
1

On Predicting Sensor Readings with Sequence
Modeling and Reinforcement Learning for

Energy-Efficient IoT Applications
Roufaida Laidi, Djamel Djenouri, Ilangko Balasingham.

Abstract—Prediction of sensor readings in event-based IoT
(Internet of Things) applications is considered. A new approach is
proposed, which allows turning off sensors in periods when their
readings can be predicted, and thus preserving energy that would
be consumed for sensing and communications. The proposed ap-
proach uses a long short term memory (LSTM) model that learns
spatio-temporal patterns in sequences of sensorial data for future
predictions. The LSTM model and the sensors collaboratively
monitor the environment. They are controlled by a reinforcement
learning (RL) agent that dynamically decides about using the
LSTM prediction vs. physical sensing in a way that maximizes
energy-saving while maintaining accuracy in prediction. Two
approaches are used for the RL, 1) Markov decision process
(MDP) model-based for low scale applications, and 2) Deep
Q-Network based for larger scales. Compared to the current
literature, the proposed solution is unique in predicting all sensor
readings for real-time event detection and providing a model
capable of learning long term spatio-temporal correlations, which
enables balancing power conservation and detection accuracy.
We compare the proposed solutions to the most relevant state-
of-the-art approaches using a large real-dataset collected in
a dynamic space, by measuring the accuracy, the amount of
consumed energy, the network’s lifetime, the latency, and the
missed events’ ratio. To investigate the scalability of the solutions,
these parameters are calculated for different network sizes. The
results show that the system achieves 50% accuracy with 32% of
activation time and 75% accuracy with 60% activation time.

Index Terms—Energy-efficient IoT applications, sensor read-
ings prediction, sequence modeling, deep learning, reinforcement
learning, dynamic programming, deep Q-learning.

I. INTRODUCTION

A. Motivation

THE lifetime of batteries used in current micro-embedded
systems is one of the persistent limitations in most IoT

applications. Solutions based on duty cycling the sensor nodes
help to reduce energy wasted by the radio in idle listening,
i.e., the periods when the sensor is waiting for a packet
in vain [1], but they remain insufficient. For example, this
approach does not apply to the sensing hardware in event-
based applications, which should be kept on all the time to
detect events. Another example is the applications with high
data exchange rates in which the radio is on most of the time

R. Laidi is with CERIST and Ecole Nationale Supérieure d’Informatique,
Algiers, Algeria. Email: ar laidi@esi.dz

D.Djenouri is with Computer Science Research Centre, Department of
Computer Science & Creative Technologies, University of the West of
England, Bristol, UK. Email: Djamel.Djenouri@uwe.ac.uk

I. Balasingham is with Norwegian University of Science and Technology
(NTNU), Trondheim, Norway. Email: ilangko.balasingham@ntnu.no

(to receive or transmit data). Exploring the characteristics of
the sensors and the targeted IoT application may achieve more
savings. First, sensors work collaboratively to monitor their
space, i.e., many sensors may detect the same event either due
to overlapping in the sensing ranges or to a moving subject.
Second, events do not occur all the time and happen only
in specific periods. Some of these events are repetitive over
short or long periods. Some others start in one region (a part
of the network) then get spread to other regions. These two
properties yield a “temporal” and “spatial” correlation between
events and sensors’ coverage.

A practical example is the use of motion detection sensors in
smart buildings. Occupants’ presence inside buildings follows
repeated patterns throughout time, e.g., reaching the working
spaces (e.g., offices) in the morning, having a mid-day pause,
then leaving at the end of the day. Consequently, sensors
at the entrance and corridors will detect more events during
arrival and departure periods, whereas events are more likely to
happen inside working spaces during working hours. Because
the position of the sensor and the time dimension impact
its readings, detecting the temporal and spatial relationship
between sensors and events (by focusing on historical read-
ings) allows predicting the future readings. This prediction
allows reducing the sensing energy and the number of packets
to be exchanged, thus the communication’s energy. Reducing
packets exchange also helps in avoiding traffic congestion and
improving the quality of service in communications.

B. Paper Contribution

The current literature related to the use of historical data to
reduce data sensing and exchange can be divided into two main
categories: (1) approaches using statistical inference to decide
which sensors to sample, (2) those approximating the data
to well-know distributions and automatically deciding about
the need for sampling new measurements. The first category
includes solutions that use PCA (Principal Component Anal-
ysis) to select nodes responsible for sensing and transmitting
(e.g., Malik at al. [2]), and those that divide the network into
working and sleeping sensors and use linear transformations
to estimate the sleeping sensor readings (e.g., Emekci et al.
[3]). Similarly, Silvestri et al. [4] proposed heuristics to select
active nodes and uses a Gaussian distribution to estimate the
values of sleeping sensors. Our solution differs from solutions
of the first category as it predicts readings of all sensors
(instead of just a subset of them) and thus extends the saving

2

potentials. Solutions in the second category targeted reducing
the sampling needed to answer SQL queries. The queries
include the confidence level (for estimation errors) tolerated
by the user in addition to the required data. Approaches
proposed by Deshpande et al. [5] and Al-Hoqani et al. [6] are
examples of solutions in this category. The former uses linear
regression to estimate the values of voltage and temperature
sensors, while the latter uses a normal distribution to estimate
temperature and light readings. These models succeed in
approaching analog sensor values. However, real-time event
detection is more challenging and represents the subject of
this work. Moreover, we consider generating a sequence of
future readings, and we are not limited to single values.

The work by Papataxiarhis and Hadjiefthymiades [7] has
some similarity with the current and share the goal of pre-
dicting the following events. However, the motivation in this
solution was completely different, and the authors did not
consider prolonging sleep periods or reducing transmissions.
They targeted event prediction in a data stream and anticipated
an event using a large stream of data. This is to foresee in near
future events that will affect the system’s state and support sys-
tem’s experts in their decision-making. Moreover, the solution
is also incapable of capturing long-term dependencies, i.e.,
correlations between events that are not sequential and thus
cannot be used to provide long sleeping periods for sensors.
Packets transmissions are also not reduced as the sensors keep
sending their stream of data continuously. Tab.I compares the
current work with the most relevant from the literature.

To deal with these problems, we explore Recurrent Neural
Networks (RNN), and particularly Long Short Term Memory
(LSTM), that captures spatiotemporal patterns in sequential
data and use them to predict events for next time steps.
We combine the LSTM architecture with a Reinforcement
Learning (RL) agent. The RL agent learns the accuracy of the
RNN for each situation and decides accordingly to turn sensors
“on” or “off” and then start a sequence of predictions. During
the decision process, the goal of the agent is to maximize
energy-saving without losing accuracy.

The contribution of this paper can be summarized as fol-
lows:

• Proposing an LSTM architecture capable of predicting
the future sequence of sensor events;

• Modeling the decision about sensor states in each time
slot as a reinforcement learning problem to maximize
power saving while preserving accuracy;

• Solving the formulated problem using an exact model-
based solution, as well as and an approximated model-
free solution for scalability.

• Testing the proposed model using a real publicly available
dataset and compare it with four other solutions.

The remainder of the paper is organized as follows. Sec.II
summarizes the related work. Sec.III presents the problem
formulation and the proposed solution, while Sec.IV shows the
experiment results. Sec.V discusses and analyses the results.
The work is concluded, and future work is presented in Sec.VI.

