perpendic-
ularly from the multiflap wavemaker (‘‘BM3’’ in Fig. 7). The colours
indicate deviation from the target amplitude, and the arrows represent
local mean wave direction, as the inhomogeneity in fact includes a
short-crested wave system. Local direction is here defined as the mean
10
Fig. 15. Experimental results for deviation from target amplitude with and without
correction, for a small steepness wave (𝐻∕𝜆 = 1∕45), and waves generated by a
multiflap wavemaker at 𝑦 = 0 m.

direction of the slope of the waves, found from the circular array. For
small steepness waves (𝐻∕𝜆 = 1∕45), and without correction, patterns
of deviation appear once again on both sides of the basin.

The pattern on the bottom side is created by the BM2-beach. The
deviations of up to 18% for 𝑇 = 1.5 s and up to 25% for 𝑇 =
2 s correspond to what was discussed in Section 4.3 for a perfectly
absorbing beach on the side of the wavemaker. The pattern on the top
side is created by a large gap 1.44 m wide at 𝑥 = 0 m. Inhomogeneities
created by this gap are larger than for a perfectly absorbing beach,
reaching close to 30% for 𝑇 = 1.5 s and more than 35% for 𝑇 = 2 s, with
large deviations extending to the usual working area in the centre of the
basin (grey rectangle in Fig. 15). This is coherent with the observations
made in Section 4.4, as the gap is larger than 1 m.

Applying the correction efficiently reduces inhomogeneities in both
optimization and usual working areas. For a regular wave of 𝑇 = 1.5 s,
the deviations which were up to 30% are decreased to below 6%. For
𝑇 = 2 s, likewise, they go from more than 35% to less than 10%. The
remaining deviations here are not present in the numerical model: they
do not originate from physical constraints of the wave generation but
from discrepancies between the numerical model and the experiments,
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Table 3
RMS of deviations from target amplitude (in percentage) for all probes in
the optimization or the usual working areas, as observed in experiments
for low steepness regular waves (𝐻∕𝜆 = 1∕45), and waves generated by
a multiflap wavemaker at 𝑦 = 0 m.
𝑇 [s] Correction Optimization area Working area

1.5 Without 9.2 4.1
1.5 With 2.8 2.1
2 Without 15.2 11.9
2 With 3.7 1.3

presented in Section 4.2. The root mean square of deviations on all
probes for both the optimization and the usual working area are
presented in Table 3.

On the sides of the optimization area, as expected, waves have lower
amplitudes. This is due to the weight on flap displacement variance
added to the goal function in the optimization problem. Accordingly,
flap displacement amplitudes mainly decrease around both extremities
of the wavemaker.

5.3. Simplified correction method

To assess how important it is to take into account details of the
basin geometry, another correction was implemented: the one adapted
to a finite length wavemaker in an infinite basin (or equivalently with
wave absorbers on both side of the wavemaker), without partial side
walls. This corresponds to the specific case studied by Matsumoto and
Hanzawa (1996). The efficiency of this correction was compared to
the one presented in this work (with complex basin geometry). This
study was restricted to a few locations in the basin only. Results from
experiments with both corrections are compared in Fig. 16, for the same
wave periods and steepnesses as in Section 5.2. For the shortest wave,
slightly larger deviations appear in one of the corners of the basin. It is
for longer waves that the usefulness of the new correction can clearly
be seen, with deviations on the top right corner of less than 8% with
the new correction, versus up to around 15% with the other one (see
Fig. 16).

In both cases, the simple correction assuming an infinite basin still
helps improving homogeneity. Indeed, with the optimization method
described in Section 5.1, waves are generated that propagate mainly
towards the optimization area (black rectangles in Fig. 16). This area
does not extend all the way to the sides of the basin, so that, with
a weight on flap displacement variance, the wave amplitude on the
sides of the optimization area is much lower than inside it. Thus,
the waves interacting with the boundaries carry much less energy
than if no correction was applied. This means that if the boundaries
of the basin are far enough from the optimization area, applying a
correction will reduce inhomogeneities, even with a poor description
of the boundaries. This explains why both correction help, even though
the one taking into account details of the basin geometry is more
efficient.

