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A B S T R A C T

The extent to which advanced waveform analysis of non-invasive physiological signals can

diagnose levels of hypovolemia remains insufficiently explored. The present study explores

the discriminative ability of a deep learning (DL) framework to classify levels of ongoing

hypovolemia, simulated via novel dynamic lower body negative pressure (LBNP) model

among healthy volunteers. We used a dynamic LBNP protocol as opposed to the traditional

model, where LBNP is applied in a predictable step-wise, progressively descending manner.

This dynamic LBNP version assists in circumventing the problem posed in terms of time

dependency, as in real-life pre-hospital settings intravascular blood volume may fluctuate

due to volume resuscitation. A supervised DL-based framework for ternary classification

was realized by segmenting the underlying noninvasive signal and labeling segments with

corresponding LBNP target levels. The proposed DL model with two inputs was trainedwith

respective time–frequency representations extracted on waveform segments to classify

each of them into blood volume loss: Class 1 (mild); Class 2 (moderate); or Class 3 (severe).

At the outset, the latent space derived at the end of the DL model via late fusion among

both inputs assists in enhanced classification performance. When evaluated in a 3-fold

cross-validation setup with stratified subjects, the experimental findings demonstrated

PPG to be a potential surrogate for variations in blood volume with average classification

performance, AUROC: 0.8861, AUPRC: 0.8141, F1-score:72.16%, Sensitivity:79.06%, and

Specificity:89.21%. Our proposed DL algorithm on PPG signal demonstrates the possibility
ineering of

o, Norway.
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to capture the complex interplay in physiological responses related to both bleeding and

fluid resuscitation using this challenging LBNP setup.
� 2023 The Author(s). Published by Elsevier B.V. on behalf of Nalecz Institute of Biocyber-

netics and Biomedical Engineering of the Polish Academy of Sciences. This is an open access
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Hemorrhage with blood volume loss is one of the leading

potentially preventable causes of death in trauma patients

[1]. Hypotension is a late sign during blood volume loss due

to associated physiological compensatory mechanisms. For

this reason, early diagnosis of ongoing mild to moderate hem-

orrhage is difficult, especially in young and healthy subjects.

Even invasive arterial blood pressure (ABP), exhibits poor sen-

sitivity due to human compensatory responses [2]. The other

vital signs, including heart rate and blood oxygen saturation,

also have low specificity and sensitivity for estimating blood

volume loss.

Researchers have resorted to exploring various models

that can artificially simulate hemorrhage. One such model

is LBNP [3–5]. In this model of hypovolemia, healthy volun-

teers are placed in an air-tight chamber to which different

levels of negative pressure is applied. This retains blood in

the veins of the lower extremities and pelvis, creating graded

central hypovolemia. Different LBNP-levels correspond to dif-

ferent levels of hypovolemia. Most studies to date [4–6], have

applied LBNP in a predictable stepwise, progressive descend-

ing manner based on the hypothesis that ”as the time elapses

there is a substantial steady and linear loss of blood among the test

subjects”. When testing algorithms for classifying levels of

LBNP and degree of hypovolemia, this predictability based

on time of LBNP can pose a problem. For instance, in a real-

life pre-hospital emergency setting, volume resuscitation

may be administrated during ongoing bleeding. We therefore

propose an experimental setup with added degree of random-

ness in LBNP levels to avoid complete predictability by time.

For the same reason, we also introduce unequal duration at

each LBNP level. Hence, our proposed experimental setup is

an attempt to emulate the patient with bleeding and fluid

resuscitation as may be the case in pre-hospital treatment.

This experimental model is more robust in the classification

of the entire dynamic LBNP trajectory for the simulated hem-

orrhage. To our knowledge, no such reliable artificial intelli-

gence method currently exists to predict the different

likelihoods among the entire trajectory of applied LBNP, and

thus assist to infer the stage of hemodynamic instability inde-

pendent of time.

Recently, studies on artificial intelligence (AI) based algo-

rithms have indicated that continuous analyses of noninva-

sive arterial waveform analysis (AWFA) reflect the

information pertaining to the compensatory mechanisms

compared to other standard vital signs [3,7,8]. Thus, making

the earlier diagnosis of hemorrhage possible by the detection

of hypovolemia prior to overt hemodynamic decompensation

[9,10]. Hence, the design of such AI-driven predictive algo-

rithms holds the potential to reduce morbidity and mortality
among patients with hemorrhage [11,12]. In the initial screen-

ing of trauma patients, assessment is often restricted to the

electrocardiogram (ECG), non-invasive photoplethysmogra-

phy (PPG; giving arterial oxygen saturation), and blood pres-

sure. The former two are routinely represented by

continuous waveforms, whereas blood pressure is routinely

measured intermittently in this clinical setting. Moreover, it

is also possible tomeasure blood pressure continuously, either

invasively or non-invasively [13,14], in an emergency setting.

However, the PPG signal is generally considered a potential

measure for variations in blood volume because of its ability

to detect intravascular volume changes [1,2,15]. Prior studies

have reported that PPG-based amplitude-derived features

have the potential to measure dynamic blood volume loss

[16]. Pulse-arrival-time [17,18] (based on both ECG and PPG)

also known as pulse transit time is used in arterial wave prop-

agation theory for blood loss estimation [19]. Current early

hemorrhage detection studies based on machine learning

(ML) approaches rely on AWFA that mostly employs morpho-

logical changes in the features of PPG signals [2,4,20–22]. How-

ever AWFA coupled with ML techniques and the

aforementioned techniques involves complex feature extrac-

tion to capture the subtle information for the compensatory

mechanisms in the arterial waveforms. Following are the lim-

itations involved in the cumbersome feature extraction for

PPG morphological theory and artery wave propagation the-

ory: (i) In artery wave propagation theory, the fiducial points

of each heartbeat in both ECG and PPG need to be extracted

correctly [23,24]. (ii) This further adds the need to have proper

sync among the two modalities and also both signals have to

be of high quality. (iii) It is inevitable to have optimal filtering

[25]. Hence, the morphological features are quite sensitive to

signal quality, movement (placement) of the sensors, towards

skin properties, and hence hinder the performance [26].

