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Sammendrag 
Dynamisk kontrastforsterket Magnetisk Resonans (MR) avbildning (DCE) er en veletablert 

klinisk metode for oppdagelse og karakterisering av brystkreft. Men DCE har flere 

begrensninger og det er derfor behov for å utvikle nye metoder for nøyaktig oppdagelse av 

kreft og skille det fra omkringliggende friskt brystvev uten bruk av intravenøs kontrast. 

Diffusjonsvektet MR (DWI) er en metode som reflekterer underliggende vevsstruktur ved å 

detektere diffusjon av vannmolekyler, uten å bruke kontrast. DWI har vist stort potensiale i 

brystkreft, blant annet for vurdering av behandlingsrespons ved beregning av kvantitative 

diffusjonsegenskaper. Men et stort problem ved dagens DWI metoder er at de er avhengig av 

å bruke DCE til å identifisere tumor.  

Oppgavens hovedmål var å utforske alternative MR-baserte metoder for deteksjon og 

responsevaluering av neoadjuvant behandling av brystkreft: hybrid positron emisjon tomografi 

og MR (PET/MR) og avansert DWI (Restriction Spectrum Imaging (RSI)). For å overføre 

RSI til klinisk bruk var det nødvendig å undersøke de underliggende 

diffusjonsegenskapene i brystvev. Dette gjorde vi ved å tilpasse signalet fra alt brystvev, 

både friskt vev og kreft. RSI ble også brukt for å vurdere behandlingsrespons av neoadjuvant 

behandling. 

Resultatene viser at en ny semi-automatisk segmenteringsmetode basert på PET-signalet i 

stor grad detekterer det samme tumorarealet som DCE, og diffusjonsparameterne som 

avledes for å beskrive behandlingsrespons er like for de to metodene. Videre tyder 

funnene på at optimalisering av RSI gjør det mulig å filtrere ut diffusjonssignal fra 

normalt brystvev, og metoden kan derfor benyttes til å detektere brystkreftvev og skille det 

fra det omkringliggende friske brystvevet. RSI modellen viste også et lovende 

potensial for å evaluere behandlingsrespons allerede 3 uker etter behandlingsstart. 

RSI viste dessuten tilsvarende nøyaktighet som DCE i å vurdere gjenværende kreftvev etter 

fullført neoadjuvant behandling. 

Metodene som er beskrevet i denne oppgaven viser at brystkreft kan detekteres uten bruk av 

intravenøst, gadoliniumbasert kontrastmiddel, og det er spesielt lovende at RSI modellen kan 

benyttes på tvers av ulike institusjoner, med bruk av ulike MR-skannere og 

varierende opptaksprotokoller. Det ser også ut til at den optimaliserte RSI modellen kan måle 

respons på neoadjuvant behandling av brystkreft i tidlig fase, noe som er viktig for 

bedre klinisk vurderingsgrunnlag og for å muliggjøre persontilpasset behandling.  
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Summary 
Accurate segmentation of cancer from surrounding healthy breast tissues in magnetic 

resonance imaging (MRI) without intravenous administration of contrast agents, is a question 

of wide interest. Current standard-of-care dynamic contrast-enhanced MRI (DCE) depends on 

Gadolinium contrast. Diffusion-weighted MRI (DWI) avoids the use of contrast since it is able 

to report on tissue microstructure by detecting diffusion of water molecules and has shown 

large potential in several breast cancer settings, including assessment of treatment response. 

However, the current application of DWI for quantitative studies requires radiologists to 

manually define tumors based on DCE, prior to transferring the defined regions of interest 

(ROIs) to the DWI image space for analysis. 

 

In this thesis, we investigated alternative methods to DCE for breast tumor definition and 

neoadjuvant treatment response evaluation: simultaneous positron emission tomography and 

MRI (PET/MRI), and optimizing an advanced DWI model, Restriction Spectrum Imaging 

(RSI), for use in the breast. Since meaningful assessment by the RSI model requires knowledge 

about the underlying breast diffusion properties, we investigated the optimal fitting of diffusion 

signal for all voxels in cancer and healthy breast tissues. Furthermore, the optimized RSI model 

was applied for neoadjuvant treatment response evaluation.  

 

We found that tumor definition using our novel semi-automatic PET/MRI segmentation 

method, GMM-PET, mimics results normally attained through DCE by successfully tracking 

the same changes in functional parameters for assessment of neoadjuvant treatment. Secondly, 

optimal fitting of diffusion signal for all voxels in cancer and healthy breast tissues resulted in 

a three-component RSI model, with globally-determined component-specific apparent 

diffusion coefficients (ADCs) that decomposed the diffusion signal to correspond to major 

anatomical components in healthy breast tissues. These results were then applied for optimized 

discrimination of cancer from healthy breast tissues directly on DWI images, which yielded 

the derived RSI parameter, C1C2 that showed highly promising discriminatory performance 

superior to conventional DWI estimates. The three-component RSI model was further used to 

develop an automatic tissue classifier (RSI classifier) that was able to assess treatment response 

after only 3 weeks of neoadjuvant treatment and was found to have similar accuracy to DCE 

in assessing residual tumor post-therapy.  
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Our novel methodologies, GMM-PET and three-component RSI model-derived C1C2 

parameter, can detect breast cancer without the use of Gadolinium contrast. Of particular 

interest, the highly promising diagnostic performance of C1C2 was determined using data 

acquired across different sites, scanners, and imaging acquisition protocols. This suggests a 

readily available clinical utility that may reduce the need to pre-identify lesions on non-

diffusion modalities altogether. The finding that the automatic RSI classifier can assess early 

response to neoadjuvant treatment is important for improved clinical decision-making to enable 

tailored treatment regimens. 
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1. Introduction 
 

Breast cancer is the leading cause of cancer death in women worldwide 1, and is the most 

frequent female malignancy both globally 1 and in Norway 2. Breast cancer prognosis is highly 

dependent on the cancer stage at the time of diagnosis; the 5-year relative survival rate is 92.1 

% for the entire patient group, reduced to 79.4 % for more severe cancer stages 2. For high-risk 

patients (stage III; 10.4 % of breast cancer population) 2, tumor downstaging by neoadjuvant 

medical therapy prior to surgical removal is critical to allow breast-conserving surgery and 

ameliorate their poor prognosis 3. 

 

The European Society of Breast Cancer Specialists (EUSOMA) breast cancer working group 

of 2010 has urged the investigation of magnetic resonance imaging (MRI) as a potential source 

of non-invasive biomarkers for the prediction of treatment response 4. Alongside MRI, 

simultaneous positron emission tomography (PET) and MRI (PET/MRI) is a recent technology 

with significant potential in many aspects of breast cancer practice, including diagnostics, 

staging, and neoadjuvant response evaluation 5. Early and accurate detection of non-responders 

is key to discontinuing ineffective treatment and embarking on alternative treatment regimens. 

The multi-modal physiological tumor characterization that can be obtained with PET/MRI 

suggests clinical utility in this setting, although this is not yet well-explored. Thus, one focus 

of this thesis was to optimize MRI-derived predictive biomarkers for improved treatment 

response evaluation of breast cancer in a neoadjuvant chemotherapy (NAC) setting.  

 

Dynamic contrast-enhanced imaging (DCE) is the most sensitive breast cancer detection tool 
6-10. However, DCE is limited by conflicting results regarding specificity 7-11, dependency on 

expert radiologist readers, additional costs, and the use of Gadolinium-based contrast agents 

that are linked to deposition in the brain 12. In addition to PET/MRI, another alternative to DCE 

is diffusion-weighted MRI (DWI), an imaging technique that does not require an extrinsic 

contrast agent, but where image contrast is sensitized to water diffusion in tissue via application 

of pulsed magnetic field gradients. In its simplest form, diffusion information from DWI can 

be quantified by the calculation of the conventional apparent diffusion coefficient (ADC), a 

robust biomarker that is reduced in tumor tissue and which has shown a greater specificity than 

conventional MRI for distinguishing between pre-identified malignant and benign lesions 13-

15. However, DWI is underexplored for discriminating cancer tissue from all other breast 
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tissues, an application that would increase the clinical utility of DWI in a range of breast cancer 

evaluation settings. To reach this goal, the diffusional composition of cancer and healthy breast 

tissues must be explored. Thus, another focus of this thesis was to determine the diffusion 

profile of breast tissue by application of advanced diffusion models. This will lay the 

foundation to explore the ability of diffusion models, optimized for breast application, to 

distinguish cancer from healthy breast tissues. The development of advanced DWI methods is 

important for the overall goal of improved conspicuity of cancer relative to background breast 

tissue, which is fundamental for the real-world application of any oncological imaging 

technique.  
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2. Background 
 

2.1 Breast anatomy and function 
The breasts are two prominences located ventral to the pectoral muscles of the torso (Figure 

1). Each breast is organized into ~20 milk-producing units called lobes. Furthermore, each lobe 

is organized into smaller clusters of glands called lobules with a primary functional unit called 

terminal duct lobular unit (TDLU) 16 (Figure 2A). TDLUs consist of clusters of highly 

specialized glands that produce milk, and a small segment of the duct (terminal duct) that 

transports milk from the glands. When breast cancer develops, it most frequently arises from 

TDLUs 17. From the TDLUs, the milk is transported through a network of ducts to the nipple 

where it secretes through holes in the surface of the breast. The nipple lies within an area of 

pigmented skin called the areola 18.  

 

  
Figure 1. Breast anatomy. © 2011 Terese Winslow LLC, U.S. Govt. has certain rights. 

 

 

The major components of healthy breast tissues are fatty tissue, glandular tissue, and fibrous 

tissue. Fibrous tissue is a specialized connective tissue that surrounds and supports glands and 

ducts in the TDLUs. Fatty tissue lies in between the lobes and encloses the breast and provides 

isolation 18. Fatty tissue is primarily made up of adipocytes which typically contain a large lipid 
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droplet, occupying > 90 % of the cell volume, leaving a small rim of water-containing 

cytoplasm (Figure 2B). On average, fatty tissue consists of ~ 85 % lipids and ~ 15 % water 19. 

This means that healthy breast tissues are an admixture of fibrous, glandular, and fatty tissue 

rather than distinctly separate areas of different healthy tissue types. The fibrous and glandular 

tissue is collectively known as fibroglandular tissue, and this term will be used throughout this 

text.  

 

The breast also includes a network of blood and lymph vessels. The main blood supply of the 

breasts comes from the thoracoacromial and internal mammary arteries. Lymphatic vessels 

drain the breast to internal mammary and axillary lymph nodes. Lymphatic spread to these 

lymph nodes is the most frequent route of metastasis in breast cancer 18.  

 

The relative composition of fatty and fibroglandular tissue varies greatly among women and 

throughout a woman’s lifetime. Healthy breast tissues are targets for sex hormones 20, and their 

size and contribution thus fluctuate throughout female hormonal changes such as menstruation, 

pregnancy, lactation, and menopause. After menopause healthy breast tissue becomes 

increasingly fatty and less fibroglandular. Radiologic evaluation of the breasts therefore 

includes categorization of the general breast composition concerning fatty and fibroglandular 

tissue: breast density (mammography) and amount of fibroglandular tissue and degree of 

background parenchymal enhancement (BPE) on MRI. 

 

A.       B. 

  
 

Figure 2. A. Terminal duct lobular unit (TDLU). B. Adipocytes. Illustration 2A. is from © 
Behrang Amini, MD/PhD published under the creative commons license CC BY-NC-SA 3.0 
(https://creativecommons.org/licenses/by/3.0/deed.no).  
 

https://creativecommons.org/licenses/by/3.0/deed.no
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2.2 Epidemiology 
Breast cancer is the most frequent female malignancy both globally 1 and in Norway 2; in 

Norway, one in every 11 women will develop breast cancer by the age of 80 years. The risk of 

developing breast cancer increases with age, where women over the age of 50 are primarily 

affected, and the mean age for diagnosis is 62 years 2. Conversely, men are rarely affected by 

breast cancer; of the 3455 new cases recorded in Norway in 2020, only 31 were men. In 

addition, there is a clear trend towards an increase in the diagnosis of disease over the past 

years, with only 1235 women receiving the diagnosis in 1970 (Figure 3) 2. Alongside improved 

diagnostics and treatment, one important contributing factor is the Norwegian public x-ray 

mammography screening program which was introduced in 1996 for women in the age group 

50–69. Similarly, there has been a clear increase in survival rates, and mortality has slightly 

decreased (Figure 3) 2.  

 

  

 

 

 

 

 

 

 

 

Figure 3. Trends in incidence and mortality rates and 5-year relative survival proportions in 
Norway. Adapted from 2 with permission. 
 

2.3 Diagnosis 
In Norway, breast cancer is diagnosed by “triple diagnosis” which consists of clinical palpation 

of the breast, radiological assessment, and histopathologic analysis of core needle biopsy 21. 

This is performed by a multidisciplinary team: clinical palpation by a breast and endocrine 
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surgeon, radiological assessment (see 2.9) by a radiologist, and histopathological analysis of 

the biopsy by a pathologist.  

 

2.4 Breast cancer stratification 
Breast cancer is a heterogeneous disease and can be stratified based on pathological 

characteristics into subtypes and stages (extent of spread). These stratifications are the basis 

for treatment recommendations and follow-up.  

 

2.4.1 Pathology and subtypes 
Most invasive breast cancers are carcinomas, which are cancers that develop from epithelial 

cells. Once abnormal cells spread and invade surrounding fibrous and fatty tissue the lesion is 

considered cancerous. Following the new WHO guidelines 17 from 2012, invasive carcinoma 

of no special type (NST) is the new term for what was previously described as “invasive ductal 

carcinoma”. The justification for this change in terminology is related to the current thinking 

that carcinomas arise from the TDLUs which makes the term “ductal” misleading 22. NST is 

the most common type of invasive breast carcinomas and makes up 70–80 % of all cases 17, 

while invasive lobular carcinomas are the second most common type (10–20 %). In situ lesions 

are pre-cancerous lesions where abnormal cells have not yet invaded surrounding fibrous and 

fatty tissues; these are ductal carcinoma in situ (DCIS) and lobular carcinoma in situ (LCIS).  

 

Breast cancer may furthermore be sub-classified into subtypes based on gene expression 

profiling, yielding five subtypes: luminal A, luminal B, human epidermal growth factor 

receptor 2-enriched (HER2-E), basal-like (basal), and normal-like 23. Luminal A is the most 

common, then luminal B, basal, and HER2-E in primary breast cancer 24; the normal-like 

subtype is rarely used and will not be discussed in further detail. Each subtype has a 

characteristic gene expression profile with a distinct receptor- and cell proliferation marker 

(Ki67)-signature linked to it. Since the receptor profiling, with expression of estrogen receptor 

(ER), progesterone receptor (PgR), and human epidermal growth factor receptor 2 (HER2) are 

targets for standard-of-care treatment regimens, these subtypes are vital for treatment decision-

making and are known to correlate with clinical outcome 25. The Prosigna gene profile test is 

now approved for gene profiling in the clinic in Norway 21.  
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Luminal A and luminal B are both hormone-receptor positive (ER positive and/or PgR 

positive) while the majority are HER2 negative 26. The main difference between the two 

luminal subtypes is the proliferation rate, where luminal A has lower levels of Ki67 and is thus 

more slowly growing, which is linked to a slightly better prognosis and longer relapse-free 

survival compared to luminal B. HER2-E cancers are generally hormone negative (ER and PgR 

negative), HER2 positive, and have higher Ki67 levels, though there is some variability within 

the subtype. Lastly, the basal subtype is triple-negative for the majority of tumors within this 

subtype, which means that it is negative for all receptors (ER, PgR, and HER2 negative) and 

has the poorest prognosis 25. Both the hormone-positive luminal A and luminal B are targets 

for endocrine therapy while HER2-E are targets for HER2-targeted therapies such as 

trastuzumab. In most cases, chemotherapy is indicated for all subtypes except luminal A 27; 

thus, one of the most clinically important aspects of gene profiling is identifying luminal A 

cancer.  

 

2.4.2 Stages 
Breast cancer extent of spread is graded through the globally recognized standard TNM 

classification system for solid tumors and is used to guide patient management and evaluate 

prognosis 28. The system classifies the extent of cancer spread by the size and local invasion of 

the primary tumor (“T”), the involvement of regional lymph nodes (“N”), and the presence of 

distant metastasis (“M”). In breast cancer, four stages with increasing extent of spread are 

derived from the TNM classification: stage I, stage II, stage III, and stage IV; details are given 

in given in Table 1 and Figure 4.  
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Breast 
cancer 
stage 

TNM code 
Definition 

Stage I T1N0M0 Primary tumor size <2 cm. No involvement for regional lymph nodes or 
presence of distant metastasis.  

Stage II T0-2N1M0 Primary tumor size <2 cm with involvement of movable ipsilateral axillary 
lymph nodes.  

 T2N0M0 Primary tumor size 2-5 cm without involvement of lymph nodes. 

 T3N0M0 Primary tumor size >5 cm without involvement of lymph nodes. 

Stage III T0-2N2M0 
Primary tumor size 2-5 cm with involvement of ipsilateral axillary lymph 
nodes which are knitted to each other or surrounding tissue or ipsilateral 
mammaria interna lymph nodes. 

 T3N1-2M0 
Primary tumor size >5 cm with involvement of movable ipsilateral axillary 
lymph nodes, ipsilateral axillary lymph nodes which are knitted to each 
other or surrounding tissue or ipsilateral mammaria interna lymph nodes. 

 T4N0-2M0 Primary tumor of any size with local growth into the skin or chest wall.  

 T0-4N3M0 

Primary tumor of any size with more widespread regional lymph node 
involvement, including ipsilateral infra- or supraclavicular lymph nodes or 
involvement of both ipsilateral axillary lymph nodes and ipsilateral 
mammaria interna lymph nodes. 

Stage IV T1-4N0-3M1 Presence of distant metastasis. Primary tumor of any size and regional 
lymph node involvement of any kind.  

 

 

Table 1. Staging of breast cancer based on TNM-classification. Rows marked in orange are 
defined as primary inoperable 21.  
 

 
Figure 4. Four stages with increasing extent of spread: stage I, stage II, stage III, and stage IV. 
The image was obtained from 29.  
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2.5 Prognosis 
Breast cancer is the leading cause of female cancer-related death globally 1 and primary reason 

for years of life lost for women up to 65 years in Norway 30. The prognosis of breast cancer 

has improved over the last decades, and the 5-year survival rate for the entire patient group in 

2016–2020 has reached 92.1 %, largely due to early diagnosis as a result of the mammography 

screening program, in addition to improved treatment regimens and diagnostics. However, the 

prognosis is highly dependent on the cancer stage at the time of diagnosis; the 5-year survival 

rate relative to the general population for stage I cancer is 100.5 %, for stage II is 96.1 %, but 

only 79.4 % for stage III and 33.9 % for IV. Consequently, different patient management is 

required for the different stages, where locally-advanced breast cancer (LABC, see 2.6) is a 

group that requires extra treatment efforts 21.  

 

Given the relatively high overall prognosis, many women live on after breast cancer treatment. 

There has been an increased focus on the side effects these women face, such as chronic fatigue, 

premature menopause, infertility, osteoporosis, and sexual dysfunction, according to Patient 

Reported outcome Measures and Patient Reported Experience Measures 31.  

 

2.6 Locally-advanced breast cancer (LABC) 
LABC is defined as large cancers with a primary tumor size > 5 cm (T3), local infiltration of 

skin or muscle (T4), or locally-advanced lymph node involvement (N2–3). In the TNM 

classification system, the term is used for stage III tumors (10.4 % of breast cancer population) 
2, and large stage II tumors (T3N0M0), defined as primarily inoperable (Table 1). Thus, LABC 

occurs in a heterogeneous group of breast cancer patients with variable prognosis, as T3 tumors 

have a considerably better prognosis compared to T4. Stage III cancers make up a small group 

of all breast cancer patients (approximately 10 %) 2. Contrary to standard patient care, tumor 

downstaging by neoadjuvant medical therapy before surgery is used to make tumors operable 

or enable breast-conserving surgery, control micrometastasis, and aid as an in vivo drug-

sensitivity test bed 32,33 (Figure 5). The neoadjuvant treatment regimen is assessed individually 

for each patient, where subtype/receptor status are main determinants for treatment choice. 

Most patients receive NAC, but endocrine therapy can be an alternative for selected subtypes 

(Luminal A) 21. One key aspect of neoadjuvant therapy regimens is that they are adaptive, 

meaning that treatment selection is tailored during therapy. Thus, assessment of the efficiency 
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of therapy is crucial to guide therapy selection. Ideally, predicting response as early as possible 

may help tailor treatment regimens for the best patient outcome.  

 

 
Figure 5. Schematic figure of work-up and patient care for locally-advanced breast cancer 
(LABC). Detection and diagnosis, surgery, and neoadjuvant therapy are standard-of-care for 
all breast cancers (except stage IV), while neoadjuvant therapy (orange) is indicated for LABC 
only.  
 

2.7 Treatment response endpoint: pathological complete response (pCR) 
Another goal of neoadjuvant therapy is pathological complete response (pCR), defined as no 

remaining tumor tissue in breast and lymph nodes as measured by post-surgical pathology. 

pCR is the most used endpoint to evaluate response to neoadjuvant therapy. A large meta-

analysis by Cortazar et al. concluded that pCR correlates with improved survival and a reduced 

chance of breast cancer recurrence 34. Though the field of genetic sequencing has massive 

ongoing experimental trials associating specific genes to chemoresistance, the in vivo 

association is still limited and has to this date not produced any predictive factors assessed in 

clinical care 35. Consequently, a major field of interest is to be able to predict pCR through 

MRI-derived predictive biomarkers. The EUSOMA breast cancer working group of  2010 

urged for further investigation of MRI as a source of potential non-invasive biomarkers in 

response prediction 4. This has become a major field of interest. Such predictive biomarkers 

may guide treatment switching, expedite surgical intervention for responders, and select correct 

treatment regimens to avoid unnecessary toxic side effects.  

 

2.8 Physical basis of MRI 
MRI is an imaging modality that allows the formation of images from the interaction of certain 

atomic nuclei with magnetic fields. In particular, hydrogen atoms (protons) that are abundant 
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in the human body, predominantly as part of a water molecule (H2O) in soft tissue, are visible 

by MR since they possess a spin angular momentum ½. When the patient is positioned in the 

MRI scanner, the protons are exposed to the main magnetic field B0, (Figure 6A), the proton 

spin eigenstates adopt an equilibrium state with a slight net magnetic alignment M0 (Figure 

6B) and have known resonant precession frequency (determined by B0 and the nucleus type) 

in the radiofrequency (RF) range. During an imaging sequence, RF pulses applied to the system 

temporarily disrupt the equilibrium (Figure 6C), leading to a precessing magnetic signal that 

induces a voltage in receiver coils placed around the patient in the transverse plane (and which 

are also used for the RF transmission) (Figure 6D). This induced voltage is the MR signal, 

which decays as the protons return to their equilibrium state through various simultaneous 

relaxation processes (see below). The MR signal can be spatially encoded in order to give 

images by modulating the RF frequency and phase of particular spin locations across the object 

through the use of linear magnetic field gradients along chosen axes, which also enable the 

selective excitation of particular slices through the patient. 36 The specific details of MR image 

generation, as well as echo planar imaging (EPI) sequences and diffusion encoding, are well-

established 36 and beyond the scope of this introduction. Only standard imaging sequences were 

used in this thesis.  

 

 
Figure 6A–D. Basic principles of MRI signal generation. The MR signal arises from a slight 
net alignment with the stationary field B0, and this net magnetization interacts with an RF pulse 
to disturb the equilibrium. Once disturbed, any transverse magnetization precesses around B0 
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and induces an RF signal in the receiver coil. RF; radiofrequency. Adapted and modified from 
37 with permission. 
 

 

Two basic MR sequence parameters which influence the overall image contrast in the MRI 

acquisition protocol are the repetition time (TR) and the echo time (TE). TR is the time between 

the delivery of consecutive RF excitation pulses, while TE is the time between the RF pulse 

and the resulting echo signal from the protons. The choice of TR and TE are important because 

they allow time for different relaxation processes of the exited protons, governed by time 

constants T1 and T2. Both are exponential decay time constants; T1 is associated with the 

return to equilibrium with the B0 magnetic field, and T2 describes the decay of the observable 

signal. These processes reflect the local spin environment, and so T1 and T2 relaxation times 

will vary among different tissue types, resulting in contrast between different tissues in the 

acquired images (on top of the underlying density of proton spins in each location). Choice of 

TR and TE can thus be tuned to reveal useful anatomical information; in addition to these 

intrinsic contrast mechanisms, and of relevance to the work in this thesis, tissue contrast in 

MRI can also be generated through the diffusion of water molecules (see below) 36. 

 

2.9 Radiological assessment of breast cancer; mammography, ultrasound, MRI  
A variety of radiological tools are used for breast cancer detection and follow-up. X-ray 

mammography is the primary screening tool for the general population where the goal is early 

detection of early-stage disease to reduce breast cancer mortality. However, mammography 

has several limitations including low positive predictive value 38,39, alongside the personal, 

health care, and societal impact of false results. Moreover, mammography primarily detects 

slowly growing low-grade and in situ cancers 40. Both WHO 41 and the European Commission 

Initiative on Breast Cancer 42 strongly recommends systematic mammography screening for 

women in the age group 50–69 years in well-resourced countries with a health care system able 

to implement large-scale population-based screening programs. Together with several 

European countries, Norway has followed these recommendations; screening was introduced 

in 1996 for the age group 50–69 years every other year 21. Moreover, screening guidelines for 

ages 40–44 years, 45–49 years, and 70–74 years vary for the European Commission Initiative 

on Breast Cancer 42 and WHO  41. In the US, the Society of Breast Imaging and The American 
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College of Radiology recommends annual mammography screening already at the age of 40 

and without an upper age limit unless severe comorbidities limit life expectancy 43.   

 

Additionally, ultrasound may be used as a complement to mammography and is especially 

useful in younger women whose breasts are filled with abundant glandular tissue making 

mammographs difficult to interpret, so-called dense breast. Similar approaches are used for 

follow-up after primary treatment for the detection of cancer recurrence. Breast MRI is shown 

to have the highest sensitivity for breast cancer detection 6-9,44,45 and is shown to detect more 

clinically-relevant tumors 40. Nevertheless, conventional breast MRI is considered too 

expensive, time-consuming, and inaccessible for mainstream screening of the general 

population but has indications in several other settings.  

 

2.9.1 Indications for breast MRI  
According to the American College of Radiology, current indications for breast MRI include 

preoperative evaluation of the extent of disease for selected patient groups (staging), 

assessment of treatment response for patients undergoing neoadjuvant therapy, and 

surveillance of high-risk patients with ≥ 20% lifetime risk of breast cancer 46. MRI has proven 

to be the best available modality for assessment of treatment response to neoadjuvant therapy 

and is indicated for a patient with LABC or stage T2 disease receiving neoadjuvant therapy 47 

(see below). Additional indications are assessment of occult breast cancer in the setting of 

axillary lymphatic metastatic disease of unknown primary origin if mammography and 

ultrasound are negative and problem-solving if mammography and ultrasound show 

inconclusive results. These indications are mimicked in the 2021 guidelines from the 

Norwegian Directorate of Health 21. In the Norwegian guidelines, screening of high-risk 

patients includes women with highly penetrant gene mutations such as BRCA1 and BRCA2, 

who are recommended to have annual screening with combined mammography and MRI from 

the age of 25 (MRI only from 20 years of age for TP53 mutation carriers). 