5.4. Influence of wave steepness

The correction was also tested with steeper waves, 𝐻∕𝜆 = 1∕20.
Without correction, and for both wave periods, the same patterns of
deviation as for the small steepness waves appear (see Fig. 17). The
deviations are interestingly slightly less important (from a maximum
value of more than 35% in the upper-right corner at 𝑇 = 2 s for the
small steepness wave, to 23% for the steeper wave). A non-linear model
would be needed to possibly explain the change in differences due to
the increase of wave steepness.

With correction, deviations from the target amplitude are reduced
to values close to those observed for the lesser steepness: the correction
seems to still be efficient, something which has importance in practice.
11
Fig. 16. Experimental results for deviation from target amplitude with two different
corrections (already existing correction for a basin with wave absorbers on both sides,
and the one developed in the present article, for the actual basin geometry), for a small
steepness wave.

6. Consequences of inhomogeneities

In order to provide quantitative examples of how inhomogeneities
can affect model tests, two cases are presented in this section, and stud-
ied numerically, assuming linear theory. The first case is the effect of
inhomogeneities on the energy spectrum observed in a given location.
The second is the linear wave excitation loads on a structure, affected
both by the spatial variations of wave amplitudes, and by changes in
wave direction.

6.1. Irregular waves

The model presented here is linear, and regular waves have been in-
vestigated. However, assuming linearity, results obtained for the impact
of imperfect basin boundaries on wave homogeneity can be applied di-
rectly to irregular waves. By performing simulations for various periods
at a fixed location in the basin, a transfer function can be obtained, that
allows finding the wave spectrum as a function of a target spectrum.
This is exemplified for one spatial point in Fig. 18. Consistent with what



Ocean Engineering 283 (2023) 115007S. Laflèche et al.
Fig. 17. Experimental results for deviation from target amplitude with and without
correction, for a steeper wave (𝐻∕𝜆 = 1∕20), and waves generated by a multiflap
wavemaker at 𝑦 = 0 m.

our previous discussions have indicated, deviations increase with the
period.

The frequency-dependent deviations from the theoretical wave spec-
trum is similar to what is seen in practice in experiments, at least before
calibration (see Fig. 19). It also looks similar to a random realization
of a spectrum, obtained by drawing amplitudes from a Rayleigh distri-
bution (Tucker et al., 1984). The contribution from inhomogeneities
can be difficult to isolate from that of randomness from a single
measurement. However, the deviation caused by inhomogeneities is
constant across realizations: it is a deviation of the expected value of
the amplitudes.

In addition to affecting the amplitudes of the waves, inhomo-
geneities also modify the main direction of the waves. On the contrary,
drawing random amplitudes for a long-crested wave has no effect on
the wave direction. Even with a single experiment – that is a single
realization of a spectrum for a long-crested wave – deviations in the
main direction of the waves indicate inhomogeneities.

In irregular waves, calibration is traditionally applied from mea-
surements in a single location, to ensure that the measured wave
12
Fig. 18. Example of transfer function between target and obtained wave spectrum.
Fixed point (𝑥 = 50 m, 𝑦 = 25 m), and waves from BM3 without correction.

Fig. 19. Example of application of the transfer function from Fig. 18 on a JONSWAP
spectrum – 𝑇𝑃 = 14 s, 𝐻𝑆 = 10 m, scale 1:50.

spectrum matches the target. However, without correction of inho-
mogeneities, it is only locally that this type of calibration improves
wave quality. For each wave period, it moves the whole pattern of
amplitudes in the basin up or down so that the deviation from target
amplitude reaches zero on the calibration point. Thus, it can even
worsen the maximum deviation caused by inhomogeneities over the
whole basin. When applying a correction, calibration can still be used
as usual. It will then theoretically improve wave quality over the
whole area of optimization. By already removing deviations caused
by inhomogeneities, it could even lead to a better first attempt in the
calibration process, thus resulting in faster convergence. However, this
would require experimental validation that was not done in the present
article.

6.2. Linear wave excitation loads on a structure

In order to provide a quantitative example of how inhomogeneities
can affect wave loads on structures, the linear Froude–Krylov loads
were computed for an example case: two rigidly connected vertical
truncated cylinders, of dimensions small compared to the wavelengths
(see Figs. 20 and 21), placed in the middle of the basin. The wave
field was derived with our numerical method, and with the same basin
geometry as in the second test campaign, without correction.

