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A B S T R A C T

Air pollution is a major threat to public health. However, two issues have not been adequately addressed in most
conventional Land Use Regression models for air pollution prediction: 1). A combination of urban forest involve-
ment and urban form representation; 2). Scale sensitivity analysis of model variables. Here, we apply lacunarity
to investigate the spatial sensitivity of predictors, incorporate 2-D and 3-D urban form to comprehensively char-
acterize the urban environment, and examine the tree diversity impacts on air pollution distribution using
unique NO2 datasets collected through opportunistic mobile monitoring in the Bronx, New York, and Oakland,
California. We find that lacunarity-optimized models could reduce the computation burden by extracting the up-
per limits of the spatial heterogeneity of predictors while keeping the model accuracy simultaneously. Further-
more, there are synthetic effects between the urban form and tree diversity on NO2 distribution, and such effect
directions could be non-monotonic. Finally, although the increase in tree diversity could facilitate the reduction
of regional NO2 concentration, it is essential to seek a balance between tree diversity and tree dominance to effec-
tively improve air quality on the city scale. The findings are useful for environmental scientists striving for better
air quality and urban planners caring for the well-being of cities.

Glossary

AI Aggregation Index
ANN Artificial Neural Network
AQI Air Quality Index
AR Aspect Ratio
CA Class Area
CDC Centers for Disease Control and Prevention
DBH Diameter at Breast Height
DCAS Department of Citywide Administrative Services
ED Edge Density
EDF Environmental Defense Fund
EPA Environmental Protection Agency
H_Var Height Variance

LPI Largest Patch Index
LSI Landscape Shape Index
LUR Land Use Regression
MDI Mean Decrease in Impurity
MIT Massachusetts Institute of Technology
MLR Multiple Linear Regression
NY New York
NYC New York City
PD Patch Density
PDP Partial Dependence Plot
RF Random Forest
RH Relative Humidity
RMSE Root Mean Squared Error
SHAP SHapley Additive exPlanations
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SHI Shannon Index
SII Simpson Index
SVF Sky View Factor
TAZ Traffic Analysis Zone
UFORE Urban FORest Effects

1. Introduction

Air pollution is associated with increased mortality and a wide
range of serious diseases (Kheirbek et al., 2016). A challenge in predict-
ing urban air pollution is ascribed to the spatiotemporal heterogeneity
of pollutants distribution and complex urban microenvironments (Apte
et al., 2017). Due to their high cost, existing stationary regulatory moni-
toring networks are sparse and cannot capture granular variations of
pollution (Do et al., 2020). In recent years, mobile air quality monitor-
ing has emerged as an effective practice to map hyperlocal air pollution
in dense urban environments (DeSouza et al., 2020).

High-resolution mobile monitoring provides unique opportunities
for environmental scientists to understand the interactions between air
quality, human activities, and urban physical environments from a
holistic perspective of urban sustainability at a fine scale (Cummings et
al., 2021). Although LUR (Land Use Regression) is the most widely-used
tool for air quality data interpretation and prediction due to the rela-
tively lower level of demand for input data requirements compared to
dispersion and chemical transport models (Messier et al., 2018; Saha et
al., 2019), the current LUR may neglect the combination of three essen-
tial aspects of urban environments: 1). Tree diversity, which plays a
pivotal role in ameliorating air quality and improving urban ecosystem
health (Roeland et al., 2019). The One Health initiative, which empha-
sizes the connection between the health of people, animals, and the en-
vironment, recognizes the key role that trees play in regulating urban
ecology (CDC, 2022); 2). Scale sensitivity of predictors, which lacks
widely recognized theoretical guidelines regarding the optimum buffer
distances for variable aggregation during model construction; 3). Urban
form, particularly in 3-D, which can better characterize the influence of
the physical environment on the atmosphere wind field with higher ex-
planatory power in estimating intra-urban air pollutants than their 2-D
counterparts (Ke et al., 2022; Tian et al., 2022).

The role of tree diversity is essential in supporting ecosystem ser-
vices and air quality improvement, particularly for the abatement of
airborne particulate pollution (Manes et al., 2014). For example, the
UFORE (Urban FORest Effects) model, developed by the U.S. Forest Ser-
vice to quantify multiple urban forest ecosystem services, identified
tree diversity as one of the most effective methods of improving local
air quality (Saunders et al., 2011). To illustrate, Sicard et al. (2018) de-
vised a novel Species Air Quality Index (S-AQI) of suitability to air qual-
ity improvement for tree diversity and suggested that city planners
should select species with an S-AQI>8. Manes et al. (2014) considered
tree diversity in different climatic conditions to confirm the crucial role
of trees in supporting significant ecosystem services to improve air
quality. However, how and to what extent tree diversity can impact air
pollution distribution at different spatial scales is still largely underex-
plored.

3-D urban form, consisting of both horizontal and vertical elements,
can directly influence urban ventilation and the dispersion of pollutants
(Peng et al., 2021), and their influence has also been verified in differ-
ent physical environments, such as street canyons, neighborhoods, and
communities, through idealized experiment models (Hang et al., 2012;
Yuan et al., 2019). For example, SVF (Sky View Factor) can influence
urban ventilation resistance, shape ventilation corridors, and determine
the dispersion of air pollutants (Fang & Zhao, 2022). Tang et al. (2013)
used building heights and geometry to enhance the estimation of land

use-related variables and the pollution dispersion fields for long-term
air pollutants. Edussuriya et al. (2011) found that air pollution concen-
trations were impacted by the AR (Aspect Ratio), building volume, and
building height variation.

Furthermore, tree diversity and urban form also have synthetic ef-
fects on air quality (Pugh et al., 2012). For example, deposition and dis-
persion are tightly coupled to the 3-D urban form and the synoptic-scale
flow. As the porosity of the barrier increases, the effective path-length
decreases, and the opportunity for the removal of particles by deposi-
tion increases (Tong et al., 2016). The AR significantly affects pollutant
dispersion because of alterations in airflow patterns (Zhong et al.,
2016). When horizontal length scales and AR are small and residence
times are short, there is little opportunity for deposition to become ef-
fective. Moreover, green walls in street canyons with a large AR may
make appreciable differences in ground-level concentrations due to
deeper or narrower street canyons (Pugh et al., 2012). Notwithstand-
ing, limited studies incorporated both tree diversity and 3-D urban form
factors into the air quality research.

Additionally, most prior studies relied on arbitrary multiple buffer
distances, which could not interpret the spatial scale sensitivity, were
prone to UGCoP (Uncertain Geographic Content Problem) that biases
the final results due to the different analysis units (Kwan, 2012), and be
time-consuming for model construction. Therefore, researchers applied
lacunarity, which measures the spatial heterogeneity of predictors de-
pending on the image's texture at varying scales (Plotnick et al., 1996).
To illustrate, objects with low lacunarity are homogeneous and transla-
tionally invariant because of the same gap sizes. In contrast, high-
lacunarity objects have a wide range of gap sizes which are usually het-
erogeneous and translationally variant (Plotnick et al., 1993). As a re-
sult, for variable aggregation, increasing the buffer distance beyond a
certain level would not result in any substantive impact on the statisti-
cal results, because the buffer distance surpasses the maximum level of
the repeating patterns in the landscape (Roces-Diaz et al., 2015). There-
fore, lacunarity could be used to define the upper limit of spatial vari-
ability when quantifying the landscape patterns (Labib et al., 2020).