Unlike the analysis of non-invasive signals in the time-

domain, which involves beat-to-beat quantification within a

sole respiratory cycle, a sequence of breaths (5–10 typically)

is quantified in the spectral analysis [15,27] for estimating

blood volume loss. Prior studies [6,15] that coupled LBNP

experiment setup with AI have efficiently used time–fre-

quency (T-F) spectral methods for the assessment of blood

volume loss in awake, spontaneously breathing subjects.

The present study also focuses on the assessment of two

non-invasive signals viz., ECG and PPG using high- resolution

transient signatures based on T-F spectral analysis to detect

progressive hypovolemia in awake spontaneously breathing

subjects.

The present study aimed to (i) determine to what extent

non-invasive ECG and PPG waveforms when coupled with

ML (more specifically DL) predictive analytics can classify

the degree of hypovolemia in healthy volunteers undergoing

http://creativecommons.org/licenses/by/4.0/


Table 1 – Study population demographics.

Factor Subject Group (All Subjects)

Gender (n = 23) 13 Female, 10 Male
Age 29.56 � 3.55

Weight 71.15 � 13.06
Height 173.39 � 10.32

Body Mass Index 23.43 � 2.77
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LBNP with added randomness both in level and duration of

each LBNP-level to reduce the effect of time, (ii) to compare

the diagnostic capability of efficient T-F representation

schemes with classical feature extraction methods.

2. Background and applications of LBNP

LBNP is a widely used technique to induce central hypov-

olemia, which triggers compensatory hemodynamic

responses in humans [28]. Central hypovolemia triggers com-

plex systemic compensatory responses, and understanding

these responses is crucial. LBNP has been extensively

employed to investigate the integrated physiological

responses that occur during orthostasis, different levels of

hemorrhages, and space-flight. Moreover, research on LBNP

has been utilized to investigate seasonal variations in hor-

monal, autonomic, and circulatory states that affect LBNP-

induced hemodynamic responses and tolerance, as well as

sex-based differences during central hypovolemia and adap-

tations to exercise training [29–33]. The data generated from

LBNP studies have contributed to the development of better

models for predicting orthostatic tolerance [34], vasoconstric-

tion [35], alterations in skin microcirculation dynamics [36],

and countermeasures [37] against the effects of central

hypovolemia.

Akin et al. [38] studied the acute effects of postural

changes and the application of both lower body positive

and negative pressures on the eyes. The effects of hydro-

static gradients and fluid shifts on the eye were investi-

gated by inducing a fluid shift in both the supine and

prone postures produced by LBNP and lower body positive

pressure (LBPP). A similar study by Gallardo et al. [39] aimed

to evaluate the changes that occur in parameters relating to

muscle work and muscle hemodynamics under the influ-

ence of upright LBNP application during walking. The appli-

cation of LBNP showed elevated work characteristics,

mainly on the work output and less local muscle hemody-

namics. The study hypothesized that LBNP-based treadmill

could be a time-efficient training tool for stressing the mus-

culoskeletal system, faster improve body composition and

potentially enhancing cardio-respiratory fitness in general

adult population. Kenny et al. explored the employment

of LBNP protocol to develop a wireless ultrasound patch

that can detect mild-to-moderate central hypovolemia. In

these studies [40–42] a wireless, wearable Doppler ultra-

sound system that continuously measures the common

carotid artery Doppler pulse was developed. A novel mea-

sure from this device, the Doppler shock index, accurately

detected moderate-to-severe central blood volume loss in

a human hemorrhage model generated by lower body neg-

ative pressure. A similar study by Raj et al. [43] investigated

the ability of high-frame-rate ultrasound for calibration-

free cuff-less carotid pressure system to capture dynamic

responses of carotid pressure to LBNP and compared

against the responses of peripheral pressure measured

using a continuous BP monitor. A review study by Kimball

et al. [44] explores the application of LBNP-induced hypov-

olemia and its association with health and performance

problems common to occupational, military, and sports
medicine using wearable sensors and machine learning.

This review highlights and discusses the biological ratio-

nale for compensatory reserve and decompensation status

and presents their sensitivity to numerous hypovolemia

perturbations in human and animal models.

In the animal-based clinical study, by Berboth et al. [45] the

researchers investigated the impact of incremental levels of

LBNP on hemodynamic regulation in closed-chest pigs using

invasive pressure–volume assessment. They found that as

the preload was gradually reduced through LBNP, it caused

negative pressures in the left ventricle of the heart, leading

to increased suction and a more forceful pumping of blood.

This increase in suction during relaxation, known as diastolic

suction, is associated with central hypovolemia induced by

LBNP. This study sheds light on the complex cardiovascular

responses to LBNP-induced hypovolemia and could have

implications for developing new treatments for related clini-

cal conditions. A comparative study [46] between two differ-

ent LBNP protocols, one using a continuous ramp protocol

and the other using a traditional step protocol was carried

out to compare tolerance and hemodynamic responses

between these two LBNP profiles. The researchers found that

the tolerance to lower body negative pressure (LBNP) induced

by a continuous ramp protocol applied at a rate of 3 mmHg/

min was similar to that of a traditional step protocol which

progressively decreases in 5-min steps. Despite similar levels

of central hypovolemia and hemodynamic responses

between the ramp and step protocols, there were differences

in the responses of cerebral blood velocity and oxygenation.

The step protocol resulted in a greater increase in cerebral

oxygen extraction and similar LBNP tolerance, likely due to

facilitating the matching of metabolic supply and demand.

The study highlights the importance of considering the pres-

sure profiles when comparing LBNP-induced cardiovascular

responses across different laboratories. Further research is

needed to compare these responses to actual hemorrhage.

3. Materials and methods

3.1. Study population and data sources

The study was approved by the regional ethics committee

(REK sør-øst C/ 2019/ 649). After written informed consent,

23 healthy volunteers aged between 18 and 40 years were

included in the study. Pregnancy and/or cardiovascular dis-

ease with medication were exclusion criteria. Demographic

information for the given study population is summarized

in Table 1. Relevant information is presented as mean � stan-

dard deviation, where applicable.



Fig. 2 – Illustration showing the test subject inside the lower

body negative pressure (LBNP) chamber sealed just above

the iliac crest.
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Three-lead ECG was sampled from the Solar 8000i (GE

Medical Systems) and a BioAmp/ PowerLab (ADInstruments,

Bella Vista, Australia). PPG was sampled from a Masimo Rad-

ical 7 pulse oximeter, software 7.3.1.1 (Masimo Corp., Irvine,

CA, USA). The sampling rate was 1000 Hz.