TABLE I: Current contribution vs. existing solutions

Solution Monitoring Reading Energy Term
Type estimation preservation

[2]–[4] Query-based/continuous part part long
[5], [6] Query-based all nodes all nodes long
[7] Events all nodes no short
Current solution Events all nodes all nodes long

II. RELATED WORK

The battery lifespan of IoT devices remains the main
obstacle for applications at large scales. Duty cycling is one
of the most adopted techniques, which consists of scheduling
the devices (nodes) radios, to continuously switching between
active and sleeping modes while reducing the active periods
to preserve energy. Several duty cycling protocols have been
proposed in the literature [1]. This technique has some draw-
backs, e.g., it introduces latency in communication [8], which
is critical for real-time applications. It also starts reaching
its limit in terms of energy preservation, which calls for
alternatives for future applications. Few works, such as Liu
et al. [9], [10], considered duty-cycling while focusing on
the sensing coverage to ensure “frequent” coverage of the
points of interest. These solutions focus on the positions of
the nodes and their sensing ranges to divide the network into
different sets of sensors. At every time slot, the monitoring
set is selected to cover each target to the level required by
the application. While this approach is more adapted to event-
based applications than the previous one, it does not set the
frequency of the coverage dynamically as a function of the
readings of the sensors. This may lead to missing events
(events occurring in inactive periods), as well as energy-saving
potential (turning the sensor “on” in the absence of events).

Another approach consists in the use of energy harvesting
and energy transfer technologies from the ambient resources
[11], and proposing solutions based on new energy models
[12]. While having the potentials for facing the finite batteries
problem and shifting from fossil energy (traditional batteries)
towards green resources in the future, this approach is facing
technical challenges for implementing efficient hardware at the
micro-scale level. Other solutions consider energy constrains
for specific applications, including sensors deployment [13],
crowd-sensing [14], and activity context extraction [15].

In this paper, we follow a different path and consider the
prediction of sensor readings as a power-saving alternative
for both the radio and the sensing device. Solutions of this
category explore the advances made in merging IoT architec-
tures with machine learning techniques [16]. In Dias et al.
[17], the authors tested the feasibility of forecasting data in
sensors. Experimental evaluations on four datasets showed that
it is possible to reduce transmissions without affecting the
data quality. Dias et al. [18] disaggregated prediction-based
data reduction techniques in wireless networks into two cate-
gories, 1) “single prediction schemes”, vs. 2) “dual prediction
schemes”. A single point of the network makes the predictions
in the first category, either a sensor node or a data collection
point. In the second category, network clustering is used, and
both the Clusters Heads (CHs) (or the gateway) and sensor

3

nodes simultaneously make predictions. The general idea in
the second category is that the sensor nodes and the data
collection point share the same prediction model and produce
the same predictions. After every prediction, the sensor nodes
locally check the predictions’ accuracy, and the node transmits
its data only if the difference between the predicted and the
actual value is beneath a predefined threshold. The success of
techniques that run prediction models on node levels depends
highly on the node’s capacity, which is limited for sensor
nodes. Further, these solutions consider only communications
and do not reduce energy consumption in sensing, while
this may cause a significant percentage of the node’s energy
consumption in some applications [19]–[21].

In this paper, we are interested in reducing energy– both in
sensing and communications– by predicting all sensor values
in a centralized way and consequently limiting the need for
physical sensing and communication to the occurrences of
irregular data. In the remainder of this section, we discuss solu-
tions where a central point holds a model of the spatiotemporal
relationships between data to reduce sensing and transmission
in sensor nodes.

Wei et al. [22] proposed a solution based on LSTM to
predict missing data in underwater WSN, i.e., lost packets due
to limitations in underwater communications. This solution
inspires by a solution used for missing clinical data ([23]).
The prediction model avoids retransmissions of lost data but
does not reduce the sensing or transmission of new packets.
Some other solutions exploit the spatiotemporal correlation
between sensor readings to create sets of “trustful” nodes
for regular sampling instead of sampling the whole network.
The prediction model then uses data collected from a subset
to complete the measurements of the non-sampled sensors.
The Binocular framework [3] defines a scheduler to schedule
sensors into “sleeping” and “working”. Next, the measure-
ments from active nodes are used by linear transformations
to predict sleeping sensors’ predictions. The linear model
combines temporal, spatial, and spatiotemporal correlations
among sensor readings. Malik et al. [2] analyzed the histor-
ical data using the feature extraction method PCA (Principal
Component Analysis). This method was adopted to define for
each query a subset of sensor nodes with most of the observed
variance, which becomes the only sensors to send their data.
The data is next treated by an association rule algorithm (a
priori) to deduce the reading of the non-connected sensors.

In both Deshpande et al. [5], and Al-Hoqani et al. [6],
probabilistic models were used to represent the correlation
between different types of data the sensors measure and then
to respond to queries. In both solutions, the authors assume
sensor values follow a Gaussian distribution, and the sensors
send the response only if the model’s confidence is below a
threshold. Deshpande et al. [5] conditioned the probability dis-
tribution on the value of a set of observed sensors to increase
the answer confidence for the query. Papataxiarhis and Had-
jiefthymiades [7] followed a similar approach and proposed an
online technique to infer sensor measurements. Their approach
is more generalized and not limited to query answering. The
authors proposed three heuristics to dynamically select a set of
monitors and used the correlations to estimate the remaining

sensor measurements using Gaussian distributed variables.
They also proposed a method to automatically detect changes
in the environment, which requires a new training phase.
These models based on Gaussian distributions are limited to
continuous monitoring and inappropriate for event prediction,
which is more complex and requires advanced knowledge
about the domain [18].

Silvestri et al. [4] proposed a framework for event detection
and prediction. The solution includes four steps. First, the
stream of raw data is transformed into a binary stream in
which the value 1 represents an event. Next, the event stream is
used to generates rules about events correlation. The resulted
rules are next associated with probabilities to allow events
prediction. Finally, the derived rules are filtered in order to
eliminate the old ones. The correlation scheme is derived
using Markov models to represent frequent event patterns. The
authors reported that “since these models capture sequences of
events that take place in subsequent steps, they have certain
limitations in representing direct dependencies among events
that occur within a larger time frame.” In many situations,
correlated events do not happen one after the other. For exam-
ple, the increase in temperature reported by the temperature
sensor may be separated by several timeslots to the event of
the existence of smoke that is reported by a smoke detector.
Since this solution supposes that events occur in a sequence
(one after another), it can not link two events spaced by several
timeslots. We use this approach for comparison.

In summary, the solutions proposed in this paper fill the
following gaps in the literature:
• Most duty-cycling-based approaches are limited to

scheduling communication activities. Duty-cycling the
whole sensor node based on such approaches is only fea-
sible in periodic applications but inappropriate for event-
based applications. If used for event-based applications,
it would require keeping the sensing board on all the time
while following the schedules defined by the protocol for
the radios. This only reduces the energy consumed by
the radio but not by the sensing. The approach proposed
in this paper optimizes both sensing and communication
energy usage (radio and sensing-board) for event-based
applications.