Our study targets bridging the current research gaps in urban air
pollution prediction, including the underrepresentation of urban
forestry information, the lack of urban form involvement, and the inef-
ficiency of the traditional buffer sizing method. To illustrate, we inte-
grate tree diversity and 3-D urban form into existing 2-D information-
dependent LUR tools to identify the most influential predictors and to
sheds light on the interactions between air pollution, urban form, and
tree diversity, which demonstrates our multi-disciplinary efforts to at-
tain optimal health for the entire urban ecological system. Hyperlocal
NO2 levels were collected through an opportunistic mobile monitoring
campaign in the Bronx, NY. To explore the impacts of urban form and
tree diversity in different cities, we transferred our air quality modeling
methodology to Oakland, California, a city on the U.S. west coast with a
distinct urban environment from the Bronx, to access the model's gener-
alization performance. We also conducted the lacunarity analysis to de-
termine the upper bounds of predictors' buffer sizes while keeping the
fixed buffer sizing as a benchmark. Models developed using lacunarity-
optimized and conventional fixed buffers were contrasted to reveal the
effects of spatial heterogeneity on air quality prediction. The proposed
lacunarity method is highly scalable and transferrable to other air qual-
ity prediction applications. Our study is not only relevant to environ-
mental scientists and ecologists striving for better air quality but to ur-
ban planners and decision-makers to strategically manage urban forests
and physical environments.
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2. Methods

2.1. Research areas

Fig. 1 displays the mobile NO2 (451,322 mobile measurements) in
the Bronx, which has the highest asthma hospitalization rate in New
York City, with a dense road network and other noxious land uses that
are significant sources of air pollution (Gorai et al., 2014). The NO2
data has a mean value of 9.45 ppb (parts per billion) and a standard de-
viation of 3.96 ppb collected between September 10th to December
17th, 2021 as part of the City Scanner research initiative at the Massa-
chusetts Institute of Technology (senseable.mit.edu/cityscanner). Five
vehicles operated by NYC Department of Citywide Administrative Ser-
vices (NYC-DCAS), including four road maintenance trucks and one
sanitation vehicle, were equipped with City Scanner low-cost sensing
nodes with Alphasense NO2-A4 electrochemical gas sensors, high-
accuracy GPS, and temperature and humidity sensors (Mora et al.,
2019, pp. 743–748). More details can be seen in Table S1 (Mobile moni-
toring) in Supporting Information. The NO2 mobile measurements in
Oakland refer to Apte et al. (2017).

2.2. Research design

For the data preparation, the mobile monitoring NO2 data was first
calibrated against a reference air quality station in the Bronx and was
aggregated by the road segment to reduce the systematic noise and bi-
ases (Section 2.2.1). Then, we calculated the lacunarity value for differ-
ent land use types and street trees. Tree diversity was characterized by
SHI (Shannon Index), the richness and evenness degree of tree species,
SII (Simpson Index), the dominance of tree species, and DBH (Diame-
ters at Breast Height) (Section 2.2.2). Next, we calculated the 2-D (Sec-
tion 2.2.3) and 3-D (Section 2.2.4) urban form factors to characterize
the urban landscape comprehensively. The upper bound for predictor
aggregation was calculated from lacunarity values (Section 2.2.5).
Combined with other covariates, these variables were used to predict
NO2 through two modeling techniques: lacunarity-optimized and con-
ventional LURs. After feature selection, we constructed the RF-(Ran-
dom Forest)-, ANN (Artificial Neural Network)-, and MLR (Multiple Lin-
ear Regression)- LUR (Land Use Regression) models to analyze their
correlation and interpret the results through feature importance, influ-
ential directions, and marginal effects (Section 2.2.6). Fig. 2 shows the
research flowchart. Table 1 shows all the predictors according to the
potential NOx emission sources and factors affecting their distribution
and dispersion (Apte et al., 2017; Messier et al., 2018).

2.2.1. NO2 preprocessing
Before using the mobile monitoring NO2 for further analysis, we cal-

ibrate the data using minute-by-minute reference EPA (Environmental
Protection Agency) station data. Multiple calibration algorithms are
tested, including linear and non-linear ones, to best reproduce the refer-
ence data. Calibration algorithm performances are stringently evalu-
ated using 10% hold-out samples 100 times. Calibrated City Scanner
NO2 data is highly correlated with the reference signals using the best-
performing algorithm (average external R2 = 0.92), as shown in Fig.
S1. To further increase the transferability of the research, we also con-
struct the model using the NO2 data in Oakland, CA, which was col-
lected by Google Street View vehicles from May 28th, 2015 to Decem-
ber 21st, 2017 with 38,252 mobile measurements (Apte et al., 2017).
All calibrations were performed “through the probe” by connecting the
calibration system to the car at the sample inlet and maximizing the
temporal correlations between the individual pollutants on a daily basis
(Brantley et al., 2014). To remove the impacts of relative humidity on
NO2 measurements, values in both Bronx and Oakland were removed
for relative humidity above 90% due to the growth of the hygroscopic
particle, leading to mass overestimations (Goin et al., 2021). To keep
compatible and alleviate the impact of the “Spike” signal from low-cost
sensors (e.g. keep reporting high values for approximately 30s when a
truck pass by), all NO2 was processed and aggregated by the midpoint
of each road segment and used median value to represent the NO2 at
30m spacing to mitigate the measurement uncertainty at point loca-
tions in time as reported in previous research (Apte et al., 2017;
DeSouza et al., 2020; Goin et al., 2021).

2.2.2. Tree diversity
Tree diversity is critical in determining pollutant removal in the ur-

ban environment. We extract 66,294 and 38,564 trees along the streets
with 129 and 195 species in the Bronx and Oakland, respectively (Fig.
S2: Spatial distribution of tree species in the Bronx and Oakland). To
further explore how tree diversity may affect NO2 concentration, we
summarize the median NO2 value around each tree species (Section
3.1.2). Previous ecological studies strongly recommended using both
SHI (Shannon Index) and SII (Simpson Index) to account for the most
complete mathematical description of species richness and relative
abundance (Galle et al., 2021). The SHI was initially proposed by
Shannon (1948) to quantify the level of the mixture and can be ex-
tended to measure tree species entropy, which increases as the commu-
nity's richness and evenness increase. The SII was introduced by
Simpson (1949) to measure the degree of dominance, such as the domi-
nant distribution for specific tree species. Both of them can be used to
measure tree diversity. More details about SHI and SII can be seen in

Fig. 1. NO2 concentrations in the Bronx were collected in 2021 as part of a mobile sampling experiment.
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Fig. 2. Research flowchart.

Supporting Information Section S1: Tree diversity. The DBH (Diameter
at Breast Height) is also aggregated based on the median value of diam-
eters for all tree species.

2.2.3. 2-D urban form metrics
To comprehensively characterize the urban environment, we calcu-

late 2-D urban form metrics through the integration of land use and
landscape metrics. Specifically, we calculate six landscape metrics, in-
cluding CA (Class Area), ED (Edge Density), PD (Patch Density), LPI
(Largest Patch Index), LSI (Landscape Shape Index), and AI (Aggrega-
tion Index), for each land use type (Fig. S3: land use in Bronx and Oak-
land). Table S2 describes each metric in detail (McGarigal, 2015).
These metrics capture the spatial coverage, fragmentation, patch domi-
nance, and shape complexity of land use patterns (Liu et al., 2018b)
that could shape the spatiotemporal dispersion of air pollutants in the
urban environment (Cho & Choi, 2014; Rodríguez et al., 2016). In addi-
tion to using each metric as an independent covariate, we also add their
interaction terms as predictors (Tian et al., 2020a; Tian & Yao, 2022).
This gives us 24 urban form metrics (four land uses times six landscape
metrics) in total. In this study, we apply each term with a combined
meaning. For example, AI_Water_3000 means the Aggregation Index for
water calculated within the 3,000m buffer size, AR_100 indicates the
Aspect Ratio calculated within the 100m buffer size, and so forth.

2.2.4. 3-D urban form metrics
We apply SVF (Sky View Factor), H_Var (Height Variance), and AR

(Aspect Ratio) to capture 3-D urban form factors given their synthetic
effects with tree diversity on air pollution distribution (Pugh et al.,
2012). More technical details of 3-D urban form metrics can be found in
the Supporting Information Sections from S2 to S4.

