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5 ABSTRACT: Mobile ambient air quality monitoring is rapidly
6 changing the current paradigm of air quality monitoring and
7 growing as an important tool to address air quality and climate
8 data gaps across the globe. This review seeks to provide a
9 systematic understanding of the current landscape of advances and
10 applications in this field. We observe a rapidly growing number of
11 air quality studies employing mobile monitoring, with low-cost
12 sensor usage drastically increasing in recent years. A prominent
13 research gap was revealed, highlighting the double burden of severe
14 air pollution and poor air quality monitoring in low- and middle-
15 income regions. Experiment-design-wise, the advances in low-cost
16 monitoring technology show great potential in bridging this gap
17 while bringing unique opportunities for real-time personal
18 exposure, large-scale deployment, and diversified monitoring strategies. The median value of unique observations at the same
19 location in spatial regression studies is ten, which can be used as a rule-of-thumb for future experiment design. Data-analysis-wise,
20 even though data mining techniques have been extensively employed in air quality analysis and modeling, future research can benefit
21 from exploring air quality information from nontabular data, such as images and natural language.
22 KEYWORDS: Air Quality, Pollutants, Mobile Monitoring

1. INTRODUCTION
23 A majority of the world’s population is exposed to air pollution
24 levels exceeding the World Health Organization guideline
25 limits, which led to 4.2 million premature deaths worldwide in
26 2016.1 Moreover, this health burden is disproportionately
27 imposed on low- and middle-income countries. Accurate air
28 quality data is crucial for tracking adverse health impacts of
29 poor air quality and developing effective pollution mitigation
30 plans. However, levels of different pollutants can vary on the
31 order of a few meters in complex urban environments,2,3
32 potentially rendering even a dense network of stationary air
33 quality monitors unable to capture hyperlocal pollution
34 variation.
35 The miniaturization and cost decrease of air quality sensors
36 provide new measurement and study opportunities to air
37 pollution researchers and practitioners in various settings,
38 stationary or mobile, and closed or open spaces. Mobile
39 monitoring techniques exhibit great flexibility in various
40 applications, including indoor air quality characterization,4
41 automated air quality monitoring,5,6 or wearable sensors as the
42 base for crowd-sourced environmental monitoring.7 In
43 ambient air quality monitoring practices, mobile monitoring
44 is a highly scalable method that significantly enhances the
45 spatiotemporal resolution of air quality data. Recently, it has

46been attracting prominent attention from both the scientific
47community and the public to trace emission sources, evaluate
48ambient air pollution’s spatiotemporal distributions, and assess
49personal exposures and related public health burdens, among
50many other applications.8−11 Besides being used as a
51standalone measurement technique, mobile monitoring has
52been an indispensable data source to complement traditional
53stationary air sampling, satellite remote sensing, and physical
54and empirical model simulations.12−15 The growing body of
55mobile monitoring literature has presented a myriad of
56confounding factors to consider in study design for future
57studies, which urgently calls for a systematic organization of
58existing knowledge in this field. While we acknowledge the
59diversity and versatility of mobile monitoring studies, we have
60defined the scope of this review only to address studies on the
61mobile monitoring of ambient air quality, where measurements
62are conducted while the sensors are in motion (e.g., carried by
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63 a pedestrian or deployed on a vehicle). We use the term
64 “mobile monitoring” to refer to the studies using such a
65 monitoring scheme for simplicity. It is worth noting that
66 studies using portable instruments for short-term stationary
67 measurements are not in our review’s scope.
68 Previous reviews mainly concentrate on two distinct areas of
69 the sensing platforms and the data application. On the one
70 hand, a great amount of attention has been paid to the rapid
71 development of air quality sensing tools, firmware, or software,
72 for mobile uses. Idrees and Zheng16 reviewed recent low-cost
73 air pollution monitoring systems, emphasizing their integration
74 with enabling technologies, such as wireless sensor networks
75 and the Internet of Things. They find the enabling
76 technologies are not ready at the current stage but fast-
77 evolving. Similarly, Villa et al.17 reviewed the applications of
78 small unmanned aerial vehicles (UAVs) as the platform for
79 ambient air quality monitoring. They argue that, even though
80 the potential of UAVs in air quality monitoring has been
81 established, the strict civil aviation regulations and laws are the
82 biggest challenges in its wider adoption. Kroĺ et al.18 and Baron
83 and Saffell19 examined the development of VOC sensor and
84 amperometric gas sensor technology, respectively. Specifically,
85 Kroĺ et al.18 categorized the sensors by the ability to be
86 transported into those for stationary and mobile use. However,
87 several types of equipment designed for stationary monitoring
88 have also been adapted later for successful mobile deploy-
89 ments.20−22 It demonstrates the necessity of reviewing the
90 current sensor technology in an application-oriented scope, as
91 in this paper.
92 On the other hand, environmental researchers and
93 practitioners are interested in how data collected by mobile
94 monitoring platforms can be used to inform air pollution
95 mitigation and management strategies. Kumar et al.23 and
96 Morawska et al.24 both focused on reviewing low-cost air
97 quality sensors from the application perspective. The two
98 reviews discussed low-cost sensor use cases and opportunities
99 on mobile platforms while recognizing the potential of these