• Works that consider the sensing coverage for duty-cycling
do not schedule the sensors as a function of their readings,
i.e., the events occurring in patterns. The solutions of
this paper set the policy after learning spatiotemporal
correlations from the readings, which increases energy
saving potential and reduces the events missing.

• Solutions selecting monitoring sensors and dividing the
network into active and sleeping nodes suffer from two
problems. First, the active sensors do not benefit from any
energy management, but on the contrary, their batteries
get depleted very fast. Second, long sleeping periods may
cause deterioration of passive sensors’ batteries [24]. The
RL agent proposed herein guarantees a better balance
of working and sleeping periods for all the sensors. It
is based on accurate sensors’ reading estimation, which
provides intervals for all sensors instead of targeting
stopless coverage of the area.

4

• Using known functions (e.g., Gaussian) to approach sen-
sor readings is proper for analog values but not for event-
based applications. The proposed LSTM model is capable
of learning more complicated distributions.

• Finally, the LSTM network holds on to short and long-
term past information to predict several timeslots in the
future. Contrary to other approaches that use only recent
information.

III. SOLUTION DESCRIPTION

A. Problem Statement and Solution Overview

The ultimate goal of this work is to generate a model capa-
ble of learning long/short term spatiotemporal relationships in
sensorial data and predict its future values. This model enables
turning the sensors off for as long as possible to preserve en-
ergy. Short term relationships characterize sequences of events
that are close in time, e.g., while the occupant is working
inside his office. The long term relationship detects relations
between hours throughout the day, between days, seasons,
or holiday periods, e.g., several timeslots may separate the
increase in temperature and a smoke detection event. Spatial
relationships are related to the deployment of the sensors
and allow detecting events that spread through the area, e.g.,
a related to moving object. In this work, the events are
considered as binary data. Analog sensors can also be used
to report such data, e.g., the increase of temperature beyond
a threshold is an indication for the existence of fire. We
make abstraction of the signal processing phase throughout
the paper. In particular, data is considered pre-processed and
presented under a binary form.

Our architecture is composed of three main components:
(1) the physical sensors, (2) the LSTM network, and (3)
the RL agent. The LSTM network and the sensors work
collaboratively to monitor the environment. While physical
sensors are “on”, the system relies on their readings. However,
the LSTM output substitutes the readings as long as the
sensors are turned off. The readings are predicted step-by-step,
where the outputs from one timeslot are plugged as input for
the next one. The process stops when the sensors are “on”
again. The current work considers the sensors to always be
at the same state, i.e., either all “on” or “off”. The RL agent
plays the supervisor’s role to decide about the use of physical
readings vs. LSTM estimation. It observes the LSTM model
predictions and dynamically decides when turning the physical
sensor on to preserve accuracy. It continuously balances two
conflicting goals: power preservation and detection accuracy.
Fig.1 presents the general framework of the solution. It shows
1) the training phase of the LSTM and the RL agent and 2)
the deployment phase when they operate with the sensors. The
process as described above represents the deployment phase.
On the other hand, the training phase is composed of two
steps. First, training of the LSTM to predict a sequence of
sensor readings. Second, using the trained LSTM to train the
RL agent. We propose two solutions for the RL, model-based
and model-free. The model-based solution uses a transition
table that contains the probability of transition from one
state to another, and which is generated using the trained

LSTM. For every state, the table provides the probability
of being predicted by the LSTM. It is used by a dynamic
programming algorithm to find the optimal policy. The later
assigns the optimal action (on/off) for each state. The model-
free solution does not require this table. It uses a deep Q-
network to approximate the Q-function. The action is then
selected following an ε-greedy strategy.

We consider a star topology that guarantees that a sensor’s
energy is only consumed for sensing and transmitting their
readings and not for routing other sensors’ packets. Therefore,
all the sensors have the same state at any given time, and every
sensor transmits only the data it generates. This guarantees
the balance in the energy consumption between sensors. The
current solution is implemented on the data collector level.
Depending on the IoT architecture and the available resources,
the data collector may be a base station, an intelligent-edge,
or the cloud. A cluster-based topology [25] can also be
considered to extend the scalability, where the cluster heads
(CHs) run the solution. Rotating the CHs to balance the load
(clustering protocol) is out of the scope of this work, but there
are plenty of protocols that can be explored, e.g., [26]. The
LSTM model and the RL agent are presented in the following.

B. LSTM Model for Predicting Sensor Readings

Fig.1 (top left side) illustrates the LSTM network archi-
tecture. Let (X,Y) be a source-target pair where, X =
x1, x2, x3, · · ·xm , Y = y1, y2, y3, · · · ym are sequences of
variables, of length m. xi is a vector of length N that
represents the sensors reading at time step i, where N is the
number of sensors. The probability of the sequence P (Y | X)
(Eq.1) is decomposed using the chain rule.

P (Y | X) = P (Y | x1, x2, x3, · · ·xm)

=

m∏
i=1

P (yi | y1, y2, y3, · · · yi−1;x1, x2, x3, · · ·xm).

(1)

In our architecture, the output of one step is the input of the
next step. That is, x2 = y1, x3 = y2, · · ·xi = yi−1. This case
is represented by Eq.(2),

P (Y | X) =

m∏
i=1

P (yi | y1, y2, y3, · · · yi−1;x1). (2)

The network estimates the probability of the next state given
the input and the sequence generated so far as given by Eq.(3).

P (yi | y1, y2, y3, · · · yi−1;x1) = P (yi | yi−1;hi), (3)

where, hi, represents the learned context, which is the
hidden state of the network at time step, i.

We use a Softmax layer that generates a probability dis-
tribution over discrete candidate outputs, i.e., P (yi = j |
yi−1;hi) = softmax(z)j = exp(zj)/

∑2N

k=1 exp(zk), where
z is the output of the linear layer. As event-based sensors
are considered, the space of sensor readings is discrete and
includes all possible combinations, i.e., 2N classes. The binary

5

Fig. 1: General framework of the solution

vector is converted into decimal values and then into a one-hot
vector1 of size 2N . The Softmax pushes the probability mass
onto one of the 2N classes. The output, which is also a one-hot
vector of the selected class, receives the inverse operations to
retrieve the vector’s binary form. The probability distributions
generated by the Softmax function represent the transition
probabilities in the model-based RL approach (see Sec.III-C1).
Note that it is possible to apply hierarchical Softmax [27],
[28] for an extended number of classes– for large networks.
However, this function is replaced by a Sigmoid function when
the state space is vast. In this case, the model-free approach
is applied, which does not require the transition probabilities.

At this step, the model can predict the sensor values for
a period equal to the sequence length, i.e., m. However,
the accuracy of sensors prediction is limited to the data
encountered in its training phase. To effectively select the
sensors on/off state in a way that ensures power-saving while
preserving accuracy in estimating readings, we introduce the
RL agent that orchestrates this process.

C. RL Agent for Optimal Prediction Sequence Length

1) Problem Formulation: We use an RL model in which the
problem is formulated as the optimal control of incompletely
know Markov Decision Process (MPD). The latter is com-
posed of; 1) set of states: s ∈ S, 2) set of actions: a ∈ A, 3)
state transition probabilities: p(s′|s, a) = P{St+1 = s′|St =
s,At = a}, 4) expected reward, r(s′, s, a), for transition
from state s to s′ with action a. At each time t, the agent
perceives a representation of the environment’s state, St ∈ S
and it selects an action At ∈ A(s), for which it receives a
reward, Rt+1 ∈ R. A reward is a numerical value sent by the
environment to the agent in response to the taken action to
describe how good it is.