To illustrate, the SVF quantifies the openness to the sky of a given
location, which reflects the degree of urban ventilation affecting air
pollution dispersion (Liu et al., 2016). SVF ranges between 0 and 1
where close to 1 indicates that almost the entire hemisphere is visible
(e.g., planes and peaks), and close to 0 means almost no sky is visible
(e.g., deep sinks and valleys) (Zakšek et al., 2011). The H_Var describes
the variation of the building height, which impacts the distribution of
wind flow and the corresponding ventilation corridor (Liu et al., 2016).
The AR represents the ratio of building height to street width, which
gives an idea of the change of surface-air interfaces due to the vertical
dimensions of buildings compared to the flat terrain (Grimmond & Oke,
1999), which plays an essential role in the interaction between tree di-
versity, urban form, and air pollution distribution. For example, air
quality improves with a decrease in AR due to a larger vertical ex-
change of air pollutants between street roofs suggesting that an open
central street can result in better air quality (Shen et al., 2017).

4
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Table 1
Summary of model predictors.
Predictors Indices Sources Resolution

Tree diversity Shannon Index OpenTrees.org 10m
Simpson Index
Diameters at Breast
Height

2-D urban form Landscape metrics for
different land uses

Open Street Map 30m

3-D urban form Sky View Factor Microsoft
Building Footprint
Data

30m
Building Height
Variance
Aspect Ratio

Meteorological
factors

Wind Speed Iowa
Environmental
Mesonet

Station
measurement with
every 5-min
interval

Wind Direction
Temperature
Precipitation
Relative Humidity
Sea Level Pressure
Feel Temperature

Socioeconomic
factors

Population Density U·S. Census Block level
Median Household
Income

Braeuer

Traffic Annual Average
Daily Traffic

Daily

Others Nearest distances to
the landfill, industry,
waterway, bus stations

Open Street Map –

(The building and land use data are polygon-based Shapefile data. We calcu-
lated the average building area for the Bronx (159.03 m2 for 698,806 polygons)
and Oakland (176.55 m2 for 161,415 polygons). Therefore, we aggregate them
by the grid size of 30m (900 m2 includes almost 6 buildings for each grid) for
urban form calculation. Likewise, the trees are point-based Shapefile data, and
we calculate the average tree interval (6.22m for 493,205 trees) in the Bronx
and (8.83 m for 38,564 trees) and Oakland. Thus, we calculate tree diversity by
the grid size of 10m (100 m2), and each grid could include around 11 to 16
trees).

2.2.5. Lacunarity
Compared with previous studies using a series of arbitrary buffer

distances to construct the model predictors (Kerckhoffs et al., 2022;
Zhang et al., 2022), we apply lacunarity, as proposed by Mandelbrot
(1982), to describe the texture of the landscape. In this study, we calcu-
late the lacunarity value for land uses and street trees that have proven
to be correlated with NO2 distribution (Apte et al., 2017) and select the
flattened value of lacunarity as the upper bound of the buffer distance
(Section 3.1.1). This way, we can capture the maximum ranges of spa-
tial heterogeneity of predictors and reduce the computation burden,
particularly for predictors aggregation at large buffer distances. Conse-
quently, it provides a comprehensive and less resource-intensive solu-
tion to address scale effects for model construction (Labib et al., 2020).
Following Equation (1) is used to calculate lacunarity in this study:

(1)

where is the lacunarity for the box size r, S(r) is the number of
pixels that fall in the box, and the box mass. In this study, the minimum
box size is 1 and the maximum box size is half of the image dimensions
(maximum value of image length or width). The box size value where
the lacunarity values flatten out refers to the raster data transformed
from heterogeneity to homogeneity from this distance, and it will be re-
garded as the scale upper limits of the appropriate buffer distance.

2.2.6. Model construction
We conduct two sets of models: the conventional LUR model, using

a series of fixed buffer distances as in previous studies (Kerckhoffs et al.,
2022; Zhang et al., 2022), and lacunarity-optimized, using a series of
the same buffer distances but setting the upper bounds according to the

flattened point of lacunarity value. The basic analysis units are the dif-
ferent buffer regions constructed around each mobile measurement.
Previous researchers have found that RF (Random Forest) models have
been at least as accurate and, in many cases, more accurate than linear
models (Tian et al., 2020a). Therefore, this study combined RF and LUR
for model construction. More details can be seen in Fig. S4: The proce-
dures for constructing the RF model. To compare the model perfor-
mance, we apply the same strategy in ANN (Artificial Neural Network)
and MLR (Multiple Linear Regression) models. Considering potential
multicollinearity between the covariates, we use the Greedy Stepwise
algorithm to filter correlated covariates and select the subset of the
most significant covariates as candidates in the RF-LUR model. To
avoid overfitting, we apply the 10-fold cross-validation to tune the
model parameters. Besides the R2 and RMSE (Root Mean Squared Er-
ror), we plot feature importance, SHAP (SHapley Additive exPlana-
tions) value, and PDP (Partial Dependence Plot) to further interpret the
model. To illustrate, feature importance is computed as the decrease in
node impurity weighted by the probability of reaching that node,
namely MDI (Mean Decrease in Impurity). It counts the times a feature
is used to split a node weighted by the number of samples it splits
(Perrier, 2015). SHAP value was proposed by Lundberg and Lee (2017)
as a united approach to explaining the output of any machine learning
model because it can: 1). show how much each predictor contributes,
positively or negatively, to the target variable; 2). get its own set of
SHAP values for each observation; 3). be calculated for any tree- or non-
tree-based models. The PDP shows the predictors’ marginal effects on
the predicted outcome (Friedman, 2001), and it demonstrates whether
the relationship between the target and a feature is linear, monotonic,
or more complex and how the average prediction changes as the spe-
cific predictor changes.

3. Results

3.1. Descriptive results

3.1.1. Lacunarity analysis
Fig. 3 shows the lacunarity value for different land uses and street

trees. To illustrate, the “flattened point” (where the value flattens out
and the gradient approaches zero, indicating the maximum value of
heterogeneity pattern) would be used as the bounded buffer sizes (la-
beled as vertical lines) for the lacunarity-optimized model. For exam-
ple, in the Bronx, the value of the flattened point for “Buildings” is 34,
so the upper bound is 1020m (34 30m, 30m represents the spatial res-
olution of box size). Therefore, we select 100m, 300m, 500m, and
1020m as the buffer distances for calculating urban form metrics for
“Buildings” in the lacunarity-optimized model. If the product of lacu-
narity value and the box size is larger than 5000m, we set 5000m as the
upper bound because it has been used as the maximum potential influ-
encing range in previous air quality models (Cowie et al., 2019;
Naughton et al., 2018). The procedures for detecting the flattened value
and selecting upper bounded buffer sizes keep the same in Oakland. De-
tails can be seen in Table S3 (Selected features for lacunarity-optimized
models in the Bronx and Oakland).

As can be seen from Fig. 3, in the Bronx, the flattened value for
green space (198) and water (200) is higher than that for roads (18) and
buildings (34), which indicates significant gaps, uneven distribution,
and a higher level of spatial heterogeneity for green space and water
than buildings and roads. The roads have the smallest flattened value
compared to other land uses, suggesting that road networks have rela-
tively homogeneous spatial distribution in the urban environment. This
reflects the relatively dense distribution of road networks and the
sparse distribution of water and green space in the Bronx. Likewise, in
Oakland, the distribution of lacunarity values for land uses and street
trees maintains a similar trend where buildings and roads are more ho-
mogeneously distributed than the greenspace and water.

5
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Fig. 3. Lacunarity-bounded buffer sizes in Bronx and Oakland
(The “Overall landuse” means we combine different land use types into a single image. The moving window sizes for land uses and street trees are 30m and 10m, re-
spectively).

3.1.2. Tree diversity and NO2 distribution
We calculate the median value of NO2 concentration around decidu-

ous, semi-deciduous, and evergreen trees aggregated based on the
buffer distances of 310m (31 10m) and 450m (45 10m), the flat-
tened value of street trees (Fig. 3). The distribution of NO2 concentra-
tion for different tree species is shown in Fig. 4a and b. As can be seen,
deciduous and semi-deciduous trees are surrounded by the widest range
of NO2 concentration in the Bronx and Oakland, respectively, and the
median values of NO2 concentration for deciduous and evergreen trees
are close in both Bronx and Oakland. In addition, the deciduous trees
also have a higher average level of NO2 concentration than evergreen
trees in both Bronx (9.73 ppb and 9.71 ppb for the deciduous and ever-
green trees, respectively) and Oakland (3.61 ppb and 3.37 for the de-
ciduous and evergreen trees, respectively) Oakland. Additionally, the
Bronx has an average higher level of NO2 concentration (9.72 ppb) than
Oakland (3.67 ppb) for all trees, which could be attributed to the fact
that the Bronx has a higher percentage of deciduous trees (89.92%)
than Oakland (38.97%). This accords with previous findings that ever-
green trees were more effective in reducing annual NOx concentration
than deciduous trees (Tiwari & Kumar, 2020).