 

2.9.2 Standard breast MRI acquisition 
The current standard MRI breast tumor evaluation protocol (Figure 7) includes T2- and T1-

weighted images, DWI and DCE. The T2-series displays the anatomy of the breast well and 

can therefore detect areas of suspected malignancy. The definition of tumor on DCE images is 
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governed by leaking of gadolinium contrast through pathological vessels that are abundant in 

tumor tissue owing to malignancy-related angiogenesis. The DCE acquisition consists of a 

baseline pre-contrast T1-weighted image prior to contrast injection followed by 6 post-contrast 

images acquired 1 minute apart. This lengthy acquisition of 7 minutes is required to generate 

kinetic enhancement curves which are critical for tumor assessment through the Breast 

Imaging-Reporting and Data System (BI-RADS) (see below). Though not yet a part of the 

standardized BI-RADS reporting system, DWI is becoming a part of standard breast MRI 

acquisition at many sites 48.  

 

 
Figure 7. Schematic of clinical breast MRI protocol at St. Olavs Hospital, Trondheim., 
Norway. DCE; Dynamic contrast-enhanced imaging. DWI; Diffusion weighted imaging. T1: 
T1-weighted imaging. T2; T2-weighted imaging.  
 

2.9.3 Breast Imaging-Reporting and Data System (BI-RADS)  

BI-RADS 49 is a standardized breast imaging reporting system for mammography, breast 

ultrasound, and breast MRI used by radiologists. BI-RADS for breast MRI assesses both the 

general breast composition and breast lesions and provides final assessment categories yielding 

the likelihood of cancer and proper management and follow-up. Here the main aspects of BI-

RADS for breast MRI are described. 

 

General breast composition 

Breast composition is categorized into four categorizes based on the amount of fibroglandular 

tissue; almost entirely fat, scattered fibroglandular tissue, heterogeneous fibroglandular tissue, 

and extreme amount of fibroglandular tissue. Approximately 50 % of women have almost 

entirely fatty breast tissue or scattered fibroglandular tissue 50. In addition, the degree of BPE 

on DCE is classified into four categories: minimal, mild, moderate, and marked. Assessment 

of breast composition is important because macroscopic tumor environment may confound 

lesion detection and categorization. For example, patients who present with moderate and 
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marked BPE on DCE are associated with both false positive 51 and false negative 52 

interpretations.  

 

Lesion assessment 

Based on a combination of morphological and functional assessment criteria of breast lesions 

on MRI, BI-RADS provides a final assessment yielding the likelihood of cancer. Lesion 

interpretation is based on two basic steps: 1) lesion identification and 2) lesion classification. 

Lesion identification is based on the initial enhancement on DCE; if no lesion is found, a BI-

RADS score of 1 is given. Furthermore, if a lesion is identified, it must be classified as benign 

or malignant. Lesions on MRI can be divided into three types which are described with 

different morphological assessment criteria: a focus (too small to be characterized), mass 

enhancement (lesion occupying a three-dimensional space), and non-mass enhancement 

(NME), meaning diffusely infiltrating lesion with unclear margins). Mass enhancement lesions 

are described by the morphological characteristics of shape, margin, and internal enhancement 

pattern, while NME is described by distribution pattern and internal enhancement pattern.  

 

Furthermore, enhancement kinetics curves on DCE give a functional measure common for all 

lesion types 53. The enhancement kinetics curves are defined by an initial phase and a delayed 

phase following administration of Gadolinium contrast. The initial phase may have a “slow”, 

“medium” or “fast” curve, while the delayed phase may show “persistent”, “plateau” or “wash-

out”.  A slow or medium enhancement in the initial phase followed by a persistent enhancement 

in the late phase is common in benign lesions. Contrary, a rapid initial phase followed by wash-

out or plateau is indicative of malignant lesions.  

 

It is the combined morphological and functional criteria that determine cancer suspicion: a 

round and well-circumscribed mass lesion with a medium initial phase curve followed by a 

persistent enhancement kinetic curve would most likely be interpreted as a benign finding, 

while similar morphological features combined with a rapid initial phase curve followed by 

wash-out enhancement kinetic curve is more indicative of cancer. MRI BI-RADS categories 

lesions from 0 to VI where 0 indicates additional imaging needed, I–V increasing likelihood of 

cancer, and VI known biopsy-proven cancer.  
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BI-RADS pitfalls 

The BI-RADS classification system is conducted subjectively by a radiologist and there is no 

decision tree guiding clinical decision-making, making it prone to interobserver variability. An 

only fair interobserver agreement has been demonstrated for BPE rating 54. For lesion 

classification, studies have shown moderate to a substantial interobserver agreement for most 

morphological characteristics 54,55. However, there was only a slight agreement on lesion 

kinetics 54, moderate agreement for NME compared to mass lesions 55, and considerable 

disagreement regarding patient follow-up 54.  

 

Moreover, BI-RADS is dependent on DCE, which has several limitations such as low 

specificity ranging from 61 to 81 % 6-9,44,45, concerns regarding contrast allergy, and potential 

brain deposition of Gadolinium with unknown sequela 12. Gadolinium contrast is also 

contraindicated in patients with renal failure and pregnant women 56. Moreover, there is a large 

overlap between kinetic curves and the different lesion types 57. Thus, improvements in 

screening technology and methodology are essential for implementing precision treatment and 

can have a significant impact on health care. This has created a setting for the exploration of 

alternative techniques. 

 

2.10 Novel MRI Methods – DWI  
DWI is an MRI method that does not require exogenous contrast and yields quantitative 

information on tissue microstructure by being sensitive to Brownian motion (random 

movement) of water molecules through the application of the varying degree of pulsed field 

gradients.  

 

2.10.1 Biophysical background and DWI acquisition 
Diffusion of water molecules in biological tissue can be categorized as free, hindered, or 

restricted diffusion according to a component model of water diffusion (may also be referred 

to as a “compartment model”) 58. Free diffusion is the random, isotropic Gaussian diffusion 

seen in pure solutions. Hindered and restricted diffusion refer to observably non-Gaussian 

diffusion, which is predominately defined in extracellular space by tortuosity of cell packing 

density and intracellular diffusion, respectively. The scalar distance water travels is defined by 

the diffusion time from the sequence parameters and may be quantified by DWI techniques. 
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As hypercellular tumors have increased restricted intracellular water, DWI has become an 

increasingly used tool for oncological imaging 59. Conventional DWI (ADC model, see below) 

typically measures the hindered and restricted diffusion collectively. Stronger diffusion 

weighting, by application of higher b-value (see below) regimens, is required to sensitize DWI 

to restricted components where the water has very short diffusion distances. DWI techniques 

may also reflect geometric information, but since it is not specifically relevant to the work in 

this thesis it will not be elaborated on in any further detail.  

 

The conventional DWI acquisition protocol is based on the Stejskal-Tanner pulse sequence, 

which is a single-shot spin-echo sequence with an additional diffusion gradient pulse before 

and after the 180-degree refocusing pulse 60. The diffusion pulses are applied for a duration 𝛿 

with a gradient strength G and time separation Δ (diffusion time) and enable measurement of 

length scale water diffusion properties (Figure 8). The diffusion gradient pulses are normally 

applied in a minimum of three orthogonal directions to reflect overall diffusion. An important 

term in DWI is the b-value which describes the degree of applied diffusion weighting. The 

diffusion weighting increases with increasing b-value, given as; 

 

𝑏 = 𝐺2 ∙  𝛾2 ∙ 𝛿2 (Δ −
𝛿

3
)          (1) 

 

where b is the b-value given in s/mm2, 𝛾 is the gyromagnetic ratio of the nucleus (for MRI, 

water protons). Thus, the diffusion weighting can be increased by increasing diffusion duration 

𝛿 or time Δ, and/or gradient strength G.  

 

The purpose of the first pulse is to encode the physical position of the water molecules along 

the gradient pulse direction. This is done by adding phase increments to water molecule spins 

with increasing magnitude along the gradient field direction and is thus called the dephasing 

pulse. The second pulse (rephasing pulse) is applied after the spin echo pulse (which inverts 

the phase offsets) with the same gradient strength as the dephasing pulse and adds phase 

increments in the same way. Water molecules that change physical position between the 

diffusion pulses, i.e. during the duration Δ, will experience mismatched phase increments from 

the pulses owing to their changed position, and so will not be properly rephased by the 

rephasing pulse. This results in a signal at readout that is reduced proportionally with the 
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diffusion distance of water during time Δ, and thus the signal from free diffusion will be 

relatively decreased compared to hindered and restricted diffusion.  

 

 
Figure 8. Illustration of A. basic principles of diffusion-weighted imaging (DWI) acquisition 
and B. one-dimensional schematic of net dephasing dependent on spin motion. A. Two 
symmetric diffusion pulses (Gdiff), dephasing pulse (Gdephase) and rephasing pulse (Grephase), are 
applied before and after the 180-degree radiofrequency pulse (RF), respectively. They are each 
applied for the duration 𝛿 and strength G, with the duration Δ  apart. B. The diffusion pulses 
affect free diffusion spins and hindered/restricted diffusion spins differently. Gdiff adds 
additional phase (blue and green being +/− additions to the static magnetic field), the amount 
defined by the spin location along the gradient pulse direction (here given up/down). Free 
diffusion spins change position between diffusion pulses, leading to net dephasing as these 
spins are not being rephased properly by Grephase and consequently lose readout signal. 
Hindered and restriction diffusion, however, remain in roughly the same location, which means 
that the dephasing from Gdephase will be directly reversed by Grephase. Thus, hindered and 
restricted diffusion results in an increased readout signal relative to free diffusion. Details of 
hindered and restricted diffusion are given in Figure 11. Adapted and modified from 37 and 61 
with permission. 
 

 

The DWI signal in an image voxel (SDWI) at a given b-value is typically described as:  

 

𝑆𝐷𝑊𝐼 = 𝑆0 ∙ 𝑒−𝑏∙𝐴𝐷𝐶                      (2) 

 

where S0 is the signal at b = 0 mm/s2, and ADC is the conventional apparent diffusion 

coefficient that quantifies this mono-exponential description. However, an important aspect of 
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the Stejskal-Tanner sequence, which is not explicit in the above formula that assumes the b-

value is the only variable in the DWI acquisition, is that the signal is also T2-weighted, owing 

to the spin echo readout, which means that signal intensity on DWI is determined by both the 

intrinsic transverse relaxation time T2 and diffusion properties of the tissue. Additionally, 

proton density  also influences the diffusion signal. An alternative way of expressing the 

diffusion signal more clearly demonstrating the T2 and proton density effects is therefore:  

 

𝑆𝐷𝑊𝐼 = 𝑆𝜌 ∙ 𝑒−𝑇𝐸/𝑇2𝑒𝑓𝑓 ∙ 𝑒−𝑏∙𝐴𝐷𝐶          (3) 

 

where S is the total available signal for the given proton density , TE is the echo time, and 

T2eff is the effective T2 relaxation time in a given voxel. For the remainder of this thesis, T2 

effects on diffusion signal refer to T2eff. As the TR is typically very long in diffusion 

acquisitions (5000–15000 ms), T1 influence is negligible. TE is typically 60–120 ms, which 

means that tissue with long T2 relaxation will have a proportionately high signal in the 

diffusion-weighted image, an effect known as “T2 shine-through”. Conventionally this has 

been regarded as an unwanted diffusion image contamination 62 and, by calculating parametric 

ADC maps from multiple diffusion weightings with identical TR and TE, both T2- and proton 

density-influence is purposely removed to solely quantify diffusion properties.  

 

2.11 Models of diffusion signal decay 
There are many ways to model the diffusion signal on DWI, which may rely on different 

assumptions about underlying water diffusion in biological tissue. Firstly, the models differ in 

the range of b-values used to fit the model, which ultimately decides what aspect of physiology 

the models study. Low and mid b-values, up to approximately 1000 s/mm2, are used to quantify 

free and hindered diffusion, as well as fast-flowing vascular fluid. On the other side, higher b-

values are needed to probe the restricted diffusion within hypercellular tumors. Secondly, while 

some models are purely mathematical, such as kurtosis (see below), some multi-component 

models aim to provide information on underlying microstructure by explicitly modelling the 

diffusion of water in distinct components. These more biophysical models have become an 

emerging standard in several imaging domains 63-67. 
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2.11.1 Modeling low and mid b-values 
In its simplest form, the diffusion signal can be modeled as described in equations 2 and 3 by 

application of two or more separate b-values which allows for the calculation of ADC 68 as a 

quantifiable diffusion measure. This model explicitly assumes a single Gaussian process, or 

random model of diffusion behavior (i.e. isotropic unrestricted diffusion), which manifests as 

a mono-exponential signal decay across b-values. However, water diffusion in biological tissue 

is a complex phenomenon influenced by tissue microstructure such as cell membranes and 

perfusion which in turn may influence diffusion signal decay. The ADC model thus does not 

separately account for signal originating from hindered and restricted diffusion components, 

and so fitting a mono-exponential is an oversimplification of the true signal curve in the 

presence of these effects. This has motivated the development of more advanced diffusion 

models to describe the diffusion signal decay across b-values more fully  

 

 
Figure 9. Illustration of signal over low and mid b-value ranges, here displaying up to 1000 
s/mm2. Mono-exponential (ADC model) and bi-exponential (IVIM model) are displayed; note 
the deviation of IVIM model from the Gaussian ADC model. Parameters used for the 
simulation were ADC = 0.0015 mm2/s for ADC model, and f = 0.3, D = 0.001 mm2/s, and D* 
= 0.02 mm2/s for IVIM model. Note that the curves are for illustration purposes only and effects 
are exaggerated. a.u.; arbitrary unit. IVIM; intravoxel incoherent motion. 
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Intravoxel incoherent motion (IVIM) model 

The intravoxel incoherent motion (IVIM) model is a DWI model that was first proposed by 

Denis Le Bihan in the 1980s 68. IVIM assumes two primary types of diffusion in biological 

tissue; “true” Gaussian diffusion within the extracellular matrix, and microscopic diffusion of 

capillary blood flow which manifests as an accelerated diffusion process (pseudodiffusion) 

given the right assumptions. This is mathematically expressed as a two-component model that 

assumes a bi-exponential signal decay across b-values, where each element represents a distinct 

tissue component with its own signal decay quantified with a corresponding diffusion 

coefficient. In the low b-value range, commonly less than 200 s/mm2, the faster 

pseudodiffusion component of the signal is effectively removed, while the true diffusion 

component signal, from free and hindered diffusion, remains up to and through the mid b-value 

ranges (typically up to 600–1000 s/mm2) 68. The overall curve is therefore non-Gaussian, and 

the signal decay is given as:  

 

𝑆𝐷𝑊𝐼 =  𝑆0[𝑓 ∙ 𝑒−𝑏(𝐷+𝐷∗) + (1 − 𝑓) ∙ 𝑒−𝑏𝐷]                 (4) 

 

where f is the pseudodiffusion fraction, D* is the pseudodiffusion coefficient corresponding to 

this component, and D is the “true” apparent diffusion coefficient (equivalent to ADC in the 

absence of a perfusion influence). In this fitting, the diffusion coefficients D and D* are free 

parameters, and the equation becomes non-linear (cannot be linearized using a log transform 

in the way equation 2 can) and the signal fractions for each component are mutually dependent 

(summing to 1). The IVIM model also normalizes by S0 which includes the T2- and proton 

density-weighting of diffusion signal, similar to ADC calculation (equation 3). Owing to the 

increased complexity, and the fast-decaying pseudodiffusion component of the model, to 

successfully fit a diffusion signal with the IVIM equation (equation 4), five or more b-values 

are typically used (though a minimum of three can yield a simplified version). Figure 9 shows 

example diffusion signal decay curves simulated for typical values of the ADC and IVIM 

models, and the behavior at small b-values can be clearly seen; where there is significant 

perfusion or flow component of the diffusion signal, the IVIM model may be more appropriate. 

 

2.11.2 Modeling high b-values 
Higher b-value ranges are needed to accurately probe the very short diffusion distances of the 

restricted intracellular water component. This is the aim of several DWI models because 
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hypercellular tumors have increased restricted intracellular water volumes, described below 

and with illustrative simulated curves shown in Figure 10.  

 

 
Figure 10. Illustration of signal over high b-value ranges, here displaying up to 3000 s/mm2. 
Mono-exponential (ADC model), multi-component model (here displayed with K = 2, bi-
exponential, and K = 3, tri-exponential) and kurtosis (DKI) model. Parameters used for the 
simulation was ADC = 0.0015 mm2/s for ADC model, Dk = 0.0015 mm2/s and Kapp = 0.6 for 
DKI model, C1,2 = 0.3, C2,2 = 0.7, ADC1,2 = 0.02 mm2/s and ADC2,2 = 0.001 mm2/s for bi-
exponential model, and C1,3 = 0.05, C2,3 = 0.8, C3,3 = 0.05, ADC1,3 = 0.1 mm2/s, ADC2,3 = 0.001 
mm2/s and ADC3,3 = 0 mm2/s for tri-exponential model. Note that the curves are for illustration 
purposes only and effects are exaggerated. a.u.; arbitrary unit. DKI; diffusion kurtosis imaging.  
 
  
Diffusion kurtosis imaging (DKI) 

The diffusion kurtosis imaging (DKI) representation 69 is an entirely mathematical 

representation of diffusion signal that quantifies the deviation from mono-exponential decay 

through the apparent kurtosis coefficient (Kapp):  

 

𝑆𝐷𝑊𝐼 =  𝑆0[𝑒−𝑏(∙𝐷𝑘+
1

6
𝑏2∙𝐷𝑘

2∙𝐾𝑎𝑝𝑝)]         (5) 
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where Dk is the diffusion coefficient. As in IVIM, the DKI model includes the overall signal 

intensity term S0 which separates the T2- and proton density-weighting of the diffusion signal.  

 

Restriction spectrum imaging (RSI) 

Restriction Spectrum Imaging (RSI) 64,70,71 is a multi-component model applied in several 

organs. Multi-component models in general deal with a higher b‐value range, and therefore 

also a different biophysical model (i.e. sensitized to restricted diffusion, Figure 11); several are 

higher-order models (ie. increased number of diffusion components), and there are other 

individual variations such as different normalization schemes compared to IVIM.  

 

 
Figure 11. Model of water diffusing in tissue over increasing diffusion times. Hindered 
diffusion (blue) is predominately defined in extracellular space and restricted diffusion 
(orange) refers to intracellular diffusion. With increasing diffusion times, restricted diffusion 
is confined in intracellular space by the cell membrane while hindered diffusion moves in 
extracellular space. This means that restricted diffusion has a very short diffusion distance 
(Root Mean Square, RMS) relatively to hindered diffusion. Several diffusion models aim to 
isolate the signal from restricted diffusion. Adapted and modified from 72 with permission. 
 

 

One key element of RSI is that the ADC of each expected component is fixed at a predetermined 

value, and not left as a free variable in the fitting process. This means that the variation in 

magnitude of each component arising from the curve fitting is interpreted as a variation in the 

signal contribution of each tissue component. Mathematically, fixing component ADCs means 

that the multi-component equation becomes linear, which ensures rapid fitting of diffusion 

signal that is essential for clinical application (fitting component ADCs for multiple 

components and voxels can become prohibitively time-consuming) 58. As a general formula, 

the RSI model can be expressed as:  

 

𝑆𝐷𝑊𝐼 =  ∑ 𝑁[𝐶𝑖,𝐾 ∙ 𝑒−𝑏𝐴𝐷𝐶𝑖,𝐾  ]𝐾
𝑖         (6) 
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where K is the number of components, Ci,K is the unit-less signal contribution of a given 

component i to the overall signal, ADCi,K is the component apparent diffusion coefficient of a 

given component i, and N is the normalization factor. This means that K = 2 is a bi-exponential 

or a two-component model, and K = 3 is a tri-exponential. Given the similarity in nomenclature, 

note that we distinguish between 1) ADC in italic which refers to the calculated, conventional, 

mono-exponential diffusion parameter (as previously described) and 2) ADC in a normal font 

that refers to the conventional, mono-exponential ADC model (equation 2), while we specify 

that ADCi,K, also in italic, refers to the component ADCs from the multi-component partial 

volume model (equation 6). By convention, the components are ordered from the lowest to the 

highest diffusion coefficient. This means that ADC1,3 refers to the slowest diffusion coefficient 

in a tri-exponential model.  

 

Signal normalization in RSI 

Note that ∑ [𝐶𝑖,𝐾 ]𝐾
𝑖   exp(-TE/T2eff), where  represents the proton density and T2eff the 

effective T2 relaxation constant in a given voxel. Normalization by a constant N (which varies 

in magnitude among studies) rather than by S0 means that signal contributions Ci,K are still 

reflective of T2- and proton density-contribution while simultaneously addressing different 

overall image intensity scaling. This differs from all other models discussed previously, which 

normalizes by S0 instead. One major benefit of DWI normalization by S0 is that proton density 

and T2eff effects are separated from diffusion effects, making biophysical interpretation of 

signal fractions easier. However, the major downside is that the resulting parametric maps 

typically are noisy, making it difficult to visually distinguish tumors from surrounding normal 

tissue. The main rationale to keep proton density and T2eff in RSI is to generate visually distinct 

tumors that are superimposed from surrounding tissue. 

 

RSI in brain and prostate 

In the RSI model, the number of components K and the corresponding component ADCs are 

set empirically according to the organ. RSI was originally developed in the brain. As the brain 

is anatomically complex including white matter tracts, the RSI model in the brain accounts for 

both isotropic and anisotropic diffusion 71. The model yields information on anisotropic 

diffusion by sampling b-values in multiple directions and modelling the signal to cylindric 

tissue elements in multiple directions. In addition to the anisotropic RSI outputs, isotropic 

diffusion is accounted for by modeling entirely restricted diffusion (ADC = 0 mm2/s) and 
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entirely free water (3 × 10−3 mm2/s). Together, this resulted in an eight-component model of 

isotropic and anisotropic diffusion components. The model yields parametric “cellularity 

maps” by primarily weighting the isotropic restricted diffusion component. This is used for 

oncological imaging (gliomas, lymphomas, and metastatic tumors were studied) and has shown 

increased tumor conspicuity between tumor and nontumor tissue 71. Furthermore, it has shown 

highly sensitive in monitoring brain tumors undergoing treatment 71. Thus, RSI has proved 

useful for oncological use in the brain, and one would expect that the RSI signal in brain tumors 

would exhibit similar diffusion characteristics to breast tumors, as both locations can have 

hypercellular tumors that are hypothesized to have increased restricted diffusion. The detailed 

information on anisotropic diffusion is not expected to be significant for application in the 

breast and will not be considered in this work.  

 

Since normal brain tissue mainly consists of nerve- and glial cells, vastly different from normal 

breast tissue, discussion of the RSI signal in non-cancerous brain tissue will not be covered in 

this thesis. On the other hand, discussion of RSI signal in normal tissue is more relevant in the 

prostate, which is more similar to the breast anatomically, consisting of glandular and 

connective tissue. Unlike the brain, the RSI model used for the prostate is simpler, only 

containing isotropic diffusion components. RSI model in the prostate was originally based on 

a two-component model (i.e. K = 2) with the two components corresponding to restricted and 

free water diffusion  63,73,74, similar to the isotropic components in the brain RSI model. This 

two-component model has proved to discriminate between cancer and healthy prostate tissue 
63,73,75. In an optimized prostate RSI model 76 fitting the diffusion signal from the entire prostate, 

including both cancerous and healthy tissue, a four-component model was demonstrated to be 

the best fit. In this higher-order model, the DWI signal is further decomposed into component 

C1 (5.2 × 10-4 mm2/s) representing restricted diffusion, C2 (1.9 × 10-3 mm2/s) hindered diffusion 

of extracellular extravascular space, and C3 (3.0 × 10-3 mm2/s) free diffusion. C4 (3.0 × 10-

2 mm2/s) accounts for rapid pseudodiffusion but is not precisely estimated as there were no 

non-zero b-values below 200 s/mm2.  

 

One would expect that the diffusion signal would be distributed similarly in the breast. 

However, one major difference is that breast tissue is more complex, containing fatty tissue 

intermixed with glandular tissue. Fatty tissue consists of ~ 85 % lipids and ~ 15 % water, where 

common fat suppression techniques are designed to suppress the lipid component 77. The RSI 

model has not previously been studied in tissues containing fatty tissue. A study by Baron et 
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al. reported diffusion coefficients close to zero in fat-suppressed healthy breast tissues 78 which 

suggests that the signal from the water component in fatty tissue (separate from the suppressed 

signal from the fat itself) remains on conventional DWI. Thus, one would assume that RSI in 

the breast would be more complex than in the prostate, since we hypothesize that restricted 

diffusion also is present in healthy fatty tissue, in addition to cancerous tissue. 

 

2.12 DWI in the breast 
The European Society of Breast Imaging (EUSOBI) international breast DWI working group 

recently issued consensus guidelines importance of a systematic approach to DWI 

standardization for clinical breast MRI 48. As previously described, lesion interpretation on 

breast MRI by BI-RADS is based on two basic steps: 1) lesion identification and 2) lesion 

classification. Various commonly explored diffusion models such as ADC, DKI, and IVIM 

have demonstrated comparable ability to DCE in discriminating between pre-identified benign 

and malignant lesions in small regions of interest (ROIs) in the breast 79-85, i.e. lesion 

classification (step 2). Recently, a study by Clauser et al. demonstrated that ADC may help 

downgrade lesions classified as BI-RADS 4 on breast DCE-MRI, resulting in reducing 

unnecessary biopsies with one-third 86. However, DWI is still not optimized for lesion 

identification (step 1) in the breast and is currently not included in BI-RADS. Thus, a central 

focus of this work was lesion identification. Conventional DWI measures of malignant lesions 

are commonly measured by summary statistics of diffusion parameters assessed within ROIs 

manually defined by a radiologist; there is no standard protocol for this tumor segmentation, 

and different approaches can significantly influence resulting diffusion parameters 87. Given 

that direct tumor segmentation of DWI may be confounded by noise and lack of conspicuity, 

tumor ROIs are commonly delineated on DCE images before being transferred to DWI. The 

definition of tumor on DCE images is thus governed by leakage of gadolinium contrast through 

pathological vessels, and therefore, linked to vascularity, whereas diffusion changes, reflecting 

cellularity, do not necessarily coincide 88.  

 

Moreover, DWI would increase its clinical utility and practicality in a variety of breast cancer 

applications ranging from cancer screening to treatment evaluation, if it could also discriminate 

cancer from all healthy breast tissues and thus be used for lesion segmentation. Healthy breast 

tissues consist of a varying degree of admixtures of fatty and fibroglandular tissues 89, and fatty 

and fibroglandular tissues are mixed within a voxel on DWI 77. This makes the characterization 



 41 

of healthy breast tissue problematic on DWI. Conventional DWI analysis of the signal from 

small healthy breast tissues ROIs 90-93 do not capture heterogenous intravoxel tissue 

environment of the breast and are biased by ROI placement. Thus, advanced imaging 

techniques are needed to fully explain the heterogenous breast tissue environment at a voxel-

wise level including the hyper-restricted water component in the intravoxel fatty tissue.  

 

As previously described, RSI and other multi-component partial volume models are not yet 

well investigated in the breast. Initial results have been demonstrated by Vidić et al. 83, showing 

that the magnitude of the slowest signal fraction in a two-component model, where component 

ADCs were not fixed and the signal was normalized by S0, was excellent (area under the curve, 

AUC = 0.99) in discriminating between pre-identified benign and malignant breast lesions, 

although this study did not explore higher-order models (with an increasing number of terms) 

or investigate optimal component ADCs for both cancer and healthy breast tissues, which is 

important for improved characterization of all breast tissues towards the goal of increasing the 

discriminatory performance of DWI for better lesion identification. This is a requirement for 

the assessment of breast cancer with multi-component partial volume models such as RSI and 

is another central focus of this thesis.  