For small structures for which the long wave approximation can be
used, the amplitude of the linear Froude–Krylov loads is proportional to
the linear wave amplitude at the centre of the body. Thus, the transfer
function derived here-above (see Fig. 18) can be directly used to find
the deviation in the amplitude of the force.
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Fig. 20. Definition of the dimensions for the pair of cylinders considered.

Fig. 21. Example result from the presently developed model – Dimensionless Froude–
rylov force for two cylinders in the middle of the basin – 𝐷 = 20 m, 𝑏 = 20 m,

𝑑 = 60 m, Scale 1:50.

However, in addition to wave amplitude variations, inhomogeneit-
ies also imply variations in the main wave direction. And as the
horizontal Froude–Krylov load is aligned with the particle acceleration,
this also means that wave excitation loads in sway can appear, even
with a nominally incident long-crested wave (see Fig. 21). For larger
structures, a semi-submersible for instance, differences between the
heave excitation of the various columns and pontoons will also cause
unexpected roll moments (see Figs. 20 and 21).

With only a linear wave model, except in specific cases, non-
linearities in forces cannot be accounted for. However, the order of
magnitude of deviations at second order is around the square of the
13

r

first order deviations, so that 20% deviation for the linear component
of the wave would mean around 40% deviation on second-order loads.
For responses associated with steep irregular wave events, such as wave
run-up on vertical columns, higher than second-order effects matter.
However, because such an event involves several wave frequencies, one
may expect that the effect of inhomogeneity cancels to some extent, as
shown in Figs. 18 and 19. This requires dedicated further studies.

7. Conclusion

The sensitivity of wave field homogeneity to geometrical details of
hydrodynamic facilities was investigated for SINTEF’s Ocean Basin. It
seems that two main elements explain a large part of the observed
deviation for long-crested waves: the presence of a beach on one side
of the basin, and the gap between the wavemaker and the wall on the
other side. Results are highly sensitive to variations of the gap width, a
few tens of centimetres being enough to induce deviations of amplitude
up to ±10% in the whole basin. Those inhomogeneities might not affect
experiments run on a small centred working area in the basin. However,
they would matter for arrays or large structures, if not corrected.

An efficient method for predicting the wave generated by a mul-
tiflap wavemaker with linear theory and constant water depth has
been presented and compared to experiments. It was used to derive
a correction method for improving spatial uniformity of waves, and
thus to extend the working area in a basin. This correction method
was experimentally tested for regular waves. It proved to be efficient
even with steepnesses at least up to 𝐻∕𝜆 = 1∕20. Small variations
were observed in the amplitude of the inhomogeneity patterns when
increasing the steepness. As a further work, a non-linear model should
then be developed to understand their cause, and maybe extend the
validity of the correction to even larger steepness than those that could
be tested with the wavemaker that was used. This would also allow
for a better understanding of how much wave inhomogeneity affects
higher-order phenomena and responses of structures.

Even though the optimization method developed here was only
tested for regular waves, it could be applied to irregular and short-
crested sea states. Validation should then be performed for those cases.
However, all the effects described in the present work appear before
reflection. In reality, and especially for experiments with irregular
waves where long time series are needed, because of the reflection
from the wave absorbers, standing waves will appear, that will also
be inhomogeneous. Directional reflection from wave absorbers should
then also be looked at and included in the model.

Even though the numerical model presented here was only validated
for an Ocean basin, the method developed here theoretically applies to
any wave basin of constant depth. However, for tanks that do not have
a multiflap wavemaker, the model can only predict possible inhomo-
geneities, but not correct them. This is often the case for wave flumes,
and also sometimes for towing tanks. For tanks for which depth varies
in space, for instance tanks having a bottom with steps, the current
model cannot be used. Further work could expand the formulation in
order to also include sudden depth variations in the basin. An approach
could be, for instance, to separate the domain into several subregions
of constant depth, and apply matching conditions at their boundaries.

The optimization method developed here can be used for any target
sea state, and not only long-crested or homogeneous waves. It would
then be possible to use such a model in order to generate realistic inho-
mogeneous coastal waves in a basin, as long as the effects of changes
in bathymetry are negligible locally around the tested structure.
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