100sensors’ integration with smartphones and wearables for
101opportunistic and ubiquitous air quality monitoring. Similarly,
102Thompson25 reviewed the current establishments of high
103spatiotemporal “crowd-sourced” air quality monitoring net-
104works, identifying that the bottleneck of such large-scale
105networks is low-cost sensor data quality rather than data
106communication. They also suggest that more investment
107should be directed to the fundamental analytical chemistry of
108the sensing platforms rather than to the immediate deployment
109of large smart-city systems. To the authors’ knowledge, Gozzi
110et al.26 wrote the only review on mobile particulate matter
111(PM) monitoring studies. They covered multiple facets of
112mobile PM monitoring, including instrumentation, current
113status, and critical issues and perspectives. However, they did
114not adopt comprehensive literature searching and exclusion
115criteria, which might lead to biased conclusions. Despite the
116substantial number of reviews performed within the perimeter
117of mobile monitoring in the past decade, very few have rooted
118their narratives on the values, opportunities, and challenges
119that being “mobile” can bring from an air pollution research
120perspective. Moreover, there has not been a study that
121systematically reviews the past decade’s literature with a
122significant meta-analysis part to provide unbiased quantitative
123insights into the field.
124In this review, we aim to provide a timely and
125comprehensive landscape of studies that employ mobile
126monitoring to understand, quantify, and mitigate the impacts
127of air pollution, emphasizing the rapidly expanding applications
128of low-cost sensing and data mining techniques. We distilled
129over 300 papers out of the initial 3200+ ones, focusing on
130those from the past decade. A taxonomic system was
131developed to extract standardized information from key aspects
132of mobile monitoring studies, borrowing concepts from
133thematic analysis. We employed a meta-analysis approach to
134summarize the information and provide insights into the three
135stages of a typical study’s life-cycle, including study proposal,
136experiment design, and data analysis and modeling. Our work

Figure 1. Conceptual flowchart of a mobile monitoring study.
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137 is one of the first to review the rapidly growing field of mobile
138 ambient air quality monitoring in the past decade, revealing
139 current gaps in research and practices. It sheds light on the
140 robust design and implementation of mobile monitoring
141 studies, including practical and innovative research topics,
142 valid experiment design, and rigorous data analysis. Our
143 taxonomic information extraction method is highly transferable
144 to other studies with a significant systematic review element,
145 which minimizes the effects of authors’ preferences and biases
146 on knowledge extraction from the literature. Lastly, the review
147 provides a quantitative reference to future applications,
148 covering essential aspects throughout the entire life-cycle of
149 a typical mobile monitoring study. It is of great interest and
150 relevant to air pollution researchers, citizen scientists, and
151 practitioners at all experience levels, which can be used as a
152 guide for future mobile monitoring study designs.

2. REVIEW METHODOLOGY
153 In this study, we borrowed the concept of thematic analysis, a
154 research method that identifies, analyzes, and reports patterns
155 within data, typically texts, such as interviews, transcripts,
156 questionnaires, and scientific literature. We followed the well-
157 recognized six-step thematic analysis framework by Braun and
158 Clarke:27 familiarization with the data, generation of initial
159 codes, search for themes, review of themes, the definition of
160 themes, and writeup. The methodology adopted in this work is

f1 161 presented in Figure 1. We first screened out the papers for final
162 review using a systematic and reproducible literature search
163 and selection criteria. A series of codes is developed iteratively
164 in the reviewing process to extract standardized information
165 from the papers, which are in the form of small, self-contained
166 questions that can be answered in standardized responses for
167 further meta-analysis. The codes are then grouped under three
168 themes: (1) the current landscape and prominent research
169 gaps in mobile monitoring; (2) key factors to consider in
170 mobile monitoring experiment design; (3) analysis tools and
171 use cases of mobile monitoring air quality data. Each theme is
172 further related to the main stage in the life-cycle of a mobile
173 monitoring study, including the study proposal stage, the field
174 experiment design stage, and the data analysis and modeling
175 stage. By addressing the questions in the three themes, we
176 provide critical insights into a typical mobile monitoring
177 study’s life-cycle and recommendations for the design and
178 execution of future mobile monitoring studies.
179 2.1. Literature Search, Selection, and Screening
180 Criteria. To identify an initial group of papers for review,
181 we employed Web of Science as the main search engine for
182 publications that contained the relevant keywords “air quality”,
183 “air pollution”, and “mobile”. Supplemental Google Scholar
184 searches were conducted to cross-check that relevant literature
185 was included. In total, our first-round search returned over
186 3200 papers. It is important to emphasize that we define the
187 scope of this review only to address studies on the mobile
188 monitoring of ambient air quality. Meanwhile, we still use
189 “mobile monitoring” to refer to these studies for simplicity.
190 Therefore, the initial results were screened to identify which
191 papers fell within our review’s scope. It should be noted that
192 this review did not include “gray literature”, such as non-peer-
193 reviewed reports from governments, companies, and non-
194 governmental organizations, working papers, media coverages,
195 and other web-based resources.

196 f2As shown in Figure 2, we screened the abstracts of the
197papers in the initial group according to the following seven
198selection criteria:
199(1) The study is a full-length original research article from
200an indexed, peer-reviewed journal publication. We
201exclude publications in conference proceedings. We are
202aware that this will lead to an under-representation of
203papers published in the form of conference proceedings
204in domains like electrical engineering. The exclusion is
205intended as this study mainly focuses on the method of
206mobile monitoring and its applications rather than the
207development of mobile monitoring instruments. The
208target audience of this review is end-users of air sensors
209and instruments, such as environmental scientists,
210engineers, and practitioners. To the authors’ knowledge,
211the quality of conference publications can vary in a much
212larger range than journal publications in the environ-
213mental science field. This selection criterion also
214contributes to our standardized information extraction,
215as conference publications can be in several forms, such
216as abstract, extended draft, or full-length articles.
217(2) The study is presented in English.
218(3) The study is published between January 2012 and
219December 2021, inclusive.
220(4) The study should have a significant element of air quality
221data collection and analysis through mobile monitoring/
222sampling rather than using secondary data products.
223(5) The study collects and analyzes ground-level air quality
224and air pollution.
225(6) The study is not focused on closed microenvironments
226or indoor air quality.
227(7) The study is not focused on firmware development or a
228conceptual data collection framework.
229Of the 3263 initial papers, 304 were carried through to the
230final review stage. Not all 304 papers are cited and discussed in