In Fig. 4 (c) and (d), we summarize the 5th to 95th percentile value
for the median NO2 concentration for each tree (point-based), and the
corresponding values were matched to certain tree species to explore
their differences in NO2 concentration distribution. In the Bronx, the
“Callery pear”, a deciduous tree with oval leaves, has the highest level
of NO2 concentration (10.28 ppb). The “northern red oak”, regarded as
“one of the most handsome, cleanest, and stateliest trees in North Amer-
ica” (Foundation, 2022), enjoys a relatively lower level of NO2 concen-
tration (9.45 ppb). In Oakland, the worst air quality is found around
“Pistacia Chinensis” (11.92 ppb), with deciduous leaves and absent ter-
minal leaflet, while the “Ligustrum lucidum”, an evergreen tree with
opposite and glossy dark green leaves, is surrounded by the lowest level
of NO2 concentrations (1.98 ppb). In addition, the SII (Simpson Index)

and SHI (Shannon Index) augment with the increase of the buffer dis-
tances in both cities. Details can be seen in Table S4 (Summary statistics
of tree diversity in Bronx and Oakland). The findings suggest that it is
necessary to incorporate tree diversity into air quality models as the
NO2 concentration varies around different tree species.

3.2. Model performance

We find that RF-LUR overall outperforms ANN-LUR and MLR-LUR
for both lacunarity-optimized and conventional LUR models in Bronx
and Oakland with higher R2 and lower RMSE. More details can be seen
in Table S5. Therefore, we further compared the model performance of
the RF-LUR models in Fig. 5. As can be seen, the performance of the la-
cunarity-optimized models is comparable to that of the conventional
LUR models in both Bronx (R2 = 0.51 vs. R2 = 0.52) and Oakland
(R2 = 0.79 for both models). However, the number of predictors has
significantly reduced from 236 in conventional LUR models (Table S6:
Summary statistics of predictors for conventional LURs in the Bronx) to
158 in the Bronx and 161 in Oakland (Table S3). It demonstrates that
the lacunarity analysis is advantageous in reducing or avoiding the
repetitive aggregation for predictors, especially for calculating predic-
tors with large buffer distances, which is time- and labor-intensive.
Therefore, instead of applying a series of arbitrary buffer distances, we
can calculate the lacunarity value first to find the upper bounds of the
buffer distance for each predictor and leave out the distances that are
larger than that bounds.

Besides, the R2 of RF-LUR has reduced to 0.47 and 0.48 without con-
sidering tree diversity in lacunarity-optimized and conventional LUR
models, respectively, in the Bronx, and reduced to 0.77 for both models
in Oakland, which confirms the necessity of incorporating tree diversity
to improve model accuracy. Likewise, the model performance de-
creased when we ignore the urban form predictors (R2 reduce to 0.47
and 0.48 for lacunarity-optimized and conventional LUR models, re-
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Fig. 4. NO2 concentration around different tree species in Bronx and Oakland
((a) and (b) show the median NO2 concentration for all deciduous, semi-deciduous, and evergreen trees in Bronx and Oakland, respectively. (c) and (d) indicate NO2
concentration levels ranging from the 5th to 95th percentile around specific tree species in Bronx and Oakland, respectively).

Fig. 5. Model performance in Bronx and Oakland in different groups.

spectively, in the Bronx, and reduce to 0.62 for both models in Oak-
land).

To make a comparison, we explore the correlation between each
predictor (Fig. S5). We find that NO2 concentration shows a low corre-
lation with the selected variables, which demonstrates that the relation-
ship between NO2 concentration and the predictors is almost non-
linear. It also reconfirms that MLR performed the worst compared with
RF and ANN models.

3.2.1. Feature importance
Given the higher accuracy of RF-LUR models, we explored the se-

lected feature importance shown in Fig. 6. The selected features from
conventional LUR models strongly align with the features in lacunarity-
optimized models, which confirms the premise that the lacunarity value
could capture the maximum range of spatial heterogeneity. In other
words, most selected features are captured within the upper bounded
buffer sizes limited by lacunarity values. For example, the flattened

value of lacunarity for the building is 34 (refers to 1020m of upper
limit) and for roads is 18 (refers to 540m). Therefore, the buffer dis-
tances for final selected features in the conventional LUR model in the
Bronx for buildings and roads are all less than 1020m (e.g., LPI_Build-
ings_300, Largest Patch Index of buildings calculated within 300m
buffer size) and 540m (e.g., LSI_Roads_300, Largest Shape Index of
roads calculated within 300m buffer sizes). In Oakland, the lacunarity
value for the street trees is 45 (refers to 450m). Therefore, the maxi-
mum buffer distances in conventional LUR models for selected SII
(Simpson Index) and SHI (Shannon Index) are 500m (e.g., SII_100, SI-
I_500, and SHI_500), which is close to 450m. Those findings are also
consistent with roads, water, and green space, suggesting that the lacu-
narity value could be an essential indicator to extract the upper limit of
the spatial heterogeneity of predictors and facilitate reducing the com-
putation burden.

For selected predictors, in the Bronx, the 2-D urban form has the
highest feature importance in both lacunarity-optimized (84.60%) and
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Fig. 6. Feature importance for all selected features in lacunarity-optimized and conventional LUR model in Bronx and Oakland.

conventional LUR (77.47%) models and tree diversity shows higher fea-
ture importance in the lacunarity-optimized model (12.80%) than the
conventional LUR model (12.26%). In Oakland, 3-D urban form is the
most significant feature in both models (50.67% and 63.44% in lacu-
narity-optimized and conventional LUR models, respectively). Notice-
ably, tree diversity accounts for similar level of feature importance in
the lacunarity-optimized model (13.04%) than in the conventional LUR
model (12.28%). Therefore, applying lacunarity value to set the bound-
ary for tree diversity aggregation in lacunarity-optimized models could
better reveal the contribution of tree diversity to NO2 distribution than
the conventional LUR models in both Bronx and Oakland. Besides, the
aggregation (e.g. AI, Aggregation Index) and dominance (e.g. PD, Patch
Density) of water and green space at large buffer distances (e.g.,
1000m, 3000m, and 5000m) account for a higher level of feature im-
portance than other features in both models in the Bronx, which could
be attributed to the fact that urban green space has the potential to miti-
gate air pollution in high-density urban areas (Neft et al., 2016). In
Oakland, the AR (Aspect Ratio), SII, and SHI show higher feature im-
portance than the green space and water, suggesting the essential syn-
thetic effects between urban form and tree diversity on the distribution
of NO2 concentration. Moreover, the fragmentation degree of buildings
(e.g., LPI_Building_300 in the Bronx) and building-street organization
(e.g., AR_100 in Oakland) are also associated with heat transfer, air cir-
culation, and consequently the diffusion of pollutants in urban environ-
ments (Liu et al., 2018a). The different impacts of urban form on NO2
concentration between the Bronx and Oakland could be explained by
their different city sizes and local climate. For example, Oakland
(202.1 km2) is almost twice the Bronx (110 km2). Therefore, they have
different levels of energy consumption, production activities, and traf-
fic volume, and the dominant factors could vary for the two cities as
well (Sun et al., 2022). For local climate, in the Bronx, the summers are
warm, humid, and wet, and the winters are very cold, snowy, and

windy with temperature varying from −3 °C to 30 °C (Spark, 2022b).
However, Oakland has a Mediterranean climate with long, comfortable,
and arid the summers and short, cold, and wet winters with tempera-
tures varying from 7 °C to 24 °C (Spark, 2022a). Different humidity,
temperature, and wind situation would also alter the urban form-air
quality relationship (Tian et al., 2020b).