 

The lack of standardization and reproducibility of conventional breast DWI estimates (such as 

ADC) across scanners and sites is a known challenge and improvement is an area of widespread 

interest 48. Therefore, in this thesis, we aim to develop generalizable methods that can be easily 

implemented across scanner platforms.  

 

2.13 MRI during neoadjuvant therapy 
MRI has become an important part of the routine patient management for patients receiving 

neoadjuvant therapy and is indicated before (baseline) and after neoadjuvant therapy (Figure 

5). Baseline assessment by MRI is performed with two objectives, tumor staging and disease 

prognosis estimation, while post-neoadjuvant therapy MRI is used for evaluation of residual 

disease. In addition, an area of scientific evaluation is the use of MRI for objective response 

assessment during therapy to assess efficacy; at an early and mid-treatment time point (Figure 

12) 94.  
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Tumor size reduction is monitored by manually assessing the diameter of the largest central 

slice by DCE, based on the RECIST treatment response criteria for solid tumors 95. However, 

changes in size may take several weeks before it is detected by DCE, potentially delaying 

clinical decision-making. Furthermore, DCE-based RECIST has conflicting results regarding 

residual cancer detection specificity 96 and requires expert radiologist readers to manually 

delineate tumor tissue at each time point. Thus, improvement of radiological response 

assessment tools in all these time points have a large potential for improved patient care. 

 
Figure 12. MRI during neoadjuvant therapy. Pre and post-therapy time points (grey) are 
standard-of-care, while early and mid-treatment response assessments (orange) are an area of 
scientific evaluation. 
 

Clinical trials as a test bed for new MRI treatment assessment biomarkers 

I-SPY (and the following ISPY-2 trial) is a large, multi-center clinical trial that uses serial 

investigative MRI assessments during therapy of LABC (pre-therapy, early-therapy, mid-

therapy, post-therapy) to quantify tumor response. At the early therapy time point, the standard 

longest diameter of manual DCE had an AUC of predicting pCR at 0.64; AUC increased to 

0.70 using a threshold-based DCE model (functional tumor volume, FTV) 97.  

 

DWI is sensitive to early treatment-induced changes and has shown associations with therapy 

outcomes 98,99. However, the clinical standard DWI model, ADC, also uses time-consuming 

manual tumor delineation approaches 100 and may be confounded by treatment-related changes 

such as edema. In the I-SPY trial 100, the AUC for prediction of response by standard ADC was 

reported as low as 0.53 for the early-treatment time point (increased to 0.60 for the mid-

treatment time point). This calls for the exploration of alternative DWI techniques.  
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RSI estimates of cellularity are shown to be directly related to histopathological tumor 

cellularity in preclinical models 58,101 and the human prostate 73,75,102. Additionally, RSI is 

effective for treatment response assessment for glioma 58,103 but has not yet been evaluated for 

treatment response assessment in the breast. We hypothesize that an RSI classifier with elastic 

image registration can both assess early response to treatment significantly better than 

conventional DWI and DCE-based RECIST and increase residual cancer detection specificity.  

 

2.14 Physical basis of positron emission tomography (PET) 
Positron emission tomography (PET) 104 is a molecular imaging modality that uses injected 

tracers to visualize specific metabolic processes in the body. A PET tracer is made up of a 

biologically active molecule that is tagged by an unstable isotope that emits gamma rays 

through positron emission and annihilation. A commonly used tracer is Fluorodeoxyglucose 

(18F-FDG), which comprises a glucose analog coupled with the position-emitting radionuclide 

fluorine-18. Thus, when 18F-FDG is injected intravenously into the bloodstream and taken up 

by glucose membrane transporters. Once inside the cell, the tracer characteristics prohibit it 

from being fully metabolized in the regular glucose metabolism pathway. Thus, 18F-FDG 

accumulates in the cell and functions as a glucose marker (Figure 13A). The PET detector 

panel is equipped with gamma-cameras that detect the gamma-rays emitted from the tracer, 

which enables the location of areas of increased glucose uptake (in the case of 18F-FDG) 

(Figure 13B). Since cancer cells are known to have increased glucose metabolism, PET can 

therefore be used for the detection of cancerous cells.  

 

The PET imaging system is typically coupled with another imaging system to secure 

anatomical reference and attenuation correction. Traditionally, PET has been acquired with 

computer tomography (PET/CT), which means exposure to large doses of ionizing x-rays 

which are known to damage the body. However, simultaneous PET/MRI is a more recent 

technology that has superior soft tissue definition. PET/MRI examinations allow simultaneous 

collection of structural, functional, and metabolic imaging properties in the same spatial and 

temporal domain. MRI complements PET's ability to visualize glucose metabolism by 

reflecting other hallmarks of cancer 105, including invasion and metastatic propensity (by DWI) 

and increased angiogenesis (DCE). 
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A.      B. 

                
Figure 13. A. Fluorodeoxyglucose F 18 (18F-FDG) tracer uptake in the cell through glucose 
membrane transporters. The tracer accumulates in the cell and functions as a glucose marker.  
B. Positron emission tomography (PET) scanner detects the gamma-rays emitted from the 
tracer through gamma-cameras, which enables the location of areas of increased glucose 
uptake.  
 

2.15 PET/MRI in the breast 
PET/MRI is not a part of the standard radiological assessment of breast cancer in the US 106 or 

Norway 21, but has potential in a range of breast cancer practices, such as diagnostics, staging, 

and neoadjuvant response evaluation 5. Several studies report correlations between 

standardized uptake values (SUV) from 18F-FDG-PET and ADC in malignant tissue 107-109, 

indicating that intrinsically-registered 18F-FDG uptake may provide an alternative approach to 

manually drawn DCE ROI for breast lesion characterization in conventional DWI analysis 108. 

Another focus of this thesis was to investigate the reliability of deriving conventional 

longitudinal diffusion imaging characteristics from 18F-FDG uptake during neoadjuvant 

treatment compared to manual DCE. 
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3. Aims 
 

The overall goal of the thesis was to explore the potential role of DWI and PET/MRI as 

alternatives to conventional DCE for the assessment of breast cancer in a screening and 

treatment response monitoring setting. The main aim of the thesis was two-fold; the first was 

to explore the use of PET/MRI to derive simple treatment monitoring measures of longitudinal 

scans in breast cancer neoadjuvant treatment evaluation. The second was to explore diffusion 

properties of cancer and healthy breast tissues using a multi-component partial volume model 

acquired at high b-values to develop and optimize an RSI model to discriminate between breast 

cancer and healthy breast tissues, and to monitor neoadjuvant treatment response. 

 

The specific aims were to: 

1. Investigate the reliability of deriving conventional longitudinal diffusion imaging 

characteristics from 18F-FDG uptake during neoadjuvant treatment compared to manual 

DCE using PET/MRI (paper I). 

a. Hypothesis: 18F-FDG uptake during neoadjuvant treatment by using PET/MRI is as 

reliable as manual DCE to derive conventional imaging characteristics.  

2. Explore the diffusion properties of breast cancer and healthy breast tissues by optimizing 

the number of components and corresponding component ADCs for the breast RSI model 

(paper II). 

a. Hypothesis: An optimized RSI model will better characterize diffusion in breast 

tissue than conventional diffusion imaging.  

3. Evaluate the ability of the optimized three-component RSI model to discriminate between 

breast cancer and healthy breast tissues (paper III). 

a. Hypothesis: Optimizing RSI can discriminate between breast cancer and healthy 

breast tissues with acceptable AUC and false positive rate.   

4. Evaluate the ability of a three-component RSI model to automatically assess response to 

neoadjuvant treatment (paper IV). 

a. Hypothesis: Optimized RSI can detect response to NAC earlier than conventional 

diffusion imaging.  
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4. Materials and methods 
 

4.1 Patient cohorts 
The materials included in this thesis consisted of three distinct breast cancer patient cohorts 

from two separate sites, where image acquisition was performed on different scanners with 

unique acquisition protocols, including one cohort of longitudinal PET/MRI scans of patients 

receiving neoadjuvant therapy. The unique characteristics of the acquired data allowed for 

testing of a range of research questions as well as exploration of model robustness across 

patients, scanners, acquisition protocols, and sites. 

 

Written informed consent was obtained from all patients at both sites. The studies were 

approved by local institutional review boards and conducted in accordance with the Declaration 

of Helsinki. Handing of sensitive personal data followed the relevant regulations at all sites. 

The patient cohorts are described in further detail below. 

 

4.1.1 Longitudinal PET/MRI cohort (paper I) 
This prospective study was approved by the Regional Committee for Medical and Health 

Research Ethics (REC) in Western Norway (# 2015/1493) and was performed at St. Olavs 

Hospital, Trondheim, Norway. A total of 24 patients (median age 53 years, range 37–74) with 

pathology-proven, invasive breast cancers > 4 cm or LABC (i.e., cT2–4N0–3) were recruited; 

this minimum tumor size was an inclusion criterion for recruitment to the phase II PETREMAC 

trial (Clinicaltrials.gov #NCT02624973), where lesions of this size are targets for neoadjuvant 

chemotherapy. The recruitment started in February 2017 and ended in November 2018. The 

patients underwent individualized neoadjuvant therapy based on ER, PgR, HER2, and TP53 

mutation status. The treatment was primarily endocrine. Tumor categorization was done by 

histopathologic analysis of core needle or open incisional biopsies. 

 

Patients were examined with 18F-FDG-PET/MRI scans, at baseline and up to four scanning 

sessions during neoadjuvant treatment. This resulted in 53 data sets overall; 24 untreated 

lesions, and 29 treated lesions. 
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4.1.2 Baseline high b-value MRI cohort 1 (papers II and III) 
The study was approved by the local Institutional Review Board and performed at the 

University of California San Diego (UCSD), CA, USA. Ninety-five patients with pathology-

proven breast cancer with no cytotoxic regimens, chemotherapy, or ipsilateral radiation therapy 

for this malignancy prior to a single MRI scanning were eligible for this prospective study. The 

recruitment of patients began in December 2015 and ended in June 2019. In total, 14 patients 

were excluded from the study; nine patients had contralateral cancer or mastectomy, one patient 

had no visible cancerous tissue on DWI, and in four patients image quality was insufficient 

from low signal-to-noise ratio (SNR) (n = 2), poor fat saturation (n = 1), or severe image 

distortion (n = 1), resulting in 81 patients (median age 51 years, range 20–84). Due to data 

availability at the time of analysis, only a subset of 49 patients were included in paper II, while 

the whole patient cohort was included in paper III (Figure 14). Tumor categorization was done 

by histopathologic analysis of core needle or open incisional biopsies. 

 

4.1.3 Baseline high b-value MRI cohort 2 (papers II and III) 
The study was approved by the REC in Central Norway (# 2011/568) and performed at St. 

Olavs Hospital, Trondheim, Norway. Twenty-five patients (median age 53 years, range 29–75) 

in this prospective study underwent a single MRI scan. The recruitment of patients began in 

August 2014 and ended in August 2016. Tumor categorization was done by histopathologic 

analysis of core needle or open incisional biopsies. Inclusion criteria and tumor categorization 

were similar to those of the baseline high b-value MRI cohort 1; for more details, see the 

inclusion of malignant lesions from Vidić et al. 83. 

 

4.1.4 Longitudinal high b-value MRI cohort (paper IV) 
A subset (n = 31) of patients from the baseline high b-value MRI cohort 1 received additional 

longitudinal MRI scans after the baseline scan. These were participants in a prospective phase 

II clinical trial at the UCSD site who underwent multi-b-value DWI acquisition (b-values = 0, 

500, 1500, and 4000 s/mm2, see detailed information below). Trial criteria included biopsy-

proven invasive breast cancer ≥ 2.5 cm (defined on imaging/clinical examination) who 

indicated to undergo neoadjuvant therapy. For a summary of analysis sets from the UCSD site 

for papers II–IV, see Figure 14. 

 



 49 

Patients underwent MRI at four time points to evaluate response to treatment: baseline (pre-

treatment), early-treatment (3 weeks), mid-treatment (12 weeks), and post-treatment (Figure 

16). Furthermore, 17 patients received all four scans. In total, four patients were excluded from 

the study due to low image quality, and for three patients, individual scans were excluded due 

to major patient movement (n = 1) and low image quality (n = 2). This led to 27 patients 

(median age 47 years, range 20–68). This led to pre-treatment (n = 27), early-treatment (n = 

22), mid-treatment (n = 19) and post-treatment (n = 27).  

 

 
Figure 14. Summary of UCSD cohorts: baseline high b-value MRI cohort 1 (paper II and III) 
and longitudinal high b-value MRI cohort (paper IV). 
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4.2 PET/MRI and MRI acquisition 
This section details the PET/MRI and MRI acquisitions for the different papers presented. The 

longitudinal PET/MRI cohort (paper I) includes a PET/MRI data acquisition cohort, while the 

following papers examined cohorts where high b-value diffusion data were acquired for 

baseline (papers II and III) and longitudinal studies (paper IV). The details are given below and 

are summarized in Table 2.  

 

4.2.1 PET/MRI acquisition (paper I) 
Patients in the longitudinal PET/MRI cohort (paper I) underwent simultaneous PET/MRI on a 

3T Biograph mMR scanner (Siemens Healthcare, Erlangen, Germany), 75 min after 18F-FDG 

injection. MRI acquisition utilized a designated 4-channel breast coil with a bilateral axial 

imaging plane and utilized an extended imaging protocol including Dixon, T2, DWI, and DCE. 

DCE parameters included: 3D FLASH sequence, transverse orientation, TR = 5.88 ms, TE = 

2.21 ms, resolution 0.7 × 0.7 × 2.5 mm, 72 slices, flip angle 15°, 1 baseline, and 7 post-contrast 

sequences, time resolution 1 min. DWI parameters are given in Table 2. 

 

4.2.2 MRI acquisition (papers II-IV) 
MRI data were acquired on a 3T GE scanner (MR750, DV25–26, GE Healthcare, Milwaukee, 

United States) and an 8-channel breast array coil with a bilateral axial imaging plane for the 

baseline high b-value MRI cohort 1, while patients from the baseline high b-value MRI cohort 

2 were imaged with a 3T Siemens scanner (Skyra, VD13–E11, Siemens Healthcare, Erlangen, 

Germany) and a 16-channel breast array coil with a unilateral sagittal imaging plane. 

Differences in scanner and pulse sequence parameters across sites were used to determine that 

the discriminatory potential of the three-component RSI model is robust for data collected in 

different scanners and pulse sequence parameters. In addition to Gadolinium DCE and T2-

images, both datasets included high b-value DWI acquisition, summarized in Table 2. 

 

4.3 Image preparation 
Corrections for eddy current artifacts, motion 64, and geometric distortion 110 were applied to 

all DWI data. DWI data were averaged across directions for each b-value. Noise correction 111 

was performed for decreasing signal-to-noise ratio with increasing b-value (papers II–IV). In 
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paper II, data quality before fitting was evaluated by averaging the signal of cancer and 

fibroglandular ROIs divided by the standard deviation of a background ROI outside the 

breast at each b-value.  

Resampling of the data was performed for papers I and IV only. For paper I, all images were 

resampled to DWI resolution, while for paper IV, all images were resampled to DCE 

resolution. PET attenuation correction was performed on the scanner 112, and standardized 

uptake values (SUV) were normalized against body weight and dose. Image preparation and 

lesion segmentation processes for paper I are summarized in Figure 15. 

Table 2. Summary of diffusion parameters for all patient cohorts. ADC; Apparent diffusion 
coefficient. FOV; Field of view. GRAPPA; Generalized autocalibrating partial parallel 
acquisition. TE; Echo time. TR; Repetition time.  

Parameter Longitudinal 
PET/MRI cohort 

Baseline high b-value MRI 
cohort 1/ Longitudinal 
high b-value MRI cohort 

Baseline high b-value 
MRI cohort 2  

Paper I II, III, IV II, III 

Scanner 3T Biograph mMR, 
Siemens  

3T MR750, DV25–26, GE 
Healthcare 

3T Skyra, VD13–VE11, 
Siemens 

Coil 4-channel breast coil 8-channel breast coil 16-channel breast coil

Imaging plane Axial Axial Sagittal, single breast 

TE (ms) 77 82 88 

TR (ms) 9000 9000 10600 (n = 15) 
11800 (n = 10) 

FOV (mm2) 380 × 190 160 × 320 (reduced FOV) 180 × 180 

Acquisition matrix 192 × 96 48 × 96 90 × 90 

Reconstruction 
matrix 192 × 96 128 × 128 90 × 90 

Voxel size (mm3) 2.0 × 2.0 × 2.5 2.5 × 2.5 × 5.0 2.0 × 2.0 × 2.5 

b-values (no. of
diffusion directions)
(s/mm2)

0, 50 (3), 120 (3), 200 
(3), 400 (3), 700 (3) 

0, 500 (6), 1500 (6), 4000 
(15) 

0, 200 (6), 600 (6), 1200 
(6), 1800 (6), 2400 (6), 
3000 (6) 

b-values utilized for 
ADC calculation
(s/mm2)

200, 400, 700 0, 500 0, 200, 600 

Phase encoding 
direction Anterior/Posterior Anterior/Posterior Anterior/Posterior 

Parallel imaging GRAPPA (reduction 
factor, R = 2) none GRAPPA (reduction 

factor, R = 2) 
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Figure 15. Image preparation and lesion segmentation for paper I. Images were downsampled 
to diffusion-weighted imaging (DWI) space. Positron emission tomography (PET) images 
were attenuation-corrected and went through standardized uptake values (SUV) normalization. 
Apparent diffusion coefficient (ADC) maps were generated from distortion-corrected DWI 
images. Tumor segmentation was performed by Gaussian mixture modeling (GMM) 
segmentation on cropped PET images, and manually on DCE images. The resulting regions of 
interest (ROIs) were transferred to the ADC maps for the derivation of tumor area and mean 
ADC. Adapted from 113 with permission. 
 
 

4.4 Segmentation 
 

4.4.1 Manual segmentation 

All manual lesion segmentation was performed under the supervision of and validated by, two 

breast radiologists, one at each site (St. Olavs Hospital and UCSD). ROIs were drawn for the 

lesions corresponding to pathology-proven cancer: single central slice defined on DCE 

(denoted “manual DCE” for paper I) and full-volume cancer ROIs defined on DWI (denoted 

“cancer ROI” for papers II–IV). Control ROIs were defined to include all representative 

healthy breast tissue for pre-treatment images for papers II–IV; control ROIs were defined 

slightly differently for axial MRI images (baseline high b-value MRI cohort 1 and longitudinal 

high b-value MRI cohort) compared to sagittal images (baseline high b-value MRI cohort 2) 

owing to the presence/absence of the contralateral breast in the image. For axial images, control 

ROIs were defined using a semi-automatic approach. First, a rectangular box was placed 

around the entire healthy contralateral breast, then the healthy breast was masked using 
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intensity thresholding and 3D connected components. For sagittal images containing only the 

single breast, control ROIs were drawn in a cancer-free region at least 10 mm away from the 

cancer ROI. Further differentiation of control ROIs into fibroglandular ROIs and fatty tissue 

ROIs were performed for paper II. ROIs were generated by thresholding b = 0 s/mm2 volume 

within the initial control ROI.  

 

4.4.2 Semi-automated PET/MRI segmentation (paper I) 
Gaussian mixture modeling (GMM-PET) 

For paper I, a rectangular region containing the visible lesion was manually cropped from the 

SUV map (corresponding to the single central slice of enhancing tumor on DCE). An algorithm 

using default k-means++ 114 initialization and an assumption of three Gaussian distribution 

classes was used, returning an assignment for each voxel based on the highest probability 115 

of belonging to each class, given as: tumor (highest intensity), ‘non-tumor’ background (lowest 

intensity), and unknown (intermediate intensity). To compromise between accuracy and avoid 

overestimation from partial volume effects, voxels classed as ‘unknown’ were considered non-

tumor, defining the tumor class threshold (and therefore the tumor ROI) as the intersection of 

tumor and unknown class distributions. User input is thus limited to initial region cropping. 

 

Thresholding-based PET segmentation  

Two common simple thresholding-based PET segmentation methods, a fixed threshold of 2.5 

(SUV2.5) and 42 % of the maximum SUV (SUV42%) 116, were also performed to provide a 

comparison with GMM-PET (paper I).  

 

4.5 DWI analysis 
 

4.5.1 Conventional DWI analysis (papers I–IV) 
ADC maps were calculated using a mono-exponential model (equation 2) for all papers; 

although included b-values varied between papers. For paper I, perfusion-insensitive ADC 

maps were calculated using b-values 200–700 s/mm2. For papers II–IV that acquired higher b-

values, only the lower b-values < 1000 s/mm2 were used: 0–500 s/mm2 for baseline high b-
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value MRI cohort 1, and 0–600 s/mm2 for high b-value MRI cohort 2. Inclusion of b-values < 

200 s/mm2 made these maps sensitive to any perfusion effects present. 

 

In addition, the non-noise-corrected maximum b-value image (DWImax) and Kapp from DKI 

(equation 5) for b-values < 2000 s/mm2 were estimated for paper III. DWImax was acquired at 

b = 4000 s/mm2 for the baseline high b-value MRI cohort 1 and b = 3000 s/mm2 for the baseline 

high b-value MRI cohort 2.  

 

4.5.2 Multi-component partial volume modeling of DWI signal decay (papers II–IV) 
The DWI signal from all available b-values was modeled as a multi-exponential model 

(equation 6). For papers II and III, all voxels were normalized to the 98th percentile of intensity 

within the entire b = 0 s/mm2 image, indicated by N. To improve normalization across time 

points for longitudinal scans, we further normalized output Ci,k maps by the 95th percentile of 

the intensity of the computed geometric mean of the resulting C1,3 and C2,3 maps of the three-

component RSI model (described in detail below) of the control ROI for each patient for paper 

IV.  

 

In paper II, the goal was to determine the optimal number of components (K) and the 

corresponding global component ADCs (ADCi,K) for use in describing voxels including cancer 

and healthy breast tissues across patients and sites. This was done by globally fitting DWI 

signal by a simplex search fitting method with non-negativity constraints 117 for all voxels 

within cancer and control ROIs from baseline high b-value MRI cohort 1 and 2 simultaneously.  

Fitting was performed for K = 2 and K = 3, i.e. due to previous results in breast assuming two 

components 83 and a priori assumption of three breast components due to the heterogeneous 

breast tissue environment. This fitting regimen is fundamentally different from conventional 

voxel-wise fitting approaches where the component ADCs is determined for each voxel 

independently. Note that there is a slight discrepancy in terminology between the attached 

papers in this thesis compared to the terminology given here: component ADCs (ADCi,K) were 

denoted Di,N in paper II and component signal contributions for the three-component model 

(Ci,3) were denoted Ci in paper III since signal contributions for K = 2 were not assessed in this 

paper. Also in paper III, the three-component RSI model was only referred to as the “three-

component model”. Furthermore, in paper IV, the “RSI classifier” refers to the tumor classifier 

based on the C1,3 and C2,3 derived from the three-component RSI model.  
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Once global optimal component ADCi,K were determined, they were incorporated into equation 

6 to generate signal contribution (Ci,K) maps. This was done for both of the examined models 

(K = 2 and K = 3) for paper II; however, for paper III, only K = 3 and the corresponding 

component ADCi,3 were used, yielding the following equation derived from equation 6:  

 

 𝑆𝐷𝑊𝐼(𝑏) = N [𝐶1,3 ⋅ 𝑒−𝑏∙𝐴𝐷𝐶1,3 + 𝐶2,3 ⋅ 𝑒−𝑏∙𝐴𝐷𝐶2,3 + 𝐶3,3 ⋅ 𝑒−𝑏∙𝐴𝐷𝐶3,3]   (7) 

 

using the same parameter definitions as described for equation 6. This was done because K = 

3, i.e. a tri-exponential model, was shown to represent the best fit in paper II. The model yielded 

the following component ADC values used as fixed values in this analysis: ADC1,3 = 0 mm2/s, 

ADC2,3 = 1.4 × 10-3 mm2/s and ADC3,3 = 10.2 × 10-3 mm2/s. Note that these initial ADCs given 

in paper II preprint 118 are slightly different than the final ADCs reported in paper II (see below), 

although with no practical consequence. The use of ADC1,3 = 0 mm2/s means this component 

behaves not as a distinct exponential as in other tissues 58-60,95 but as a constant offset (C1,3). 

Hence, we use the term “three-component” RSI model for the fitted model instead of “tri-

exponential”. In paper III, the resulting parametric maps were generated from equation 7: C1,3, 

C2,3, and their product C1C2. 

 

4.5.3 Development of an automatic RSI tissue classifier for neoadjuvant therapy 

response evaluation (paper IV) 
To create a ‘global’ tissue classifier applicable across all patients and time points included in 

the study, the first two components of the three-component RSI model (C1,3 and C2,3) were 

selected, as these demonstrated excellent discrimination of cancer from healthy breast tissue in 

paper III (see results below). Joint C1,3,C2,3 probability density functions (PDFs) for cancer and 

control ROIs were calculated for all patients simultaneously at the pre-treatment time point, 

generating a lookup table of the posterior probability of cancer, given C1,3 and C2,3 

measurements for any voxel. This was used to create voxel-wise probability maps for each 

individual patient at each time point.  

 

Estimation of longest tumor dimension: the cancer ROI at the pre-treatment time point was 

uniformly expanded by 1 cm to generate a tumor-containing region and used for analysis using 

the voxel-wise probability maps (Figure 16). The largest single connected component within 
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the tumor-containing region on the voxel-wise probability maps was identified to give the 

longest diameter (in cm). To account for tumor growth outside of the initial tumor-containing 

region, any components connected to the tumor-containing region above a threshold of 0.4 on 

voxel-wise probability maps were also included in the tumor definition per time point. Using 

the pre-treatment tumor-containing region for all time points was possible since an elastic 

registration procedure had been applied to register all images to the pre-treatment time point 
119.  This approach limits the required user input to a single manual definition of cancer ROI 

and a semi-automatic definition of control ROI at the pre-treatment time point.  

 

4.5.4 Conventional imaging metrics during neoadjuvant treatment (papers I and IV) 

For paper I, cancer ROIs for the lesion within the chosen central slice, derived from both 

manual DCE and GMM-PET were transferred to ADC maps and used to estimate the tumor 

ROI area (cm2) and the ROI mean ADC value. This was performed for all untreated and treated 

lesions to evaluate the performance and concordance of these biomarkers. Response to 

treatment was not assessed.  

 

For paper IV, the longest diameter of the cancer ROI (in cm) was manually defined on post-

contrast DCE for each individual time point. The largest conglomerate of connected lesions 

was used for cases with several cancer lesions. In addition, ADC maps were longitudinally 

registered using an elastic registration technique to the pre-treatment time point, thus 

transferring the pre-treatment cancer region across all time points. The mean ADC value was 

assessed within the pre-treatment cancer ROI for each time point. This approach thus avoids 

the time-consuming and technically difficult manual delineation of a tumor undergoing 

treatment, reducing it to a single diameter measurement. 

 

4.5.5 Response definition (papers I and IV) 
Definition of response to treatment was primarily relevant for paper IV since paper I did not 

consider response assessment. There were several definitions of response to treatment used: 

the primary endpoint was pCR, defined as no residual invasive disease in either breast or 

axillary lymph nodes after neoadjuvant therapy (ypT0/is, ypN0) with or without the presence 

of DCIS 120. Assessment of pCR was performed by examination of histological specimen post-
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surgically. Patients were categorized into pCR and non-pCR groups. The pathological response 

was considered the true response definition.  