Figure 2. Literature search and filter flowchart; the selection criteria
numbering corresponds to the text preceding the figure.
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Table 1. Definitions of Codes Used in Literature Delineation
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231 detail in the main body of this review. A complete bibliography
232 for the 304 final reviewed papers is provided in a separate
233 BibTex file, along with a bibliometric map with interactive
234 resources for the audience to explore more related literature in
235 the Supporting Information, Figure S1. We acknowledge that
236 some relevant literature might be unintentionally excluded,
237 especially when applying selection criteria (4) to (7). However,
238 given the current extent of work in the field and the variety of
239 papers we reviewed, we believe that our bibliography is
240 representative of the current mobile monitoring literature.
241 2.2. The Literature Coding System and Meta-
242 Analysis. A series of codes was developed iteratively before,

243during, and after multiple rounds of reviewing all papers in the
244final pool. The responses to each code were standardized to
245yield uniform and comparable information. The only exception
246was the research question code, where each study’s main
247research question was reported; thus, no standardized
248responses exist. It is important to mention that all authors of
249this paper were trained on the review methodology before the
250coding process and constantly exchanged thoughts in the
251process to guarantee the same understanding and interpreta-
252tion of all code responses. Final coding and labeling results for
253all included papers are presented in section 1 of the Supporting
254 t1Information. Definitions of all 19 codes are detailed in Table 1.

Table 1. continued
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3. RESULTS AND DISCUSSION
255 3.1. Current Landscape and Prominent Research
256 Gaps in Mobile Monitoring Studies. 3.1.1. Descriptive
257 Analysis of Mobile Monitoring Studies. The total number of
258 mobile monitoring studies has significantly increased in the

f3 259 past decade, as shown in Figure 3, indicating the scientific
260 community’s wider adoption of mobile monitoring. Since
261 2019, the number of low-cost monitoring studies has grown
262 substantially, where one-third of those are published in the
263 later years. The proportion of studies using low-cost sensors
264 (<2500 USD28) is also rising. From our study, it is hard to

265draw a conclusion about the efficacy of mobile monitoring and
266low-cost sensors in meeting researchers’ study objectives.
267There is usually a screening process to find the instrumentation
268that best serves the study objectives. Moreover, the established
269paper reviewing and publishing system increases the bias in
270such an analysis. Positive results are much more likely to be
271published than negative results, leading to potential biases in
272concluding that one method is more effective than another.
273However, given the exponentially growing number of mobile
274monitoring and low-cost sensing studies (mostly with positive
275results), we can infer the growing trend of mobile monitoring

Figure 3. Number of mobile monitoring studies in the last ten years.

Figure 4. Target pollutants examined by studies done with (a) and without (b) low-cost sensors.
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276 and low-cost sensing’s efficacy. It is worth noting that a “low-
277 cost monitoring” study indicates a study that either completely
278 or partially makes use of low-cost sensors in our context. If no
279 low-cost sensors are involved in the study, it is classified as
280 “non-low-cost monitoring”.
281 We summarize the most studied pollutants in non-low-cost

f4 282 and low-cost sensing studies in Figure 4. Most studies measure
283 more than one pollutant. The top pollutants measured in non-
284 low-cost monitoring studies include black carbon, NOx, and
285 particulate matter. In contrast, particulate matter, carbon
286 monoxide, and NOx remain the most studied pollutants by
287 low-cost sensors. In recent literature, ultrafine particles (UFPs)
288 are increasingly being studied,29−32 as there are mounting
289 questions about their negative health effects. However, there
290 are very few low-cost choices for UFP measurement in the
291 market. None has been evaluated or proven effective in the
292 current literature, presenting a significant gap in their
293 capability. Similarly, while black carbon poses direct threats

294to human health and climate change, related low-cost
295monitoring studies involve both non-low-cost and low-cost
296sensors, necessitating the use of costly sensors for accurate
297measurements of these pollutants.
298We further examined what types of emission sources were
299investigated in the literature. Recall that we specify the types of
300emission sources as “stationary”, “mobile”, and “multiple”.
301More than 60% of all studies do not specify a targeted emission
302source type, which is coded as “multiple”. More than a quarter
303of studies specifically investigate emissions from mobile
304sources, such as road and air traffic. Few studies are dedicated
305to stationary emission sources, which are typically large-area
306sources, such as wildfire, farmland, or burning field.9,33,34 While
307mobile monitoring can greatly improve the spatiotemporal
308resolution and scope of air quality studies, it cannot
309continuously sample the same location in the long run,
310limiting its application in assessing stationary emission sources.
311Moreover, the confounding factors in uncontrolled environ-

Figure 5. Global distribution of review studies (a) and annual average of PM2.5 in 201638 (b).
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312 ments grow exponentially. Thus, it may be difficult to
313 distinguish a single type of emission source without proper
314 methods and tools for source apportionment.
315 3.1.2. Disparities in the Geographic Distribution of Mobile
316 Monitoring Studies. Low- and middle-income regions face a
317 double burden of poor air quality and insufficient air pollution
318 monitoring and management resources. Despite the increasing
319 ubiquity of mobile monitoring studies and the availability of
320 low-cost sensors, there is a notable lack of air quality
321 monitoring infrastructure, and many areas remain severely
322 understudied.35,36 It poses a projecting environmental justice
323 problem across the globe.