3.2. Experimental protocol

The experimental setup used a dynamic LBNP version to study

hypovolemia as opposed to the traditional model, where LBNP

is applied in a predictable step-wise, progressively descending

manner. Fig. 1. shows the difference between the traditional

and dynamic LBNP protocols. We refer the readers to [28] for

preliminaries and further details on traditional LBNP setup.

The lower part of the volunteers’ body is subjected to a negative

atmospheric pressure applied via the pressure chamber at the

level of iliac crest as shown in Fig. 2. Blood is drawn towards legs

and pelvis, to reduce central blood volume and thus emulate

hemorrhage. Before the experiment started, the subject was

familiarized with the setup resting in the supine position.

Thereafter, the subjects were exposed to stepwise LBNP starting

at 0 mmHg with unequal and abrupt changes in negative pres-

sure, for every two or three minutes. To avoid complete pre-

dictability by time, a degree of randomness was added

through the experiment as compared to the general trend of

progressive descending LNBP as shown in Fig. 1. It is to be noted

that in order to increase the total trials in this cohort study, each

subject was subjected thrice to different dynamic LBNP experi-

mental protocol. So, the resulting study cohort had 69 LBNP tri-

als from 23 subjects. In the case of each subject, the experiment

ended at the point of hemodynamic decompensation, indicated

as a sudden decrease in arterial pressure and/ or symptoms of

impending circulatory collapse such as loss of color vision

(gray-out), nausea or dizziness bradycardia, or sweating [47].

Once the decompensation point was reached, the application

of LBNP was released immediately to ambient pressure.

3.3. ML framework for classification

Fig. 3. shows the overview of the proposed DL-based predic-

tive model development at the higher level with the key
Fig. 1 – Illustration showing the difference between the progress

LBNP experimental protocol as used in the present study (b).
phases involved in the algorithm. The proposed DL-based

framework is applied for both the non-invasive signals; ECG

and PPG. However, for illustration only PPG signal is consid-

ered thought the article.

3.3.1. Data curation
The complete trajectory of the LBNP trial comprises a baseline

test followed by the onset of LBNP till the pre-syncope (i.e.,

end-stage of LBNP) as shown in Fig. 4 (a) or completion of

the protocol. The various time points defining the hemody-

namic decomposition levels in the entire trajectory of the

LBNP trial are marked by employing the ‘findchangepts’ func-

tion in MATLAB. The ‘findchangepts’ function is based on para-

metric global method as described in studies [48] for signal

changepoint detection. Hence this function can detect the

abrupt changes in the LBNP trial accurately in terms of

decomposition target levels as in Fig. 4 (b), thus establishing

the ground truth. The mapping algorithm mentioned in

Table 2 is then used to formulate the ground truth for the

ternary classification among LBNP target levels. In order to
ive descending stepwise negative LBNP setup (a) and random



Data Collection

Curated Datastore
23 subjects each with 3 

runs. 69 trials in total

2
1

5 23
4

Segmentation

15 seconds LBNP
Level Class

1, 2 1

5, 6, 7 3

3, 4 2

1, 2 1

Training Cohort
16 subjects each with 3 

runs. 48 trials in total

Testing Cohort
7 subjects each with 3 
runs. 21 trials in total

3-Fold Cross-validation
subject-wise 
stratification

70%

30%

Training the proposed 
DL-based framework

Testing the proposed 
DL-based framework 

after being trained

Class 
Prediction

Segmentation

15 seconds LBNP
Level Class

1, 2 1

5, 6, 7 3

3, 4 2

1, 2 1

Featurization from the 
raw waveform and its 

spectrograms

Featurization from the 
raw waveform and its 

spectrograms

Fig. 3 – Phases of the proposed deep learning-based framework. The framework includes three main phases: i)Data curation,

ii) Featurization of non-invasive pulse waveforms (both, ECG and PPG), and iii) Model development for classification. Data

curation involves signal preprocessing, defining training and test cohorts based on subject stratification, segmentation of

both cohorts, and annotation of waveform segments. Annotation is done by assigning different hemodynamic LBNP target

levels and mapping them into three classes. Next, feature extraction is performed on raw waveform segments, and finally, a

Fig. 4 – (a) Illustrates LBNP trial with N = 5 change points; (b) shows the detection of endpoints marked in time using the

’findchangepts’ function.
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predict blood volume loss via LBNP trial, it is divided into 3

classes (Class 1 (mild):baseline to �10 mmHg; Class 2 (moder-

ate): �20 to �30 mmHg; Class 3 (severe): over �40 mmHg).

These levels correspond to estimated blood losses of 300–

500 cc, 500–800 cc and greater than 800 cc respectively. This

idea of association mapping between LBNP volume status to

3 classes for artificial distinction is inspired from the study

performed by Soo-Yeon Ji et al. [49].

The ‘findchangepts’ function takes the number of change-

pointsN as input and accurately marks the end-points in time

for each LBNP target level. Once the endpoints are detected,
proper labeling of each time point with a target LBNP level

for supervised machine learning becomes feasible. The

abrupt changes in the LBNP trajectory trial are then modeled

as a sequence of linear steps corresponding to the applied

LBNP reference signal. As an illustration, linear and step-

wise training targets for a particular LBNP trial are marked

in Fig. 5 (a)-(c), together with the corresponding applied refer-

ence LBNP signal.

Once the ground truth is established a supervised DL-

based framework is formulated to predict and classify the

complete trajectory run of the LBNP reference signal. This is



Table 2 – The mapping algorithm to formulate the ground
truth for the LBNP target levels.

Target Level LBNP Class Definition

1 0 mmHg Class 1
2 �10 mmHg

3 �20 mmHg Class 2
4 �30 mmHg

5 �40 mmHg
6 �50 mmHg Class 3
7 < �60 mmHg

556 b i o c y b e r n e t i c s a n d b i o m e d i c a l e n g i n e e r i n g 4 3 ( 2 0 2 3 ) 5 5 1– 5 6 7
achieved by segmenting the underlying non-invasive wave-

form of each subject into equal segment lengths of 15 s with

an overlap of 10 s. Physiologically, a segment length of 15 s

duration is chosen so that it captures several (12–15) heart-

beats comprising at least one respiratory cycle [3,47]. Each

such waveform segment is associated with one of the three

class definitions as ground truth defined in Table 2, and is

treated as an individual sample of observation for training

the proposed model. This results in a large number of obser-

vations as training samples from the original subjects with a

limited number.