 

As a sub-analysis, early response was also assessed based on imaging data, using a definition 

of a ≥ 30 % decrease from pre-treatment size (in accordance with RECIST criteria) at the early-

treatment time point, and which persisted at the mid-treatment time point. This is referred to 

as ‘early imaging response’, and was assessed for RSI and DCE measurements (giving ∆RSI 

and ∆DCE respectively). The change in mean ADC (∆ADC) was also calculated as a reference. 

Early imaging response to treatment was assessed for patients who underwent all four scans (n 

= 17).  

 

 
Figure 16. Dynamic contrast-enhanced (DCE) images, Restriction Spectrum Imaging (RSI) 
classifier, and apparent diffusion coefficient (ADC) maps across all imaging time points for a 
subject with no remaining tumor tissue on final post-surgical pathology. The cancer region is 
given in green and the dilated cancer-containing region is given in blue. Note that the RSI 
classifier is well-defined within the cancer ROI at the pre-treatment time point (green). For all 
time points, the largest diameter is given for the DCE and RSI classifier, and the mean ADC 
value of the cancer ROI. The RSI classifier captured a more dramatic response to treatment at 
the early-treatment time point compared to the DCE classifier. As expected, ADC increased as 
a response to treatment. RSI classifier showed no remaining cancer at the post-treatment time 
point, while there was still some indication of remaining tumor left within the tumor bed at the 
post-treatment time point for the DCE classifier (red arrow). Tx; treatment. Adapted from 121 
with permission.  
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4.5.6 Assessment of contrast-to-noise ratio (CNR) (paper II) 
To assess the conspicuity of lesions in the parametric maps, the contrast-to-noise ratio (CNR) 

was estimated for all RSI outputs (Ci,K), DCE, and ADC maps by dividing the averaged signal 

from cancer ROI by the averaged signal from the fibroglandular ROI. 

 

4.6 Statistical analysis 
 

4.6.1 Longitudinal metric and spatial concordance assessment (paper I) 
Performance of the three PET segmentation techniques in reference to manual DCE ROIs was 

measured using the Dice similarity coefficient 122, and center-of-gravity displacement (CoG). 

Tumor area and ADC values from the different segmentation methods were compared using a 

paired t-test, and Pearson’s test for correlation. A two-sample t-test was used to assess the 

difference between the untreated (n = 24) and treated cohort (n = 29) for all metrics. 

 

4.6.2 SNR and determination of DWI data goodness-of-fit (paper II) 
To investigate the robustness of RSI to SNR, we performed our fitting analysis using only data 

of b-values ≤ 1500 s/mm2 and found that the estimated ADCi,K were the same as in the original 

analysis.  

 

The relative fitting residual (the percent variance of the difference between the measured signal 

and the model-predicted signal) and Bayesian information criterion (BIC) were computed for 

each model to determine how well the different models describe breast DWI data. BIC is 

reported as the difference in BIC (ΔBIC = BICbi – BICtri), where a lower BIC value implies a 

better fitting of the data. Relative fitting residuals were also assessed for the ADC model 

(mono-exponential, conventional) for comparison to conventional DWI estimates. 

 

4.6.3 Discrimination between cancer and healthy breast tissues (papers II and III) 

Kolmogorov-Smirnov test was used to examine data normality, and related-samples 

Friedman’s one-way analysis of variance by ranks test was used to identify significant 
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differences in CNR across diffusion components and tissues (cancer and fibroglandular). The 

level of significance was set to 0.05.  

 

The discriminatory performance between cancer and control ROIs was assessed for the 

parameters C1C2, C1,3, C2,3, DWImax, ADC, and Kapp. Because there were ~52 times more 

healthy breast tissue voxels than cancer voxels, performance in discriminating between cancer 

and healthy breast tissues was examined for all voxels by the expected false positive rate given 

the sensitivity of 80 % (FPR80). In addition, the conventional performance measure of receiver 

operating characteristic (ROC) AUC, sensitivity, specificity, and accuracy were estimated. 

 

Further statistical tests aiming to identify differences between signal contributions (Ci,K) across 

models and tissues were investigated as a preliminary measure to characterize the signal 

contributions outputs as part of paper II and are not discussed in more detail here.  

 

4.6.4 Response prediction (paper IV) 
At the early, mid, and post-treatment time points, the ROC AUC was computed to assess the 

ability of ∆RSI, ∆DCE, and ∆ADC to predict non-pCR in cases with all four scans (n = 17). At 

the post-treatment time point using all cases (n = 27), sensitivity, specificity, and accuracy for 

the prediction of non-pCR were assessed and were calculated for absolute values for RSI, DCE, 

and mean ADC. For all analysis, we estimated the ability to detect residual tumor tissue (i.e. 

positive was defined as a patient with remaining tumor tissue, non-pCR). For the primary 

analysis, we used an a priori assumption that an increase in mean ADC and a decrease in RSI 

and DCE size represents a response to treatment in line with clinical practice 100. Diagnostic 

sensitivity and specificity between techniques were compared by McNemar’s test, while 

DeLong’s test was used to compare ROC curves. After observing the results from primary 

analysis, we also performed secondary analysis with inverted ADC model classification 

(assuming a decrease in ADC represented response).  
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5. Summary of papers 

5.1 Paper I 
This paper aimed to investigate the reliability of PET/MRI-derived biomarkers using semi-

automated GMM segmentation on PET/MRI images, against conventional manual tumor 

segmentation on DCE images. 

 

The study included twenty-four breast cancer patients who underwent PET/MRI (following 
18F-FDG injection at baseline and during neoadjuvant treatment, yielding 53 data sets (24 

untreated, 29 treated). Two-dimensional tumor segmentation was performed manually on DCE 

images (manual DCE) and using a GMM with corresponding PET images (GMM-PET). 

Tumor area and mean ADC derived from both segmentation methods were compared, and 

spatial overlap between the segmentation was assessed with Dice similarity coefficient and 

center-of-gravity displacement. 

 

No significant differences were observed between mean ADC and tumor area derived from 

manual DCE segmentation and GMM-PET. There was a strong positive correlation between 

the resulting metrics from manual DCE and GMM-PET for ADC mean for untreated lesions 

and treated lesions (r = 0.895, p < 0.001), and tumor area from untreated (r = 0.870, p < 0.0001) 

and treated (r = 0.928, p < 0.001) lesions. The mean Dice score for GMM-PET was 0.770 and 

0.649 for untreated and treated lesions, respectively. 

 

Using PET/MRI, tumor area and mean ADC value estimated with a GMM-PET can replicate 

manual DCE tumor definition from MRI for monitoring neoadjuvant treatment response in 

breast cancer. 
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5.2 Paper II 
This paper aimed to determine the number of discernible diffusion components and optimal 

component ADCs for the RSI model for breast.  

 

A total of 49 women with breast cancer without any prior neoadjuvant treatment underwent 

multi-b-value DWI. The DWI signal was described using a linear combination of multiple 

exponential components (either two or three). A set of fixed component ADC values was 

estimated to fit across all voxels in cancer and control ROIs. Later, the signal contributions of 

each diffusion component were estimated using these fixed component ADC values. Relative 

fitting residuals and Bayesian information criterion were assessed. CNR between cancer and 

fibroglandular tissue in RSI-derived signal contribution maps was compared to DCE imaging. 

 

The relative fitting residuals of ADC model, and bi- (K = 2) and tri-exponential (K = 3) models 

for cancer ROIs were 3.3 %, 1.0 %, and 0.3 % for cancer ROIs, respectively, and 2.1 %, 1.6 

%, and 1.0 % for control ROIs, respectively. Note that residuals were the smallest for the tri-

exponential model. Furthermore, ΔBIC of 74 was estimated between the bi- and tri-exponential 

models (i.e. BICbi > BICtri); both of these results indicate that a tri-exponential model is better 

suited for describing breast DWI data, and that adding a third component is supported by the 

data. Estimated component ADCs for the bi-exponential model were ADC1,2 = 2.8 × 10-5 and 

ADC2,2 = 2.4 × 10-3 mm2/s, while component ADCs for the tri-exponential model were ADC1,3 

= 1.6 × 10-17, ADC2,3 = 1.5 × 10-3 and ADC3,3 = 10.8 × 10-3 mm2/s. For the tri-exponential 

model, the slowest component ADC is far smaller than can be quantified accurately; thus, in 

this model ADC1,3 was set to 0 mm2/s, effectively replacing the slowest diffusion component 

with a constant offset term (C1,3). As noted above, the term “tri-exponential” is therefore 

replaced with “three-component”. The signal contributions for cancer and fibroglandular tissue 

ROIs were not significantly different (p > 0.05) when estimated using ADC1,3 = 1.6 × 10-17 and 

ADC1,3 = 0 mm2/s in the three-component RSI model. The RSI-derived signal contributions of 

the slower diffusion components were larger in tumors than in fibroglandular tissues. Further, 

the CNR and specificity at 80 % sensitivity of DCE and a subset of RSI-derived maps were 

equivalent. 
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The breast DWI signal was best described using a three-component RSI model. Tumor 

conspicuity in breast RSI model parameter maps is comparable to that of DCE without the use 

of exogenous contrast.  
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5.3 Paper III 
The aim of this paper was to explore the voxel-wise ability to distinguish cancer from healthy 

breast tissue using signal contributions from the three-component RSI model. 

 

Patients with pathology-proven breast cancer from two datasets (n = 81 and n = 25) without 

any prior neoadjuvant treatment underwent multi-b-value DWI. The three-component RSI 

signal contributions C1,3 and C2,3 and their product, C1C2, and signal fractions F1,3, F2,3, and 

F1F2 were compared with the image defined on maximum b-value (DWImax), conventional 

ADC, and Kapp. The ability to discriminate between cancer and healthy breast tissue was 

assessed by the false-positive rate given a sensitivity of 80 % (FPR80) and ROC AUC. 

 

Mean FPR80 for both datasets was 0.016 [95 % confidence interval (CI), 0.008–0.024] for 

C1C2, 0.136 (95 % CI, 0.092–0.180) for C1,3, 0.068 (95 % CI, 0.049–0.087) for C2,3, 0.462 (95 

% CI, 0.425–0.499) for F1F2, 0.832 (95 % CI, 0.797–0.868) for F1,3, 0.176 (95 % CI, 0.150–

0.203) for F2,3, 0.159 (95 % CI, 0.114–0.204) for DWImax, 0.731 (95 % CI, 0.692–0.770) for 

ADC, and 0.684 (95 % CI, 0.660–0.709) for Kapp. Mean ROC AUC for C1C2 was 0.984 (95 % 

CI, 0.977–0.991). 

 

The C1C2 parameter of the three-component RSI model yields clinically useful discrimination 

between cancer and healthy breast tissue, superior to other DWI methods and obviating the 

need for pre-defining lesions. This novel DWI method may serve as a non-contrast alternative 

to standard-of-care DCE. 
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5.4 Paper IV 
This study aimed to evaluate early response detection and residual cancer detection with an 

RSI-based tumor classifier with elastic image registration compared to the conventional 

manual DCE and diffusion imaging.  

 

Twenty-seven patients (median age 47 years, range 20–68) with breast cancer underwent multi-

parametric 3T MRI (including multi-b-value diffusion acquisition) at four time points to 

evaluate response to neoadjuvant treatment. Response to treatment was determined by pCR. In 

addition to standard manual measurement on DCE images, longitudinally-registered diffusion 

images were used to generate an RSI classification. The absolute post-treatment tumor size for 

DCE and RSI, and the mean ADC value at the post-treatment time point, were used to 

determine residual cancer detection correlation with pCR. Response to treatment during 

treatment was assessed by the percent change in tumor size from pre-treatment for each time 

point for DCE (∆DCE) and RSI (∆RSI) and the change in mean ADC from pre-treatment time 

point (∆ADC).  

 

Sensitivity, specificity, and accuracy for absolute post-treatment tumor size were 0.88 (0.64–

0.99), 0.70 (0.35–0.93) and 0.81 (0.61–0.94) for the DCE classifier; 0.71 (0.44–0.90), 0.90 

(0.56–1.00) and 0.78 (0.58–0.91) for the RSI classifier; and 0.71 (0.44–0.90), 0.50 (0.19–0.81) 

and 0.63 (0.42–0.81) for the ADC model. McNemar’s test did not show significant differences 

between any modalities. ROC AUC for change in tumor size from pre-treatment for early, mid 

and post-treatment time points were 0.64 (0.36–0.91), 0.71 (0.45–0.96) and 0.80 (0.59–1.00) 

for the ∆DCE classifier; 0.73 (0.48–0.97), 0.62 (0.34–0.90) and 0.76 (0.52–0.99) for the ∆RSI 

classifier; and 0.56 (0.27–0.85), 0.39 (0.10–0.69) and 0.44 (0.14–0.74) for ∆ADC. DeLong’s 

test for comparison of ROC curves for early, mid and post-treatment time points between 

∆DCE, ∆RSI, and ∆ADC were all non-significant.  

 

The ∆ADC AUC values < 0.5 revealed unexpected behavior from the ADC classification. 

Sensitivity, specificity, and accuracy for the inverted ADC classification were 1.00 (0.81–1.00), 

0.20 (0.03–0.56), 0.71 (0.50–0.86) and the AUCs were 0.44 (0.14–0.74), 0.61 (0.32–0.89) and 

0.56 (0.25–0.84) for early, mid and post-treatment time points, respectively. 
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The automatic RSI classifier showed nearly the same accuracy as manual DCE but was able to 

predict non-pCR after only 3 weeks of neoadjuvant treatment and may complement DCE in 

assessing residual tumor post-therapy. This is important for cost-efficient evaluation of 

neoadjuvant breast cancer treatment and improved clinical decision-making to enable tailored 

treatment regimens.  
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6. Discussion 
 
The main results of this thesis demonstrate the feasibility of PET/MRI and advanced DWI as 

alternatives to the current clinical standard of using DCE for locating and defining breast cancer 

lesions. Tumor definition is the basis of breast cancer evaluation in any clinical setting, ranging 

from screening to treatment monitoring, and the application of DWI as a quantitative metric 

currently depends on pre-identifying tumors on DCE prior to transferring them to the DWI 

image space for quantitative analysis.  

 

The work in this thesis addresses this issue in different ways. Firstly, paper I indicates that our 

novel PET/MRI semi-automatic segmentation technique (GMM-PET) is reliable in deriving 

functional parameters for monitoring neoadjuvant treatment response. Secondly, higher-order 

multi-component DWI models applied to data acquired across higher b-value ranges were 

investigated (papers II–IV), where the optimal fitting of diffusion signal decay from cancer and 

healthy breast tissues resulted in a three-component RSI model with globally-determined 

component ADCs (paper II). The three-component RSI model decomposes the diffusion signal 

to correspond to major anatomical components in healthy breast tissues and lays the foundation 

for optimizing tissue discrimination on DWI through the derived RSI parameter C1C2 (paper 

III). The highly promising discriminatory performance of RSI C1C2 suggests clinical utility 

and improved conspicuity of cancer relative to surrounding healthy breast tissues, which may 

reduce the need to pre-identify lesions on non-diffusion modalities altogether. The RSI 

parameter C1C2 was further applied in a longitudinal dataset (paper IV) and was able to predict 

non-pCR in early-phase (just after 3 weeks of neoadjuvant treatment) and was more specific 

than manual DCE in the late-phase assessment of residual tumor post-therapy. This is important 

for cost-efficient evaluation of neoadjuvant breast cancer treatment and improved clinical 

decision-making to enable tailored treatment regimens. All these results lay the foundation for 

quantitative frameworks specific to pathology and a comprehensive model for diffusion in the 

breast which may complement imaging gold-standard DCE in clinical BI-RADS assessment. 
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6.1 GMM-PET ROI metrics mimic conventional treatment measures (area, 

ADC) derived from manual DCE (paper I) 
The main finding of paper I is that tumor area and mean ADC values derived from GMM-PET 

matched those derived from conventional manual DCE. The ADC values were not significantly 

different from GMM-PET compared to manual DCE, although ADC metrics are known to be 

significantly influenced by the segmentation method 87,123. In line with a previous study by 

Byun et al. 108, our study also demonstrates strong, positive correlations between tumor ADC 

values derived from PET (GMM-PET in our case) and manual DCE segmentation. Though 

Byun et al. 108 use a similar approach for deriving ADC measures in breast carcinomas, their 

method is based on sequential 18F-FDG-PET/CT acquisition which requires an additional 

registration process. Simultaneous PET/MRI as used in this work has intrinsic voxel 

correspondence, and we therefore argue that our results confer greater confidence. Thus, 

successful analysis by GMM-PET may yield clinical utility as an accurate assessment of ADC 

metrics is considered increasingly important in a neoadjuvant treatment response setting 
98,100,124.  

 

6.2 Spatial concordance between PET-derived segmentation and manual DCE 

(paper I) 
In paper I, GMM-PET recapitulated manual DCE definitions significantly better than the 

commonly used threshold methods SUV2.5, for both treated and untreated lesions, and SUV42% 

for untreated lesions. GMM-PET successfully estimated tumor area in well-known problem 

cases such as tumors with heterogeneous uptake and high-intensity tumors relative to their 

immediate surroundings 125,126, although GMM-PET did not perform better than SUV42% in 

untreated lesions. A limit of all adaptive and data-driven algorithms that are sensitive to the 

uptake range 127,128, including GMM-PET and SUV42%, is that the decreasing tumor 18F-FDG 

uptake range during successful treatment 129 leads to overestimations of tumor size as 

maximum SUV (SUVmax) becomes smaller and eventually approaches background levels. One 

solution to this might be algorithm-based approaches such as gradient methods 126,130 which 

have also been recommended 116. However, there is a trade-off between data-driven 

segmentation, requiring minimal user input, and more advanced methods that need increased 

user input. For this study, we focused on limiting user input for increased clinical practicality 

and efficiency and did not investigate gradient methods further.  
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6.3 GMM-PET segmentation compared to conventional DCE in a neoadjuvant 

setting (paper I) 
GMM-PET segmentation gives good spatial concordance with manual DCE segmentation for 

untreated breast cancer lesions. However, segmentation performance was significantly poorer 

for treated lesions, indicated by a lower Dice score and higher CoG. It is well-known that 

therapy affects tumor vascularity 131, and the tumor may become more diffuse as 18F-FDG 

uptake is substantially reduced by treatment, thus increasing GMM-PET segmentation 

variability. It is worth noting that this is not unique to the technique in this study; the reduction 

of DCE contrast in treated tumors also makes tumor definition more challenging for the 

conventional approach. This is clearly illustrated by a recent study by Choi et al. who 

demonstrated that 48.3 % of breast cancer patients who were radiologically defined as 

treatment responders on DCE after NAC (i.e. no enhancing lesion left) had residual tumor at 

surgery 132. It is known that residual tumors with low tumor grade and hormone receptor 

positive subtypes are most commonly missed on DCE 133 and thus these tumors should be 

interpreted with more caution before surgery. When it comes to tumor biology, the formerly 

known lobular carcinomas are more likely to have the largest discrepancy in tumor size post-

therapy  134 and to have positive margins at the time of surgery. In our study, we did not consider 

tumor grade, subtype, or tumor biology 135. However, it should be noted that several treated 

lesions with poor spatial concordance are cases where tumor definition on manual DCE was 

difficult due to low enhancement on DCE. This might suggest that the definition of tumor on 

DCE in our study, which was not blinded to the pathological results, may have biased the 

results. This is especially important as both modalities are dependent on sufficient blood flow 

for contrast and tracer uptake, meaning that the treatment effect on tumor vascularity may have 

influenced both manual DCE and GMM-PET segmentation. It is an area of future interest to 

investigate how these are affected differently during treatment.  

 

Our results illuminate the concordance between ROIs derived from different imaging 

modalities, and as such allow for investigation of the spatial relationship between functional 

information arising from PET, DWI, and DCE and the tissue characteristics these modalities 

are sensitized to. The relationship between glucose metabolism (PET) and pharmacokinetic 

parameters from DCE was not further investigated in this study, but holds potential for 

increased utility of response assessment in a neoadjuvant treatment setting, as discussed in 

section 6.16.  
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The correlation between glucose metabolism (PET) and diffusion quantification (ADC) was 

not assessed in the current study. However, it has been demonstrated that the correlation 

between the two biomarkers is relatively weak. SUV and ADC are independently associated 

with treatment response 136 and the ratio between the two is useful for assessing response to 

therapy 137. This means that similarly to PET and DCE, PET and diffusion imaging may offer 

complementary information for the assessment of treatment response. Furthermore, change in 

both SUV and ADC through the course of treatment is associated with disease-free survival 138. 

Altogether, all these findings support the assertion that clinical decision-making will benefit 

from the integration of information from two modalities that are based on distinctly different 

biophysical properties. In addition, it illustrates PET/MRI’s ability to assess a range of 

biomarkers, which may help increase the knowledge of cancer biology and ultimately lead to 

increased diagnostic accuracy. 

 

6.4 Institutional differences in diffusion signal (paper II) 
We included data from two sites (baseline high b-value MRI cohort 1 and baseline high b-value 

MRI cohort 2) with different MRI scanners and acquisition parameters to increase the 

generalizability of the RSI model (paper II). This yielded slightly different estimated 

component ADC values of the two- and three-component RSI model between sites. ADC1,2 is 

lower than can be meaningfully quantified for both sites. ADC2,2, ADC2,3, and ADC3,3 were 

higher for baseline high b-value MRI cohort 2 compared to high b-value MRI cohort 1. We 

hypothesize that this is attributed to the difference in TE between sites; baseline high b-value 

MRI cohort 1 had a TE of 82 ms, while TE was 88 ms for baseline high b-value MRI cohort 2. 

Given T2 values of cancer and fibroglandular tissue of 68 ms and 46 ms respectively, the signal 

decay due to T2 effects is in the same region, resulting in ~ 70–85 % decay to T2 effects across 

sites and tissues, but will certainly influence the overserved signal. Another important aspect 

is the inclusion of more non-zero b-values below 500 s/mm2 for baseline high b-value MRI 

cohort 2, which lead to a better characterization of the signal curve at this b-value interval. 

However, the slight difference in component ADC values did not affect output signal 

contributions for tumor ROIs; this suggests the joint RSI model is generalizable and can be 

applied to data acquired across scanners and acquisition parameters (within a certain range).  
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6.5 Three-component RSI model reveals the diffusional composition of breast 

tissues (paper II) 
The application of optimized models allows for the examination of the diffusion profile of 

cancer and healthy breast tissues. By visual examination of the resulting signal contribution 

(Ci,K) maps we see that different signal contributions highlight different anatomical regions. 

Across both models, cancer showed elevated signal from the slowest components (C1,K). For 

the bi-exponential model, C1,2 highlights cancer, fatty tissue, and fibroglandular tissue, whereas 

C2,2 has elevated signal from cancer, fibroglandular tissue, and vascular flow (and possibly 

fluid in ducts and glands). The three-component RSI model, however, better separates tissue 

types with C1,2 highlighting cancer and fatty tissue, C2,3 highlighting cancer and fibroglandular 

tissue, while C3,3 highlighting vascular flow/fluid in ducts and glands. This separation of breast 

anatomy is not previously demonstrated by other DWI models.  

 

6.6 Three-component RSI model better fit breast diffusion data (paper II) 
The three-component RSI model has a lower BIC and lower fitting residuals compared to the 

bi-exponential model, which suggests that three components provide a better characterization 

of diffusion signal in the breast. However, in the study by Vidić et al. which examined several 

mathematical signal representations, the Padé approximation demonstrated the best data fit of 

the diffusion signal from malignant and benign lesions modeled for b-values up to 3000 s/mm2 

83. Interestingly, several other models, such as the bi-exponential model, had a higher 

discriminatory performance between malignant and benign lesions, indicating that 

discrimination performance is not precisely tied to the quality of curve fit 83. Though our studies 

are not directly comparable, since the tri-exponential model and healthy breast tissue fitting 

were not explored in that study, it illustrates the balance between a priori assumptions and 

biophysical interpretability when modeling diffusion signal. The Padé approximation is an 

example of an entirely mathematical representation without any assumptions about underlying 

tissue microstructure, thus limiting the possibility for biophysical interpretation (as well as 

spurious over-interpretation). In our study, the aim was to limit the number of model 

assumptions while simultaneously conserving biophysical interpretation, which resulted in a 

three-component RSI model that demonstrated both goodness of fit of diffusion signal and the 

ability for biophysical interpretation of output model parameters.  
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The application of the three-component RSI model in the current work yields global component 

ADCs that present the best fit across all training voxels, which explicitly includes both cancer 

and healthy breast tissues. The inclusion of all breast tissue voxels in the fitting is different 

than for other commonly investigated models for healthy breast tissues such as IVIM 91 

(equation 4), ADC 78,112 (equation 2), and the DKI model 139 (equation 5). Previous studies 

investigating cancerous and healthy breast tissues using the IVIM 91, ADC 78,112, and DKI 139 

models have been performed by signal averaged across entire (pre-identified) ROIs and not on 

a voxel-wise basis, and purposely avoid the inclusion of fatty tissue. Thus, these studies are not 

able to reflect the spatial information included in the image; applying our analysis on a voxel-

wise basis allows the three-component RSI model to capture the unique breast tissue 

environment, including the admixture of fatty tissue and fibroglandular tissue. Note that we 

included fitting analysis without fatty tissue voxels, further discussed in section 6.7.  

 

Once component ADCs across all breast voxels were determined, these values were fixed and 

incorporated into the three-component RSI model for generating signal contribution (C1,K) 

maps from the different components. Fixing component ADCs is beneficial for several reasons, 

and is fundamentally different from common diffusion fitting methods such as in the IVIM 

model, where component ADCs are left free and determined for each voxel individually. 

Firstly, fixing component ADCs allows for a computationally-efficient linear analysis with only 

one unknown per voxel per signal component, i.e. the signal contribution, and avoids 

overfitting. Contrary to a fully-independent model fitting per voxel, this enables more stable 

estimates. This is particularly important when fitting higher-order models. Secondly, it 

simplifies the biophysical interpretation of the signal contribution as being the individual 

weighting of a given diffusion component (with a corresponding component ADC) from the 

total diffusion signal. Thus, comparisons across patients and sites are more easily done, which 

is essential for the development of effective imaging biomarkers.  
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6.7 Application of the three-component RSI model allows for biophysical 

characterization of breast tissues (paper II) 
Application of the three-component RSI model allows for examination of the diffusion profile 

of cancer and healthy breast tissues, where different anatomical tissue types are distinguishable 

using the different components, and can be tied to biophysical behavior. C1,3 is determined 

using ADC1,3 = 0 mm2/s and highlights cancer and fatty tissue; C2,3 with ADC2,3 = 1.4 × 10-3 

mm2/s highlights cancer and fibroglandular tissue, while C3,3 with ADC3,3 = 10.2 × 10-3 mm2/s 

highlights areas with fast apparent diffusion representing vascular flow and fluid in ducts and 

glands. Thus, C1,3 represents restricted diffusion, C2,3 hindered diffusion and C3,3 

pseudodiffusion. Note that C3,3 was the only signal contribution that was not sensitive to cancer. 

Thus, the three-component RSI model reveals the diffusion signal heterogeneity in breast 

tissues and can decompose diffusion signal by signal contributions corresponding to basic 

breast tissue components of fatty tissue, fibroglandular tissue, and fast vascular flow/fluid in 

ducts and glands.  