f5 324 Figure 5 shows North America, Europe, and East Asia have
325 the highest numbers of mobile air quality monitoring studies.
326 The top countries with the most studies are the United States
327 (115), China (35), Canada (20), Germany (16), and South
328 Korea (12), among which China is the only middle-income
329 country. The United States is by far the most studied country
330 by mobile monitoring researchers. While the studies in the
331 United States are mostly spread throughout the continent, a
332 few clusters emerged in California, the Midwest (especially in
333 Colorado), the Gulf Coast, and the Northeast Corridor. South
334 Asia has the highest levels of ambient PM2.5 levels regionally,

335followed by the Middle East, North Africa, and Sub-Saharan
336Africa.37,38 However, these regions do not have a significant
337body of peer-reviewed research within the scope of our
338interview. Of the 52 countries with studies included in this
339review, only 2 were low income, 11 were lower middle income,
34016 were upper middle income, and 23 were high income.
341Low-cost sensors have the potential to change the current
342paradigm of air quality monitoring and bridge the gap in air
343pollution management in developing regions.24 Nonetheless,
344the spatial disparity in low-cost monitoring studies is as
345prominent as in mobile monitoring studies. Most low-cost
346monitoring studies are conducted in high- and upper-middle-
347income countries. The unequal distribution of air quality
348burden and the ability to monitor them between developed
349and developing countries highlights a critical environmental
350justice consideration. Gradually, global researchers are
351beginning to fill this research gap. Multiple initial studies in
352low-income countries are paving the road toward an equitable
353future in air quality measurement and management. In Jordan,
354Hussein et al.39 conducted a preliminary mobile monitoring
355study on particulate matter that covered more than three-
356quarters of the country. One of the only studies from a Pacific
357Island nation, focused on Suva, Fiji, detailed the first attempt

Figure 6. Sampling strategy of non-low-cost and low-cost sensor studies (a, b), spatial and temporal coverage (c, d), and repetition (e, f) of all
reviewed studies
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358 to map and study airborne ultrafine particles in the region,40
359 and other work examined fine particulate matter levels in
360 multiple African countries with low-cost sensors.7,36,41
361 3.2. Key Factors to Consider in Mobile Monitoring
362 Study Design. 3.2.1. Mobile Monitoring Strategies and
363 Schemes. Currently, there are three types of operational
364 mobile monitoring sampling strategies that are complementary
365 to the others. The first is the predefined strategy, which
366 involves almost all independent mobile laboratories operated
367 by research groups, governments, and local communities. This
368 strategy is the most commonly seen in our literature, usually
369 with research-grade instruments operated by trained personnel
370 on predefined routes. It serves the purposes of a wide range of
371 ad hoc mobile monitoring projects but is hard to coordinate
372 for long-term, large-scale deployments. Second, the City
373 Scanner initiative at MIT Senseable City Lab represents a
374 complete opportunistic mobile monitoring strategy with low-
375 cost monitoring and Internet of Things (IoT) technologies,42
376 along with the practices in Hagemann et al.43 and Mueller et
377 al.44 Existing fleets are used as sensing platforms, including
378 public transit fleets, municipal service vehicles, and on-demand
379 mobility service fleets. While having the potential to bridge the
380 global air quality data gap, there is a strong need to balance
381 such sensor network’s cost, reliability, and longevity. Lastly,
382 Google employs a hybrid data collection strategy with
383 sampling campaigns carried out worldwide,45 which combines
384 the predefined and opportunistic strategies. The research-grade
385 sensors are mounted on Google Street View vehicles that
386 circulate in the city, which have been successfully implemented
387 in multiple cities across the globe, including Hamburg, Dublin,
388 Amsterdam, Copenhagen, London, Houston, and Oakland, for
389 periods ranging from months to years. Since air quality data
390 collected by Google is potentially a for-profit product, this
391 might exacerbate data poverty in less developed regions. In

f6 392 Figure 6a and b, we observed that more opportunistic mobile
393 monitoring used low-cost sensors, where data collection is not
394 the main purpose of the carrier’s movement. It allows mobile
395 monitoring campaigns to collect data at unprecedented
396 temporal resolution and spatial coverage that complement
397 the current stationary monitoring networks.
398 In terms of the temporal and spatial coverage of mobile
399 monitoring experiments, Figure 6c and d illustrates that more
400 than 35% of studies only last for days, while only about 15% of
401 studies last longer than a year. Compared to stationary
402 measurements, mobile monitoring campaigns are subject to
403 many sources of uncertainty in an uncontrolled environment
404 that grows exponentially as the temporal coverage increases,
405 such as instrument malfunction, disruption caused by weather,
406 and traffic accidents. The sunk time cost spent in coordinating
407 and managing both the carrier fleet and the instruments is also
408 not negligible. The disparities in temporal coverage highlight
409 that most mobile monitoring campaigns are currently ad hoc
410 data collection projects capturing snapshots of air quality and
411 have yet to become an environmental sensing infrastructure
412 like stationary air quality sites. There are a few exploratory
413 studies that are exceptions. Hagemann et al.43 piloted a long-
414 term deployment of an air quality monitoring system on the
415 tram system in Karlsruhe, Germany. Mueller et al.44 have
416 deployed a network of particle number counters on the tram
417 system in Zurich, Switzerland, for more than 1.5 years, where
418 the sensor network operates as the tram system operates. Both
419 studies demonstrate the possibility of operating mobile
420 monitoring sensors on the existing public transit systems in