Next, feature extraction is performed on these waveform

segments using time–frequency analysis on both non-

invasive signals. The ML models are then trained with the

derived feature set to classify each of 15 s waveform segments

into either of the three classes.

3.3.2. Classification model
A unified DL-based model with multiple (two) inputs/

branches is designed for the desired ternary classification

task. The structure details with various layers in the respec-

tive branches of the proposed network architecture for the

unified model is presented in Fig. 6. The designed unified

model is constructed by training a mixture of two unique T-

F representations for the respective branches, viz., T-F

moments being fed to the upper input (Branch 1) of the net-

work architecture as shown in Fig. 6. The detailed explanation
Fig. 5 – (a) Illustration of the applied reference LBNP trajectory s

hemodynamic decomposition levels; (b) sequence of linear step

the algorithm; (c) detected sequence of linear steps correspondi

ground truth.
of the feature extraction in terms of T-F moments derived

from the spectrograms of given waveform segments is pre-

sented in the subsequent section 3.3.3. The lower input

(Branch 2) of the network is initially fed with a raw waveform

segment which is further converted into a logaritham scale-

based 2-D spectrogram by custom-defined ‘log spectrum layer’

to train the subsequent 2D-CNN layers. The need and advan-

tage of such custom-defined ‘log spectrum layer’ are also

described in section 3.3.3.

3.3.3. Featurization
In this work, efficient feature extraction is realized by explor-

ing T-F analysis of the underlying non-invasive signal. Thus

the time-series signal in the 1-D domain as depicted in

Fig. 7(a) is converted into the 2-D real plane (see Fig. 7(b)) to

extract transient signatures. In literature, spectrogram-

based T-F analysis, has been extensively employedwith recur-

rent and convolutional neural networks (CNNs) to extract

diagnostic signatures for various clinical applications [50,51].

However, dimensional reduction of the resultant time–fre-

quency feature space can reduce the complexity of the algo-

rithm and improve the classification performance with

increased intelligibility for decision-making. This can be rea-

lised in practice by extracting T-F moments from the spectro-

grams. The present study explores two such moments in the

T-F domain viz., spectral entropy (SE) and instantaneous fre-

quency (IF) [50,52]. Figs. 7(c) and 7(d) illustrates the differences

between IF and SE for windowed hemodynamic LBNP regions

of the typical PPG signal. These T-F moments derived from the

spectrograms of the noninvasive signal provide the best gran-

ular information of the two worlds, both fine-granularity and

coarse-granularity. This can be explained as follows. For fine-

granularity, first the given raw waveform segment of 15 s,

sampled at 1000 Hz (corresponds to 15000 discrete time ser-

ies) is first converted to length N of radix-2. i.e. N ¼ 2n, where

n is a positive integer. This is achieved either by truncating

the discrete time series or by padding it with zeros so that

N ¼ 2n. In our case, for a discrete time-series with an initial

length of 15000, the next close radix-2 number is
ignal inherited with abrupt changes(N = 5) among

s in ‘‘red” represents the profile of ground truth detected by

ng to the applied abrupt LBNP reference signal, later used as



Fig. 6 – Network architecture of the proposed unified DL-based framework.
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N ¼ 214=16384. So the time-series segment is padded with

zeros to increase its length to 16384. Then for finer-

granularity the time series is binned with a window function

of length 64 to form 256 time windows. Later, for coarse gran-

ularity, the central moment from power-spectrogram is com-

puted, which corresponds to the center of the time windows.

The IF is the time-dependent frequency of a signal under

interest and is computed as the first moment from the power

spectrum that represents the spectral density resulting from

short-time Fourier transforms as defined in Eq. (1), where

Pðt; fÞ is the power spectrum of the time-window [53].

IFðtÞ ¼
R1
�1 fPðt; fÞdfR1
�1 Pðt; fÞdf ð1Þ

For a given non-invasive signal (sampled at 1000 Hz) wave-

form segment with a duration of 15 s, a feature vector of

256 lengths is obtained by computing spectrograms over

256-time windows. The output values are IF, in time, i.e. IF

(t), corresponds to the center of the time windows.

The SE combines the knowledge of spectrogram-based

spectral density analysis with the information-theoretic

measure- Shannon entropy [53]. SE reflects the degree of ran-

domness (uncertainty) or the regularity (deterministic pat-

terns) in the signal of interest. A spiky or random signal has

low SE, while deterministic signals like white noise with a flat

spectrum have higher SE values. The estimation procedure of

SE is similar to IF and uses 256-time windows for the corre-

sponding non-invasive signal waveform segment with dura-

tion of 15 s. However, SE considers the normalized power

distribution in the frequency domain as a probability distribu-

tion of the signal and calculates its Shannon entropy. There-

fore, the calculated Shannon entropy is contextually known

as the SE of the signal. Given a T-F power spectrogram P(t,

f), the probability distribution at frequency point n, n = 1,. . .,

N; and time t, 0 6 t 6 T; denoted as p(t, n), is:
pðt;nÞ ¼ Pðt;nÞX

f

Pðt; fÞ ; ð2Þ

where f 2 [0,f s/2], and f s = 1000 Hz, sampling frequency. Then

SE at time t, denoted as SðtÞ, is given as [53]:

SðtÞ ¼ �
XN

n¼1

pðt;nÞlog2pðt;nÞ: ð3Þ

The custom definition of ‘log spectrum layer’ layer uses the ‘dl-

stft’ function in MATLAB for computing short-time Fourier

transforms that inherently support automatic backpropaga-

tion. The need and the advantage of such a custom realiza-

tion of the network layer can be explained as follows. When

any pre-processing steps, involving signal processing are per-

formed outside the DL network, then predictions might differ

due to different pre-processing settings in comparison to

those used in training of the network [54]. This can impact

the performance of the network (to be poorer than expected).

Placing the pre-processing computations (in this case spectro-

grams) inside the network as a layer results in self-contained

model and simplifies the pipeline for deployment with effi-

cient handling of storage. The logarithm-based scale of the

spectrogram is considered in training the deep networks

because it acts like a dynamic range compressor. This boosts

the representation scheme having values with small magni-

tudes (amplitudes) but still carrying important information.