 

The two fastest signal components C2,3 and C3,3 are on the same length scale as the two 

biophysical components probed by low to mid b-value regimen in the bi-exponential IVIM 

model 140 (equation 4), described by D* (pseudodiffusion coefficient) and D ( “true” apparent 

diffusion coefficient), respectively. Thus, C2,3 may similarly represent the hindered diffusion 

of the extracellular space in fibroglandular tissues, where the ADC2,3 value is consistent with 

previous studies of fibroglandular tissue specimen 93,141. Furthermore, C3,3 can be related to the 

signal contribution from flow in vessels with diffusion coefficient values typically ~10 times 

higher than fibroglandular tissue diffusion times 140,142. The percent diffusion signal associated 

with this normalized signal fraction component is described by the f3,3 = 22 % in our study. 

This is higher than what is commonly reported for breast cancer lesions using the IVIM model 
90. A source of this discrepancy may be due to the different number of diffusion components 

compared to IVIM. In addition, it is important to note that the pseudodiffusion component 

cannot be precisely estimated in our dataset since one of the two datasets used for fitting, 

baseline high b-value MRI cohort 1, did not include any non-zero b-values below 500 s/mm2.  

 

When a bi-exponential model is applied to data from a higher b-value range (b-values > 1000 

s/mm2), there is a shift in diffusion coefficient and the corresponding biophysical interpretation. 

Several studies have shown that the slowest diffusion coefficient in a high b-value bi-
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exponential model, ADCslow, is ~ 0.5 × 10-3 mm2/s and the fastest diffusion coefficient, ADCfast, 

is ~ 2.0 × 10-3 mm2/s  83,92,141. The length scale of ADCfast is therefore in between the D (and 

ADC2,3) and D* (and ADC3,3) which suggests that it is a mixture of contributions from two 

biophysical components including hindered fibroglandular tissue diffusion and 

pseudodiffusion. This is apparent in our study where C2,2 (with ADC2,2 ~ ADCfast) was elevated 

in both perfused and fibroglandular tissues. Moreover, the slowest component with ADCslow is 

conventionally attributed to restricted intracellular diffusion which characterizes hypercellular 

tumors; the low diffusion distances of this tissue component are not well probed without high 

b-values regimes. In our study, C1,2 was elevated in cancer and fibroglandular tissue, but also 

in fatty tissue, with ADC1,2 that was approximately tenfold shorter than conventional ADCslow 

(discussed in detail below). Thus, the bi-exponential model applied to higher b-values appears 

to combine several biophysical components, and our results suggest that higher-order models 

(i.e. three components) are needed to further decompose diffusion signal into more meaningful 

biophysical components related to the complex breast tissue environment.  

The tri-exponential model component ADCs vary depending on the tissues included in the 

analysis, and so it is important to make the distinction of what these values represent. When 

Nakagawa et al. fit a tri-exponential model at high b-values (up to 2500 s/mm2) for pre-

identified malignant lesions, that is without including any non-lesion voxels, it resulted in the 

following mean diffusion coefficients: slow restricted (Ds) = 0.85 × 10-3 mm2/s, fast free 

diffusion (Df) = 2.16 × 10-3 mm2/s, perfusion-related diffusion (Dp) =14.81 × 10-3 mm2/s 143. 

The two fastest diffusion coefficients, Df and Dp, are on comparable length scales to ADC2,3 

and ADC3,3, respectively, and may be roughly attributed to the same biophysical components. 

However, the slowest diffusion coefficient Ds is similar to ADCslow from the bi-exponential 

model 83,92,141 and is markedly higher than ADC1,3 = 0 mm2/s in our study. We attribute this to 

the control ROIs which were not included in the study by Nakagawa et al. 143 or the bi-

exponential fits 83,92,141. However, stronger conclusions from our study cannot be drawn 

without histological tissue samples.  

For completeness, we also performed RSI model fitting where we excluded the majority of 

visible fatty tissue voxels. The main difference in resulting component ADCs were in ADC3,3; 

ADC3,3 = 7.2 × 10-3 mm2/s excluding fatty tissue, ADC3,3 = 10.8 × 10-3 mm2/s including fatty 

tissue. On the contrary, ADC1,3 is lower when including fatty tissue; this is not surprising as the 
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highly restricted diffusion of fatty tissue generates low diffusion coefficients. Thus, we 

hypothesize that the increased ADC3,3 when excluding fatty tissue indicates that 

pseudodiffusion evolves at a slower rate when fatty tissue is excluded. However, note that our 

fibroglandular tissue ROIs excluding fatty tissue did not account for intravoxel fatty tissue 

within fibroglandular tissue. This may be a contributing factor to why fibroglandular tissue 

also experiences restricted diffusion, though the amount of water experiencing restricted 

diffusion appears to be higher in tumor tissue.  

 

IVIM is a commonly used multi-component model in the breast. Even though we use an 

extended b-value range compared to what is commonly used for IVIM analysis, we 

acknowledge above that C2,3 and C3,3 may reflect the same biophysical components as the IVIM 

model. One could therefore argue that the three-component RSI model presented in this paper 

is similar to the IVIM model with an additional offset (C1,3) accounting for the hyper-restricted 

water component in fatty tissue and tumors which manifests in the high b-value range. 

Additional differences between the three-component RSI model and IVIM include: fitting 

regimen across both cancer and non-cancer voxels (three-component RSI) rather than in a pre-

identified ROI (IVIM), using fixed component ADCs (three-component RSI) rather than fitted 

variables (IVIM), and describing the signal with three components (three-component RSI) 

rather than two (IVIM). In addition, one fundamental difference between the three-component 

RSI model and IVIM is the normalization method, where IVIM normalizes by S0 to eliminate 

proton density- and T2-weighting. By doing this, the signal fractions of each component in the 

IVIM model add up to 1 and are mutually dependent. However, C1,3, C2,3, and C3,3 are not 

normalized by S0, and all components are thus scaled to individual proton density-weightings 

and are influenced by the T2-relaxation of the individual components. The importance of 

proton density- and T2-weighting for breast tissue discrimination will be described in further 

detail below. 

 

While the biophysical interpretation of C2,3 and C3,3 are well-described in the literature as the 

focus of the IVIM model, diffusion signal from suppressed fatty tissue and its diffusion 

properties are not well-known. It is important to note that using a fixed ADC1,3 = 0 mm2/s does 

not mean that there is no diffusion at all; instead, it reflects the fact that this diffusion coefficient 

was too slow to be quantified in our experimental setup using long TEs. We hypothesize that 

the very slow diffusion properties of C1,3, modeled with ADC1,3 = 0 mm2/s, may arise from 

extremely restricted cell environments such as the water within the thin cytoplasmic membrane 
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in adipocytes and intracellular structures in cancer cells. This conclusion is also presented in a 

study by Baron et al. who reported diffusion coefficients close to zero in normal breast tissues 
78. However, unsuppressed fatty tissue, i.e. diffusion signal from the lipid component of 

adipocytes which fat suppression techniques target, has been reported to have low diffusion 

coefficients as well 144. Thus, another possible explanation is that our diffusion data was not 

adequately fat suppressed, which is a common hypothesis for explaining the hyper-restricted 

diffusion signal from fatty tissue 78,145. We did not perform any quantitative investigation of 

the fat suppression (by SPAIR and FatSat) in this study, but all diffusion images in this study 

were visually inspected by an experienced breast radiologist and only included if they were 

defined as adequately fat suppressed. Furthermore, C1,3 was found to be sensitive to cancer, 

which does not contain fatty tissue. Thus, we believe that the included data was sufficiently fat 

suppressed and that the hyper-restricted signal from C1,3 has biophysical importance and relates 

to water within adipocytes and intracellular structures in cancer cells. This can also be seen as 

the persistent signal intensity from suppressed fatty breast tissue at very high b-values. 

However, noise, which we attempted to account for by assuming a Rician noise distribution 
111, may have been a partial contributor to the C1,3 signal. The initial RSI model in the brain 

uses ADC = 0 mm2/s for the slowest component 71, and previous studies suggest that this 

component account for the diffusion of intracellular water 101,146. In the most recent RSI model 

in the prostate, the ADC of the slowest component was also estimated to be 0 mm2/s 76, meaning 

that this observation is not unique to the breast. This is different from previous prostate RSI 

models 63,66,73,75 where the slowest component was not zero. This might suggest that an ADC = 

0 mm2/s better represents the restricted diffusion component than previous models that may 

include tortuous extracellular or hindered diffusion 146.  

 

Regardless of the specific origin of hyper-restricted diffusion signal from fatty tissue, it is 

problematic in breast DWI for several reasons. Firstly, hyper-restricted diffusion from fatty 

tissue confounds the detection of restricted intracellular diffusion that characterizes 

hypercellular tumors 63-67,83. In most body sites, such as the prostate, this would not be 

particularly problematic because subcutaneous fatty tissue can be easily distinguished from 

parenchymal tissue where tumors arise. However, the unique tissue microstructure of normal 

breast tissues, where fibroglandular tissue is admixed with fatty tissue, creates a fatty tissue 

signal on DWI 77 at an intravoxel level.  
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The results from paper II suggest that the three-component RSI model is useful in the 

characterization of all breast tissue, both cancer and healthy breast tissues when the component 

ADCs are determined from training data containing these tissues. Building on these findings, 

we evaluated the three-component RSI model using a more clinically relevant approach by 

assessing discriminatory performance of parameters derived from the three-component model 

in paper III.  

 

6.8 Discrimination between cancer and healthy breast tissues with RSI C1C2 

(paper III) 
The results from paper III show that cancer can be non-invasively discriminated from healthy 

breast tissues using the compound parameter C1C2 derived from the three-component RSI 

model. C1C2 achieved very low false positive rates while detecting 80 % or more of the defined 

cancer voxels, as defined by FPR80 mean = 0.016, 95 % CI = 0.008–0.024. The discriminatory 

power of C1C2 was superior to that of signal contributions considered independently, 

conventional DWI-estimates (ADC), and other methods, including DKI (Kapp) and DWImax. 

Moreover, the C1C2 approach was performed at two different sites, scanners, and acquisition 

protocols, suggesting the generalizability of model parameters with potential for real-world 

applications.  

 

The high discriminatory performance of C1C2 is derived from the nature of the three-

component RSI model; as healthy breast tissues consist of an admixture of fat and 

fibroglandular tissue, it is essential to be able to discriminate cancer from all healthy breast 

tissues, including the hyper-restricted water component in fatty tissue. We show that the C1,3 

is high in fatty tissue, while C2,3 is low. Conversely, the C2,3 is high in fibroglandular tissue, 

while C1,3 is low. Both signal contributions are sensitive to the restricted diffusion from the 

intracellular cancer tissue. Thus, by computing the product of the two (C1C2), we can better 

suppress signal from both normal fatty tissue and fibroglandular tissue, which have low values 

in at least one contribution, while preserving the signal from cancer tissue (Figure 17). C3,3 is 

not included because it is sensitive to perfusion in vessels and fluid in ducts and glands, but not 

cancer. Thus, using the RSI-derived C1C2 approach may account for women with varying 

degrees of admixed fatty tissue.  
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Figure 17. Parameter maps for maximum b-value image (DWImax), Restriction Spectrum 
Imaging (RSI) signal contribution maps for C1,3, C2,3, C1C2 (labelled with the false-positive 
rate given the sensitivity of 80 %, FPR80), T2 images with cancer (red) and control (green) 
region of interest (ROI) overlay for three representative cases. FPR80 varies depending on the 
composition of healthy breast tissue in relation to the magnitude of C1,3 and C1,3 in cancer. A. 
Mixed tissue composition with cancer high on both dimensions. B. Abundant fibroglandular 
tissue and high C1,3-magnitude of cancer. C. Abundant fatty tissue and high C2,3-magnitude of 
cancer. a.u.; arbitrary unit. Adapted and modified from 147 with permission.  
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Another important aspect that contributes to the high discriminatory performance is the 

normalization method that retains T2- and proton density-contribution to the DWI signal. On 

conventional DWI, T2-effects on DWI signal are removed to derive pure diffusion parameters 
62. As can be seen for conventional ADC and signal fractions (f), these maps are visually more 

noisy than corresponding signal contributions (Ci,K) in paper II. The non-normalized signal 

contributions (Ci,K) from the three-component RSI model retain contribution from voxel-wise 

proton density and T2, and visually we see tumor tissue superimposed on the background. The 

increased discriminatory effect of signal contributions (Ci,K) is unsurprising as T2-relaxation is 

known to be slower in cancer 148 compared to healthy breast tissues 149, and hypercellular 

cancerous lesions are likely to have higher water concentration, and therefore proton density, 

compared to normal breast tissues. This is also reflected by the higher CNR comparable to 

DCE of signal contributions (Ci,K) compared to ADC and signal fractions in paper II. Thus, 

long T2 and high proton density together with restricted diffusion of cancerous lesions lead to 

a high discriminatory performance. The difference in magnitude in signal intensity between 

fibroglandular tissue and cancer due to T2 effects in our data can be estimated to be 

approximately 13 %, assuming T2 of 46 ms for fibroglandular tissue and 68 ms for cancer 150, 

with the TE in our acquisition protocol. These effects are therefore quantitatively larger than 

the difference due to diffusion, yielding approximately 5% difference for b-values 500 and 

1500 s/mm2 and 1–2 % for b-value of 4000 s/mm2 when assuming ADC values from our cohort 

(1.1 × 10-3 mm2/s for fibroglandular tissue and 0.93 × 10-3 mm2/s). The importance of T2 and 

proton density has also been shown in separating benign and malignant breast lesions, where 

S0, the calculated signal at b = 0 s/mm2 (which has no diffusion weighting), yielded a relatively 

high AUC of 0.85 83.  

 

6.9 C1C2 discriminatory performance in comparison to conventional DWI 

(paper III) 
We hypothesize that contributing factors to the poor discriminatory performance of the ADC 

model (ADC) and DKI (Kapp) include the hyper-restricted water component within adipocytes 

in fatty tissue, and the elimination of proton density- and T2-effects that contribute to 

discriminatory performance. In this study there was a large variation of the FPR80 

discriminatory performance of ADC and DKI across cases; though the performance was around 

0.2 in selected cases, the overall performance was no better than chance. We argue that our 
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voxel-level assessment of discriminatory performance better reflects healthy breast tissue 

heterogeneity including admixture of fatty and fibroglandular tissue. This means that previous 

studies that have demonstrated significant differences between cancer and healthy breast 

tissues in signal-averaged ROIs by ADC 78,112 and DKI 139 are not directly comparable to the 

FPR80 results in this study. Conversely, DWImax shares the same basic properties as C1C2 

(diffusion-, proton density- and T2-weighting) and performs much better than ADC and DKI, 

giving several cases with perfect discriminatory performance. However, DWImax is also 

influenced by the hyper-restricted water in fatty tissue, resulting in worse performance than 

C1C2 on average. C1C2 better accounts for all healthy breast tissues including water in fatty 

tissue. This is a major advantage compared DWImax and the other DWI estimates, as fatty tissue 

is a major component of healthy breast tissues 50 and is admixed with fatty tissue on a voxel-

level on DWI.  

 

It is well-known that ADC, DKI, and other DWI-based models can discriminate between 

benign and malignant lesions with pre-identified ROIs, an assessment that was not within the 

scope of this study. Vidić et al. 83 demonstrated that ADC (ADC) and DKI (Kapp) had a nearly 

perfect discriminatory performance of 0.96 and 0.99, respectively, suggesting potential utility 

for quantitative breast lesion characterization. However, because C1C2 is insensitive to the 

majority of healthy breast tissues and highlights potential pathology, we propose it as an 

imaging tool with the potential of cancer detection within an image, with the further possibility 

of lesion classification in conjunction with more conventional, quantitative diffusion analysis.  

 

6.10 C1C2 discriminatory performance in comparison to DCE (paper III) 
For RSI-derived C1C2 to be a non-invasive alternative to DCE for breast cancer detection, it 

will ideally have comparable or better sensitivity and specificity. Previous studies have shown 

that DWI improves detection specificity 79,151, which is beneficial as the results of lesion-level 

DCE specificity range from 72 to 97 % 7-11. The high performance of discriminating cancer 

from all other healthy breast tissues in comparison to other DWI-based methods is highly 

promising and may suggest comparable clinical utility to DCE. C1C2 may be particularly useful 

in improving DCE specificity, such as when DCE demonstrates false positives in patients with 

moderate or marked background parenchymal enhancement 51. Ultimately, successful analysis 

using C1C2 has the potential to remove the need to administer Gadolinium contrast entirely, 

and consequently preclude any accumulation of Gadolinium in the brain 12. Contrast-free 
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breast-MRI scans would also benefit pregnant women and patients with renal failure, where 

Gadolinium contrast is contraindicated 56.  

 

6.11 C1C2 in comparison to other high b-value models (paper III) 
Various diffusion methods aim to isolate the signal from the slowly diffusing water component 

in cancer tissue by utilizing high b-values 63-67,80-83. Advanced, multi-component models have 

been developed to probe the microstructure in the brain and prostate, including RSI 63,64, the 

VERDICT model 65, and the hybrid multidimensional MR imaging model 67. A key difference 

comparing the hybrid multidimensional MR imaging model to RSI and VERDICT is that the 

hybrid multidimensional MR imaging model does not use fixed component ADCs, but 

determines the component ADC for each voxel independently, making a comparison of 

corresponding signal contributions across patients difficult. However, though these a priori 

assumptions about underlying microstructure allow for biophysical interpretability, they may 

also lead to over-interpretation. Another difference is that, unlike RSI and VERDICT, the 

hybrid multidimensional MR imaging model incorporates multi-echo information not available 

in our study, meaning that the intrinsic T2-relaxation time of each component, which may vary 

between components, is included in the model. Moreover, as previously discussed, the T2- and 

proton density-effects seen in RSI are removed from the other two modeling approaches, 

potentially reducing cancer conspicuity. Although the other multi-component models have 

shown promising results as cancer biomarkers in the prostate, for example, the unique tissue 

admixture of fibroglandular and fatty tissue in healthy breast tissues suggests that these results 

may be limited in the breast. It should also be noted that DKI also uses high b-values to isolate 

the restricted water signal from cancer, where the derived parameter Kapp has proven potential 

utility in the breast in discriminating pre-identified malignant and benign lesions 80-82. 

However, this is not a multi-component model, but rather a purely mathematical representation 

of diffusion data.  

 

6.12 RSI classifier for longitudinal response assessment compared to DCE 

(paper IV) 
Our study shows that the RSI classifier, based on C1,3 and C2,3 of the three-component RSI 

model, shows promise for detecting early response to treatment, with significant changes in the 

RSI measurement detected after only three weeks of neoadjuvant breast cancer therapy. In the 
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later phase of treatment, the automatic RSI classifier showed nearly the same accuracy as DCE 

with manually-defined ROIs, but does not require any user input beyond the pre-treatment MRI 

scan. The RSI classifier was (non-significantly) more specific for assessing residual tumor 

post-therapy than DCE. The promising results from the development of this advanced DWI 

classifier invite further study that can potentially lay the foundation for a quantitative, easily 

implemented, and cost-efficient response assessment framework that may complement 

standard DCE in the evaluation of neoadjuvant breast cancer treatment, thus improving clinical 

decision-making for enabling tailored treatment regimens. 

 

The improved predictive performance at the early-treatment time point is probably due to the 

RSI classifier’s quantification of tumor cellularity, in contrast to DCE which is based on tumor 

vascular perfusion. The RSI classifier is sensitive to slow diffusion within hypercellular tumors 

while simultaneously suppressing signal from healthy fatty and fibroglandular breast tissue 147. 

Thus, the RSI classifier reflects the decrease in cellularity through the course of neoadjuvant 

therapy, consistent with RSI’s known estimation of tumor cellularity across organs 
58,73,75,101,102. This may help resolve early phase diagnostic challenges of tumors that regress 

with diffuse cell loss rather than direct tumor shrinkage, meaning little or no change in overall 

tumor size on DCE.  

 

Early-phase treatment response assessment is important for clinical decision-making and may 

enable tailored treatment regimens, and the current findings of detecting response after only 

three weeks by ∆RSI yield valuable information on in vivo treatment efficacy at an early time 

point. Establishing early response status may allow for non-responding patients in adaptive 

treatment regimens to switch to alternative treatment regimens pre-surgery. This allows for the 

planning of additional systemic therapy for non-responders after surgery which is known to 

improve survival 152,153. On the other hand, establishing early complete responders may 

facilitate de-escalated treatment strategies such as shortened treatment regimens 154, thus 

avoiding unnecessary chemotherapy with toxic side effects.  

 

The RSI classifier is informative of tumor cellularity also in the later phase of therapy, which 

is important as post-therapy cellularity is associated with overall patient survival 155. However, 

RSI did not reflect post-therapy size especially well, contributing to the low sensitivity for 

detection of remaining tumor tissue post-therapy. Thus, DCE-based methods are likely to 

continue to have a more prominent role than the RSI classifier in the context of e.g. surgical 
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planning, where the exact extent of tumor borders must be precisely determined. The RSI 

classifier may yet have a role in complementing DCE in this setting since it suggested a higher 

specificity than seen for DCE measures post-therapy.  

 

The RSI classifier automatically estimates tumor volume through elastic image registration to 

the pre-treatment time point. This is an advantage compared to conventional MRI which uses 

manually defined lesions for each time point. Automatic assessment is particularly useful in a 

treatment setting as defining the tumor is especially difficult when the tumor shrinks in size 

and may be affected by treatment and procedure-related changes. These results also add to 

current literature demonstrating that DWI-based response assessment may precede changes in 

tumor size measured by DCE 98. RSI performed better than the longest diameter of manual 

DCE which had an AUC of predicting pCR at the early time point of 0.64 in the ISPY trial 97; 

AUC increased to 0.70 using a threshold-based DCE model (functional tumor volume, FTV).  

 

6.13 RSI classifier for longitudinal response assessment compared to DWI 

(paper IV) 
Our results complement existing literature on DWI as a response biomarker following 

neoadjuvant therapy in breast cancer. However, in our study the ADC model failed to provide 

useful results; in particular, the AUC for ADC was < 0.5 and therefore suggested the reverse 

hypothesis (decrease in ADC equals response to treatment) at the mid or late-treatment 

timepoints. This is contrary to the expected behavior from the literature 97-100,156,157 and it is 

therefore likely that our study was not well suited to assess the predictive value of ADC. This 

may have several reasons, outlined below. Nevertheless, there are conflicting results in the 

literature regarding the predictive value of ADC; while several single-center trials have 

reported that ADC is predictive of response in the early phase  157 98,99, the multi-center I-SPY 

trial 100 and a recent 2022 study by Almutlaq et al. 156 showed a low predictive value of ADC 

at this time point, similar to our results. However, at the mid-treatment time point, the AUC is 

increased to 0.60 in the multi-center I-SPY trial 100, while the study by Almutlaq et al. 156 did 

not demonstrate response prediction. 
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6.13.1 ROI definition 
Cancer ROI definition in our study was performed by manual delineation on the site of visible 

cancer tissue of the pre-treatment raw DWI image with expert radiologist validation. This ROI 

was applied to ADC maps for all time points after being registered to the pre-treatment time 

point images. ADC mean was calculated within the cancer ROI; the rationale for this approach 

was to avoid time-consuming and technically difficult manual delineation of a tumor 

undergoing treatment and to avoid a substantial increase or decrease in the number of analyzed 

voxels across time points depending on tumor response. Manual delineation directly on ADC 

maps, as done in the multi-center I-SPY trial 100, also requires high-quality images, a known 

issue for diffusion imaging. However, using the same cancer ROI for all treatment time points 

will necessarily include some non-tumor tissue in the ADC mean calculation at early, mid and 

post-treatment time points, to a varying degree dependent on the true tumor decrease in size.  

Conversely, the entire tumor will on the other hand not be included in the ROI for cases with 

tumor progression, although in this case the ADC mean value might arguably be representative 

of the tumor within the cancer ROI. In addition, potential inclusion of necrotic tumor tissue 

might have influenced results, although this is a form of response to which ADC is sensitive. 

ROI-definition is a fundamental aspect of quantitative imaging analysis, and ADC mean 

calculation will be sensitive to ROI delineation, because the surrounding healthy tissue may 

have different diffusion properties; 87 inclusion of fatty tissue will decrease the resulting value, 

while inclusion of fibroglandular tissue will increase the value, in addition to variability within 

the tumor as well. Thus, surrounding healthy tissue in combination with tumor changes may 

have contributed to the unexpected ADC model behavior in this study, as well as any imperfect 

registration that will effectively alter the shape or location of the ROI.   

 

There is a large variability in the literature in regards to whether necrotic areas are included in 

the ROI, or if the ROI was defined by viable tissue only. Necrosis of the center of the tumor 

occurs when a fast-growing tumor outgrows its vascular supply. Such lesions are suggested to 

be more aggressive, hypoxic, and treatment-resistant 158. Necrotic areas have high intensity on 

ADC maps and will influence the resulting ADC mean. In the study by Bedair et al. 157 where 

the ADC model predicted response during early-phase treatment, care was taken to avoid 

necrotic regions so that only viable tumor tissue was left for analysis. Since the same cancer 

ROIs were used for all time points in our study, both necrotic tissue of the tumor and healthy 

tissue were included in the ROI at early, mid, and post-treatment time points, thus an increase 
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in ADC mean in a non-responding case can be interpreted as arising from confounding necrotic 

tissue, seen in Figure 18 for early and mid-treatment time point. However, exclusion of necrotic 

tissue was also done by Almutlaq et al. 156 and I-SPY trial 100, where ADC was not predictive 

for the early-treatment time point. Thus, other factors seem also to influence the results.  

 

 

 
Figure 18. Dynamic contrast-enhanced (DCE) images, Restriction Spectrum Imaging (RSI) 
classifier, and apparent diffusion coefficient (ADC) maps across all imaging time points for a 
subject with remaining tumor tissue on final post-surgical pathology (non-responder). The 
cancer region (green) is given for ADC maps and the dilated cancer-containing region (blue) is 
given for RSI. For all time points, the largest diameter is given for DCE and RSI classifier, and 
the mean ADC value of the cancer ROI. ADC maps, particularly for early and mid-treatment 
(Tx) time points are heavily influenced by necrotic tissue, leading to an increase in mean ADC 
within the cancer ROI. 
 

 

In our study, we performed the analysis with an a priori assumption that an increase in ADC 

represents a response to treatment in line with current practice. ROC AUC results for the ADC 

model for mid and post-treatment time points were < 0.5, indicating that ADC was negatively 

predictive of response. This finding is unexpected and has to our knowledge not been observed 

in prior ADC breast studies. Biologically, a decrease in ADC with response might suggest 

fibrosis/dehydration in the extracellular space. However, the common assumption is that the 

tumor is replaced with fibroglandular tissue, which will increase ADC.  
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6.13.2 ADC calculation  
Another factor that might have influenced the results is how the ADC mean value was 

calculated. In our study, the ADC maps were generated first, then the ADC mean was extracted 

from the maps. However, EUSOBI 48 recommends calculating the mean ADC by first 

averaging signal intensities rather than averaging voxels across the ADC map so that the output 

is less affected by noise 159. Also, the choice of b-values is important. We used b-values < 1000 

s/mm2, ie. 0 and 500 s/mm2. However, the influence of pseudodiffusion is particularly 

prominent for b-values < 200 s/mm2, and these b-values are therefore commonly eliminated to 

avoid this effect. Since our dataset focused on high b-values acquired for RSI, it did not contain 

a range of low b-values which have been used in comparable studies 100 , thus, the ability to 

accurately estimate ADC values may have been limited,  

 
It is well-known that there are challenges with DWI acquisition and image quality that might 

also have affected the results. In a recent multi-center study, quality assessment excluded 30 

% of data; 160 several lesions were considered non-evaluable due to factors such as image 

quality, limited lesion contrast, and partial volume effects.  The diagnostic performance of the 

calculated ADC mean was reduced from AUC 0.75 to AUC 0.61 when all lesions (including 

non-evaluable) were included in the analysis, which is a notable difference. In our study, DWI 

data were quality controlled, however, images in our study were generally quite noisy and 

proved difficult to use for manual ROI delineation directly, one of the reasons for our ROI 

strategy that may have influenced the results.  