3.2.2. SHAP (SHapley additive exPlanations) value
To further interpret the potentially influential directions of the se-

lected features on the prediction results, we plotted the SHAP value for
the selected features shown in Fig. 7. In the Bronx, the aggregation and
dominance of water (e.g., AI_Water_3000 and LSI_Water_5000) and the
roads (e.g., LSI_Roads_300) in both lacunarity-optimized and conven-
tional LUR models show relatively positive associations with NO2 con-
centration (higher values distributed on the right side of the X-axis). In
contrast, PD_Water_5000 in the lacunarity-optimized model shows neg-
ative associations, suggesting that urban watershed distributions at
large buffer distances may have non-monotonic effects on NO2 concen-
tration. Likewise, the dominance of green space (e.g., LPI_Green-
space_5000 in the lacunarity-optimized model and LSI_Green-
space_1000 in the conventional LUR model) is also negatively related to
NO2 concentration. In Oakland, SII_450 (lacunarity-optimized model)
SII_500 (conventional LUR model), LSI_Water_1000, and Feel_tempera-
ture (both models) show positive correlations, whereas SHI_450 (lacu-
narity-optimized model) and SHI_500 (conventional LUR model) dis-
plays a negative association, which reconfirms that the lacunarity-
optimized model could capture the same crucial information as conven-
tional LUR models. However, the LPI_Building_300 in the Bronx and
AR_100 in Oakland show non-monotonic effects on NO2 distribution. In
sum, the increase in the dominance of specific tree species (larger SII) is
associated with a higher level of NO2 concentration, while planting
more diverse tree species to increase the richness (larger SHI) relates to
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Fig. 7. SHAP value for lacunarity-optimized and conventional LUR models in Bronx and Oakland for all selected features.

better air quality. This manifests the multifaced effects of tree diversity
on NO2 concentration as in previous studies. For example, on the one
hand, trees could facilitate the widespread deposition of various gases
and particles and influence microclimate and air turbulence to improve
air quality (Neft et al., 2016). On the other hand, trees could produce
wind-dispersed pollen and emit a range of gaseous substances (e.g.,
NOx) that take part in photochemical reactions to deteriorating air
quality (Grote et al., 2016).

3.2.3. PDP (Partial Dependence Plot) distribution
As tree diversity shows a non-monatomic correlation on NO2 con-

centration, it is necessary to investigate how and to what extent tree di-
versity relates to NO2 concentration on the city scale. In Fig. 8, we plot-
ted the PDP by selecting tree diversity indices with higher feature im-
portance (SII_100 and SII_310 in the Bronx and SII_450 and SHI_450 in
Oakland based on lacunarity-optimized models) to explore the mar-
ginal effects between tree diversity and NO2 concentration. In the
Bronx, the NO2 concentration is relatively lower when SII_100 is lower
than 0.80, and the SII_310 ranges between 0.82 and 0.92 (purple clus-
ters). In addition, the increase of SII_100 is associated with lower NO2
concentration, whereas the SII_310 has complicated impacts. Too high
(>0.92) or too low (<0.79) of SII_310 would both relate to the higher
NO2 concentration (>9.91 ppb). In Oakland, the NO2 concentration is
relatively lower when SHI_450 is higher than 0.70 and SII_450 is lower
than 0.95. The impacts of SHI_450 and SII_450 themselves on NO2 con-
centration are almost monotonic negative (values change homoge-
neously from high to low from a bottom-up perspective) and positive

(values change homogeneously from low to high from a left-right per-
spective), respectively, which accords with the findings in Fig. 7. There-
fore, the level of tree diversity (both SII and SHI) needs to be controlled
within limited ranges to improve the air quality effectively instead of
going to extremes by planting more diverse tree species or simply one
specific species on the city scale. We also find that SVF, AR, and SII
have evident synthetic effects on the NO2 concentration in the Bronx ac-
cording to the PDP between the tree diversity, 3-D urban form, and NO2
concentration in Fig. S6.

3.2.4. Prediction comparison
To compare the prediction results between lacunarity-optimized

and conventional LUR models, we created the fishnet with the grid size
of 510m (17 30m) and 540m (18 30m), the lacunarity value of
“Overall landuse” in Fig. 3, in the Bronx and Oakland, respectively (Fig.
9). The meteorological factors were input as the average value during
the collection period for Bronx (September 10th to December 17th,
2021) and Oakland (May 28th, 2015 to December 21st, 2017), respec-
tively. In the Bronx, the spatial distribution of NO2 concentration for
the two models is similar with higher values located in the southern and
eastern parts. Besides, the prediction results from conventional LUR
models show an overall higher NO2 concentration (mean value of
10.37 ppb) and larger variance (standard deviation of 0.34 ppb) than
the lacunarity-optimized (mean value of 10.15 ppb and standard devia-
tion of 0.14 ppb) model. In Oakland, higher NO2 concentration is al-
most distributed in the southern part for the two models. Besides, the
lacunarity-optimized model has a higher average value (22.10 ppb vs.
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Fig. 8. PDP in Bronx and Oakland based on the lacunarity-optimized model
(Values in PDP figures indicate the level of NO2 concentrations. Low to high NO2 concentrations indicate the gradual change of colors from purple to green and yel-
low. To better explore the marginal effects between tree diversity indices on NO2 concentration, we need to single out the tree diversity indices with higher feature
importance. According to Fig. 6, in the Bronx, only SII_100 (1.72%) has been selected in conventional LUR models. However, SII_100 and SII_310 account for 5.35%
of feature importance in total in the lacunarity-optimized model. Therefore, we choose SII_100 and SII_310 in the Bronx through the lacunarity-optimized model to
plot PDP. In Oakland, SII_450 and SHI_450 account for 10.17% and 10.58% in total for the conventional and lacunarity-optimized models, respectively. Therefore, we
select SII_450 and SHI_450 in the lacunarity-optimized model to plot PDP in Oakland. The DBH is not considered here because no relevant DBH parameters have been
selected in Oakland for both models.).

Fig. 9. Predicted NO2 concentration based on lacunarity-optimized and conventional LUR models and their relative differences in Bronx (a) and Oakland (b).

21.84 ppb) and lower variation (3.23 ppb vs. 2.60 ppb) than the con-
ventional LUR model.

In addition, the locations with higher NO2 concentrations have
larger relative errors ( ≥ 50%) between the two models in both Bronx
and Oakland, indicating that the model may not estimate the higher
level of NO2 concentration reliably partly due to the transported pollu-
tants from nearby emission sources. Therefore, future models could in-
corporate more accurate and detailed NOx emission inventories to re-
duce the bias in these hotspot regions. Besides, the absolute prediction
error is lower in the Bronx (from −0.50 to 1.03 ppb) than that in Oak-
land (−8.99 to 12.71 ppb), which could be attributed to the fact that ur-
ban form-air quality relationship is also modulated by other factors,
such as seasonality (Liu et al., 2018c), city sizes (Fan et al., 2017), and
development stages (Liang & Gong, 2020) among different cities.

4. Discussion

In this study, we incorporate tree diversity and 2-D and 3-D urban
form metrics to capture the spatiotemporal change of NO2 concentra-
tion in both Bronx, NY, and Oakland CA in the U.S. through mobile
monitoring. As urban trees have non-monotonic impacts on the change
of air pollution concentration, this study tries to combine both urban
forest and morphology quantitatively to further explore their correla-
tion.

Even though deciduous trees are surrounded by a higher level of
NO2 concentration than semi-deciduous and evergreen trees in both
Bronx and Oakland, the influential direction of tree diversity (Fig. 6) in-
dicates the diversified tree species are associated with an overall lower
NO2 concentration. Notwithstanding, the level of tree diversity should

not be unlimited high. According to the non-monotonic and marginal
effects of tree diversity on NO2 distribution (Fig. 7), the diversity level
of tree species should be controlled in limited ranges to effectively con-
trol air pollution. Therefore, it is promising to plant more semi-
deciduous or evergreen trees to reduce air pollution regionally, but also
necessary to strike a balance between the diversity and dominance of
tree species to improve air quality on the city scale. The findings could
help improve the urban air quality and urban ecological health for a
better realization of the One Health initiative.