421the long run and eventually as a new type of municipal
422infrastructure. A conceptual study by O’Keeffe et al.46 also
423confirms the potential of using on-demand mobility services,
424such as taxis and ride-hailing services, as mobile monitoring
425platforms in urban environments. The majority (81.3%) of
426mobile monitoring studies have a spatial scope no bigger than
427a city. Mobile monitoring is helpful in enhancing spatial
428coverage when the number of sensors is limited. Nonetheless,
429the complexity of mobile monitoring measurements with
430predefined sampling routes and frequency grows exponentially
431as the sensing nodes and spatial coverage increase, which can
432be seen as a traveling salesman problem essentially. Given the
433same temporal coverage and amount of sensing nodes, the
434spatial coverage of opportunistic measurements is even more
435limited than in predefined studies.
436A vital element of mobile monitoring experiment design is
437the number of repeated measurements at the same location,
438especially for studies aiming at generating representative air
439quality profiles. Repetition reduces uncertainty in mobile
440monitoring data and helps extract information on interest from
441numerous confounding factors. Apte et al.47 observed that 10
442to 20 repetitions on different days over the course of a year are
443able to reproduce key spatial air quality patterns with low
444variability in Oakland, CA. Messier et al.48 concluded that 50
445times of drive-by sensing over two years on the same road
446segment generates robust long-term land use regression maps
447in the same study area, but only 4 to 8 repetitions are sufficient
448for data-only maps. Similarly, Hatzopoulou et al.49 found that
449model uncertainty and performance gains diminish after ten
450repetitions while arguing that the “optimal” number of
451segments and visits identified in a specific city might not be
452transferable to others due to the complexity of local emission
453sources, urban form, and street topology. Figure 6e and f
454summarizes the information on repetition from reviewed
455studies. Surprisingly, over 50% of all studies did not specify
456repetitions, while 13.5% of studies have less than four
457repetitions among those specified with this information. We
458acknowledge that mobile monitoring studies can be subject to
459a variety of research purposes that require different levels of
460repetitions and temporal aggregation. Therefore, we analyzed
46189 studies more closely that last from weeks to months, serving
462for emission rate analysis, spatial regression, source apportion-
463 t2ment, personal exposure, and model validation. Table 2

464presents the min, median, and max values of the number of
465repetitions in these studies. Descriptive studies are not
466included as they cover a wide range of study scopes and
467purposes and do not have universally adopted methods. The
468count column adds up to more than 89, as some studies
469adopted multiple methods. Study methods are ranked in
470median values of repetitions. Given the smaller number of
471studies evaluated for emission rate analysis, source apportion-
472ment, personal exposure, and protocol validation, one should

Table 2. Number of Repetitions Statistics for Different
Mobile Monitoring Study Methods

Study Method Min Median Max Count
emission rate analysis 1 5 33 12
spatial regression 1 10 600 41
source apportionment 2 20 91 13
personal exposure 6 32 96 10
protocol validation 1 36 1600 17
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473 be cautious when referring to this table to determine suitable
474 repetitions for a specific study method. For spatial regression
475 studies, the median value of repetitions is 10, which can be
476 safely used as a rule-of-thumb for future studies lasting up to a
477 year. Four repetitions should be considered the bottom line for
478 any type of analysis. This observation aligns well with findings
479 from the above-mentioned studies and demonstrates the
480 current consensus on mobile monitoring repetition.

f7 481 3.2.2. Sensing Platform Design. In Figure 7, we summarize
482 three major considerations that are ubiquitous in mobile
483 monitoring platform design: instrument architecture, carrier,
484 and personnel. Their respective definitions are detailed in
485 Table 1. We observe that about 60% of studies employed
486 nonintegrated instrumentation, where each sensor runs
487 independently instead of being part of the same system. An
488 integrated design has many edges over a nonintegrated one. A
489 shared air inlet is important to guarantee consistent airflow for
490 all instruments. Unified data storage and communication
491 components can better coordinate and synchronize data
492 collected from various sensors. Specifically, we would expect
493 a higher percentage of integrated architecture in studies using
494 low-cost sensors, as low-cost sensors are considered with
495 higher integration flexibility.24 Contrary to our hypothesis, the
496 strength of low-cost sensors in integration is not fully exerted
497 in current mobile monitoring studies, while about half of the
498 low-cost monitoring studies deploy a single model of a sensor

499for one target pollutant, focusing on establishing a larger
500monitoring network.
501Mobile monitoring on various carriers provides great
502flexibility in collecting air quality data at unprecedented
503spatiotemporal resolutions, with 65% of all reviewed studies
504carried out by on-road vehicles. For low-cost studies, only
50546.7% of studies were performed by on-road studies, while this
506percentage is much higher for non-low-cost studies as research-
507grade instruments are usually less portable and require regular
508maintenance by trained personnel. Studies involving low-cost
509sensors demonstrate more diversity in instrument carriers than
510those featuring non-low-cost sensors. This is greatly facilitated
511by the portability, ease to deploy, and low energy consumption
512of low-cost sensors, which offers great flexibility in the study
513design. Instrument miniaturization and cost reduction have
514allowed studies to comprehensively map air quality by
515deploying such devices on transport modes such as trash
516trucks, taxi fleets, and trams.3,50,51 We notice a significant
517increase in studies carried out by bikes and persons,52−55

518which brings a unique opportunity to assess personal exposure
519at unprecedented temporal and spatial resolutions.
520Furthermore, low-cost sensors have created opportunities
521for members of the public to become key players in mobile
522measurement campaigns, which help better disseminate air
523quality knowledge, raise awareness, foster behavioral changes,
524and advocate for environmental justice among a larger

Figure 7. Architecture, carrier, and personnel for studies with (a, c, e) and without (b, d, f) low-cost sensors.
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525 audience. West et al.56 engaged with a low-income community

526 in Nairobi to use these sensors to better characterize the spatial

527 distribution of pollution and potentially important sources in

528 their neighborhood. Ellenburg et al.
57 used low-cost sensors to

529 engage with school children to help them learn about
530 pollution.