 

6.14 Signal-to-noise (SNR)  
It is a well-known issue that DWI signal at high b-values can approach the image noise floor, 

as a result of noise having a Rician (non-normal) distribution that cannot take negative values; 

this is especially relevant for RSI as it requires the use of higher b-values. In paper II, the 

regional SNR of cancer ROIs vs. healthy breast tissue was ≥ 20. There is no common consensus 

on the ideal SNR for DWI breast application 48, though an SNR ≥ 20 has been suggested as 

adequate for conventional DWI parameters 161 since at these values noise can be assumed to 

be Gaussian in nature (and thus does not influence the outcome of diffusion model fitting). 

 

From the literature, one would expect mean ADC values (mono-exponential) of 0.9–1.3 × 10-3 

mm2/s for malignant lesions 48, which is in line results of papers I and III where mean ADC 
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values are given. However, on a voxel level, we see that negative ADC values occur, as can be 

seen in Figure 4 in paper III.  Negative ADC values are biophysically impossible since diffusion 

processes must cause a signal decay across increasing b-values. The negative values are 

nevertheless correct mathematically, and arise from data with low SNR where voxel values are 

close to zero, and as a result of noise the signal at b = 500 s/mm2 is higher than at b = 0 s/mm2 

(example in Figure 19). The presence of negative ADC voxels is not unusual in DWI studies, 

and can be used as an indicator of data quality; their direct effect on result is often ameliorated 

by use of summary statistics (i.e. taking the mean value). In one case, observed in Figure 6 in 

the paper I erratum, where the mean value itself is negative. This specific case was due to a 

gross misplacement of the ROI owing to a large patient movement between acquisition of DCE 

(where the ROI was drawn) and DWI data. For the conclusions of paper I, the GMM-PET ROI 

was derived from the PET data acquired concurrently with the DCE data, and so while the ADC 

values are incorrect, the fact that both ROI methods return the same negative mean ADC still 

supports the conclusion that the methods agree. 

 

 
Figure 19. Figure illustrating voxel-level signal-to-noise (SNR) issues at b = 0 s/mm2 (S0) and 
at b = 500 s/mm2 (S500). A signal decay across b-values is biophysically expected for diffusion 
data (red arrow and graph). In cases with poor SNR, the signal at S0 is zero or close to zero and 
S0 – S500 < 0 (blue arrow and graph), which will lead to nonsensical apparent diffusion 
coefficient (ADC) map calculation. Courtesy of S. Loubrie.  
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6.15 Limitations  
 
There were some limitations to the work carried out in this thesis. For paper I, our GMM-PET 

methodology depended on some simple user input for the selection of the initial tumor-

containing region which, if performed poorly, might introduce errors as increased tracer uptake 

is less specific to disease than the manual DCE definition used for region placement in our 

study 162. Further optimization to minimize or ultimately remove all user-dependency, unbiased 

by DCE, is needed to evaluate if PET data can act as a proxy for (manual) tumor definition 

using DCE. Furthermore, this work was a proof-of-concept study that demonstrates that 

PET/MRI fits within the existing RECIST treatment response criteria 95 framework, where 

tumor size reduction is assessed by the diameter of one single slice on DCE. However, this 

conventional size assessment is both quite limited and specific, and more extensive MRI 

metrics can retain much more detailed information about tumor response over time, so the 

comparison to RECIST is not necessarily the most appropriate endpoint. Lastly, though our 

results demonstrate the feasibility of GMM-PET treatment response assessment in the 

neoadjuvant setting, we did not explicitly measure how the novel method would impact clinical 

decision-making.  

 

Given the similarities in the included patient cohorts and methodology in papers II and III, the 

limitations for these papers are naturally interrelated. Firstly, one limitation concerned the 

definition of control ROIs; although we ensured that control ROIs were verified as 

radiologically cancer-free, based on MRI review by expert breast radiologists at both sites, we 

cannot know if occult cancer may have been included in the control ROIs. In the bilateral 

baseline high b-value cohort 1 we further ensured cancer-free contralateral control ROIs by 

excluding all cases with pathology-proven contralateral cancer. However, since baseline high 

b-value cohort 2 was unilateral, the control ROIs were defined in the same breast as the cancer, 

meaning that this cohort may have been particularly prone to potential cancer influence. This 

also made the size of control regions dependent on the extent of cancer and thus more variable 

from case to case. It should also be noted that the RSI model was not fully independent of DCE 

since the ROIs were guided by all images in the MRI acquisition including DCE. While 

yielding component ADCs generalizable across sites, scanners, acquisition protocols, and 

patients, the biophysical meaning of signal contributions was only derived by visual 

inspections of images and correlating to corresponding anatomical structures and not by 

histopathological analysis. The detailed relationship between the three-component RSI model 
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and breast microstructure remains to be studied, as it has been for the bi-exponential model 
93,141. We would also like to note that the main rationale for combining two datasets from 

different scanners and clinical settings was to show clinical robustness. 

 

There were also some limitations specific to paper III. Firstly, there were some false positives 

on the derived RSI parameter C1C2, such as the hyperintense signal from the interface between 

fatty and fibroglandular tissue. Secondly, it is also apparent this paper did not consider the final 

steps on how to generate a “lesion ROI” once positive voxels are identified by C1C2, though 

this was partly addressed in paper IV as the “RSI classifier”.  Also, we do not know how C1C2 

performs in discriminating between benign and malignant lesions. All these issues illustrate 

that further development of the three-component RSI breast model is warranted, and is an area 

of interest for future improvement that could extend the use of the method. Additionally, 

detection performance is commonly evaluated at the lesion level. The voxel-wise false positive 

rate, FPR80, that was used as a performance measure in this study, does not give an absolute 

measure comparable to other literature. However, all voxels in the entire image are used in 

breast cancer examination, and therefore we argue that such a measure is useful from a 

radiologist’s perspective.  

 

There were some limitations for paper IV. First, the sample size for this longitudinal study of 

serial MRI is not large. There were 27 patients included, where 17 had all four scans in the 

study protocol; validation in a larger cohort would be a necessary extension of this work to 

confirm and validate the results of the method in longitudinal data. In addition, the RSI 

classifier was automatic except for the definition of cancer for the pre-treatment ROI, which 

was propagated to other time points through registration, and ideally, this would be made part 

of the automated process. However, tumors that receive NAC are generally large tumors (> 4 

cm) and are easy to detect on pre-treatment MRI scans, while the time-consuming step of 

delineating tumors in post-treatment scans is automatic. The results warrant replication in 

independent samples. Another element is the definition of pCR, where we allowed for 

remaining DCIS in our definition. We argue that from an oncologist’s point of view, this 

definition can be justified since there is no difference in disease-free survival between patients 

with residual DCIS compared to patients with no residual invasive or in situ disease 163. Here, 

the focus is on the change in tumor size through the course of disease. However, from a 

surgeon’s perspective, the extent of all tumor tissue post-therapy, including DCIS, is important 

to assess to achieve the goal of free resection margin when performing breast-conserving 
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surgery. This might warrant separate strategies for early and late-phase response to neoadjuvant 

therapy (Figure 20). Moreover, we did not correct for overall differences in signal intensity for 

the RSI classifier across time points. This is an area of interest for future method development. 

Lastly, limitations of the ADC methodology applied in our study may have underestimated the 

prediction performance in the primary analysis. This may have given RSI an advantage 

compared to ADC, which may have inflated the difference, as discussed in detail above. 

 

 
Figure 20. Separate strategies for assessment of neoadjuvant therapy for oncological and 
surgical intervention, given for a patient with invasive carcinoma of no special type (NST) 
experiencing complete pathological response (pCR) post-therapy, including no remaining 
ductal carcinoma in situ (DCIS). Oncological strategy: First, the tumor must be defined at pre-
therapy. Treatment response may be assessed automatically through neoadjuvant therapy by 
the Restriction Spectrum Imaging (RSI) classifier. This may give real-time information on in 
vivo treatment efficacy which may guide clinical decision-making. Surgical strategy: Together 
with imaging gold-standard dynamic contrast-enhanced imaging (DCE), RSI may help aid for 
assessment of residual tumor post-therapy. RSI has high specificity and may compliment DCE, 
especially in cases where DCE represents false positive cases. This may help guide surgical 
planning. However, the RSI classifier is not optimized for the assessment of DCIS.  
 

 

Lastly, technical limitations such as poor image quality and low spatial resolution have 

hindered widespread use of DWI and are relevant for all papers in this thesis. This is illustrated 
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by a recent multi-center study that excluded 30 % of DWI data were excluded after quality 

control 160. While DCE has excellent spatial resolution, it is limited in standard DWI. 

Improvement of spatial resolution is therefore important for DWI to act as a reliable diagnostic 

tool. There are several multi-shot strategies available to improve resolution such as multiplexed 

sensitivity-encoding (MUSE) 164, and readout-segmented EPI 165. With a DWI resolution of 2.5 

× 2.5 × 5.0 mm3 and 2.0 × 2.0 × 2.5 mm3 in the studies in this thesis both RSI and conventional 

ADC will likely miss small malignant lesions (≤ 12 mm in size), which is a well-known 

limitation for breast DWI 165-167. The patient cohorts in paper II–III were heterogeneous, with 

a large range of tumor volumes (mean = 10.6 cm3, range = 0.2–105.9 cm3), not reflective of 

the typical patient pool in the screening or surveillance setting that normally have smaller 

lesions. Thus, the promising discriminatory results of these papers are important for the 

feasibility of large-scale studies for validation in routine breast cancer detection in a real-world 

screening population (including healthy controls), which was not performed as part of this 

thesis.  

Moreover, one major image quality issue of DWI is B0 inhomogeneities in EPI acquisitions 

which can cause warping. There are several technical advances to overcome this. Reduced field 

of view (FOV) reduces EPI readout time, thus limiting spin dephasing that causes B0 

inhomogeneities. While reduced FOV corrects for distortion prospectively, retrospective 

approaches are also possible. One such approach is reverse polarity gradient (RPG) 110 where 

an additional diffusion volume is acquired for the opposite phase encoding (PE) direction to 

leverage the symmetry of distortions. This method has been applied across several body sites 
168,169 including breast 170,171. Both reduced FOV and RPG have been applied for several 

datasets in this thesis to limit distortion. More advanced DWI acquisition and post-processing 

techniques may improve image quality and sensitivity in cancer detection to a sufficient 

standard. 
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6.16 Future implications of hybrid PET/MRI and the three-component RSI 

model 
Over the past years, there has been an increased interest in radiological tools for breast cancer 

detection and follow-up without the use of administering MRI contrast agents 48. Avoiding the 

use of Gadolinium contrast is beneficial to decrease both scan time and cost. Contrast-free MRI 

is relevant both for the screening and the neoadjuvant treatment setting. Both the DWI-based 

RSI acquisition and post-processing and PET/MRI technology, neither requiring Gadolinium 

contrast, are readily available and thus implementable for clinical application.  

 

In paper I, we exploit the major advantage of PET/MRI systems, where simultaneously 

acquired PET and MR data gives intrinsic registration of multi-modal data with voxel-level 

correspondence, without additional registration processes that generally involve user input or 

additional processing 172. Benefits of a data-driven, semi-automated GMM-PET approach 

include faster segmentation processes and thus reduced radiologist workload, and reduced 

interobserver variability 173. However, to entirely eliminate manual input for clinical use 174, 

automated initialization of GMM-PET should be further explored and optimized.  

 

There are growing public concerns regarding the unknown long-term health effects from the 

Gadolinium accumulation in the brain after repeated DCE scans 175. This is especially relevant 

in the high-risk breast cancer screening population where young and asymptomatic women 

receive annual MRIs including DCE from the age of 25. Though the risk-benefit for women 

with a 20 % or greater lifetime risk of breast cancer favors the use of DCE 175, we argue that 

precautionary measures are warranted.  

 
18F-FDG-PET/MRI can also be considered in the screening setting. PET/MRI has proven 

useful for screening of (for example) marrow infiltrative malignancies such as leukemia or 

lymphoma 176. However, PET/MRI requires extensive patient preparation (including fasting, 

antidiabetic medication restrictions, etc.), as well as high costs, and as its core method of 

operation requires application of a radioactive tracer, which ultimately limits its use as a 

practical screening tool. In addition, PET/MRI infrastructure is limited; in Norway, PET/MRI 

machines are only located in major cities. Considering all these factors, PET/MRI is likely not 

a cost-effective alternative that can be implemented on a broad scale for screening purposes. 
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In contrast to the screening setting, PET/MRI may have a more prominent role in the 

neoadjuvant treatment response assessment setting. While the analysis in this study did not 

consider patient response and the potential influence of clinical decision-making, our patient 

cohort provided a variety of treatments and responses in which to test the GMM-PET 

methodology, including cases where response included an almost total loss of detectable 

disease. Results from a meta-analysis of 13 studies with a head-to-head comparison of PET/CT 

and DCE showed that PET/CT had higher sensitivity and DCE had higher specificity in 

predicting residual tumor after neoadjuvant therapy 177. Though this study investigated PET/CT 

and not PET alone, it illustrates that the modalities may have complementary properties which 

may benefit from being combined. This has been demonstrated in a study by Cho et al. where 

combining a set of qualitative and quantitative DCE and PET metrics yielded increased 

neoadjuvant treatment response prediction specificity compared to a single modality 

assessment 178. This illustrates the potential synergistic effects of PET/MRI, which is an 

excellent example of improved results when combining two complementary modalities. It is 

likely these complementary and synergetic effects that justify the use of PET/MRI in the 

neoadjuvant treatment setting. However, as previously mentioned, the limited availability of 

PET/MRI systems and the additional cost of PET tracer, and the associated radiation dose, are 

also important practical considerations for implementation in clinical practice. 

 

Moreover, the development of new targeted PET tracers beyond 18F-FDG paves the way for 

the increased utility of PET, PET/CT, and PET/MRI systems. Of particular interest, Gallium 

68 (68Ga)-labeled fibroblast-activation protein inhibitor (FAPI), which targets cancer-

associated fibroblasts that upregulate FAPI, and has higher lesion uptake compared to reported 

values of PET gold standard 18F-FDG 179. Another promising tracer, Fluoroestradiol F 18 (18F-

FES), targets ER expressed in ER-positive breast cancer 180. This holds potential for non-

invasive “scan and treat” strategies for patients undergoing endocrine therapy. Such strategies 

are especially useful in a metastatic setting where sampling tissue biopsies may be technically 

difficult.  

 

PET/MRI is not routinely used as a diagnostic imaging tool for breast cancer, but has 

demonstrated increased clinical utility compared to PET/CT and/or conventional MRI in 

several settings, such as breast lesions characterization by multiparametric MRI including 

DCE, DWI, and 3d 1H-MRSI 181, axillary lymph node assessment 182-184, and whole-body 

staging 116,185 which may be particularly useful for LABC which requires accurate TNM 
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staging, but this was beyond the scope of this thesis. The staging setting may be another 

scenario where the use of PET/MRI may be warranted to combine PET and MRI examinations 

that are indicated for distinct purposes. Here, MRI alone is more sensitive for T staging than 

PET/CT 183,186,187 or PET alone for multifocality 182, while PET/CT is known to have higher 

sensitivity for axillary lymph node assessment 182-184.  

 

Paper I used the PET/MRI data as a test-bed for multi-modal imaging and concordance of 

different modalities with the assumption that DWI needs a high-contrast modality, PET, to 

guide tumor segmentation. Simultaneously, results from paper III demonstrated that DWI, 

when acquired at higher b-value ranges and fitted using a model developed on all breast tissues, 

is excellent at discriminating cancer from surrounding healthy breast tissues through the RSI 

parameter C1C2. A future area of interest is therefore to investigate concordance in 

segmentations between GMM-PET, manual DCE, and the derived RSI parameter C1C2.  

 

In paper II we determined the best model fit for the signal from all voxels for cancer and control 

ROIs from two sites simultaneously. The resulting three-component RSI model and 

corresponding component ADCs are, theoretically, generalizable across sites, scanners, and 

acquisition protocols, which is a known challenge for conventional DWI 48 and an essential 

criterion for the development of effective imaging biomarkers for clinical use. The clinical 

feasibility of the three-component RSI model was demonstrated by the very high 

discriminatory performance of the derived RSI parameter C1C2 (paper III). The relatively 

simple computational demand needed to derive the C1C2 parameter does not impede its 

inclusion in the BI-RADS classification system, which is known to have variable interobserver 

variability 54,55 in both assessments of lesions and breast composition and is dependent on DCE. 

In both cases, alternative strategies for breast lesion segmentation and concurrent classification 

have the potential to augment, or fundamentally change the role of MRI in breast cancer patient 

management, and strongly argue for their place in further research.  

 

In a recent review by Amornsiripanitch et al. 188, the authors conclude that contrast-free MRI 

with DWI  shows promising sensitivity and specificity based on several recent blinded reader 

studies. In general, the readers in the studies visually evaluated a contrast-free MRI, typically 

consisting of T1- and T2 sequences and DWI images including ADC maps and raw b-value 

images (maximum b-value ranging from 600 to 1000 s/mm2), for the presence of cancer. The 

studies mimicked a true screening setting by also including healthy controls or asymptomatic 
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patients. Though promising results, in the reader studies directly comparing conventional DWI 

to DCE for detection of cancer, DWI had lower sensitivity than DCE 189-191. One contributing 

factor is likely DWI’s reduced performance for small lesions (≤ 12 mm in size) 165-167 which 

may be due to technical limitations of DWI as discussed previously.  

 

The RSI model may play a role in the setting of contrast-free MRI for screening of women 

with high risk for breast cancer as an alternative to DCE. Though not directly comparable to 

the blinded contrast-free MRI reader studies from Amornsiripanitch et al. 188, the C1C2 

parameter of the three-component RSI model had a higher discriminatory performance than 

both ADC maps and raw b-value images (maximum b-value ranging from 3000 to 4000 s/mm2) 

in our studies. Discriminatory performance is indicative of lesion visibility superimposed from 

surrounding healthy tissue for radiologists, and thus we argue that the RSI model may improve 

DWI in contrast-free MRI. Another potential use could be as a first screening tool to detect 

lesions specific for pathology for all women in the screening group. The goal of the primary 

scan would be to select patients with suspicious findings for a follow-up full MRI including 

DCE, rather than screening all patients with DCE primarily. This might decrease the number 

of DCE scans and consequently the costs and potential health risks that follow repeated DCE 

scans. However, though RSI acquisition and post-processing utilize methods to correct for 

distortions, RSI faces the same technical limitations as conventional DWI and there is currently 

no data supporting that RSI will improve performance in small lesions.  

 

Contrast-free MRI may also serve as an alternative to or as an addition to routine 

mammography screening of the general population (women with low to moderate risk for 

breast cancer) that receive annual mammography (from the age of 40 to 50 depending on the 

country) 41 21 43 42. High costs, as well as incapability and lengthy scan time of DCE, limits 

widespread use in this large group of women. Recent studies 191,192 have shown that contrast-

free MRI including DWI provides higher sensitivity than mammography for the detection of 

breast cancer and improved sensitivity when combining both modalities 192. The RSI model 

may play a role in contrast-free screening also in this group. However, studies designed to 

evaluate RSI in screening populations are needed before clinical use of RSI-based contrast-free 

screening can be advocated. 

 

In the discussion of MRI scan duration, it should be noted that while conventional DCE has 

lengthy scan times, there is a large body of work supporting abbreviated DCE protocols having 
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similar diagnostic qualities as conventional DCE 193. A recent randomized screening trial 

including 1444 women with dense breasts found that 7 additional invasive cancers per 1000 

women were detected with abbreviated DCE compared to digital breast tomosynthesis 194. The 

suggested protocols may substantially decrease scan times, either as part of full diagnostic 

protocols including conventional T2 and STIR (10 min) 195 or stripped down to only pre-

contrast T1 and the first post-contrast T1 series (3 min) 196. In comparison, a standard clinical 

protocol with full DCE, T1, and T2 takes approximately 17 minutes 196, 20 min including 

conventional DWI. Using the baseline high b-value MRI cohort 2 as an example cohort, the 

RSI scan time including b-values = 0, 200, 600, 1200, 1800, 2400, and 3000 s/mm2 was 

approximately 8 minutes, equivalent to conventional DCE. However, it should be noted that 

this is an excessive research protocol with six non-zero b-values, while RSI only requires three 

non-zero b-values. Thus, there is a large potential for optimized b-value protocols with 

improved scan time efficiency. Also, it should be noted that DWI often requires additional 

anatomical images such as T2. Thus, contrast-free DWI with anatomical images will likely 

reduce scan times compared to a full diagnostic protocol including conventional DCE, but not 

compared to abbreviated DCE that is currently not a part of the standard clinical protocol.  

 

Paper IV suggests that the three-component RSI model also has potential value in longitudinal 

response evaluation. Specifically, we have generated a classifier (RSI classifier) based on the 

C1,3 and C2,3 parameters of the three-component RSI model that seems to detect early response 

to treatment, with significant changes detected after only three weeks of neoadjuvant breast 

cancer therapy. This is important for clinical decision-making when creating and optimizing 

tailored treatment regimens. This also means that the RSI classifier yields valuable information 

on in vivo treatment efficacy. In the later phase of treatment, the RSI classifier showed nearly 

the same accuracy as manual DCE with non-significantly better specificity. The classifier uses 

elastic image registration to allow propagation of a single manual ROI before being analyzed 

with the RSI model, potentially reliving radiologists’ workload. The RSI classifier signals a 

new way of utilizing DWI in the breast. As other models (ADC, DKI, IVIM) use calculated 

metrics from ROIs, RSI can be used to quantify tumor size. This is attributed to the very good 

discrimination between tumors and healthy tissue. The potential for diffusion imaging as a 

compliment or alternative to contrast MRI is large. Contrast-free MRI in the neoadjuvant 

setting could be advantageous to allow for more frequent monitoring, especially in the early-

treatment stage, in addition to potentially being time- and cost-saving.  
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The three-component RSI model may be useful for oncological application in other body sites, 

particularly sites prone to fatty tissue. The highly promising diagnostic properties of this 

advanced DWI classifier warrants large-scale studies for validation in routine breast cancer 

detection and follow-up in comparison to DCE. 

 

After scientific validation of the three-component RSI model in larger cohorts, the MRI 

acquisition protocol and post-processing are ready for clinical implementation. The RSI model 

may be suitable for implementation in current breast MRI protocols as a post-processing stream 

on clinical MR scanners or as functionality available in imaging analysis software packages. 

In the longitudinal setting, the RSI classifier uses an effective rapid longitudinal registration 
119 incorporating the pre-treatment MRI scan and requires only a small amount of user input. 

These factors are important for the implementation of RSI in standard-of-care breast MRI, and 

also in the treatment follow-up setting.  
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7. Conclusion 
 
The potential implications of the current findings in relation to improved imaging technology 

and analysis in breast cancer are large, and the results from this thesis demonstrate that 

PET/MRI and advanced DWI models are tools to investigate basic biophysical characteristics 

of breast cancer such as increased metabolism (PET) and decreased diffusion (DWI), without 

additional scan time. 

 

This thesis shows that PET/MRI, using a semi-automated GMM segmentation strategy, 

provides basic treatment response metrics that can replicate DWI results derived from the 

manual definition of ROIs on DCE (paper I), which is the current gold standard in any breast 

cancer evaluation setting. This was performed in a neoadjuvant treatment setting. This proof-

of-concept study illustrates the benefits of the PET/MRI methodology for a broader assessment 

of morphological and metabolic features and has the potential to guide clinical decision-

making.  

 

Moreover, the application of an advanced DWI multi-component model resulted in an 

optimized three-component RSI model with fixed ADCs (paper II). The model decomposes the 

diffusion signal into meaningful biophysical components and is developed using image voxels 

in both cancer and healthy breast tissues, and is conducted across patients, sites, scanners, and 

acquisition protocols.  

 

The ability of the optimized three-component RSI model (paper II) to discriminate between 

breast cancer and healthy breast tissues was evaluated (paper III). The derived parameter C1C2 

had a high discriminatory performance between cancer and healthy breast tissue. The highly 

promising discriminatory performance is applicable for lesion detection and segmentation, 

effectively suppressing background breast tissue and potentially reducing the need for pre-

identified lesions required by conventional DWI analysis, thus serving as an alternative to 

segmentation using DCE.  

 

Finally, the ability of the three-component RSI model to assess neoadjuvant treatment response 

was evaluated in a longitudinal setting (Paper IV). The established automatic quantification 

classifier (RSI classifier) performed reasonably well compared to gold-standard DCE measures 

for the detection of treatment response. In addition, the RSI classifier showed potential for 
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detection of response after only three weeks of neoadjuvant breast cancer therapy. The RSI 

classifier may also complement DCE for assessing residual tumor post-therapy. 

 

Overall, the multimodal imaging-derived biomarkers investigated in this thesis may help to 

improve early detection and personalized treatment of breast cancer, with beneficial personal, 

health care, and societal impact.  
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Abstract
Objectives To investigate the reliability of simultaneous positron emission tomography and magnetic resonance imaging 
(PET/MRI)-derived biomarkers using semi-automated Gaussian mixture model (GMM) segmentation on PET images, against 
conventional manual tumor segmentation on dynamic contrast-enhanced (DCE) images.
Materials and methods Twenty-four breast cancer patients underwent PET/MRI (following 18F-fluorodeoxyglucose (18F-
FDG) injection) at baseline and during neoadjuvant treatment, yielding 53 data sets (24 untreated, 29 treated). Two-dimen-
sional tumor segmentation was performed manually on DCE–MRI images (manual DCE) and using GMM with correspond-
ing PET images (GMM–PET). Tumor area and mean apparent diffusion coefficient (ADC) derived from both segmentation 
methods were compared, and spatial overlap between the segmentations was assessed with Dice similarity coefficient and 
center-of-gravity displacement.
Results No significant differences were observed between mean ADC and tumor area derived from manual DCE segmen-
tation and GMM–PET. There were strong positive correlations for tumor area and ADC derived from manual DCE and 
GMM–PET for untreated and treated lesions. The mean Dice score for GMM–PET was 0.770 and 0.649 for untreated and 
treated lesions, respectively.
Discussion Using PET/MRI, tumor area and mean ADC value estimated with a GMM–PET can replicate manual DCE tumor 
definition from MRI for monitoring neoadjuvant treatment response in breast cancer.

Keywords Breast cancer · Diffusion imaging · Mixture modelling · PET/MRI · Segmentation

Introduction

Breast cancer is the most frequent type of cancer in women 
worldwide [1], with a mean 5-year survival of 90.4% in Nor-
way [2]. Patients diagnosed with locally advanced breast 

cancer (LABC, stage 3), have a worse survival outcome 
(78.3%) [2]. They receive neoadjuvant chemotherapy treat-
ment before surgery with the goal of complete pathologi-
cal tumor regression, which correlates with improved sur-
vival and a reduced chance of breast cancer recurrence [3]. 
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Objective response evaluation during neoadjuvant therapy is 
important assess treatment efficacy and to avoid unnecessary 
toxic side effects [4]. Radiologically, response evaluation 
has traditionally focused on measurements of tumor size [5], 
but several recent studies [6–10] have established functional 
imaging modalities as useful indicators of early response 
during neoadjuvant chemotherapy.