Similarly to the LSTM modeling, the states are vectors rep-
resenting all the possible values of sensors and the state space

1in a one-hot vector all bits are 0, except the bit representing the state

Off

Off

Off

S1

Si

S2N

On

On

On

...

...

ST

Fig. 2: Graphical model of the MDP

is discrete and includes all possible combinations, i.e., 2N

states. Besides, we add a state ST to represent the end of the
episode (sequence length). The agent reaches this state when
it decides to wake the sensors up. The total number of states
in our model is then |S| = 2N + 1. The actions set includes
two actions “on” and “off”. Fig.2 graphically illustrates the
MDP. The agent starts from the state representing the last
value given by the sensors. If it selects action “off”, the LSTM
network makes a prediction, and the agent moves to another
state within the set {S1, ..., S2N }, which corresponds to the
predicted value. The process continues until reaching the state
ST when deciding to turn “on” the sensors.

We define the reward as given by Eq.(4) in which the
accuracy is measured by the number of correctly predicted
events while the consumed energy is reflected by the number
of sensors turned “on”. Both are natural values between 0 and
N (the number of sensors). The two values are then from
the same scale. The gains Ga and Ge are respectively, the
accuracy gain and the energy gain for a single sensor. They are
real values that balance accuracy vs. energy usage according
to the application needs. When taking “on” action (the first
line of Eq.(4)), the agent receives accuracy gain proportional
to the sum of detected events (i.e., number of yi that equals 1);
but it loses the energy gain for all (N) sensors. When taking

6

“off” action, the agent receives the total gain for energy (for
all nodes). The accuracy gain, in this case, depends on the
accuracy of the prediction of events (ŷi) compared to the label
yi. Ga is added for all correct predictions (when both ŷi and
yi equals 1, i.e. the second term in the second line of Eq.(4)),
while (−Ga) is received for all incorrect predictions (third
term).

rt =

Ga.

∑N
i=1 yi −N.Ge, if at = on

N.Ge +Ga.
∑N
i=1(yi ∗ ŷi)−Ga.

∑N
i=1(yi − ŷi)2,

if at = off.
(4)

The transition probabilities p(s′|s, a) are estimated with
Eq.(5). In case the action is “on”, the agent reaches the state
ST with probability 1. If the action is “off”, the probability is
calculated using p(yi | yi−1;hi), i.e., the probability estimated
by the LSTM network as seen in Eq.(3) by setting s′ = yi
and s = yi−1. These probabilities are the output of the trained
LSTM and are saved for all states in the transition table.

p(s′|s, a) =

p(yi | yi−1;hi) if a = off
1, if s′ = ST and a = on
0, else.

(5)

2) The model-based solution: The goal for an RL agent is
to find the optimal action given the current state. This problem
sum up to finding the optimal policy π∗, which is a mapping
from the current state to the action to be taken by the agent. It
is the one that maximizes the discounted, cumulative reward
Rt0 =

∑∞
t=t0

γt−t0rt. The discount, γ ∈ [0, 1] makes rewards
from the uncertain future less important than the near future.
We define the function Q∗ : State×Action→ R, that outputs
the return of an action given a state. The optimal policy is thus
defined by,

π∗(s) = argmax
a

Q∗π∗(s, a). (6)

We use value iteration algorithm [29] based on Dynamic
Programming (DP) to solve this problem. It relays on the
Bellman equation to find the optimal policy. The action-
value function is iteratively updated, Qi+1(s, a) = E[r +
γQi(s

′, a′)], until convergence to the optimal action-value
function,Qi → Q∗, i → ∞. The algorithm estimates Eq.(7)
to find the policy π(s) to be optimized.

π(s) = argmax
a

Qπ(s, a),

and Qπ(s, a) =
∑
s′

p(s′|s, a)
[
r + γVπ(s′)

]
,

(7)

where Vπ(s′) =
∑
a π(s, a)Qπ(s, a) is the value function

of state s′ under the policy π, calculated by the algorithm. It
is the expected outcome when the agent starts from state s′

and follows the policy π. The value γ is the discount factor, r
is the reward received from the environment measured using
Eq.(4), and p(s′|s, a) is given by Eq.(5).

3) The model-free solution: DP algorithms scale in time
O(|S|2) [30], and the transition table capturing the probabil-
ities is of size |S|2. Nevertheless, as the number of states
is proportional to the number of sensors in our model, the
scalability of the model-based approach becomes a problem.
That approach can be useful for application with limited, e.g.,
occupancy monitoring in small spaces where few sensors are
used, but not in areas with tens of sensors. To tackle this
problem, we propose a model-free solution based on the Deep
Q-Network (DQN) algorithm [31].

Instead of iteratively estimating Q(s, a), a function ap-
proximator is used to estimate the action-value function,
Q(s, a; θ) ≈ Q∗(s, a). The Q-network we use is a neural
network function approximator with weights θ, which tries
to minimize the loss function defined in Eq.(8),

Li(θi) = E(s,a,r,s′)∼U(D)[(r + γmax
a

Q(s′, a′; θi−1)︸ ︷︷ ︸
target

−Q(s, a; θi)︸ ︷︷ ︸
prediction

)2], (8)

where θ is the weights vector of the network, and U(D)
is the experience replay history. Notice the Q-Network also
keeps track of some observation in a memory for training the
network (the technique is known as replay memory technique).
The network predicts the expected return of taking every action
given the current state. We define a neural network in which
the inputs are the outputs of the LSTM, while the outputs are
the Q values of the actions.

In this approach, the states are presented as binary vectors of
size N instead of one-hot vectors of size 2N like in the model-
based one. It implies that the states set increases linearly (not
exponentially), which enables higher scalability.

In the original work of mnih et al. [31], the authors defined
a Convolutional Neural Network (CNN) in order to extract the
current state from images. However, in our case, the states are
vectors of size N . We hence define a standard deep neural
network composed of a linear input layer of size N and a
linear output layer of size 2 (the size of action space). The
hidden layers are two ReLU (Rectifier Linear Units) layers
separated by a fully connected linear layer with fixed sizes
defined as a hyperparameter. Fig.3 shows this architecture.

The action selection follows the ε-greedy method: most of
the time, it selects the action greedily maximizing Q(s, a), but
with small probability, ε, it randomly selects an action (with
equal probability among all the possible actions). To encourage
the exploration in the first episodes of learning, and then the
exploitation, we use a weight decay strategy for ε values. We
set a multiplicative factor per episode for decreasing epsilon
by 0.995 after each episode. Minimal and maximal values of
ε are respectively 0.01 and 1.

D. Baseline Derivation for the RL Agent

In the following, we define the baseline (lower bound in
energy consumption, and upper bound in precision) for the RL.
Let x be a binary vector presenting optimal decision through t

7

Q(s, off)

Q(s, on)...

...
...

...