4. Experiments and results

4.1. Dataset stratification for cross-validation

The proposed framework performed predictive analytics on

the given non-invasive wave-form segments of both ECG

and PPG signals from the patient records to determine the

degree of risk in hypovolemia development by classifying

the reference LBNP trajectory into 3 classes. The experimental



Fig. 7 – (a) Illustration of raw PPG waveform segments for the three different classes; (b) Spectrograms derived from the raw

PPG waveform segments shown in (a); (c) Instantaneous frequencies; (d) Spectral entropies computed from the spectrograms

shown in (b).
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Table 4 – Optimized model hyper-parameters with training
option values.

Model hyper-parameters & Training options Values

L2 Regularization 0.1
BatchSize 10
learning rate 0.001
LearnRateDropFactor 0.1
LearnRateDropPeriod 20
LearnRateSchedule piecewise
MaxEpochs 80
Optimizer SGD
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study was performed using threefold cross-validation based

on a patient-wise stratification scheme, with each fold con-

taining a unique �30% of the entire dataset. i.e., The model

is trained and developed using �70% (16 subjects) of total data

and the remaining �30% (7 subjects) data is considered for

validation. Thus, the total data comprising 23 subjects is

divided into stratified, three unique training and test sets con-

taining 16 and 7 subjects respectively to perform threefold

cross-validation.

Defining stratified cohorts in terms of individual subjects

is very much important during training and testing, since

over-fitting (high variance) is usually observed in experiments

where validation waveform segments are selected from the

pool of all subjects. It is to be noted that each subject is sub-

jected thrice to the LBNP experimental protocol. So, the

resulting training cohort included training waveform seg-

ments with 48 LBNP trials from 16 unique subjects and the

testing cohort included waveform segments with 21 LBNP tri-

als from the remaining unique 7 subjects. The sample distri-

bution of waveform segments in the threefold validation

setup is listed in Table 3. Further it is worth mentioning that

the overlap of 10 s duration is performed only during training

and is omitted during the segmentation of test subjects, to

keep the ratio of 3:1 among the waveform segments of train

and test cohorts.

4.2. Model design and training

The proposed DL-based classification model was developed

using the DL toolbox in MATLAB with NVIDIA GeFore GTX

1080Ti. In a 3-fold cross-validation setup, the proposed model

was trained on subject-wise stratified three-folds and the

optimized hyper-parameters that minimize the cross-

validation loss are listed in Table 4. The optimal network

hyper-parameters and training options were obtained by per-

forming Bayesian optimization using ‘Experiment Manager’ in

MATLAB. An objective function was formulated for the under-

lying Bayesian optimization on model hyper-parameters that

intend to maximize the F1-score.
Table 3 – Sample distribution of waveform segments for
model training and validation in 3-fold cross-validation.

Training

Fold 1 Fold 2 Fold 3

Class 1 1263 1215 1174
Class 2 1843 1866 1955
Class 3 1997 2079 2055

Total 5103 5160 5184

Testing

Fold 1 Fold 2 Fold 3

Class 1 301 333 365
Class 2 601 582 598
Class 3 633 582 546

Total 1535 1497 1509
The model was trained using the stochastic gradient des-

cent optimizer (SGD) with the help of the cross entropy loss

given by:

L ¼ �
Xn

i¼1

ti � logðpiÞ; ð4Þ

where ti is the true label and pi is the softmax probability for

the ith class and n is the number of classes.

4.3. Results of the proposed framework

Tables 5 and 6 present the classification performance of the

proposed method in a 3-fold cross-validation setup for both

non-invasive signals, ECG and PPG respectively. The experi-

mental results are initially evaluated and verified using the

area under the receiver operating characteristic (AUROC)

curve analysis in one vs others format for multi-class sce-

nario. As an illustration, the individual AUROCs for each class

with their corresponding model operating point, together

with the average AUROC value for each fold, in a 3-fold

cross-validation setup for PPG signal is shown in Fig. 8. How-

ever, there exists a severe imbalance in data points among the

three classes in terms of the available number of waveform

segments. Hence, average precision-recall curves are also

analyzed as shown in Fig. 9. Further, the harmonic mean

between precision and recall, i.e., F1-score is also presented

in Tables 5 and 6.

4.4. Ablation experiments

Further, to justify and emphasize the clinical performance of

the proposed unified network architecture, a subjective anal-

ysis of the latent space derived from the late-fusion at the end

of DL unified model is done against the ablation experiments.

These ablation studies involve testing the performance of the

individual model in a respective branch on the desired classi-

fication by excluding the computation of other branch model.

As a part of the aforementioned ablation experiments, we

performed two well-tuned individual model training meth-

ods. In the first method, the model trained only with T-F

moments from branch 1 of Fig. 6 is considered excluding

the effect of ‘log spectrum layer’ from branch 2 of the unified

DL model. For the latter ablation method the experimental

setup is vice versa. The results for these ablation experiments

are also presented in Tables 5 and 6 for ECG and PPG signals

respectively. Model hyper-parameters were always consistent



Table 5 – Summary of cross-validation results for the proposed method and the ablation experiments on ECG signal.

Models T-F moments Log-spectrograms AUROC F1score Sensitivity Specificity

Branch 1 U 0.6732 53.12 61.14 69.05
Branch 2 U 0.6432 49.12 57.14 61.05

Proposed Study U U 0.6953 56.67 59.45 69.77

Table 6 – Summary of cross-validation results for the proposed method and the ablation experiments on PPG signal.

Models T-F moments Log-spectrograms AUROC F1score Sensitivity Specificity

Branch 1 U 85.64 68.81 67.74 84.90
Branch 2 U 84.72 67.98 66.22 83.45

Proposed Study U U 0.8861 72.16 79.06 89.21

Fig. 8 – Receiver-operating characteristic curves displaying the ability of the proposed unified model to perform the desired

classification task in a 3-fold cross-validation setup for PPG signal.

Fig. 9 – Precision-Recall curves displaying the ability of the proposed unified model to perform the desired classification task

in a 3-fold cross-validation setup for PPG signal.
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across these evaluations as enlisted in Table 3. As seen in

Tables 5 and 6, the performance of the proposed unified

model alone with late fusion was significantly higher in com-

parison to the individual ablations and further, the PPG signal

outperformed ECG using the proposed unified model.