Diffusion-weighted magnetic resonance imaging (DWI) 
is a functional imaging modality with contrast arising from 
water molecule motion, and is, therefore, sensitized to tis-
sue microstructure characteristics. DWI is most commonly 
utilized to assess tissue cellularity, where highly cellular tis-
sues such as malignant tumors exhibit decreased diffusivity 
[11], quantified by calculation of an apparent diffusion coef-
ficient (ADC). A robust empirical biomarker that is reduced 
in malignant tumors [12], ADC has shown higher specificity 
than conventional anatomical MRI for discriminating malig-
nant and benign breast tumors [13].

Tumor ADC is commonly measured by the mean value 
of manually placed regions-of-interests (ROIs). There is no 
standard protocol for this tumor segmentation, and different 
approaches can significantly influence resulting ADC values 
[14]. Given that direct tumor segmentation of DWI may be 
confounded by noise and lack of conspicuity, tumor ROIs are 
commonly delineated on dynamic contrast-enhanced (DCE) 
images before being transferred to DWI. The definition of 
tumor on DCE images is thus governed by leakage of gado-
linium contrast through pathological vessels and, therefore, 
linked to vascularity, whereas diffusion changes, reflecting 
cellularity, do not necessarily coincide [15].

Simultaneous positron emission tomography and mag-
netic resonance imaging (PET/MRI) is a recent technology 
with a significant potential in many aspects of breast cancer 
practice, including diagnostics, staging, and neoadjuvant 
response evaluation [16]. PET/MRI examinations allow 
simultaneous collection of structural, functional, and meta-
bolic imaging properties in the same spatial and temporal 
domain. 18F-fluorodeoxyglucose (FDG)–PET visualizes 
upregulated glucose metabolism, while MRI reflects other 
hallmarks of cancer [17] including invasion and metastatic 
propensity (by ADC) and increased angiogenesis (DCE). 
Several studies report correlations between standardized 
uptake values (SUV) from FDG–PET and ADC in malignant 
tissue [18–20], indicating that intrinsically-registered 18F-
FDG uptake may provide an alternative approach to manu-
ally drawn DCE–ROI delineation for use in DWI analysis 
[19]. FDG–PET is also known to outperform MRI tumor 
volume measurements in some cancers [21]. In this study, 
a simple, semi-automated Gaussian mixture model (GMM) 
segmentation algorithm was selected, to allow for hetero-
geneous FDG uptake across tumors and expected decline 
through treatment [22, 23].

The aim of the current study is to investigate the reli-
ability of deriving lesion diffusion imaging characteristics 
from 18F-FDG uptake in invasive breast cancers > 4 cm 
or LABC (i.e., cT2-4N0-3) during neoadjuvant treatment. 
Specifically, we tested the reliability of deriving functional 
tumor area and ADC values in diffusion-weighted images 
from intrinsically-registered 18F-FDG–PET uptake using a 
semi-automated GMM segmentation algorithm in compari-
son with metrics derived from manually drawn DCE–ROIs.

Materials

Participants

This prospective study was approved by the Regional Com-
mittee for Medical and Health Research Ethics (REC) in 
western Norway (identifier 2015/1493). Informed consent 
was obtained from all individual participants included in 
the study. A total of 24 patients (median age 53 years, range 
37-74) with biopsy-proven, invasive breast cancers > 4 cm or 
LABC (i.e., cT2-4N0-3). This minimum size was an inclu-
sion criterion for recruitment to the phase II PETREMAC 
trial (Clinicaltrials.gov #NCT02624973), where lesions 
of this size are targets for neoadjuvant chemotherapy. The 
patients underwent individualized neoadjuvant therapy, 
based on tumor characteristics: estrogen (ER)/progesterone 
receptor (PgR), human epidermal growth factor-2 (HER2), 
and TP53 mutation status. The therapy used was primarily 
endocrine treatment (full details given in Table 1).

Patients were examined with 18F-FDG–PET/MRI scans, 
at baseline and up to four scanning sessions during neoad-
juvant treatment (depending on trial progression and indi-
vidual response). Two patients received neoadjuvant therapy 
2 days prior to the baseline scan. The cohort scans are sum-
marized in Fig. 1. All except three patients have undergone 
breast surgery (one patient dropped out, two scheduled after 
time of analysis). Tumor categorization was done by his-
topathologic analysis of core needle and open incisional 
biopsies.

Lesions with no remaining enhancement on DCE were 
excluded (8 data sets), resulting in 53 data sets overall: 24 
untreated lesions, and 29 of treated lesions. Median number 
of scans was 2 (range 1–5), with mean intervals from base-
line of 6, 12, 16, and 24 weeks. The mean time from study 
entry to surgery was 23 weeks. The two patients receiving 
neoadjuvant therapy 2 days prior to the baseline scan were 
considered untreated, as the lesions at this timepoint had 
undergone minimal treatment effect. This study did not 
explicitly consider clinical outcome or treatment effects, and 
therefore, this classification is predominantly to distinguish 
between lesions that have had the opportunity to undergo 
significant response.
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Methods

PET/MRI acquisition

All patients underwent simultaneous PET/MRI on a 3 T Bio-
graph mMR scanner (Siemens Healthcare, Erlangen, Ger-
many), 75 min after 18F-FDG injection (4 MBq/kg dose 
following 6 h fasting). The 18F-FDG was produced by the 
Norwegian Medical Cyclotron Center (Oslo, Norway). MRI 
acquisition utilized a designated 4-channel breast coil and 
included Dixon, T2-weighted, DWI, and DCE. DCE param-
eters included: 3D FLASH sequence, transverse orienta-
tion, TR/TE 5.88/2.21 ms, resolution 0.7 × 0.7 × 2.5 mm, 72 
slices, flip angle 15°, 1 baseline, and 7 contrast sequences, 
time resolution 1 min. Multiple b value DWI parameters 
were: axial bilateral single-shot echo planar imaging, TR/TE 
9000/77 ms, fat suppressed, b values = 0, 50, 120, 200, 400, 
700 mm2 s−1, resolution 2 × 2 × 2.5 mm, 60 slices, and FoV 
380 × 190 mm, with additional phase-reversed b = 0 mm2 s−1 
(hereafter ‘b0’) image. Concurrent PET data were acquired 
at a bed position giving full breast region coverage, and 
reconstructed using a manufacturer-supplied algorithm 
(OSEM-PSF, 21 subsets, 3 iterations, and a 4 mm full-
width-half-maximum Gaussian filter; Siemens, Erlangen). 
PET data concurrent with DCE acquisition were available 
for n = 31 data sets (16 untreated and 15 treated lesions).

Image preparation and manual segmentation 
(Manual DCE)

The lesion segmentation process is summarized in Fig. 2. 
DW images were distortion-corrected using phase-reversed 
b0 images [24]; dixon-based PET attenuation correction was 
performed on the scanner [25], and standardized uptake val-
ues (SUV) were normalized against body weight and dose. 
DCE and PET images were resampled using Elastix [26] 
to exactly match the resolution of the DWI images, and 
thus give direct voxel-to-voxel correspondence. Perfusion-
insensitive ADC maps were calculated from DWI data 
(b ≥ 200 mm2 s−1) using a mono-exponential model:

Manual DCE: manual segmentation of a single tumor 
region was performed by researcher (M.M.S.A.) on a single 
central slice of the enhancing solid tumor on DCE, ignor-
ing satellite regions, with resulting ROIs supervised and 
approved by an expert radiologist (A.Ø.).

Sb = Sb=0 ⋅ e
−b⋅ADC

Table 1  Clinical characteristics of patient cohort

Pathological characteristics are determined based on histopathologic 
analysis of pre-treatment core needle biopsy; for n = 3 patients, histo-
logical grade was determined from surgical specimen
Others (ICD and ILC (n = 1), poorly differentiated carcinoma (n = 1), 
carcinoma with medullary features (n = 2)
IDC invasive ductal carcinoma, ILC invasive lobular carcinoma

Characteristic All patients (n = 24)

Age (median, range), years 53 (37–74)
Height (median, range), m 1.65 (1.54–1.79)
Weight (median, range), kg 67 (50–100)
Tumor volume (median, range),  cm3 9.91 (2.88–60.56)
Histological type
 IDC 18
 ILC 2
 Other 4

Histological grade
 1 0
 2 9
 3 13
 Unknown 2

Estrogen receptor (ER) status (%)
 Negative 8
 ≥ 1–10 1
 ≥ 10–50 0
 > 50 15

Progesteron receptor (PgR) status (%)
 Negative 9
 ≥ 10–50 1
 ≥ 50 4

HER2 status
 Negative 15
 Positive 7
 Not applicable 1

Ki67 (%)
 < 30% 9
 ≥ 30% 15

Treatment
 Endocrine 11
 Docetaxel and cyclophospamid 1
 Pertuzumab, trastuzumab and docetaxel/

cyclophosphamid
3

 Pertuzumab, trastuzumab and docetaxel 5
 Olaparib and carboplatin 4

Pathological response
 Complete response 8
 Non-response 13
 Not operated 3
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Lesion cropping and Gaussian mixture modelling 
(GMM–PET)

A rectangular region containing the visible lesion was manu-
ally cropped from the SUV map (corresponding to the sin-
gle central slice of enhancing tumor on DCE) for Gaussian 
mixture modelling (GMM–PET). An algorithm using default 
k-means++ [27] initialization (MATLAB; Mathworks, Natick, 
MA, USA) and an assumption of three Gaussian distribution 
classes were used, returning an assignment for each voxel 
based on highest probability [28] of belonging to each class: 
tumor (highest intensity), ‘non-tumor’ background (lowest 
intensity) and unknown (intermediate intensity). To com-
promise between accuracy and avoiding overestimation from 
partial volume effects, voxels classed as ‘unknown’ were 
considered non-tumor, defining the tumor class threshold 
as the intersection of tumor and unknown class distributions 
(Fig. 7 in Appendix). User input is thus limited to initial region 
cropping.

Two common simple thresholding-based PET segmenta-
tion methods, a fixed threshold of 2.5  (SUV2.5) and 42% of 
the maximum SUV  (SUV42%) [22], were also performed to 
provide comparison with GMM–PET (Fig. 7 in Appendix).

Derivation of DWI metrics from manual DCE 
and GMM–PET

ROIs, for the whole lesion within the chosen slice, derived 
from both manual DCE and from GMM–PET were trans-
ferred to ADC maps and used to calculate the tumor ROI 
area and the mean ADC value for the whole ROI.

Statistical analysis

Performance of the three PET segmentation techniques 
in reference to manual DCE–ROIs was measured using 
the Dice similarity coefficient, varying between 0 and 1 

Fig. 1  Breast cancer patients 
(n = 24) received one pretreat-
ment baseline scan, and addi-
tional scans during neoadjuvant 
treatment prior to surgery. On 
average, scans during treatment 
were 6, 12, 16, and 24 weeks 
after baseline, and surgery was 
23 weeks after baseline scan. 
Total data set included 53 scans: 
24 from untreated, and 29 from 
treated lesions

Fig. 2  All images were resampled to diffusion-weighted imaging 
(DWI) resolution. PET images were attenuation-corrected and SUV 
normalized. Apparent diffusion coefficient (ADC) maps were calcu-
lated from distortion-corrected diffusion images. Tumor segmenta-

tion was performed by semi-automated Gaussian mixture modelling 
(GMM) segmentation on cropped PET images, and manually on DCE 
images. Resulting regions-of-interest (ROIs) were transferred to the 
ADC maps for derivation of tumor area and mean ADC
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indicating degree of spatial overlap [29], and center-of-
gravity displacement (CoG). CoG was normalized based 
on corresponding area DCE. Tumor area and ADC values 
from the different segmentation methods were compared 
using a paired t test, and Pearson’s test for correlation; 
relationship of these segmentation metrics with  SUV2.5 
and  SUV42% was also assessed. A two-sample t test was 
used to assess the difference between the untreated (n = 24) 
and treated cohort (n = 29) for all metrics. All p values 
were corrected for multiple testing with the Benjamini and 
Hochberg [30] approach, with values < 0.05 considered 
statistically significant.

Results

Derived diffusion parameters (area, ADC) in GMM–
PET versus manual DCE

DWI metrics for untreated, treated, and all lesions are given 
in Table 2, and show no significant differences. There were 
strong positive correlations between GMM–PET and manual 

DCE for area and ADC for untreated and treated lesions, as 
shown for longitudinal scans of two patients receiving neo-
adjuvant therapy in Fig. 3. GMM–PET successfully tracks 
the same changes in ADC and tumor area observed using the 
manual DCE, even when performance parameters to manual 
DCE are poor.

Spatial agreement of GMM–PET with manual DCE

Dice score [29] for GMM–PET was significantly higher, 
indicating better performance, than  SUV42% for untreated 
lesions (p = 0.012) and higher than  SUV2.5 for both untreated 
(p = 0.024) and treated lesions (p < 0.001) (Fig. 4a). CoG 
measurements were significantly lower for GMM–PET 
compared to  SUV2.5 for treated lesions (p = 0.002) (Fig. 4b). 
GMM–PET is able to successfully identify tumor tissue in 
untreated lesions where uptake is heterogeneous across the 
cohort, where  SUV42% and  SUV2.5 over- and underestimate 
tumor areas, respectively, compared to the DCE definition. 
In 16 cases (3 untreated, 13 treated lesions),  SUV2.5 could 
not define any tumor area, meaning that CoG measurements 

Table 2  Values given as mean 
(range) and p values

No significant difference between resulting parameters from manual DCE and GMM–PET

ADC mean (× 10−3  mm2 s−1) Tumor area  (cm2)
Manual DCE GMM–PET p value Manual DCE GMM–PET p value

Untreated (n = 24) 0.957 (0.3796) 0.964 (0411) 0.930 6.189 (4.277) 5.923 (3.944) 0.899
Treated (n = 29) 1.167 (0.392) 1.1701 (0.445) 0.930 4.076 (2.857) 4.147 (2.745) 0.930
All (n = 53) 1.073 (0.397) 1.079 (0.439) 0.930 5.015 (3.677) 4.936 (3.416) 0.930

Fig. 3  Patient in a demonstrated 
good spatial overlay and excel-
lent agreement of response 
parameters over time. The 
patient in b shows a patient with 
excellent spatial agreement for 
the untreated lesion, but for the 
treated lesion, the segmentation 
is offset, with corresponding 
poor performance parameters 
(low Dice score and high CoG). 
However, GMM–PET was still 
able to accurately assess param-
eter changes over time
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were not applicable for these cases. GMM–PET and  SUV2.5 
performed significantly better in the treated lesions group 
compared to untreated lesions for both Dice score (p = 0.005 
and p = 0.002) and CoG (p = 0.025 and p = 0.005), while 
 SUV42% only had significantly higher CoG (p = 0.002).

Discussion

The main finding of the current breast cancer study is that 
functional tumor area and corresponding mean ADC values 
from GMM–PET ROIs matched those derived from manual 
DCE. As a superficial interpretation, these findings indicate 
that GMM–PET is a reliable technique to efficiently derive 
functional diffusion parameters for monitoring neoadjuvant 
treatment response in breast cancer. The segmentation is 
data driven, requiring minimal user input, and obviates the 
requirement for gadolinium contrast administration and, 
therefore, could have significant potential as an alternative 
objective evaluation method among the increasing number of 
breast cancer patients undergoing neoadjuvant treatment. At 
a deeper level, the results illuminate the concordance—and 
discordance—between ROIs derived from different imaging 
modalities, and as such allow interrogation of the spatial 
relationship existing between functional information aris-
ing from PET, diffusion, and DCE imaging, and ultimately 
the tissue characteristics these modalities are sensitized to.

Our study demonstrates a strong correlation between 
tumor ADC values derived from GMM–PET and manual 
DCE segmentation, in line with a previous study by Byun 
et al. [19] using a similar approach in breast carcinomas; our 
study utilizes the intrinsic voxel correspondence of simul-
taneous PET/MRI, thus avoiding the additional registration 

required by sequential FDG–PET/CT and DWI and confer-
ring greater confidence in the results. Notably, the calculated 
mean ADC from GMM–PET was not significantly different 
from mean ADC from manual DCE, despite ADC metrics 
having been shown to be significantly influenced by segmen-
tation method [14, 31]. This suggests that GMM–PET may 
have value even while accurate assessment of ADC metrics 
is considered increasingly important in a neoadjuvant treat-
ment response setting [6–8].

Conventional manual DCE segmentation means that dif-
fusion measurements, reflecting cellularity [13, 32, 33], are 
drawn from areas defined by gadolinium contrast enhance-
ment, which is not necessarily optimal and may introduce 
bias to functional biomarker measurements [15]. It can thus 
be argued that tumor definition for diffusion studies is bet-
ter performed on another MR modality more closely related 
to cellularity. Several studies have described an underlying 
link between metabolism and cellularity, such as correlation 
between FDG uptake to cellularity [34, 35]. Consequently, a 
negative correlation should be expected between SUV and 
ADC, and it could be argued that GMM–PET would coin-
cide better with changes in cellularity. However, the previous 
reports are contradictory with either negative [18–20] or no 
[36, 37] correlations between SUV and ADC, indicating that 
imaging metrics from DCE, DWI, and PET do not capture 
all relevant physiological properties, even when GMM–PET 
is able to localize tumors equivalent to DCE.

GMM–PET segmentation gives good spatial concord-
ance with manual DCE for untreated breast cancer lesions, 
while the segmentation performance was significantly 
poorer for treated lesions, with lower Dice score and higher 
CoG. It is well known that therapy affects tumor vascular-
ity [38], which may have influenced both manual DCE and 

Fig. 4  a Dice similarity coef-
ficient and b center-of-gravity 
displacement, normalized to 
manual DCE tumor area, from 
GMM,  SUV42%, and  SUV2.5. 
Median and mean values 
indicated by lines and asterisks; 
boxes show interquartile range, 
and whiskers show data range
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GMM–PET segmentation, as both modalities are dependent 
on sufficient blood flow for contrast and tracer uptake. How-
ever, DCE and PET reflect different physiological proper-
ties, and therefore, it would be of interest to observe if these 
have been altered differently during treatment. In addition, it 
should be noted that several treated lesions with poor overlap 
are cases where manual DCE segmentation was difficult due 
to low enhancement on DCE.

In this study, GMM–PET segmentation performed signif-
icantly better than the commonly used  SUV42% threshold in 
untreated lesions, and  SUV2.5 for both treated and untreated 
lesions in recapitulating manual DCE. Using GMM–PET, 
the tumor area is not underestimated in the cases of heter-
ogenous uptake (Fig. 5) or for tumors with high-intensity 
relative to their immediate surroundings, which is a well-
known issue [39, 40]. However, as FDG uptake in the tumor 
decreases during treatment [23], GMM–PET did not perform 
better than  SUV42%, which is known to give larger estimates 
of tumor size as  SUVmax approaches background levels 
(Fig. 5), which is a limit of adaptive and data-driven algo-
rithms that are sensitive to the FDG-uptake range [41, 42]. 
Other algorithm-based approaches such as gradient methods 
[40, 43] have also been recommended [22], although these 
require increased user input and were not investigated in this 
study (Fig. 6). 

While the current findings suggest that GMM–PET 
segmentation can work as a proxy for manual DCE, we 
do not suggest that PET might replace manual DCE in 
today’s clinical context. Manual DCE is currently the 
most sensitive test for both breast cancer detection [44] 

and monitoring treatment response in a neoadjuvant set-
ting [45], although concerns regarding contrast allergy 
and potential brain deposition [46] of gadolinium create 
a setting for exploration of complementary techniques. 
The use of PET tracer comes with its own challenges, in 
handling and cost, and is neither available nor suitable 
in all contexts. Our study indicates that the use of PET 
data for tumor segmentation is more reliable in pre-treat-
ment lesions; in cases where FDG uptake is substantially 
reduced by treatment the GMM–PET method becomes less 
effective, where the tumor may become more diffuse. In 
these cases, automated segmentation procedures will be 
more prone to variation. It is worth noting that this is not 
unique to the technique in this study; the reduction of DCE 
contrast in successfully treated tumors also makes tumor 
definition more challenging for the conventional approach. 
Thus, in a simple sense, PET data are able to act as a proxy 
for tumor definition using DCE, but are also more likely to 
become useful as an adjunct to DCE for deeper investiga-
tions of tumor characteristics in multimodality examina-
tions. It would also be possible to examine other modal-
ity combinations, such as taking a PET ROI definition to 
derive quantitative DCE markers from a suitable protocol.

Benefits of a data-driven, semi-automated GMM–PET 
approach include reduced radiologist workload, faster seg-
mentation processes, and reduced interobserver variability 
[47]. The major advantage of PET/MRI systems, exploited 
here, is intrinsic registration of simultaneously acquired PET 
and MR data, giving voxel-level correspondence, without 
additional registration processes that generally involve user 

Fig. 5  Change in GMM–PET,  SUV42%, and  SUV2.5 for an untreated 
(top row) and treated (bottom row) lesion from an illustrative patient, 
with corresponding histogram displays of SUV signal intensity and 
Dice similarity coefficient. GMM–PET is able to properly identify 
the whole tumor tissue of the heterogeneous untreated lesion, while 

 SUV2.5 and  SUV42% give lower estimates. As SUV is reduced through 
treatment,  SUV2.5 cannot classify any tumor tissue,  SUV42% overesti-
mates tumor area relative to DCE, while GMM–PET remains stable. 
Using DCE as a tumor definition standard becomes problematic when 
contrast leakage is reduced through treatment
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input or additional processing [48]. Further optimization 
of GMM–PET might include automated data-driven ini-
tialization and number of classes, with the goal of entirely 
eliminating manual input [49]. We illustrate the influence 
of lesion-region initialization, for which automation could 
be developed, in Appendix (Fig. 8). The number of voxels 
within the lesion is also a factor that will affect the perfor-
mance of the GMM method, and is thus intrinsically tied to 
image resolution, and will ultimately limit use in smaller 
lesions.

One limitation to this methodology is that increased 
tracer uptake is less specific to disease than manual DCE 
[50], potentially introducing errors in the GMM–PET clas-
sification if not accounted for by appropriate selection of 
tumor-containing region. In addition, while the analysis in 
this study explicitly did not consider patient response from 
the clinical viewpoint, as well as other clinically relevant 
data such as hormone status, the variety of treatments and 
responses provided a suitably large range of situations in 
which to test the GMM–PET methodology, including cases 
where response included an almost total loss of detectable 
disease.

Conclusion

The potential implications of improved imaging technology 
in breast cancer are large, and PET/MRI is a unique tool 
to investigate links between increased metabolism (PET), 
perfusion (DCE), and decreased diffusion (DWI), without 
additional scan time or registration errors. The current find-
ings show that PET/MRI, using a semi-automated GMM 
segmentation strategy, yields tumor area and mean ADC 
value estimates that can replicate today’s gold standard of 
tumor definition of manual DCE from MRI. Furthermore, 
the GMM–PET method also captures tumor changes asso-
ciated with response to neoadjuvant chemotherapy, which 
supplements today´s gold standard which is manual DCE 
in the neoadjuvant setting. The potential benefits include a 
broader assessment of morphological and metabolic changes 
to guide clinical decisions regarding tumor operability, and 
thus to ensure a high probability of complete tumor regres-
sion, and subsequent cancer cure.
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Appendix

See Figs. 7 and 8.

Fig. 7  Schematic illustration of the semi-automated Gaussian mix-
ture model (GMM) segmentation performance, and the thresholding 
segmentation methods  SUV42% and  SUV2.5. a Histogram display of 
the three Gaussian distributions, together with  SUV42% and  SUV2.5 
thresholds. b Cropped original PET image (upper), and resulting 
areas from GMM segmentation algorithm (lower) with three classes: 

tumor (red), unknown (yellow), and background tissue (black) class. c 
GMM segmentation (red),  SUV42% (blue), and  SUV2.5 (green) ROIs 
overlaid on original PET image. For this example,  SUV42% is similar 
to GMM, but  SUV2.5 provides a much lower estimate of tumor vol-
ume
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Fig. 6  Relationship between 
the resulting metrics from 
manual DCE and GMM–PET 
for a ADC mean for untreated 
lesions (r = 0.866, p < 0.001) 
and b treated lesions (r = 0.895, 
p < 0.001) and m tumor area 
from c untreated (r = 0.870, 
p < 0.0001) and d treated 
(r = 0.928, p < 0.001) lesions. 
Red identity lines included 
show that area from GMM–PET 
is slightly smaller than from 
manual DCE
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Purpose: Restriction spectrum imaging (RSI) decomposes the diffusion- weighted 
MRI signal into separate components of known apparent diffusion coefficients 
(ADCs). The number of diffusion components and optimal ADCs for RSI are 
organ- specific and determined empirically. The purpose of this work was to de-
termine the RSI model for breast tissues.
Methods: The diffusion- weighted MRI signal was described using a linear com-
bination of multiple exponential components. A set of ADC values was estimated 
to fit voxels in cancer and control ROIs. Later, the signal contributions of each dif-
fusion component were estimated using these fixed ADC values. Relative- fitting 
residuals and Bayesian information criterion were assessed. Contrast- to- noise 
ratio between cancer and fibroglandular tissue in RSI- derived signal contribution 
maps was compared to DCE imaging.
Results: A total of 74 women with breast cancer were scanned at 3.0 Tesla MRI. 
The fitting residuals of conventional ADC and Bayesian information criterion 
suggest that a 3- component model improves the characterization of the diffusion 
signal over a biexponential model. Estimated ADCs of triexponential model were 
D1,3 = 0, D2,3 = 1.5 × 10−3, and D3,3 = 10.8 × 10−3 mm2/s. The RSI- derived signal 
contributions of the slower diffusion components were larger in tumors than in 
fibroglandular tissues. Further, the contrast- to- noise and specificity at 80% sensi-
tivity of DCE and a subset of RSI- derived maps were equivalent.
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1  |  INTRODUCTION

The American Cancer Society recommends that women 
at high risk for breast cancer receive both mammography 
and MRI exams yearly starting at age 30.1 Breast MRI is 
also currently used for evaluating new breast cancer di-
agnosis2 and response to neoadjuvant chemotherapy.3 
Clinical breast MRI protocols include DCE- MRI, which 
requires intravenous administration of gadolinium- based 
contrast agents to visualize vascular patterns (i.e., tumor 
angiogenesis).4 Despite high sensitivity for breast cancer 
detection, DCE- MRI faces a number of challenges such 
as lengthy acquisition protocols, dependency on expert ra-
diologist readers, and conflicting results regarding detec-
tion specificity.5– 9 Further, such contrast agents have been 
linked to brain deposition with unknown sequelae,10 and 
some are contraindicated in patients with renal failure 
and pregnant women.11 Hence, there is a need to develop 
highly specific and sensitive methods to improve breast 
cancer detection.