We also optimized the model construction process by introducing
the lacunarity analysis and considering the maximum range of spatial
heterogeneity for different land use and distribution of tree species. The
final results demonstrate that lacunarity-optimized models could re-
duce the computation burden by extracting the upper limits of the spa-
tial heterogeneity of predictors while keeping the model accuracy si-
multaneously (Fig. 5). This illustrates that it would be unnecessary to
include as many buffer distances as possible because increasing the
buffer distance beyond a certain level for variable aggregation would
not result in any substantive impact on the statistical analysis due to the
homogenous urban context as the buffer distance surpasses that of the
repeating patterns in the landscape (Hoechstetter et al., 2011; Myint &
Lam, 2005; Roces-Diaz et al., 2015). Our lacunarity approach can effi-
ciently determine land use feature-specific upper bounds of buffer sizes,
therefore, saving computational resources for extracting information in
large areas while capturing the same crucial information and keeping a
similar level of accuracy as the conventional way simultaneously.

This study also reveals that tree diversity shows higher feature im-
portance in the lacunarity-optimized model (12.80% and 13.04% in
Bronx and Oakland, respectively) than the conventional LUR model
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(12.60% and 12.28% in Bronx and Oakland, respectively). It suggests,
on the one hand, that urban forests play a non-ignorable role in NO2
concentration distribution; on the other hand, quantifying the maxi-
mum range of spatial heterogeneity of street trees could better reveal
their potential influence on the NO2 concentration. Therefore, urban
planners and ecologies need to work together to customize the positions
for tree planting under different land use patterns.

We acknowledge several limitations in our study. First of all, the
current study reflects the association between tree diversity, urban
form, and NO2 concentration, but the causality could be further ana-
lyzed through Rubin or Pearl's structural casual models with modula-
tors, such as traffic intensity and collection periods. Therefore, future
studies could classify the mobile data by the TAZ (Traffic Analysis
Zone) or the measurement time (e.g., weekdays and weekends or day-
night division) (Montazeri et al., 2021). Secondly, the upper bounds of
buffer distances obtained from lacunarity analysis could be further vali-
dated by analyzing the influential range of emission sources through
deterministic models, such as Gaussian plume dispersion (Gibson et al.,
2013). Thirdly, to represent air quality comprehensively, more types of
air pollutants (e.g., PM2.5, PM10, and O3) need to be added to represent
the urban emission inventories. In addition, other predictors, such as
Frontal Area Index, Leaf Area Index, Crown Volume Fraction, tree
porosity, tree spacing, and phenology should be incorporated to better
reflect the effects of the urban forest and physical environments on air
quality. Fourthly, more techniques, such as the semi-variogram (Zhou &
Lin, 2019), can be experimented with to address the spatial dependence
of mobile monitoring observation points to reduce the bias in regression
analysis. Finally, during model construction, we applied a series of
fixed buffer distances from 100m to 5000m. However, previous studies
found that larger particles were more sensitive to wind factors (Tian et
al., 2022). Thus, it deserves future research endeavors to create adap-
tive buffer distances for more fine-tuned models to explore the syn-
thetic effects of local meteorology and land uses on NO2 distributions.

5. Conclusions

It is promising to leverage opportunistic mobile monitoring and in-
vestigate the associations between a wide range of tree diversity, urban
form, and NO2 concentration distribution on hyperlocal scales. The re-
sults further explained the rationale of the non-monotonic effects of ur-
ban trees on NO2 concentration by finding that it is necessary to seek a
balance between tree diversity and tree dominance to overall improve
air quality on the city scale. Besides, the lacunarity-optimized method
we proposed could quantify the spatial heterogeneity of predictors for
feature extraction objectively, as they do not rely on predefined land-
scape units or patches and thus can effectively deal with the complexity
of the urban environment with comparable model performance with
conventional LUR models. Moreover, quantifying the ranges of spatial
heterogeneity of street trees during model construction could better re-
veal the contribution of tree diversity to NO2 distribution in both the
Bronx and Oakland. Finally, there are synthetic effects between the ur-
ban form and tree diversity on NO2 distribution, and such effect direc-
tions could be non-monotonic as well, which reconfirms the non-linear
interactions between urban form, tree diversity, and air pollution distri-
bution. Therefore, future studies could explore the detailed mechanism
of how urban form and tree diversity impact NO2 generation, diffusion,
and purification in urban settings.

Declaration of competing interest

All co-authors have seen and agree with the contents of the manu-
script and there is no conflict of interest to report.

Acknowledgment

The authors thank all other members of the MIT Senseable City Lab
Consortium (FAE Technology, MipMap, Samoo Architects & Engineers,
GoAigua, DAR Group, Ordinance Survey, RATP, Anas S.p.A., ENEL
Foundation, Università di Pisa, KTH (Sweden), ITB (Indonesia), UTEC
(Peru), Politecnico di Torino, SMART (Singapore), AMS Institute, and
the cities of Laval, Curitiba, Stockholm, Amsterdam, Helsingborg) for
funding this research, and special thanks to Joshua Apte and his group's
work to provide NO2 data for Oakland.

The authors thank the New York City Mayor's Office of the Chief
Technology Officer, the Department of Health and Mental Hygiene, the
Department of Citywide Administrative Services, as well as the EDF -
Environmental Defense Fund, for providing the sensing fleet and pro-
viding feedback on the research work.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.apgeog.2023.102943.

References

Apte, J.S., Messier, K.P., Gani, S., et al. (2017). High-resolution air pollution mapping with
Google street view cars: Exploiting big data. Environmental Science & Technology, 51(12),
6999–7008.

Brantley, H., Hagler, G., Kimbrough, E., et al. (2014). Mobile air monitoring data-
processing strategies and effects on spatial air pollution trends. Atmospheric Measurement
Techniques, 7(7), 2169–2183.

CDC. One health Available at: https://www.cdc.gov/onehealth/index.html. 2022.
Cho, H.-S., & Choi, M. (2014). Effects of compact urban development on air pollution:

Empirical evidence from Korea. Sustainability, 6(9), 5968–5982.
Cowie, C.T., Garden, F., Jegasothy, E., et al. (2019). Comparison of model estimates from

an intra-city land use regression model with a national satellite-LUR and a regional
Bayesian Maximum Entropy model, in estimating NO2 for a birth cohort in Sydney,
Australia. Environmental Research, 174, 24–34.

Cummings, L.E., Stewart, J.D., Reist, R., et al. (2021). Mobile monitoring of air pollution
reveals spatial and temporal variation in an urban landscape. Frontiers in Built
Environment, 7, 648620.

DeSouza, P., Anjomshoaa, A., Duarte, F., et al. (2020). Air quality monitoring using mobile
low-cost sensors mounted on trash-trucks: Methods development and lessons learned.
Sustainable Cities and Society, 60, 102239.

Do, T.H., Tsiligianni, E., Qin, X., et al. (2020). Graph-deep-learning-based inference of fine-
grained air quality from mobile IoT sensors. IEEE Internet of Things Journal, 7(9),
8943–8955.

Edussuriya, P., Chan, A., & Ye, A. (2011). Urban morphology and air quality in dense
residential environments in Hong Kong. Part I: District-level analysis. Atmospheric
Environment, 45(27), 4789–4803.

Fang, Y., & Zhao, L. (2022). Assessing the environmental benefits of urban ventilation
corridors: A case study in hefei. China: Building and Environment, 108810.

Fan, C., Tian, L., & Li, J. (2017). Research progress of impacts of urban form on air quality:
Vol. 12. Urban Development.

Foundation, A.D. Northern red OakQuercus rubra Available at: https://www.arborday.org/
trees/treeguide/TreeDetail.cfm?Itemid=2451. 2022.

Friedman, J.H. (2001). Greedy function approximation: A gradient boosting machine. Annals
of Statistics, 1189–1232.

Galle, N.J., Halpern, D., Nitoslawski, S., et al. (2021). Mapping the diversity of street tree
inventories across eight cities internationally using open data. Urban Forestry and Urban
Greening, 61, 127099.