4.5. Comparative experimental analysis

The most commonly studied theories in the research context

of artificial distinction within simulated hemorrhage are arte-

rial waveform analysis, which explores features in terms of

fiducial points obtained from PPG derivatives and the heart

(pulse) rate variability i.e., HRV (PRV)-based features from

ECG and (or) PPG. Further, PPG morphological theory is also

studied that mainly explores PPG signals. As mentioned ear-

lier in section 3.3.3 this study used raw waveform segments

and explored time–frequency representations to capture the

transient signatures for the desired classification task. The

reason behind resorting to T-F representations was to elimi-

nate the limitations (mentioned in the introduction) exhibited

by the cumbersome feature extraction involved in classical

methods of AWFA (PPG morphological theory, HRV, PRV and

artery wave propagation theory).

To support our hypothesis that the proposed T-F-based DL

approach on given waveform segments is more efficient than

the above-mentioned classical methods, we perform the

comparative analysis with the following baseline studies w.

r.t. two noninvasive modalities i.e. ECG and PPG.

4.5.1. ECG analysis

� HRV features: Inter-beat-interval information is obtained

by calculating the RR interval of each waveform segment.

Pan-Tompkins algorithm is employed to efficiently detect

QRS wave and subsequently the R peaks. HRV-based fea-

tures in time and frequency-domain are extracted from

the derived RR intervals [55]. More details on HRV based

features are presented in Table A1 of Appendix A.

� Nonlinear features: Several nonlinear signatures from ECG

were extracted. Entropy-based features inspired from the

research Entropy-hub [56], auto-regressive coefficients

from themodel with order 4, Shannon entropy values from

the sub-bands resulting using level 4 decomposition on

maximal overlap discrete wavelet packet transform [57],

and Multifractal wavelet-based features of the scaling

exponents were also extracted. These nonlinear features

were chosen as per the state-of-the-art research demon-

strating their effectiveness in various ECG classification

tasks. Detailed explanation of the extracted nonlinear fea-

tures is presented in Appendix A.

� Time–frequency analysis: Various T-F representations viz.,

scalograms, spectrograms, and wavelet scattering etc., were

also explored to capture the transients of the ECG signalwave-

form segments. However, the scalogram-based CNN-LSTM DL

model yielded better performance among T-F analysis.
T
a



Table 8 – Summary of ML-based clinical studies performed using LBNP for automated detection of simulated hemorrhage and
(or) classification of blood volume decompensation.

Research Study Methods (Features) Model Results

Convertino et al. [4] Non-invasive hemodymaic

features: BP, EtCO2 ,

pulse character, and respiratory rate

Regression Analysis Leave-one-subject-out strategy Accuracy: 96.50% Correlation Coefficient(R):

0.89

Convertino et al. [3] Techentin et al. [47] CRI & CRM Logistic Regression Analysis,

CNN 10% hold out validation

Binary classification AUROC: 0.9268 (CRM)

AUROC: 0.9164 (CRI)

Bjorn J.P.van der et al. [5] BP Curve dynamics, SV, CO, EtCO2 , TCD SVM Leave-one-subject-out strategy 3-class classification study Sensitivity: 78.21%

Specificity: 91.51%

Bjorn J.P.van der et al. [60] 1-D Cubic Hermite splines interpolation + PCA SVM Leave-one-subject-out strategy 4-class classification study Accuracy: 57%

MSE: 0.26 Kappa: 0.4650

Soo-Yeon Ji et al. [6] HRV analysis + Wavelet Transformation LibSVM Leave-one-subject-out strategy Binary classification Accuracy: 89.1% AUROC:

0.86 3-class

classification study Accuracy: 69.5%

Fadil et al. [61] Wavelet transform coherence + Causality analyses. Logistic Regression Analysis

Leave-one-subject-out strategy

Binary classification (LT vs HT) Accuracy: 63% -

89.1% AUROC: 0.74–0.86

Accuracy: 63% - 84% Sensitivity: 58% - 83%

Specificity: 71% - 86%

Kugener et al. [62] Modified ResNet50 using the ImageNet weights Long short term memory Network automated (image-only)

RMSE of 358 mL (R2 = 0.4) Accuracy: 85%.

semiautomated (image + locations)

RMSE of 260 mL (R2 = 0.7) Accuracy: 90%.

Gupta et al. [63] half-rise to dicrotic notch (HRDN) feature Gradient-boosted regression trees RMSE: 13% (R2 = 0.4) AUROC: 0.97

Chalumuri et al. [65] Fiducial points - derived from multiple

physiological signals

Three ML classifiers considered

(i) logistic regression, (ii) random forest, and

(iii) support vector machine.

Leave-one-subject-out strategy

Final multi-class classifier Accuracy: 81% - 90%

F1Macro: 77 � 11

Proposed Study Time–Frequency Moments

+ Log Spectrograms

Unified DL Model 3-fold cross-validation AUROC: 0.8861 AUPRC: 0.8141 F1score : 72.16

Sensitivity:

79.06% Specificity: 89.21%
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4.5.2. PPG analysis

� Fiducial points-based features: A comprehensive investi-

gation in terms of morphological characteristics of the

PPG signal and its derivatives was carried out according

to the recommendation in the research [2,20]. The detec-

tion of the fiducial points assists in extracting time, ampli-

tude, locations, and finally morphological area of the

underlying signal. These signatures have been widely

employed for tracking hemodynamics [58,59]. These inves-

tigated features are detailed in Table A2 of Appendix A.

� Pulse-rate variability (PRV) and Nonlinear features: Similar

to ECG-based HRV analysis, PPG-based PRV features, and

other nonlinear features were extracted.

Table 7 represents the comparative analysis of the classifi-

cation performance between the proposed method and the

baseline studies. Table 7 shows that the classification perfor-

mance of PPG-based T-F representations with the proposed

unified model outperformed ECG signal and also significantly

higher than other baseline studies performed with classical

methods for ECG and PPG. It is worthmentioning that the pro-

posed unified framework with the same hyper-parameters

enlisted in Table 4 with appropriate modifications in network

architecture was applied on the underlying classical methods

for ECG and PPG. However, the proposed model did not per-

form better compared to the respective classifiers listed in

Table 7. This means only the results of the best performing

classifiers are shown in Table 7.