Hidden layersInput layer Output layer

s

linear node ReLU node

Fig. 3: Architecture of the Q-network

time steps. xi = 1 implies the action 1 is optimal for the time
step i. Optimal values of this vector are obtained by solving
the optimization problem in Eq.(9). The problem minimizes
the number of active timeslots while keeping prediction error
below a threshold S. This problem is transformed into Eq.(10),
which is an integer programming problem equivalent to the
famous Knap sac optimization problem that can be solved
using a dynamic programming algorithm. Notice that the
predicted and the ground truth data are both required to solve
this problem. Since the ground truth data is not available in
practice, this solution serves only as a baseline for the tests to
evaluate the solutions proposed earlier for the RL actions.

minimize
t∑

j=1

xj

s.t.
t∑

j=1

(1− xj)
N∑
i=1

(y<j>i − ŷ<j>i)2 ≤ S and xj ∈ {0, 1}.

(9)
We notate zj = 1 − xj and wj =

∑N
i=1(y<j>i − ŷ<j>i)2,

Eq.(9) is the transformed into,

maximize
t∑

j=1

zj

s.t.
t∑

j=1

wjzj ≤ S and zj ∈ {0, 1}.
(10)

IV. EXPERIMENTS AND PERFORMANCE EVALUATION

The following experiments compare the model-based and
model-free approaches, respectively LSTM-DP (DP for Dy-
namic Programming) and LSTM-DQN (DQN for Deep Q-
network), with two state-of-the-art solutions:
• JGD [7] (“Jointly Gaussian Distribution”): it uses a

heuristic to split the network’s nodes into two groups,
“monitoring” sensors, and “sleeping” sensors. Data from
monitoring sensors are used to estimate the readings of
the sleeping sensors. It is supposed that sensor readings
fellow a Gaussian distribution.

• EC [4] (“Event Correlation”): it proposes a stepwise
approach. First, each sensor’s stream is transformed into
a binary stream. Then, a tree from events correlation is

TABLE II: Simulation hyperparameters

Component Hyperparameter Settings

Network
Architecture
and Training

Network type LSTM DNN DQN
Learning rate 19.10−3 1.10−4 5.10−4

Batch size 160 1024 64
Weight decay 1.10−5 NA NA
Hidden layer size 480 512 64
layers 2 2 2
Seq lenght 128 NA NA

DQN
Optimisation

Discount rate γ 0.9
Steps before update 4
Replay buffer size 105

ε-greedy
Exploration

Initial ε value 1
ε Decay factor 0.995
Minimum ε Value 0.01

generated, from which rules are then used to make event
prediction using probabilistic temporal logic.

We are also interested in investigating the impact of learning
the spatiotemporal correlations on the model’s performance.
To this end, we compare it against a DNN (Deep Neural
Network) variant which has no access to previous inputs.
The difference between the two models shows the advantage
brought by learning spatial and temporal patterns in sensor
readings. To this purpose, we create two other variants, DNN-
DP and DNN-DQN, by replacing the LSTM cells with a DNN
(in the architecture illustrated in Fig.1, top left side). It receives
a vector of sensors state at time, t, and returns the estimated
vector for time t+1. The hidden layers are similar to the ones
in Fig.3. Finally, the comparison also includes a baseline that
is used for the RL agent’s performance evaluation presented
in Sec.III-D, noted LSTM-IP (IP for Integer Programming).
We selected the smart building context as the case study for
the evaluation, which is one of the emerging IoT applications
calling for the usage of advanced machine learning tools [32],
[33]. The MERL [34] real dataset is used in this study, which
has been collected in a laboratory for the test. It includes
over 50 million motion sensor events spanning two years, with
milliseconds granularity. The models have been implemented
in a GPU environment using Pytorch [35] deep learning
framework.

We consider a star topology in the simulations, i.e., all
sensors directly connect to a data collector. The latter has
limitless energy and enough calculation capacities to run
deep learning models. Wake up/sleeping mechanism consumes
neglectable energy and occurs within a short time. Tab.II
shows the settings and the training hyperparameters considered
during the simulation.

A. Prediction Accuracy

We varied the ratio of activation time from 0 to 1 (with
0.01 granularity) and measured the accuracy. The former is
the ratio of the number of active time slots to the total number
of slots. In the presented solution, it is controlled using Ga
and Ge parameters in the reward function (Eq.(4)). A similar
definition for the ratio of activation time is used for “EC” [4].
In “JGD” [7], it is defined as the ratio between the number
of sensors left “on” to the total number of sensors.

8

��� ��� ��� ��� ��� ��� ��	 ��
 ��� ��� ���

��& #�#����& '�& #"�& !�

����
����
����
����
����
����
����
����
����
����
����
����
��	�
��	�
��
�
��
�
����
����
����
����
����

��
�%

�#
$�

���
��������
�������
�������

�
������
�������

Fig. 4: F2-score on the test set for 4 sensors as a function of
the ratio of energy

We dedicate 10% of dataset for the test, which is a period
of 1.04× 106 seconds. For each value of activation time, the
average accuracy is calculated for the whole sequence. The
accuracy metric is the F2-score [36], which is the harmonic
weight of the recall and the precision that weights the recall
higher. Precision may be defined as the likelihood that an event
is relevant, given that it is predicted by the system, while the
recall is the likelihood of correctly predicting events.

Fig.4 illustrates the results in a network of 4 sensors. It is
clear that the proposed solutions (both model-based and free)
outperform the two state-of-the-art solutions (JGD and EC).
The proposed solutions achieve about 50% of accuracy while
being active 30% of the time, 72% of accuracy with 50% of
activation time. They achieve 20% of average accuracy without
turning the sensors “on” for more than 27 consecutive hours
(the length of the test set). JGD has an increasing and better
performance than EC since it relies on the part of the network
that is awake. The results confirm that EC is incapable of
learning long term dependencies and that even with more data,
the prediction performance remains stable. These results are
in line with those reported in [4].

Notice also that the difference between the optimal decision
(LSTM-IP) and the proposed approaches is more visible when
less energy is consumed, but this difference gradually reduces
with the increase of the consumed energy. The results also
show that LSTM-based variants perform better than DNN-
based variants, which confirms our first intuition about the
need for learning spatiotemporal dependencies. The model-
based approach has a slight advantage compared to the model-
free approach. This can be justified by the fact that the former
is based on the full knowledge of the environment.

B. Energy Consumption

We measured the average energy in watt second consumed
by one sensor while varying the accuracy rates. We used as
reference a hardware manufacturer datasheets of a wireless

��� ��� ��� ��� ��	 ��
 ��� ��� �� ��� ���

���%#��'�����$�"#��

���
���
��	
���
��
���
���
��	
���
��
���
���
��	
���
��
���
���
��	
���
��
	��
	��
	�	
	��
	�

��

�!
�#
 '
��&

$�

���
��������
�������

�������
������
�������

Fig. 5: Average consumed energy (w.s) by one sensor as a
function of the F2-score

motion detector. The mote is powered with a CR2032 coin
cell battery (3V) of 240 mAh lifetime. The entire system,
including the CPU, consumes 1.57 mA in active mode for
56.66 ms, 3.45 µA in standby mode, and 2.16 µA in shutdown
[37]. Eq.(11) shows the power measurement p in one second.
The energy is then derived using the equation E = p× t, and
p = I × V .

p = [(1.57 ∗ 56.66.10−3 + 3.45.10−3 ∗ 0.94334)

N∑
i=1

yi︸ ︷︷ ︸
event

+

2.16..10−3.(N −
N∑
i=1

yi)︸ ︷︷ ︸
no event

]× 3 (11)

We compare the energy consumed by LSTM-IP, LSTM-
DQN, DNN-DQN, LSTM-DP, DNN-DP, and JGD [7]. EC [4]
is not included for this metric since it has stable accuracy
levels. Fig.5 shows the results that are in line with the previous
ones, i.e., the LSTM-DP reaches better energy-saving followed
by the LSTM-DQN, and both outperformed JGD [7].