Gibson, M.D., Kundu, S., & Satish, M. (2013). Dispersion model evaluation of PM2. 5, NOx
and SO2 from point and major line sources in Nova Scotia, Canada using AERMOD
Gaussian plume air dispersion model. Atmospheric Pollution Research, 4(2), 157–167.

Goin, D.E., Sudat, S., Riddell, C., et al. (2021). Hyperlocalized measures of air pollution and
preeclampsia in Oakland, California. Environmental Science & Technology, 55(21),
14710–14719.

Gorai, A.K., Tuluri, F., & Tchounwou, P.B. (2014). A GIS based approach for assessing the
association between air pollution and asthma in New York State, USA. International
Journal of Environmental Research and Public Health, 11(5), 4845–4869.

Grimmond, C., & Oke, T.R. (1999). Aerodynamic properties of urban areas derived from
analysis of surface form. Journal of Applied Meteorology and Climatology, 38(9),
1262–1292.

Grote, R., Samson, R., Alonso, R., et al. (2016). Functional traits of urban trees: Air
pollution mitigation potential. Frontiers in Ecology and the Environment, 14(10), 543–550.

Hang, J., Li, Y., Sandberg, M., et al. (2012). The influence of building height variability on
pollutant dispersion and pedestrian ventilation in idealized high-rise urban areas. Building
and Environment, 56, 346–360.

Hoechstetter, S., Walz, U., & Thinh, N.X. (2011). Adapting lacunarity techniques for
gradient-based analyses of landscape surfaces. Ecological Complexity, 8(3), 229–238.

Ke, B., Hu, W., Huang, D., et al. (2022). Three-dimensional building morphology impacts on

11

https://doi.org/10.1016/j.apgeog.2023.102943
https://doi.org/10.1016/j.apgeog.2023.102943
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref1
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref1
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref1
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref2
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref2
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref2
https://www.cdc.gov/onehealth/index.html
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref4
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref4
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref5
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref5
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref5
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref5
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref6
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref6
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref6
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref7
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref7
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref7
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref8
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref8
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref8
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref9
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref9
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref9
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref10
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref10
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref11
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref11
https://www.arborday.org/trees/treeguide/TreeDetail.cfm?Itemid=2451
https://www.arborday.org/trees/treeguide/TreeDetail.cfm?Itemid=2451
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref13
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref13
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref14
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref14
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref14
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref15
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref15
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref15
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref16
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref16
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref16
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref17
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref17
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref17
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref18
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref18
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref18
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref19
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref19
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref20
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref20
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref20
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref21
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref21
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref22


CO
RR
EC
TE
D
PR
OO

F

Y. Tian et al. Applied Geography xxx (xxxx) 102943

PM2. 5 distribution in urban landscape settings in Zhejiang, China. Science of the Total
Environment, 826, 154094.

Kerckhoffs, J., Khan, J., Hoek, G., et al. (2022). Mixed-effects modeling framework for
Amsterdam and copenhagen for outdoor NO2 concentrations using measurements sampled
with Google street View cars. Environmental science & technology.

Kheirbek, I., Haney, J., Douglas, S., et al. (2016). The contribution of motor vehicle
emissions to ambient fine particulate matter public health impacts in New York city: A
health burden assessment. Environmental Health, 15(1), 89.

Kwan, M.-P. (2012). The uncertain geographic context problem. Annals of the Association of
American Geographers, 102(5), 958–968.

Labib, S., Lindley, S., & Huck, J.J. (2020). Scale effects in remotely sensed greenspace
metrics and how to mitigate them for environmental health exposure assessment.
Computers, Environment and Urban Systems, 82, 101501.

Liang, L., & Gong, P. (2020). Urban and air pollution: A multi-city study of long-term effects
of urban landscape patterns on air quality trends. Scientific Reports, 10(1), 1–13.

Liu, Y., Fang, X., Cheng, C., et al. (2016). Research and application of city ventilation
assessments based on satellite data and GIS technology: A case study of the yanqi lake eco-
city in huairou district, beijing. Meteorological Applications, 23(2), 320–327.

Liu, X., Hu, G., Chen, Y., et al. (2018a). High-resolution multi-temporal mapping of global
urban land using Landsat images based on the Google Earth Engine Platform. Remote
Sensing of Environment, 209, 227–239.

Liu, Y., Wu, J., Yu, D., et al. (2018b). The relationship between urban form and air pollution
depends on seasonality and city size. Environmental Science and Pollution Research.
https://doi.org/10.1007/s11356-018-1743-6. 1-14.

Liu, Y., Wu, J., Yu, D., et al. (2018c). The relationship between urban form and air pollution
depends on seasonality and city size. Environmental Science and Pollution Research, 25
(16), 15554–15567.

Lundberg, S.M., & Lee, S.-I. (2017). A unified approach to interpreting model predictions.
Proceedings of the 31st international conference on neural information processing systems
(pp. 4768–4777).

Mandelbrot, B.B. (1982). The fractal geometry of nature. New York: WH freeman.
Manes, F., Silli, V., Salvatori, E., et al. (2014). Urban ecosystem services: Tree diversity and

stability of PM10 removal in the metropolitan area of Rome. Annali di Botanica, 4, 19–26.
McGarigal, K. (2015). FRAGSTATS help.
Messier, K.P., Chambliss, S.E., Gani, S., et al. (2018). Mapping air pollution with Google

Street View cars: Efficient approaches with mobile monitoring and land use regression.
Environmental Science & Technology, 52(21), 12563–12572.

Montazeri, A., Lilienthal, A.J., & Albertson, J.D. (2021). A spatial land use clustering
framework for investigating the role of land use in mediating the effect of meteorology on
urban air quality. Atmospheric Environment X, 12, 100126.

Mora, S., Anjomshoaa, A., Benson, T., et al. (2019). Towards large-scale drive-by sensing
with Multi-Purpose City scanner nodes. 2019 IEEE 5th World Forum on Internet of
Things (WF-IoT). IEEE.

Myint, S.W., & Lam, N. (2005). A study of lacunarity-based texture analysis approaches to
improve urban image classification. Computers, Environment and Urban Systems, 29(5),
501–523.

Naughton, O., Donnelly, A., Nolan, P., et al. (2018). A land use regression model for
explaining spatial variation in air pollution levels using a wind sector based approach.
Science of the Total Environment, 630, 1324–1334.

Neft, I., Scungio, M., Culver, N., et al. (2016). Simulations of aerosol filtration by
vegetation: Validation of existing models with available lab data and application to near-
roadway scenario. Aerosol Science and Technology, 50(9), 937–946.

Peng, Y., Gao, Z., Buccolieri, R., et al. (2021). Urban ventilation of typical residential streets
and impact of building form variation. Sustainable Cities and Society, 67, 102735.

Perrier, A. Feature importance in random forests Available at: https://alexisperrier.com/
datascience/2015/08/27/feature-importance-random-forests-gini-accuracy.html.
2015.

Plotnick, R.E., Gardner, R.H., Hargrove, W.W., et al. (1996). Lacunarity analysis: A
general technique for the analysis of spatial patterns. Physical Review, 53(5), 5461.

Plotnick, R.E., Gardner, R.H., & O’Neill, R.V. (1993). Lacunarity indices as measures of
landscape texture. Landscape Ecology, 8(3), 201–211.

Pugh, T.A., MacKenzie, A.R., Whyatt, J.D., et al. (2012). Effectiveness of green
infrastructure for improvement of air quality in urban street canyons. Environmental
Science & Technology, 46(14), 7692–7699.

Roces-Diaz, J.V., Diaz-Varela, R.A., Alvarez-Alvarez, P., et al. (2015). A multiscale
analysis of ecosystem services supply in the NW Iberian Peninsula from a functional
perspective. Ecological Indicators, 50, 24–34.

Rodríguez, M.C., Dupont-Courtade, L., & Oueslati, W. (2016). Air pollution and urban
structure linkages: Evidence from European cities. Renewable and Sustainable Energy
Reviews, 53, 1–9.