531 f83.2.3. Sensing Instrumentation. Figure 8 summarizes the
532most used low-cost and non-low-cost sensors for the most
533studied air pollutants, including PM, NOx, and black carbon. It
534is worth noticing that, for PM sensors, we include particle
535number counters and mass concentration impactors for the
536whole spectrum of PM from UFP to PM10, excluding black
537carbon sensors. A detailed list of all accounted PM sensors is

Figure 8. Sensors used in mobile monitoring of black carbon (a), nitrogen oxides (b), and PM (c, d).
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538 documented in the Supporting Information, Table S1. Low-
539 cost sensors for NOx are not included as their distribution
540 among brands is scattered. While reference-grade NOx sensors
541 are widely used in mobile monitoring (Thermo Model 42i,
542 Teledyne T500, Horiba Model APNA-370/-360, etc.), mobile
543 PM measurements are dominated by instruments not
544 identified by the US EPA-regulated Federal Reference
545 Methods (FRM) and Federal Equivalent Methods (FEM).58
546 There is a wide spectrum of portable PM sensors on the
547 market now that can cater to a variety of mobile monitoring
548 applications, which are widely used as “research-grade
549 instruments”. The most notable ones are a series of PM
550 impactors and PN counters manufactured by TSI, whose prices
551 usually sit between low-cost and reference instruments. While
552 their performances have been widely accepted by the scientific
553 community,59−62 they are currently not recognized as FRM/
554 FEM. Rigorous calibration and data quality assurance
555 procedures are necessary before and during their usage. We
556 acknowledge that using EPA’s definitions of reference-grade
557 instruments might be biased toward studies done outside of
558 the US and regions not accepting EPA’s regulations, but we do
559 not think this will significantly affect this observation.
560 3.3. Analysis Tools and Use Cases of Mobile
561 Monitoring Air Quality Data. 3.3.1. Complementary

f9 562 Data Sources and Data Quality Assurance. Figure 9 presents
563 complementary data sources and calibration methods used in
564 mobile monitoring studies. Complementary data sources refer
565 to those used in data analysis and modeling rather than in
566 instrument calibration, data quality assurance, and background
567 correction. Over half of the studies complement their mobile
568 monitoring data with air quality data from other sources, most
569 of which are stationary measurements by authors themselves or
570 reference monitoring sites. Studies using more than one
571 complementary data source are still scarce.
572 An unexpected finding is that about 41% of mobile
573 monitoring studies do not explicitly explain how their
574 instruments are calibrated or only claim their instruments are
575 factory-calibrated, while most instruments used are not

576reference-level. Moreover, about half of the studies that
577reported detailed calibration processes use reference-grade
578monitors maintained by the researchers rather than at a
579reference station or in a laboratory with a controlled
580environment. Studies involving low-cost sensors should pay
581extra attention to delineating their calibration procedures due
582to the high uncertainty in their instruments. Specifically, it is
583crucial to validate low-cost sensors in a mobile setting.
584Crocchianti et al.50 contrasted mobile low-cost sensors with
585high-quality optical instruments. Mui et al.63 developed a
586performance evaluation protocol using a Google Street View
587vehicle equipped with both low-cost and research-grade
588instruments. They further test the effects of sensor siting,
589orientations, and vehicle speed on the accuracy of low-cost
590sensors. Few studies have systematically explored these factors,
591suggesting that important information that can illuminate
592uncertainties in mobile low-cost monitoring is missing in
593existing research.
594We examined temporal resolution in data collection and
595analysis to provide insights into how studies are aggregating air
596quality data. A dominant portion (85.9%) of mobile
597monitoring campaigns collects highly time-resolved data in
598less than 1 min intervals. In this case, the response lag of
599sensors can lead to mismatched air quality and geographic
600observations and less effective spatial resolution of mobile
601measurements. Temporal data aggregation is essential to
602diminish this uncertainty, especially in spatial regression and
603epidemiological studies aiming to capture the representative air
604quality profile or its health effects, which is adopted by a
605majority of studies (73.8%). However, due diligence should be
606paid to sensor response lag calibration and coordination prior
607to the measurement in future studies.
608However, incorporating temporal variations into spatial
609regression models remains understudied in the mobile
610monitoring literature. Current alternatives include developing
611periodical spatial regressions,64 providing multiple snapshots
612instead of just one, and incorporating time-variant explanatory
613variables,50 such as meteorology and traffic. These methods

Figure 9. Complementary data (a, b) and calibration method (c, d).
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614 treat observations in the temporal continuum as independent
615 and neglect the effect of spatiotemporal autocorrelation.
616 3.3.2. The Role of Machine Learning in Mobile