5. Discussion

The ternary classification results obtained from the proposed

study demonstrate the possibility for the design of ML models
using non-invasive waveforms to classify the level of hypov-

olemia prior to overt hemodynamic decompensation in

healthy volunteers undergoing LBNP. The unique transient

signatures captured and learned by the proposed unified

model from the raw waveform data are quite efficient com-

pared to the classical morphological features. This is hypoth-

esized by our comparative results of the classification

performance between the proposed versus the classical fea-

ture extraction techniques.

ML techniques in comparison to statistical methods are

data-driven and impart a comprehensive way toward reliable

diagnosis and prognostication. Contemporary research stud-

ies on hemodynamic monitoring and its management strate-

gies for the diagnosis of blood loss have been widely

addressed by the development of such ML models. However,

in retrospect, providing a straightforward and direct compar-

ison among these ML-based studies on hemodynamic insta-

bility is a tedious task because of certain reasons. viz., In

these studies, generally the context of each problem to be

addressed is varied. Some of the studies demonstrated that,

forecasting the trend of certain vital signs by the ML models,

learned with the initial partial part, can herald the condition

of hemodynamic instability. Few of other studies tried to

translate the model outputs into categories of physiological

events, merely to have an artificial distinction for the classifi-

cation task. Even variability exists among the experimental

setup in terms of signal acquisition. Further, for the validation

different performance metrics are used.

Table 8 summarizes ML-based clinical studies employing

LBNP for automated detection and classification of simulated

hemorrhage. A research study [4] led by Convertino et al.

developed a novel ML-based experimental setup using LBNP

to estimate CBV loss with 96.5% accuracy. The correlation

between actually applied LBNP levels and the prediction for

hemodynamic decompensation using forecasting was 0.89.

Non-invasive hemodynamic features were used in the design
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of ML model that mainly includes vital signs during surgery

viz., blood pressure, EtCO2, pulse character, and respiratory

rate. More specific to the topic of classification among physi-

ological events under simulated hemorrhage via LBNP exper-

imental settings, the same group by Convertino et al.

performed a binary classification between Low versus High

tolerance categories towards reductions in CBV [3]. A Logistic

regression (LR) analysis by regressing the onset of decompen-

sated shock was performed using two unique compensatory

reserve algorithms viz., CRM (compensatory reserve metric)

and CRI (compensatory reserve index). Further, the perfor-

mance of LR analysis was compared against DL model

(CRM-DL) using 1-D CNN with the estimated CRM values on

the same LBNP datasets [47]. The performance yielded in

terms of AUROCs to be 0.9268 (CRM) and 0.9164 (CRI) respec-

tively. Recently, the same group reported a study led by Bed-

olla et al. [64] on the development of an explainable

machine learning model for measuring compensatory

reserve. Here the authors claimed to focus on feature extrac-

tion methodologies for tracking CRM using 10 waveform fea-

tures as opposed to millions of tuned AI model parameters.

Overall, model performance was similar to a more complex

deep-learning model, and by tracking extracted features, dif-

ferences were identified in subgroups in the data sets. Fadil

et al. [61], explored the possibility of using the interaction

between heart rate, blood pressure, and cardiorespiratory

coupling to monitor the development of simulated hemor-

rhage through LBNP. This study also aimed to differentiate

individuals with high tolerance (HT) to hypovolemia from

those with low tolerance (LT). Bjorn J.P.van der et al. [5] devel-

oped a Support vector machine (SVM) - based predictive algo-

rithm to perform ternary classification of impeding simulated

hypovolemic shock using LBNP. The model features included,

BP curve dynamics, volumetric hemodynamic parameters

(both SV and CO), EtCO2, and middle cerebral artery transcra-

nial Doppler (TCD) blood flow velocity. The average sensitivity

and specificity for the ternary classification using ‘leave-one-

subject-out’ validation were 78.21% and 91.51% respectively.

Further, Bjorn J.P.van der et al. also reported results for a 4-

class classification study [60] with accuracy, mean square

error and Kappa score of 57%, 0.26, and 0.4650 respectively.

HRV analysis using ECG was done by Soo-Yeon Ji et al. [6] by

applying wavelet-based ML predictive algorithms for the pre-

diction of induced central hypovolemia via LBNP as a surro-

gate of hemorrhage. The average accuracy and AUROC for

binary classification were 89.1% and 0.86 respectively and

for ternary classification accuracy of 69.5% is obtained using

leave-one-subject-out validation. Kugener et al. [62] intro-

duced a new DL system that accurately assesses blood loss

(BL) and the success of hemorrhage control during endo-

scopic endonasal surgery using video from cadaveric training

exercises. The proposed DL pipeline took input video as a

sequence of images and predicts BL and task success using

either only images (automated model) or images with

human-labeled instrument annotations (semi-automated

model). The performance of these models was compared

against two reference models: one using average BL across

all trials (control 1) and another using linear regression with

time to hemostasis as input (control 2). The models were eval-

uated using RMSE and correlation coefficients, with a lower
RMSE indicating better performance. Gupta et al. [63] reported

a research study based on the novel data that simulates both

whole blood hemorrhage and resuscitation at varying rates.

This study claimed that half-rise to dicrotic notch (HRDN) fea-

ture, trained with a gradient boosting tree model, can detect

blood loss and resuscitation with similar accuracy and perfor-

mance as more complicated deep learning-based systems

reported in other studies. Chalmuri et al. [65] developed a

novel computational ML algorithm to estimate blood volume

decompensation state based on analysis of multi-modal

wearable-compatible physiological signals from swine sub-

jects. The classification of blood volume decompensation

state was limited not only to discriminate normovolemia

from hypovolemia but also classify hypovolemia into absolute

hypovolemia and relative hypovolemia. Leave-one-subject-

out analysis on six animals achieved an average F1 score

and accuracy of 0.93 and 0.89 in classifying normovolemia

vs. hypovolemia, 0.88 and 0.89 in classifying hypovolemia into

absolute hypovolemia and relative hypovolemia, and 0.77 and

0.81 in classifying the overall blood volume decompensation

state.

All of the clinical studies existing to date, for the simulated

hemorrhage deployed LBNP experimental setups based on

negative pressure that progressively descends step-wise with

equal duration at each level and thus make the event to be

biased with time dependency, with the hypothesis that as

time elapses, there is continuous bleeding.