The same energy model was used to measure the battery’s
lifetime using the Eq.(12).

Battery Life =
Battery Capacity (mAh)

Load Current (mA)
× Derating factor,

(12)
where the derating factor depends on external factors that

affect batteries’ lifetime. Fig.6 shows the results and confirms
that the proposed solutions improve the battery lifetime, which
becomes almost optimal for F2-score values beyond 0.7.

C. Scalability
We varied the number of sensors to investigate the scal-

ability of both the LSTM network and the RL agent. The

9

��� ��� ��� ��� ��	 ��
 ��� ��� �� ��� ���

���(%��)�����&�$%��

�
�
�
�
	

�
�

�

��
��
��
��
�	
�

��
��
�
��
��

��
#&

$%
�!

��
' "

��
�)

��
%&

�

���
��������
�������

�������
������
�������

Fig. 6: Average one sensor battery lifetime (year) as a function
of the F2-score

activation time was set to 50%, which represents the average
usage of the LSTM. We used the range {4, 8, 16, 29} sensors.
29 was the maximum number of sensors deployed in the used
dataset within a communication range of 10 m [38] while
considering the star topology. The purpose of considering a
10m power range was to increase the number of sensors and
investigate the scalability. However, realistic range is typically
shorter due to physical constraints in indoor environments. We
evaluate the performance of LSTM-IP, LSTM-DQN, DNN-
DQN, LSTM-DP, DNN-DP, JGD [7], and EC [4] according
to five metrics: F-score, the average energy (in ws) consumed
by an active sensor, the lifetime of the network in years,
the latency (in ms), and the ratio of missed events. The
network lifetime is the average lifetime of all the sensors–
active and inactive confined. LSTM-IP is not tested for latency
because it is a theoretical baseline and does not run in a
real scenario. We noticed that for more than 8 sensors, the
Softmax performance drops. Therefore, it has been replaced
with a Sigmoid function. A weighted Sigmoid loss was used to
penalize ”false-negatives”. Furthermore, LSTM-DP evaluation
is limited to 8 sensors, as it uses transition probabilities
generated by the Softmax function.

Fig.7 shows that extending the network’s size increases
the F2-score and reduces the ratio of missed events. It also
reduces energy consumption and elongates the lifetime. This
endorses the role of learning spatial correlations in improving
the LSTM prediction. On the other hand, increasing the
number of sensors rises the latency. Notice that for JGD,
the network’s lifetime increases despite the increase on the
average consumed energy of active sensors. The solution
does not balance the load between sensors and provides a
false impression of elongating the network’s lifetime (average
lifetime for active and inactive sensors) while draining the
energy of the most valuable sensors.

We tabulated data values of all the results in the supple-
mentary material.

V. ANALYSIS AND DISCUSSION

A. Novelty and Improvement:

Unlike traditional methods, this solution reduces the energy
spent for both sensing and communications as it predicts
sensor readings and allow long sleep periods for both the
radio and sensing-board. We focused on event-based appli-
cations that are more challenging than periodic monitoring in
which continuous functions can approach the real readings.
The solution uses sequence modeling with LSTM to learn
spatiotemporal correlation, while an RL agent balances the
accuracy/energy. The prediction is for all the sensors and
possible for several future timeslots. It achieved better results
than JGD [7] that suffers from two problems (similarely to
many state-of-the art approaches). First, it only save the less
informative sensors’ energy while putting all the network’s
charge on the most indicative sensors. Consequently, the
latter do not benefit from sleeping periods. Second, long
periods of battery disuse of sleeping nodes leads to battery
self-discharge and deterioration [24]. Therefore, besides the
reported improvement, the proposed solution provides a better
load balancing between sensors and better network manage-
ment.

Our solution also outperformes EC [4], which is a solution
designed to foresee events in a large stream of data. EC holds
on short term data (data from few prior seconds) to make
the prediction. The test results show that this is insufficient.
The proposed LSTM approach can learn short and long term
temporal and spatial patterns in the data through long periods.
The decrease of performance after replacing the LSTM by
a DNN mainly shows the benefit of learning spatiotemporal
correlations. On the other side, we tested the model-based and
model-free RL agents’ performances vs. the optimal decision
(based on knapsack problem solver). The results show the
proposed approaches for RL are close to optimal and converge
with the increasing in power usage. The model-based agent
tends to be more accurate that the model-free, which is more
scalable.

B. Complexity

The overall complexity is the summation of the costs related
to: i) the forward pass of the LSTM model, ii) and the RL
agent algorithm. Hochreiter and Schmidhuber [39] show that
the LSTM complexity in time and space is equal to O(ω),
where ω is the number of the LSTM weights. It depends
on the number of output units, the number of memory cell
blocks and their size, the number of hidden units, the number
of forward units that are connected to memory cells, gate
units, and hidden units. For the model-based RL agent, DP
algorithms scale in time O(|S|2) [30], and the transition table
is of size |S|2, where S is the size of the state space. On
the other side, the complexity of the model-free solution is
equivalent to the forward pass of the Q-network. This is
equal to Θ

(
nh1 + hLu+

∑L−1
i=1 hihi+1

)
, for a network of

n inputs, u output neurons, and L hidden layers, where the
ith hidden layer contains hi hidden neurons.

10

� � �	 ��
�$���"�!��#� #!"#

���

���

���

���

���

���

��	

��

���

��
#�
!"
�

���
��������
�������

�������
�

������
�������

(a) Accuracy

� 	 �� �

�!�������� �� ��

�

�

�

�

	

��

�
��
�#

�"
 �

���
��������
�������

�������
�

������
�������

(b) Average power consumption by a sensor

� 	 �� �

�$���!� ��"��" !"

�

�

�

�

	

��

��
�"
 !
���
��
#��

��
�%
��

!�

���
��������
�������

�������
�

������
�������

(c) Network lifetime

	 � �� �
�%���"�!��#� #!"#

���

���

���

���

��	

��

���

��
$�
 �
&�
��

#�

���
��������

�������
��

������
�������

(d) Latency

� � �� �	
�$���!� ��"��" !"