Roeland, S., Moretti, M., Amorim, J.H., et al. (2019). Towards an integrative approach to
evaluate the environmental ecosystem services provided by urban forest. Journal of Forestry
Research, 30(6), 1981–1996.

Saha, P.K., Li, H.Z., Apte, J.S., et al. (2019). Urban ultrafine particle exposure assessment
with land-use regression: Influence of sampling strategy. Environmental Science &
Technology, 53(13), 7326–7336.

Saunders, S., Dade, E., & Van Niel, K. (2011). An Urban Forest Effects (UFORE) model
study of the integrated effects of vegetation on local air pollution in the Western
Suburbs of Perth, WA. 19th International congress on modelling and simulation
(MODSIM2011). Perth, Australia: Modelling and Simulation Society of Australia and
New Zealand Inc. 19th International congress on modelling and simulation
(MODSIM2011).

Shannon, C.E. (1948). A mathematical theory of communication. The Bell system technical
journal, 27(3), 379–423.

Shen, J., Gao, Z., Ding, W., et al. (2017). An investigation on the effect of street morphology
to ambient air quality using six real-world cases. Atmospheric Environment, 164, 85–101.

Sicard, P., Agathokleous, E., Araminiene, V., et al. (2018). Should we see urban trees as
effective solutions to reduce increasing ozone levels in cities? Environmental Pollution, 243,
163–176.

Simpson, E.H. (1949). Measurement of diversity. Nature, 163(4148). 688-688.
Spark, W. Climate and average weather year round in Oakland Available at: https://

weatherspark.com/y/541/Average-Weather-in-Oakland-California-United-States-
Year-Round. 2022a.

Spark, W. Climate and average weather year round in the Bronx Available at: https://
weatherspark.com/y/24500/Average-Weather-in-The-Bronx-New-York-United-
States-Year-Round. 2022b.

Sun, J., Zhou, T., & Wang, D. (2022). Relationships between urban form and air quality: A
reconsideration based on evidence from China’s five urban agglomerations during the
COVID-19 pandemic. Land Use Policy, 118, 106155.

Tang, R., Blangiardo, M., & Gulliver, J. (2013). Using building heights and street
configuration to enhance intraurban PM10, NOx, and NO2 Land use regression models.
Environmental Science & Technology, 47(20), 11643–11650.

Tian, Y., deSouza, P., Mora, S., et al. (2022). Evaluating the meteorological effects on the
urban form–air quality relationship using mobile monitoring. Environmental science &
technology.

Tian, Y., & Yao, X. (2022). Urban form, traffic volume, and air quality: A spatiotemporal
stratified approach. Environment and Planning B: Urban Analytics and City Science, 49(1),
92–113.

Tian, Y., Yao, X.A., Mu, L., et al. (2020a). Integrating meteorological factors for better
understanding of the urban form-air quality relationship. Landscape Ecology, 35(10),
2357–2373.

Tian, Y., Yao, X.A., Mu, L., et al. (2020b). Integrating meteorological factors for better
understanding of the urban form-air quality relationship. Landscape Ecology, 35,
2357–2373.

Tiwari, A., & Kumar, P. (2020). Integrated dispersion-deposition modelling for air pollutant
reduction via green infrastructure at an urban scale. Science of the Total Environment, 723,
138078.

Tong, Z., Baldauf, R.W., Isakov, V., et al. (2016). Roadside vegetation barrier designs to
mitigate near-road air pollution impacts. Science of the Total Environment, 541, 920–927.

Yuan, M., Song, Y., Huang, Y., et al. (2019). Exploring the association between the built
environment and remotely sensed PM2. 5 concentrations in urban areas. Journal of Cleaner
Production, 220, 1014–1023.

Zakšek, K., Oštir, K., & Ž, K. (2011). Sky-view factor as a relief visualization technique.
Remote Sensing, 3(2), 398–415.

Zhang, A., Xia, C., & Li, W. (2022). Exploring the effects of 3D urban form on urban air
quality: Evidence from fifteen megacities in China. Sustainable Cities and Society, 78,
103649.

Zhong, J., Cai, X.-M., & Bloss, W.J. (2016). Coupling dynamics and chemistry in the air
pollution modelling of street canyons: A review. Environmental Pollution, 214, 690–704.

Zhou, S., & Lin, R. (2019). Spatial-temporal heterogeneity of air pollution: The relationship
between built environment and on-road PM2. 5 at micro scale. Transportation Research
Part D: Transport and Environment, 76, 305–322.

12

http://refhub.elsevier.com/S0143-6228(23)00074-7/sref22
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref22
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref23
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref23
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref23
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref24
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref24
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref24
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref25
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref25
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref26
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref26
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref26
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref27
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref27
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref28
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref28
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref28
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref29
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref29
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref29
https://doi.org/10.1007/s11356-018-1743-6.%201-14
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref31
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref31
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref31
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref32
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref32
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref32
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref33
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref34
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref34
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref35
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref36
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref36
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref36
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref37
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref37
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref37
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref38
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref38
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref38
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref39
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref39
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref39
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref40
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref40
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref40
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref41
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref41
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref41
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref42
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref42
https://alexisperrier.com/datascience/2015/08/27/feature-importance-random-forests-gini-accuracy.html
https://alexisperrier.com/datascience/2015/08/27/feature-importance-random-forests-gini-accuracy.html
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref44
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref44
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref45
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref45
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref46
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref46
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref46
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref47
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref47
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref47
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref48
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref48
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref48
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref49
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref49
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref49
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref50
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref50
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref50
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref51
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref51
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref51
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref51
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref51
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref51
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref52
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref52
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref53
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref53
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref54
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref54
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref54
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref55
https://weatherspark.com/y/541/Average-Weather-in-Oakland-California-United-States-Year-Round
https://weatherspark.com/y/541/Average-Weather-in-Oakland-California-United-States-Year-Round
https://weatherspark.com/y/541/Average-Weather-in-Oakland-California-United-States-Year-Round
https://weatherspark.com/y/24500/Average-Weather-in-The-Bronx-New-York-United-States-Year-Round
https://weatherspark.com/y/24500/Average-Weather-in-The-Bronx-New-York-United-States-Year-Round
https://weatherspark.com/y/24500/Average-Weather-in-The-Bronx-New-York-United-States-Year-Round
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref58
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref58
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref58
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref59
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref59
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref59
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref60
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref60
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref60
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref61
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref61
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref61
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref62
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref62
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref62
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref63
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref63
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref63
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref64
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref64
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref64
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref65
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref65
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref66
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref66
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref66
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref67
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref67
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref68
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref68
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref68
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref69
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref69
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref70
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref70
http://refhub.elsevier.com/S0143-6228(23)00074-7/sref70

	Improving NO2 prediction by integrating tree diversity, urban form, and scale sensitivity  through mobile monitoring
	1. Introduction
	2. Methods
	2.1. Research areas
	2.2. Research design
	2.2.1. NO2 preprocessing
	2.2.2. Tree diversity
	2.2.3. 2-D urban form metrics
	2.2.4. 3-D urban form metrics
	2.2.5. Lacunarity
	2.2.6. Model construction


	3. Results
	3.1. Descriptive results
	3.1.1. Lacunarity analysis
	3.1.2. Tree diversity and NO2 distribution

	3.2. Model performance
	3.2.1. Feature importance
	3.2.2. SHAP (SHapley additive exPlanations) value
	3.2.3. PDP (Partial Dependence Plot) distribution
	3.2.4. Prediction comparison


	4. Discussion
	5. Conclusions
	Acknowledgment
	References


	fld76: 
	fld77: 
	fld155: 
	fld177: 
	fld215: 
	fld223: 
	fld224: 
	fld239: 
	fld253: 
	fld272: 
	fld273: 