f10 617 Monitoring Studies. Figure 10 summarizes the analysis
618 methods used in all mobile monitoring studies. The most
619 adopted analysis methods are descriptive analysis, spatial
620 regression, and protocol validation. Limited studies are
621 concentrating on exposure assessment and air pollution
622 epidemiology. It is mainly attributable to our searching and
623 exclusion criteria, which exclude studies that do not have a
624 significant mobile monitoring data collection component or
625 use only secondary mobile monitoring data products.
626 Specifically, we are interested in the empirical modeling tools
627 employed in spatial regression, exposure assessment, and
628 epidemiological studies that aim to achieve better interpreta-
629 tion and prediction of air quality, recognizing the surging trend
630 of machine learning and data mining algorithms in this area.
631 We filtered out 99 papers that focused on spatial regression,
632 exposure assessment, and epidemiological impacts of air
633 pollution with specified empirical models. Out of these, 24
634 employed machine learning and data-mining techniques, most
635 of which were published within 5 years (from 2017 to 2021).
636 Eighty-four studies involved traditional regression methods, as
637 multiple studies have utilized more than one empirical model.
638 The most used machine learning algorithms are tree-based
639 ensemble models, including random forest and gradient
640 boosting tree models. Artificial neural networks (ANNs) are
641 also popular in air quality predictions that work with tabular
642 data, focusing on real-time monitoring applications for health
643 risk mapping. Given the lack of global interpretation tools,
644 ANNs can hardly be adopted in air quality modeling for
645 explanatory or causal inference purposes. Moreover, evidence
646 states that ensemble models have better performance when
647 dealing with tabular data.65,66 However, given the increasing
648 trend of machine learning techniques in the mobile air quality

649monitoring space, it is likely that we may see further
650improvements to these techniques or a wider range of
651applications. While a number of studies conclude that machine
652learning tools help improve our understanding of air
653pollution’s spatial distribution, Kerckhoffs et al.66 argue
654otherwise by contrasting over 20 prediction algorithms of all
655types side by side.
656Tabular data, such as land use, traffic, points of interest, and
657other infrastructure information, are often taken for granted in
658developed countries yet extremely difficult to obtain in
659developing and remote regions. Crowd-sourced, nontabular
660data can greatly contribute to air quality information inference
661and extraction in these data-scarce regions. Several recent
662studies have explored these possibilities despite relatively low
663performance in prediction, most notably from street-view
664images using convolutional neural networks.31,67,68 These
665studies provided valuable experience in deriving instantaneous
666air quality information from hyperlocal visual features. Zheng
667et al.69 associated expressed happiness on social media with
668local air quality among Chinese urbanites, even though this is
669not a study using mobile monitoring data. Computer vision
670and natural language process techniques have already been
671widely adopted for various information extraction tasks in
672urban environments.70−72

6733.4. Recommendations for Future Mobile Monitoring
674Studies. The continuous expansion of mobile monitoring in
675scientific research, engineering projects, and citizen science is
676very likely in the near future. The versatility of mobile
677monitoring methods brings more opportunities to enhance our
678understanding of hyperlocal air pollution and its impacts.
679However, a series of research gaps have yet to be filled in the
680current applications of mobile monitoring.
681A glaring gap in mobile monitoring studies is the global
682geographic disparity of mobile monitoring studies. Studies are
683overwhelmingly concentrated in high-income countries,

Figure 10. Analysis method (a) and machine learning (b).
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684 despite the necessity of understanding air quality in regions
685 worldwide. Given the notable lack of air quality monitoring
686 infrastructure in many middle- and low-income countries,
687 there is a strong need for the research community to focus
688 efforts on filling these critical information gaps, emphasizing
689 engaging local researchers’ with the international scientific
690 community. While there is an opportunity to carry out mobile
691 air quality monitoring studies similar to those conducted
692 elsewhere, it is also important to build upon existing
693 methodology to adapt studies to the specific needs of these
694 regions.
695 Robust instrument calibration and data quality assurance are
696 at the core of developing valid results in mobile monitoring.
697 We observe that many studies do not report their calibration
698 process or simply state their instruments are factory-calibrated
699 even though they are not using reference instruments. Given
700 the popularity of low-cost sensors, there is an urgent need for
701 the wider application of standard sensor calibration processes
702 in the future. The European Metrology Research Programme
703 of EURAMET73 proposed a calibration and evaluation
704 protocol for low-cost gas sensors. The US EPA recently
705 published sensor performance target reports74,75 for gaseous
706 and particulate matter low-cost sensors, providing consistent
707 testing protocols and metrics to evaluate low-cost sensor
708 performance for nonregulatory uses. Both guidelines suggest a
709 two-phase testing process, consisting of a laboratory and a field
710 test, whereas the EPA guideline only recommends the
711 laboratory test wherever it is available. However, few studies
712 involving low-cost sensors followed regulated sensor perform-
713 ance evaluation protocols, while most studies adopted project-
714 specific protocols. It limits the intercomparison between
715 different air quality data products and the reproduction of
716 observations and results. Moreover, instrument calibration and
717 data quality assurance for mobile monitoring should go beyond
718 reporting correct values. Researchers should pay due diligence
719 to account for sensor response lag, sensor synchronization if
720 there are multiple sensors involved, and geo-positioning data
721 processing, which can all result in a mismatch of air quality
722 data and geo-information. Specifically, transparency is
723 especially called for in geo-positioning data collection,
724 correction, and paring, as we noticed that this information is
725 missing in a large number of studies.
726 Mobile monitoring brings an unprecedented opportunity for
727 implementing big data and data mining tools in air quality
728 studies. These tools help better understand air quality in two
729 ways. On the one hand, data mining tools have broadened the
730 channel to more relevant data, especially nontabular data. The
731 development of computer vision and natural language
732 processing empowers researchers to extract air quality
733 information from satellite images, street view images, and
734 social media postings. Still, more forms of nontabular data
735 should be explored to complement tabular data to understand
736 air quality better. On the other hand, data mining tools have
737 great potential to improve performance with the help of big
738 data. These tools can better capture complex nonlinearity
739 relationships between emission sources and air quality. Future
740 studies should better exploit the potential of data mining in
741 time series analysis to reflect both temporal and spatial
742 variations of air quality. Moreover, more attention should be
743 paid to the transferability and interpretability of complex
744 nonlinear models, especially those with a black-box nature.
745 Many countries and regions have established periodical air
746 quality databases using data from reference monitors. The