���

���

���

���

���

���

�
�#
�
�
���

�"
"�
��
�%
��

#"

��
��������
�������

�������
�

������
�������

(e) Missed events ratio

Fig. 7: Scalability tests

C. Scalability

The results reveal that extending the network’s size in-
creases the accuracy. They also confirms that, besides the
temporal correlations, spatial correlations between sensors
enhance the LSTM’s predictions. On the other hand, increas-
ing the number of sensors increases the computational time.
This raises three issues that should be considered in future
work. First, replace traditional LSTM by Convolutional LSTM
[40], which has better performance in tackling spatiotemporal
sequence forecasting problems. Second, appraise the improve-
ment of a cluster-based topology on computational efficiency,
where cluster-heads can perform prediction in parallel. Third,
consider sensors’ optimal deployment [41] to divide the sen-
sors into independent clusters without losing spatial correlation
information. This can potentially decrease the training time as
well.

D. Non-Stationarity and Unfamiliar Cases

In this work, we assumed a stationary environment, i.e.,
the environment’s rules (the state transition probabilities and
reward distributions) do not change over time. However, the
Q-learning algorithm considered in the model-free approach is
an online RL algorithm that can adjust policies to match non-
stationary environments when the changes do not happen too
often. Reinforcement learning in highly dynamic environments
is a more challenging problem and a research trend that we
consider tackling in future work. For data non-stationarity,
we can consider re-training the system periodically. Part of

the future work is also to set a mechanism for detecting
changes and launching a new training phase whenever the
old models do not match the new data. To guarantee the
system’s robustness against infrequently faced states (during
the training phase) we avoided overfitting, i.e., the LSTM
properly generalizes to states outside the training set. Besides,
the improvement brought by including the RL agent proves
that the latter learns to distinguish unfamiliar cases for the
LSTM.

E. Discount Factor Values

Common discount factor values in literature are between
0.9 and 0.99 [31], [42], [43]. We noticed that varying values
between 0.9 and 0.99 has no big impact on the policy’s
performance in our case. For values below 0.5, the agent
performs poorly and the policy is either always “on” or always
“off”. We accordingly set the discount factor to 0.9.

VI. CONCLUSION AND FUTURE WORK

A new approach has been proposed in this paper that enables
accurate prediction of sensor readings in event-based IoT
applications. It allows to turn “off” sensors in periods when
their readings may be predicted and thus preserving the energy
consumed for sensing and communications. The solution uses
an LSTM network for the prediction and an RL agent for
accuracy-energy balancing. We evaluated the solutions using
real datasets and found that the LSTM model was capable
of learning spatiotemporal dependencies better than a finely

11

tuned DNN and statistical approaches. On the other hand, the
RL agent was able to achieve near-optimal performances for
both the model-based and the model-free solution.

This work takes a step toward jointly applying deep learning
and reinforcement learning to face one of IoT limitations;
battery lifetime of the devices (things). To our knowledge, this
is the first that considers predicting sensor readings to reduce
events sensing and transmissions while setting a mechanism
to preserve accuracy. A principal direction for future work
is to investigate the solutions’ scalability on a high number
of sensors. One option would be to divide the sensors into
independent clusters. We also plan to propose a solution that
considers different states for the sensors at the same timeslot.

VII. ACKNOWLEDGEMENT

This work has been carried out in part at CERIST research
center Algeria, in part at UWE Bristol, UK, and in part
at NTNU Trondheim, Norway. This project is also partly
supported by the Arab-German Young Academy of Sciences
and Humanities (AGYA) that has been funded under the
German Ministry of Education and Research (BMBF) grant
01DL16002.

REFERENCES

[1] R. C. Carrano, D. Passos, L. C. S. Magalhaes, and C. V. N. Albuquerque,
“Survey and taxonomy of duty cycling mechanisms in wireless sensor
networks,” IEEE Communications Surveys Tutorials, vol. 16, no. 1, pp.
181–194, First 2014.

[2] H. Malik, A. S. Malik, and C. K. Roy, “A methodology to optimize query
in wireless sensor networks using historical data,” Journal of Ambient
Intelligence and Humanized Computing, vol. 2, no. 3, p. 227, Jun
2011. [Online]. Available: https://doi.org/10.1007/s12652-011-0059-x

[3] F. Emekci, S. E. Tuna, D. Agrawal, and A. E. Abbadi, “Binocular: A
system monitoring framework,” in Proceeedings of the 1st International
Workshop on Data Management for Sensor Networks: In Conjunction
with VLDB 2004, ser. DMSN ’04. New York, NY, USA: ACM,
2004, pp. 5–9. [Online]. Available: http://doi.acm.org/10.1145/1052199.
1052201

[4] S. Silvestri, R. Urgaonkar, M. Zafer, and B. J. Ko, “A framework for
the inference of sensing measurements based on correlation,” ACM
Trans. Sen. Netw., vol. 15, no. 1, pp. 4:1–4:28, Dec. 2018. [Online].
Available: http://doi.acm.org/10.1145/3272035

[5] A. Deshpande, C. Guestrin, S. R. Madden, J. M. Hellerstein, and
W. Hong, “Model-driven data acquisition in sensor networks,” in
Proceedings of the Thirtieth International Conference on Very Large
Data Bases - Volume 30, ser. VLDB ’04. VLDB Endowment,
2004, pp. 588–599. [Online]. Available: http://dl.acm.org/citation.cfm?
id=1316689.1316741

[6] N. Al-Hoqani, S. Yang, and D. P. Fiadzeawu, “Probability model-based
on-demand query processing for wireless sensor networks database,”
in 2017 23rd International Conference on Automation and Computing
(ICAC), Sep. 2017, pp. 1–6.

[7] V. Papataxiarhis and S. Hadjiefthymiades, “Event correlation and fore-
casting over high-dimensional streaming sensor data,” in 2018 14th In-
ternational Conference on Wireless and Mobile Computing, Networking
and Communications (WiMob), Oct 2018, pp. 1–8.

[8] M. Doudou, D. Djenouri, and N. Badache, “Survey on latency issues
of asynchronous mac protocols in delay-sensitive wireless sensor net-
works,” IEEE Communications Surveys Tutorials, vol. 15, no. 2, pp.
528–550, Second 2013.

[9] K. S. Liu, T. Mayer, H. T. Yang, E. Arkin, J. Gao, M. Goswami, M. P.
Johnson, N. Kumar, and S. Lin, “Joint sensing duty cycle scheduling for
heterogeneous coverage guarantee,” in IEEE INFOCOM 2017 - IEEE
Conference on Computer Communications, May 2017, pp. 1–9.

[10] K. S. Liu, J. Gao, S. Lin, H. Huang, and B. Schiller, “Joint sensor duty
cycle scheduling with coverage guarantee,” in Proceedings of the 17th
ACM International Symposium on Mobile Ad Hoc Networking and
Computing, ser. MobiHoc ’16. New York, NY, USA: ACM, 2016,
pp. 11–20. [Online]. Available: http://doi.acm.org/10.1145/2942358.
2942379

[11] F. Engmann, F. A. Katsriku, J.-D. Abdulai, K. S. Adu-Manu, and
F. K. Banaseka, “Prolonging the lifetime of wireless sensor networks:
A review of current techniques,” Wireless Communications and Mobile
Computing, vol. 2018, 2018.

[12] M. Khiati and D. Djenouri, “Adaptive learning-enforced broadcast
policy for solar energy harvesting wireless sensor networks,”
Computer Networks, vol. 143, pp. 263–274, 2018. [Online]. Available:
https://doi.org/10.1016/j.comnet.2018.07.016

[13] Nojeong Heo and P. K. Varshney, “Energy-efficient deployment of
intelligent mobile sensor networks,” IEEE Transactions on Systems,
Man, and Cybernetics - Part A: Systems and Humans, vol. 35, no. 1,
pp. 78–92, Jan 2005.