The proposed dynamic LBNP protocol with added random-

ness in LBNP levels and duration of levels was to reduce the

effect of time and to mimic a more relevant clinical scenario

where a bleeding patient receives fluid resuscitation from

health personnel at the site of the accident or in the ambu-

lance on the way to the hospital. Fluid resuscitation changes

central blood volume. Typically, it is done intermittently with

various rates, volumes and times, depending on a subjective

evaluation of both the amount of the bleeding and the effects

of interventions to stop the bleeding. As a consequence, the

fluctuations in central blood volume can be large and rapid

as simulated in ourmodel. The results of our studywere based

on ML analysis of routine non-invasive vital signs as used in

an ambulance. ECG and PPG are the only continuous monitor-

ing modalities in this setting. An important finding was that

the PPG signal performed better than ECG in classifying levels

of bleeding. This means that reliable monitoring of changes in

central blood volume is possible by solely using a finger probe

PPG during LBNP-induced hypovolemia. These findings are in

line with recent studies [66–68]. The studies [67,68] focused

specifically on PPG waveforms recorded during the LBNP

experiment. The results of the study [68] reveal that analyzing

the amplitude and phase dynamics of PPG waveforms during

LBNP can provide valuable information about physiological

changes. Specifically, the findings hypothesized that the phase

difference between higher-order harmonics and fundamental

components changes more significantly when the PPG signal

is recorded from the ear compared to the finger at the begin-

ning of the study. On the other hand, during the recovery per-

iod, the amplitude changes in the finger PPG are more

prominent than in the ear PPG. Further, researchers in [67]

explored the ear PPG waveform as an example of a central site

during LBNP-induced hypovolemia. This study hypothesize
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that the ear PPG waveform, particularly the phase hemody-

namic index (PHI), provides information about progressing

central hypovolemia, and has the potential to serve as an early

predictor in such clinical settings. Overall, these findings sug-

gest that a comprehensive harmonic analysis of PPG wave-

forms can offer new insights into hemodynamic changes

during physiological challenges like LBNP. The differential

behavior of phase and amplitude measurements between

ear and finger recordings indicates distinct physiological

responses and highlights the potential of using PPG waveform

analysis for studying LBNP-induced hypovolemia.

PPG waveform contains information on heart rate, and

pulsatile volume in addition to arterial oxygenation of the

patient. Respiration, sympathetic nervous system activity,

and thermoregulation also influence the waveform. Our pro-

posed ML algorithm captured this complex interplay in phys-

iological responses to different levels of bleeding. From a

clinical point of view, in the case of bleeding and fluid resus-

citation, a method should also provide reliable information on

treatment effects in order to avoid serious complications

related to fluid overload. Our proposed ML algorithm on PPG

signal demonstrates this possibility in this challenging LBNP

setup. The PPG signal is usually of high quality in comparison

to ECG, even during movement of the patient. This makes it

likely that the ML algorithm can provide accurate early recog-

nition and analysis of bleeding.

Some of the limitations of our proposed study that need to

be explored further in prospective real-time clinical deploy-

ment are as follows. Healthy subjects who were exposed to

negative pressure via the experimental setup, mimic similar

physiology of hemodynamics to that of subjects undergoing

hemorrhage. However, they differ from the ones with actual

bleeding because they were neither in pain, nor anxiety nor

they had a disruption in actual tissues. Hence the complete

translation of this experimental model to the actual scenario

of patients in trauma with hemorrhage shock is not true.

However, the proposed experimental setup imparts a peerless

monitoring opportunity of vital physiological changes in real-

time that can map the compensatory responses to progres-

sive central hypovolemia similar to that caused by bleeding.

Even, previous LBNP trials exhibited identical physiologic

responses to those of actual volume loss during the early

compensatory phases of hemorrhage.

Distribution of the waveform segments among the three

classes highly varied as input observations to the model.

The ‘mild’ (Class 1) blood loss had a fewer observations. com-

pared to ‘moderate’ and ‘severe’ blood loss classes. In case if the

model was trained on relatively equal number of waveform

segments among the three classes, then there could have

been significant effect on the classification performance.

However, the models trained with imbalanced data are still

obliged to assign prediction labels to each waveform segment

through the whole LBNP trajectory from normal- to hypov-

olemia among the three classes. This reflects in the output

with the overall high specificity, since the miss-classification

of an observation w.r.t., investigated class could result in

observation belonging to either of the two remaining classes.

There is no straightforward linkage in mapping the physi-

ological events comprising of given LBNP trajectory, translat-

ing to the output of the DL-based AI model. i.e., three class
definitions from normal- to hypovolemia, were created

merely to accomplish an artificial distinction among the

ongoing hemodynamic decompensation towards progressive

central hypovolemia. From a clinical perspective, it is still

debatable to comment that the underlying physiological

responsive events may fit (or) not fit into these classes, and

hence classification performances thus reported may not

reflect the direct classification of underlying physiology. How-

ever, changing probabilities by the DL model among the class

definitions quantify model performance that hints at the pro-

gression of hemodynamic instability respectively.

6. Conclusion and future work

This study aimed to investigate the potential of advanced

waveform analysis and deep learning algorithms in diagnos-

ing levels of hypovolemia using non-invasive physiological

signals. A modified dynamic LBNP experimental protocol is

used to circumvent the problem posed in terms of time

dependency, as in real-life pre-hospital settings intravascular

blood volume may fluctuate due to volume resuscitation. The

results demonstrated that a supervised deep learning-based

framework, trained on raw PPG waveform segments and their

time–frequency representations, accurately classified each

segment into blood volume loss categories. These findings

highlight the potential of PPG as a surrogate for blood volume

variations and the effectiveness of time–frequency spectral

methods in assessing blood volume loss.

Future efforts will focus on evaluating the discriminative

ability of machine learning models using a diverse collection

of data encompassing different human experimental protocol

settings. The study acknowledges the limitation of the

cohorts being limited to healthy volunteers and emphasizes

the need for experimental protocols involving patients with

various medical conditions to enhance the model’s diagnostic

capabilities. While a cross-validation approach was used to

evaluate the proposed method’s performance, further testing

on a larger and more diverse dataset is necessary to fully

assess its efficacy, generalizability, and safety. Additionally,

the study plans to explore the application of time-series

transformers on non-invasive waveforms to eliminate the

need for feature extraction and enhance the model’s perfor-

mance using a multi-head attention mechanism.
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