747most notable ones include the US EPA’s Air Quality System
748database and the European Environmental Agency’s air quality
749database, both of which provide convenient data access via
750APIs. Unlike stationary monitoring and satellite remote sensing
751maintained by governmental agencies, mobile monitoring
752campaigns are mostly run by individual research groups,
753private companies, and nonprofit organizations receiving
754funding from various sponsors. Understanding the existence
755of various data disclosure restrictions in these studies, sharing
756and publishing mobile monitoring data products is tricky yet
757crucial for raising public awareness, knowledge dissemination,
758and promoting result reproducibility. Moreover, maintaining
759open access to air quality data, models, and results is also a key
760step in fighting for local, regional, and global environmental
761justice. Currently, there are relatively fewer open data
762platforms that provide public access to mobile monitoring
763data compared to stationary data. The South Coast Air Quality
764Management District is a leading regulatory agency in testing
765mobile air sensors, conducting mobile monitoring campaigns,
766and publishing mobile monitoring data focusing on air
767pollution in South California.76 OpenAQ is a nonprofit
768organization that maintains an open-source platform77 with a
769mobile monitoring database from multiple studies, including
770Apte47 and Messier,48 but the latest update was 2 years ago. A
771similar nonprofit HabitatMap operates the AirCasting Web site
772that shares mobile and stationary air quality monitoring data
773collected by their low-cost sensor network.78 Google’s
774Environmental Insights Explorer79 analyzes and visualizes
775various urban environmental data collected by Google Street
776View cars, including air quality, tree canopy, and urban
777emissions. Hyperlocal mobile measurements, ranging from 1 to
7782 years, are available via their Web site for London,
779Copenhagen, and Amsterdam.

4. CONCLUDING REMARKS
780This paper presented a systematic review and meta-analysis of
781current literature on mobile ambient air quality monitoring,
782emphasizing the increasingly important roles of low-cost
783sensors and data mining techniques in the field. The
784unprecedented popularity of mobile monitoring and fast-
785evolving methodology in the field have made this work timely.
786Borrowing the concept of thematic analysis, we highlight the
787relevant themes, trends, and drivers of mobile monitoring that
788have important implications for its future deployment. This
789review examines three major stages in the life-cycle of a typical
790mobile monitoring study, including study proposal, experiment
791design, and data analysis. We summarize our insights into each
792of them as follows.
793We first discussed the current landscapes and prominent
794research gaps in the field relevant to the study proposal. This
795study reveals a huge research gap in mobile monitoring
796applications, and in general insufficient ambient air quality
797measurements,80 in the Global South, including Sub-Saharan
798Africa, Latin America, and South and Southeast Asia. It
799demonstrates an urgent but long-lasting environmental justice
800problem globally with a double burden of worse air quality and
801scarcer air pollution management and healthcare resources in
802these regions. Among other methods, mobile monitoring with
803low-cost sensors can bridge this research gap and advance the
804current situation in low- to middle-income counties. However,
805while capturing spatial variability continuously, mobile
806monitoring can only provide intermittent air quality snapshots
807for the same location. Thus, it is less useful for studies
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808 emphasizing temporal air quality rather than spatial informa-
809 tion.
810 We analyzed the key factors to consider in mobile
811 monitoring experiment design. It is worth noting the unique
812 opportunities brought by low-cost sensors in real-time personal
813 exposure and acute health effect assessment due to their
814 versatility in instrument carriers and operating personnel. We
815 further highlighted three successful mobile monitoring
816 programs that can serve as blueprints for future implementa-
817 tion of mobile monitoring, including predefined, opportunistic,
818 and hybrid strategies. A critical element in mobile monitoring
819 experiment design is repetition, which is under-reported in the
820 current literature. We encourage future studies to provide this
821 information to enable a better understanding of best practices
822 for application-specific repetitions. Our meta-analysis demon-
823 strates that spatial regression studies can use 10 unique
824 repetitions at the same location as a rule-of-thumb in future
825 studies lasting up to a year and four repetitions should be
826 considered the bottom line for any type of analysis.
827 Regarding data analysis and modeling, our results revealed
828 that an astoundingly large number of papers have reported
829 sensor calibration and data quality assurance information
830 poorly, despite the wide adoption of non-reference-grade
831 instruments. Even fewer studies followed the recommended
832 calibration guidelines by the regulating agencies. To comple-
833 ment the voluntary calibration efforts from the researcher’s
834 side, we further recommend that reviewers should ask authors
835 to provide an appropriate description of calibration and data
836 quality assurance to ensure more rigorous documentation of
837 these processes in the scientific community. We further
838 demonstrated the popularity of ensemble regression models
839 in air quality prediction and interpretation. Meanwhile, there is
840 much more to explore in extracting air quality information
841 from nontabular data, such as text and images, and joint
842 analysis of temporal-spatial patterns of air quality using data-
843 mining techniques.
844 Finally, we acknowledge several limitations of this review.
845 This study only includes publications in the English language,
846 which can be biased for applications in non-English-speaking
847 countries. Moreover, only peer-reviewed papers are included in
848 the review. We recognize that local communities and
849 environmental advocates, not-for-profit organizations, compa-
850 nies, and government-led projects do not prioritize scientific
851 publication as an outcome, while such efforts also contribute to
852 advancing mobile monitoring and global environmental justice.
853 Lastly, our review excluded papers without a significant mobile
854 monitoring data collection component or using only secondary
855 mobile monitoring data products, which could lead to an
856 under-represented number of personal exposure and epide-
857 miological studies.
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