[14] L. Wang, D. Zhang, Z. Yan, H. Xiong, and B. Xie, “effsense: A novel
mobile crowd-sensing framework for energy-efficient and cost-effective
data uploading,” IEEE Transactions on Systems, Man, and Cybernetics:
Systems, vol. 45, no. 12, pp. 1549–1563, Dec 2015.

[15] H. Park, J. Park, H. Kim, J. Jun, S. Hyuk Son, T. Park, and J. Ko,
“Relisce: Utilizing resource-limited sensors for office activity context
extraction,” IEEE Transactions on Systems, Man, and Cybernetics:
Systems, vol. 45, no. 8, pp. 1151–1164, Aug 2015.

[16] F. Samie, L. Bauer, and J. Henkel, “From cloud down to things: An
overview of machine learning in internet of things,” IEEE Internet of
Things Journal, pp. 1–1, 2019.

[17] G. M. Dias, B. Bellalta, and S. Oechsner, “On the importance and
feasibility of forecasting data in sensors,” CoRR, vol. abs/1604.01275,
2016. [Online]. Available: http://arxiv.org/abs/1604.01275

[18] ——, “A survey about prediction-based data reduction in wireless
sensor networks,” ACM Comput. Surv., vol. 49, no. 3, pp. 58:1–58:35,
Nov. 2016. [Online]. Available: http://doi.acm.org/10.1145/2996356

[19] C. Alippi, G. Anastasi, M. Di Francesco, and M. Roveri, “Energy
management in wireless sensor networks with energy-hungry sensors,”
IEEE Instrumentation & Measurement Magazine, vol. 12, no. 2, pp.
16–23, 2009.

[20] M. Razzaque and S. Dobson, “Energy-efficient sensing in wireless
sensor networks using compressed sensing,” Sensors, vol. 14, no. 2,
pp. 2822–2859, 2014.

[21] V. Raghunathan, S. Ganeriwal, and M. Srivastava, “Emerging techniques
for long lived wireless sensor networks,” IEEE Communications Maga-
zine, vol. 44, no. 4, pp. 108–114, 2006.

[22] X. Wei, Y. Liu, S. Gao, X. Wang, and H. Yue, “An rnn-based delay-
guaranteed monitoring framework in underwater wireless sensor net-
works,” IEEE Access, vol. 7, pp. 25 959–25 971, 2019.

[23] Z. Che, S. Purushotham, K. Cho, D. Sontag, and Y. Liu, “Recurrent
neural networks for multivariate time series with missing values,”
Scientific reports, vol. 8, no. 1, p. 6085, 2018.

[24] X. Fan, X. Liu, W. Hu, C. Zhong, and J. Lu, “Advances in the
development of power supplies for the internet of everything,” InfoMat,
vol. 1, no. 2, pp. 130–139, 2019.

[25] W. B. Heinzelman, “Application-specific protocol architectures for wire-
less networks,” Ph.D. dissertation, Massachusetts Institute of Technol-
ogy, 2000.

[26] N. Merabtine, D. Djenouri, D.-E. Zegour, B. Boumessaidia, and
A. Boutahraoui, “Balanced clustering approach with energy prediction
and round-time adaptation in wireless sensor networks,” International
Journal of Communication Networks and Distributed Systems, vol. 22,
no. 3, pp. 245–274, 2019.

[27] A. Mnih and G. E. Hinton, “A scalable hierarchical distributed language
model,” in Advances in Neural Information Processing Systems 21,
D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, Eds. Curran Asso-
ciates, Inc., 2009, pp. 1081–1088. [Online]. Available: http://papers.nips.
cc/paper/3583-a-scalable-hierarchical-distributed-language-model.pdf

[28] A. A. Mohammed and V. Umaashankar, “Effectiveness of hierarchical
softmax in large scale classification tasks,” CoRR, vol. abs/1812.05737,
2018. [Online]. Available: http://arxiv.org/abs/1812.05737

[29] R. Sutton, A. Barto, and F. Bach, Reinforcement Learning: An
Introduction. MIT Press, 2018. [Online]. Available: https://books.
google.dz/books?id=sWV0DwAAQBAJ

[30] A. Viterbi, “Error bounds for convolutional codes and an asymptoti-
cally optimum decoding algorithm,” IEEE Transactions on Information
Theory, vol. 13, no. 2, pp. 260–269, April 1967.

12

[31] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[32] D. Minoli, K. Sohraby, and B. Occhiogrosso, “Iot considerations, re-
quirements, and architectures for smart buildings—energy optimization
and next-generation building management systems,” IEEE Internet of
Things Journal, vol. 4, no. 1, pp. 269–283, Feb 2017.

[33] D. Djenouri, R. Laidi, Y. Djenouri, and I. Balasingham, “Machine
learning for smart building applications: Review and taxonomy,” ACM
Comput. Surv., vol. 52, no. 2, pp. 24:1–24:36, Mar. 2019. [Online].
Available: http://doi.acm.org/10.1145/3311950

[34] C. Wren, Y. Ivanov, D. Leigh, and J. Westhues, “The merl motion
detector dataset,” in Workshop on Massive Datasets (MD), Nov. 2007,
pp. 10–14. [Online]. Available: https://www.merl.com/publications/
TR2007-069

[35] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
PyTorch,” in NIPS Autodiff Workshop, 2017.

[36] C. Goutte and E. Gaussier, “A probabilistic interpretation of precision,
recall and f-score, with implication for evaluation,” in Advances in
Information Retrieval, D. E. Losada and J. M. Fernández-Luna, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 345–359.

[37] “Ultra-low-power wireless pir motion detector for cost-optimized sys-
tems reference design,” https://www.ti.com/lit/ug/tiducu5/tiducu5.pdf,
accessed: 2019-08-06.

[38] I. Kuzminykh, A. Snihurov, and A. Carlsson, “Testing of communication
range in zigbee technology,” in 2017 14th International Conference
The Experience of Designing and Application of CAD Systems in
Microelectronics (CADSM). IEEE, 2017, pp. 133–136.

[39] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, p. 1735–1780, Nov. 1997. [Online]. Available:
https://doi.org/10.1162/neco.1997.9.8.1735

[40] S. Xingjian, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-
c. Woo, “Convolutional lstm network: A machine learning approach for
precipitation nowcasting,” in Advances in neural information processing
systems, 2015, pp. 802–810.

[41] R. Laidi and D. Djenouri, “Udeploy: User-driven learning for occupancy
sensors deployment in smart buildings,” in 2018 IEEE International
Conference on Pervasive Computing and Communications Workshops
(PerCom Workshops), March 2018, pp. 209–214.

[42] G. Palmer, K. Tuyls, D. Bloembergen, and R. Savani, “Lenient multi-
agent deep reinforcement learning,” arXiv preprint arXiv:1707.04402,
2017.

[43] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement
learning for robotic manipulation with asynchronous off-policy updates,”
in 2017 IEEE international conference on robotics and automation
(ICRA). IEEE, 2017, pp. 3389–3396.