MRI has higher diagnostic accuracy compared to mam-
mography and ultrasound in women at high risk for breast 
cancer or with dense breasts.12 Breast MRI protocols typ-
ically consist of fat- suppressed T2- weighted imaging, 
pre-  and multi- phased dynamic postcontrast T1- weighted 
imaging, and DWI.13 DW- MRI has been more recently 
introduced into breast MRI protocols as a promising 
screening tool for breast cancer. Conventional DW- MRI 
has demonstrated potential for discriminating predefined 
benign and malignant breast lesions.14– 16 The combined 
use of DCE-  and DW- MRI improves sensitivity and spec-
ificity in cancer detection compared to either technique 
individually.4

DW- MRI probes the diffusion of water in tissues, al-
lowing for the characterization of tissue microstructure 
across different histologies.17 In fact, evidence suggests 
that cancers diagnosed with MRI are more likely to be 
invasive than those detected with mammography.18 
Despite the quantitative nature of DW- MRI, resulting 
images are sometimes used to qualitatively inform clini-
cal MRI exam interpretation.14,19 Cancer lesions are con-
spicuous on these images due to the combined effect of 

lengthened T2 and the shift in the relative size between 
slow-  and fast- water diffusion components in neoplasms 
compared to fibroglandular tissue.19,20 This effect is en-
hanced by the fact that breast DW- MRI data are typically 
fat- suppressed,13 thereby further increasing tumor- to- 
background contrast. However, inadequate fat suppres-
sion and the presence of additional ongoing biological 
processes (e.g., edema or lactation) may affect the ex-
tracted diffusion estimates and image interpretation.21,22 
Thus, there is a need for DW- MRI models that fully cap-
ture and allow for the differentiation of breasts complex 
tissue microstructure.

Restriction spectrum imaging (RSI) is an advanced 
DW- MRI technique that has previously demonstrated po-
tential in improving tumor conspicuity when evaluating 
disease severity and response to treatment in brain23,24 and 
prostate.25,26 In RSI, an advanced linear mixture model is 
used to decompose the DW- MRI signal into separate water 
diffusion components such as restricted, hindered, and 
free water pools. Changes in the signal intensity between 
voxels is considered to result from changes in the relative 
size of these intravoxel water compartments. Further, the 
RSI model does not normalize by signal at b = 0 s/mm2, as 
it is done in conventional DW- MRI estimates. As a result, 
RSI outputs display the joint effect of changes in diffusion 
properties and T2 due to the presence of cancer in tissues 
microenvironment. For different organs, the number of 
discernable diffusion components and their correspond-
ing diffusion coefficients have been determined empiri-
cally and theoretically.27

Previously, Vidić et al. demonstrated that a normalized 
biexponential model was able to discriminate between 
predefined regions of interest (ROIs) of benign and ma-
lignant breast lesions but did not explore additional diffu-
sion components or assess optimal diffusion coefficients 
for both cancer and healthy breast tissues.28 Considering 
the complex tissue microenvironment in the breast, we 
hypothesized that the RSI framework will be helpful in 
improving tumor conspicuity. Thus, the purpose of this 
work was to determine the optimal number of RSI diffu-
sion components and their corresponding apparent diffu-
sion coefficients (ADCs) for breast tissues.

Conclusion: Breast diffusion- weighted MRI signal was best described using a 
triexponential model. Tumor conspicuity in breast RSI model is comparable to 
that of DCE without the use of exogenous contrast. These data may be used as 
differential features between healthy and malignant breast tissues.

K E Y W O R D S
breast MRI, DWI, DW- MRI, restriction spectrum imaging, RSI
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2  |  METHODS

2.1 | Subjects

Patients from 2 different institutions (sites) with known 
breast lesions were invited to participate in this study be-
fore receiving treatment, and they underwent a breast MRI 
at 3.0 Tesla (T) before treatment began. Only patients with 
malignant lesions confirmed by histopathologic analysis 
were included in this study. This study was approved by 
the institutional review boards from both sites. All partici-
pants provided both oral and written consent.

Patients were from 2 sites: 57 women from site 1 and 25 
women from site 2 were enrolled in this study. From site 
1, a total of 8 participants were excluded from the study: 6 
women had contralateral cancer or mastectomy, and in 2 
cases DW- MRI data were of low quality.

2.2 | MRI data collection

Data from 2 sites were used to increase the applicability of 
the model across acquisition protocols and vendors. Data 
at site 1 were collected using a 3T MR750 scanner (DV25- 
26, GE Healthcare, Milwaukee, WI) and an 8- channel 
breast array coil. Pulse sequence parameters were axial 
DCE- MRI 3D fast spoiler gradient- recalled acquisition:  
TE = 2.6 ms, TR = 5.4 ms, flip angle = 10°, FOV = 320 × 
320 mm2, acquisition matrix 512 × 406, reconstruction ma-
trix 512 × 512, and voxel size 0.625 × 0.625 × 2.4 mm3; axial 
T2 fat suppressed fast spin echo: TE/TR = 107/4520 ms, flip 
angle = 111°, FOV = 320 × 320 mm2, acquisition matrix 
512 × 320, and voxel size = 0.625 × 0.625 × 5 mm3; axial 
reduced- FOV EPI DW- MRII: TE/TR = 82/9000 ms, b values 
(number of diffusion directions) = 0, 500 (6), 1500 (6), and 
4000 (15) s/mm2, FOV = 160 × 320 mm2, acquisition ma-
trix 48 × 96, voxel size = 2.5 × 2.5 × 5 mm3, spectral attenu-
ated inversion recovery fat suppression, phase- encoding 
direction anteroposterior, and no parallel imaging.

Data at site 2 were collected using a 3T Skyra scanner 
(VD13- VE11, Siemens, Erlangen, Germany) and 16- channel 
breast array coil. Pulse sequence parameters were sagit-
tal DCE- MRI 3D FLASH acquisition: unilateral sagittal 
plane, TE/TR = 2.2/5.8 ms, flip angle = 15°, FOV = 180 ×  
180 mm2, acquisition matrix 256 × 256, reconstruction 
 matrix 256 × 256, voxel size 0.7 × 0.7 × 2.5 mm3, and 
GRAPPA with acceleration factor of 2 and 36 reference 
lines; sagittal T2 fast spin echo: unilateral sagittal plane, TE/
TR = 118/5500 ms, flip angle = 120°, FOV = 180 × 180 mm2, 
acquisition matrix 256 × 256, and voxel size = 0.7 × 0.7 × 
2.5 mm3; sagittal EPI DW- MRI: unilateral sagittal plane, 
TE = 88 ms, TR = 10,600 ms for 15 participants and TR = 
11,800 ms for 10 participants, b values = 0, 200 (6), 600 (6),  

1200 (6), 1800 (6), 2400 (6), and 3000 (6) s/mm2, FOV = 180 ×  
180 mm2, acquisition matrix 90 × 90, and voxel size = 2.0 
× 2.0 × 2.5 mm3. Spectral fat saturation in strong mode 
was used on 15 participants, and spectral attenuated inver-
sion recovery fat suppression was used on 10 participants, 
phase- encoding direction anteroposterior, GRAPPA with 
acceleration factor of 2 and 24 reference lines.

The b = 0 s/mm2 volumes at both sites were collected in 
the anteroposterior and posteroanterior phase- encoding 
directions to correct DW- MRI data for geometric and in-
tensity distortions due to B0 inhomogeneities using the 
reverse polarity gradient method.29

2.3 | DW- MRI data preprocessing

Analyses were performed using MatLab R2016b 
(MathWorks, Natick, MA). The noise probability density 
function of MRI data when using multiple- receiver coils 
and sum of squares reconstruction is a noncentral chi dis-
tribution.30 Thus, the noise floor was estimated by first 
masking out all voxels within the body, and the average 
of the peak corresponding to the background signal was 
found as determined from the histogram of the DW- MRI 
data at the maximum b value. Diffusion- weighted data 
were noise corrected by subtracting the noise floor value 
from all voxels. In order to evaluate data quality before 
fitting, the SNR was estimated as average signal within 
cancer or fibroglandular ROIs divided by the SD of a back-
ground ROI at each b value.

All diffusion directions for a determined b value were 
averaged. Data were then normalized by the 98th per-
centile signal intensity value in b = 0 s/mm2  volume. 
In contrast to conventional ADC estimation, in RSI the 
DW- MRI signal is not divided by b = 0 s/mm2, thus pre-
serving T2 information. The following volumetric ROIs 
were manually drawn on the resulting images, informed 
by all available data in the exam protocol (including 
DCE and T2- weighted images): (i) control regions in-
cluding either the cancer- free contralateral breast  
(site 1) or regions without cancer in the ipsilateral breast 
at least 10 mm away from the cancer lesion (site 2), (ii) 
whole- volume cancer lesions, and (iii) background re-
gions. Control ROIs excluded the axillary region, large 
cysts (>2.5 cm), and susceptibility artifacts (e.g., from 
surgical clips). Control ROIs were initially drawn as 
boxes and were masked using binarized T2- weighted 
images, resampled to DW- MRI space, to remove the 
background from the ROI. Volumetric cancer ROIs were 
manually drawn on the averaged DW images. All cancer 
ROIs were validated by a breast radiologist at each site 
(R.R.P. and A.Ø.). Examples of these ROIs are shown in 
Supporting Information Figures S1 and S2. In order to 
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investigate the differences in RSI estimates between can-
cer and noncancerous tissues in breast, fibroglandular 
tissue, and fatty tissue ROIs were generated by thresh-
olding the b = 0 s/mm2 volume. The threshold was de-
termined (using MatLab graythresh function) within the 
initial control ROI in the b = 0 s/mm2 volume.

2.4 | RSI modeling

In RSI, the diffusion signal was modeled as the linear 
combination of multiple exponential decays:

where N is the total number of exponential decays (here 2 
and 3); Ci,N are the signal contributions of each exponen-
tial component; b are the b values; Di,N are the apparent 
diffusion coefficients of each exponential component; and  
D1,N < D2,N < D3,N. Note that in RSI, Di,N are fixed to allow 
for comparison of signal contributions Ci,N across different 
tissues. The signal contributions Ci,N include information on 
the proton density and T2 properties of each voxel, which 
are contained in the b = 0 s/mm2 volume, S0. The fractional 
contributions, fi,N, of each signal component Ci,N were also 
estimated as:

In order to determine the apparent diffusion coef-
ficients (Di,N) to describe breast tissues, global fittings 
of bi-  and triexponential models to DW- MRI data from 
cancer and control ROIs were performed. A simplex 
search was performed using the built- in MatLab R2016b 
(MathWorks) function fminsearch to minimize the sum- 
of- squared difference between the observed and fitted sig-
nal values across all voxels. A nonnegative least squares fit 
of the current estimates for Di,N was used to estimate the 
fitted Ci,N values at each iteration of the minimization. To 
enforce nonnegativity on Di,N for each compartment, this 
optimization  procedure was performed on the log(Di,N) 
values,  which were then exponentiated afterwards. 
No upper bounds were imposed on the possible values 
for Di,N.27 After Di,N were determined, maps of the signal 
contributions of each exponential component Ci,N were 
estimated  via nonnegative least- squares fitting of the 
model to the signal versus b value curve from each voxel.27

The relative- fitting residual and relative Bayesian in-
formation criterion (BIC) were calculated for both bi-  and 
triexponential models. Relative- fitting residual was cal-
culated as the difference between observed and predicted 

diffusion- weighted signal divided by the observed signal in 
all ROIs, as well as for conventional ADC maps of b values 
≤ 1,500 s/mm2. The BIC was used because it penalizes the 
model’s likelihood for increasing the number of estimated 
parameters.31 Lower BIC values denote improved model fit-
ting. However, absolute BIC values are arbitrary; therefore, 
we report the difference in BIC (ΔBIC = BICbi –  BICtri).

In order to compare tumor conspicuity on RSI outputs 
(Ci,N) to the gold standard and other conventional DW- 
MRI methods, the contrast- to- noise (CNR) ratio was ap-
proximated as the average signal of tumor divided by the 
average signal of fibroglandular tissue. The CNR was esti-
mated for Ci,N, conventional ADC and DCE.

2.5 | Statistical analysis

Statistical analyses were performed using SPSS statistics 
software (version 26 for Mac OS X, IBM Corp., Armonk, 
NY). All signal contributions are reported as median, inter-
quartile range, and range values. Kolmogorov- Smirnov test 
was used to examine data normality, and related- samples 
Friedman’s 1- way analysis of variance by ranks tests were 
used to identify differences in Ci,N and fi,N signal contribu-
tions and CNR across diffusion components and tissues 
(cancer vs. fibroglandular tissue). The threshold for sig-
nificance (α) was set at 0.05 for all analyses. In order to in-
vestigate the robustness of RSI to SNR, we performed our 
fitting analysis using only data of b values ≤ 1,500 s/mm2 
and found that the estimated Di,N values were the same 
as those in the original analysis. The area under the curve 
(AUC) of receiver operating characteristic curves was used 
to evaluate the diagnostic value of normalized and non- 
normalized RSI outputs, DCE, and ADC. The specificity of 
each parameter at 80% specificity is also reported.

3  |  RESULTS

Demographic information can be found in Table 1. 
Representative images of both sites are shown in Figure 
1. The diffusion signals of control and tumor ROIs were 
then fitted by bi-  and triexponential models to estimate 
fixed ADCs.

3.1 | SNR in cancer and fibroglandular 
tissue ROIs

The SNR of data from site 2 was lower than that from site 
1. In general, SNR was higher at low non- zero b values 
than at b = 0 s/mm2 for both cancer and fibroglandular 
tissue ROIs (Table 2). This was due to the averaging of 

(1)Sdiff (b,N) =
∑N

i=1
Ci,Ne

−bDi,N = S0
∑N

i=1
e−bDi,N ,

(2)Sdiff (b,N) = S0
∑N

i=1
fi,N and fi,N =

Ci,N
∑N

i Ci,N

.
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Characteristics Site 1 Site 2
Number of lesions 50 25
Average patient age, years (range) 47.6 ± 11.5 (27– 73) 52.8 ± 11.2 (29– 75)
Histological type

Carcinoma with medullary features 3
DCIS 1 1
IDC 42 17
ILC 4 1
Metaplastic carcinoma 2
Mixed IDC and ILC 1
Mucinous carcinoma 1
Papillary carcinoma 1
Tubular carcinoma 1

Abbreviations: DCIS, ductal carcinoma in situ; IDC, invasive ductal carcinoma; ILC, invasive lobular 
carcinoma.

T A B L E  1  Demographic information 
of participants

F I G U R E  1  Images from DW- MRI were averaged over all diffusion directions for each b value and noise- corrected. Representative 
images at different b values and for both sites (top and bottom rows) are shown. DW, diffusion- weighted

Site
B value 
(s/mm2)

Median Cancer SNR 
(IQR)

Median FBG 
Tissue SNR (IQR)

Median Fat SNR 
(IQR)

1 0 88.7 (82.6) 51.5 (48.5) 9.8 (7.0)
500 119.6 (111.0) 52.7 (47.3) 15.2 (7.7)

1500 65.6 (61.8) 18.5 (13.0) 11.1 (4.7)
4000 39.8 (46.3) 13.6 (11.3) 13.5 (8.5)

2 0 57.1 (18.8) 10.6 (10.5) 8.6 (5.7)
200 84.8 (49.3) 15.7 (13.0) 13.0 (6.6)
600 59.2 (24.5) 11.6 (6.5) 10.3 (5.5)

1200 39.6 (18.7) 9.7 (4.7) 9.1 (4.2)
1800 29.5 (12.3) 8.8 (4.1) 8.7 (3.0)
2400 22.6 (8.5) 8.5 (4.5) 8.0 (3.1)
3000 19.1 (6.3) 8.2 (3.2) 7.6 (3.7)

Abbreviations: FBG, fibroglandular; IQR, interquartile range.

T A B L E  2  SNR for cancer and FBG 
ROIs after noise correction and averaging 
over diffusion directions of the same b 
value for each site
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diffusion directions at non- zero b values. As expected, the 
SNR became progressively lower at higher b values. The 
lowest median SNR was 19.1 (interquartile range 6.3) and 
8.2 (interquartile range 3.2) for cancer and fibroglandular 
tissue, respectively.

3.2 | RSI model for breast

The relative- fitting residuals of conventional ADC and 
of bi-  and triexponential models in control ROIs were 
2.1%, 1.6%, and 1.0% of the overall signal value, whereas 
the residuals for the cancer ROIs were 3.3%, 1.0%, and 
0.3%, respectively. Residuals were considerably smaller 
for the triexponential model. Similarly, a ΔBIC of 74 was 
estimated between the bi-  and triexponential models, in-
dicating that a triexponential model further improves the 
fitting of breast DW- MRI data.

Estimated diffusion coefficients using the biexponential 
model were D1,2 = 2.8 × 10−5 and D2,2 = 2.4 × 10−3 mm2/s;  
and D1,3 = 1.6 × 10−17, D2,3 = 1.5 × 10−3, and D3,3 =  
10.8 × 10−3 mm2/s for the triexponential model (Table 3). 
The determined diffusion coefficients for each site were  
D1,2 = 4.8 × 10−5 and D2,2 = 2.2 × 10−3 mm2/s and D1,2 = 
8.6 × 10−7 and D2,2 = 2.9 × 10−3 mm2/s for site 1 and site 2, 
respectively. Similarly, when using 3 exponentials, we calcu-
lated the diffusion coefficients to be D1,3 = 6.5 × 10−6, D2,3 =  
1.2 × 10−3, and D3,3 = 4.6 × 10−3 mm2/s for site 1; and D1,3 = 
2.1 × 10−18, D2,3 = 1.9 × 10−3, and D3,3 = 16.5 × 10−3 mm2/s 
for site 2. In all cases, for the triexponential model the slow-
est diffusion coefficients D1,3 is far smaller than can be quan-
tified accurately. Thus, in this RSI model for breast D1,3 was 
set to 0 mm2/s, replacing the slowest diffusion component 
with a constant offset term (C1,3).

The signal contributions Ci,N for cancer and fibroglan-
dular tissue ROIs were not significantly different (P > 
0.05) when estimated using D1,3 = 1.6 × 10−17 mm2/s and 
D1,3 = 0 mm2/s for the triexponential model. The diffusion 

signal of all tissues was then described with the following 
3- component model:

Because the magnitudes of D1,N were so small, we in-
vestigated if the source of this restricted diffusion was the 
fatty tissue voxels in control ROIs. Thus, we performed 
the same RSI model fitting, excluding fatty tissue voxels, 
and found that D1,N were very similar to those from the 
original analysis, including fatty tissue in control ROI (see 
Table 3, last column).

3.3 | RSI estimates in breast cancer and 
fibroglandular tissue

The signal contributions of RSI Ci,N and fi,N and estimated 
conventional ADC values within cancer and fibroglandu-
lar ROIs are shown in Table 4. The ADC values between 
tumor and fibroglandular tissue were not statistically dif-
ferent from each other; however, they displayed a trend 
toward statistical difference (p = 0.065) (Figure 2A).

Median cancer and fibroglandular tissue signal contri-
butions (Ci,N) for biexponential and 3- component models 
are shown in Figure 2B. The signal contribution attributed 
to the slowest diffusion compartments from the biexpo-
nential model (C1,2) was different (p < 0.05) between 
cancer and fibroglandular tissues. Similarly, the signal 
contribution of the 2 slowest components derived from 
the 3- component model (C1,3 and C2,3) were also different 
between tumor and fibroglandular tissue ROIs (p < 0.05). 
In terms of the normalized signal contributions, the bi-
exponential model f1,2, f2,2, and f1,3 were higher (p < 0.05) 
in cancer ROIs than in fibroglandular tissue (Figure 2C) 
(Table 4). In contrast, f3,3, the compartment attributed to 
the fastest diffusion, was higher (p < 0.05) in fibroglandu-
lar tissue than in cancer tissues.

Sdiff (b) = C1,3 + C2,3e
−b∙1.5×10−3 + C3,3e

−b∙10.8×10−3

T A B L E  3  Diffusion coefficients of RSI bi-  and triexponential breast model estimated for each site and together

Model Parameter Site 1 (mm2/s) Site 2 (mm2/s)
Joint Model 
(mm2/s)

Joint Model 
Excluding fat 
(mm2/s)

Biexponential D1,2 4.8 × 10−5 8.6 × 10−7 2.8 × 10−5 5.8 × 10−5

D2,2 2.2 × 10−3 2.9 × 10−3 2.4 × 10−3 2.3 × 10−3

Three- component D1,3 6.5 × 10−6 2.1 × 10−18 1.6 × 10−17 9.8 × 10−7

D2,3 1.2 × 10−3 1.9 × 10−3 1.5 × 10−3 1.4 × 10−3

D3,3 4.6 × 10−3 16.5 × 10−3 10.8 × 10−3 7.2 × 10−3

Abbreviation: RSI, restriction spectrum imaging.
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In order to understand the relationship of the multiple 
signal contributions in the 3- component model, the aver-
age values for each subject were plotted between tissues 
(Figure 3). These plots showed that tumor ROIs present 
larger signal in both C1,3 and C2,3 compared to fibroglan-
dular tissue. Further, given that data were collected with 
fat suppression, the signal contributions in fatty tissue 
were minimal.

To test the generality of the 3- component model, we 
compared the signal contributions in cancer ROIs across 
models determined with data from each site and together 
(Supporting Information Table S1). We found that in can-
cer tissues, the signal contributions C3,3 and f3,3 generated 
from the individual site models were different (p < 0.05) 
from each other. Similarly, in fibroglandular tissue, the 
fractional signal contribution f3,3 was different (p < 0.05) 
across individual site models.

3.4 | CNR between cancer lesions and 
fibroglandular tissue

Results of CNR between tumor and fibroglandular tis-
sue are shown in Table 5 (and Supporting Information  
Figure S3). Compared to DCE, the CNR of all DW- MRI es-
timates was lower (p < 0.05), with the exception of signal 
contributions of the slowest compartments in RSI models 
C1,3 and C2,3, and f1,3. Further, the CNR of conventional 
ADC was lower (p < 0.05) than that of DCE and of C1,2, 
C1,3, and f1,3 RSI signal contributions. In contrast, the CNR 
of C3,3 and f3,3 was higher (p < 0.05) than that of ADC. This 
means that RSI signal contributions C2,2, C2,3, f1,2, and f2,2 
yielded similar CNR to that of conventional ADC (Figure 4).

3.5 | Performance of DCE, ADC and 
RSI to differentiate cancer lesions from 
fibroglandular tissue

The AUCs of DCE and ADC were 0.79 and 0.46, respec-
tively (Table 5). The AUCs of the 2 slowest compartments 
of the non- normalized RSI outputs C1,2, C2,2, C1,3, and 
C2,3 were comparable or higher than those of DCE (0.94, 
0.77, 0.90, and 0.84, respectively). The AUC of C3,3 was 
0.36. Of the normalized RSI outputs, f2,3 had the highest 
AUC (0.78), whereas the rest were much lower (f1,2 = 0.54,  
f2,2 = 0.46, f1,3 = 0.51, and f3,3 = 0.26). The specificity of 
DCE at 80% sensitivity was of 81% in this cohort, whereas 
that of conventional ADC was only 34.3%. The 3 RSI out-
puts with the highest specificity were C1,2 (90.8%), C1,3 
(82.2%), and C2,3 (73.5%).

4  |  DISCUSSION

In the RSI framework, the diffusion- weighted MR signal 
is fit to an organ- specific multi- exponential model con-
taining fixed ADCs. By doing so, direct comparison of the 
signal from each model component (attributed to differ-
ent water pools) can be performed across tissues. The RSI 
framework is also characterized by the inclusion of signal 
from all relevant tissues, including cancer lesions, into 
an organ- specific model. This strategy has been shown to 
improve tumor conspicuity in prostate and brain applica-
tions.27,32 Here, we determined the RSI model parameters 
for breast and compared lesion conspicuity across RSI- 
derived maps, conventional ADC, and the clinical stand-
ard DCE.

T A B L E  4  Average signal contribution of the FBG tissue and cancer ROIs for biexponential and 3- component models

Model Parameter

Cancer FBG Tissue

P ValueMedian (range) IQ Range
Median 
(range) IQ Range

Conventional ADC (mm2/s) ADC (×10−3) 0.93 0.30 1.1 1.1 p > 0.05
Biexponential C1,2 1.43 1.76 0.51 0.30 p < 0.05*

C2,2 5.25 6.16 3.11 3.70 p > 0.05
f1,2 0.31 0.21 0.14 0.18 p < 0.05*
f2,2 0.69 0.21 0.86 0.17 p < 0.05*

Three- component C1,3 1.02 1.15 0.37 0.19 p < 0.05*
C2,3 5.17 6.89 2.52 3.42 p < 0.05*
C3,3 0.31 0.52 1.01 1.10 p > 0.05
f1,3 0.22 0.20 0.10 0.17 p < 0.05*
f2,3 0.72 0.27 0.62 0.26 p > 0.05
f3,3 0.09 0.11 0.25 0.17 p < 0.05*

Signal contributions Ci,N are in arbitrary units, and fi,N are normalized.
Abbreviation: ROIs, regions of interest.
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DW- MRI data at high b values are strongly affected by 
the presence of noise, which has a distribution that de-
pends on the utilized coils and reconstruction methods.33 
In RSI, data are inherently noisy due to the use of high 
b values. We found that the median SNR within cancer 
lesions and fibroglandular tissue ROIs was ≥ 20 and ≥ 8, 
respectively. Although no consensus has been reached as 
to the necessary SNR to accurately estimate conventional 
DW- MRI estimates for breast applications,34 an SNR >20 
has been suggested to be adequate.35 However, these SNR 
guidelines were made for voxel- wise quantitative DW- 
MRI, whereas in RSI all voxels are fit simultaneously. Our 
results suggests that that the SNR requirements for RSI 
modeling are more lenient than those for conventional 
DWI estimates.

In the present work, we used 2 and 3 diffusion com-
ponents to describe the diffusion signal of breast tissues 

and determine the corresponding diffusion coefficients of 
each exponential component. The ΔBIC (BICbi − BICtri) 
results suggest that a 3- component model improves the 
characterization of the diffusion signal over a biexponen-
tial model. Further, the relative- fitting residuals when 
using a 3- component model are 2 and 10 times smaller in 
control and cancer ROIs, respectively, compared to con-
ventional ADC.

In the present study, DW- MRI data acquisition dif-
fered between sites. The rationale to include data from 
different protocols, MRI scanners, and vendors was 
to increase the generalizability of the models deter-
mined here. A limitation of this setup may be the dif-
ference in TEs of DW- MRI data between sites (82 and 
88 msec). However, given the TEs used and T2 values 
of fibroglandular and cancer tissues (46 and 68 msec, 
respectively) at 3T,20 the expected signal decay due to T2 

F I G U R E  2  Boxplot of (A) conventional ADC, (B) median signal contributions of the components of the biexponential and 3- component 
model, and (C) median fractional signal contributions within cancer (red) and control (blue) ROIs. In both models, the magnitude of the 
components of cancer and control ROIs were statistically different (p < 0.05, horizontal bars). ADC, apparent diffusion coefficients; ROIs, 
regions of interest
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effects is somewhat similar (~70%– 85%) across sites for 
both tissues. The RSI model parameters estimated from 
each site revealed that the estimated ADCs of the faster 
compartments (for both bi-  and triexponential models) 
are larger in data from site 2. This is attributed to both 
the differences in TE between sites and the inclusion of 
more b values, which improve the characterization of 
the diffusion- weighted signal curve between zero and 
500 s/mm2. Similarly, the estimated diffusion coefficient 
of the slowest component of the RSI 3- component model 
appears to be driven by the data from site 2. However, 
the diffusion coefficients of both sites are smaller than 
what can be accurately quantified in studies using 

clinical scanners. Importantly, the signal contributions 
within tumor ROIs were overall not different when es-
timated using the models determined from each site in-
dependently. Thus, suggesting that the joint RSI breast 
model established here may be applied to data acquired 
with different parameters within a certain range. Future 
work will focus on testing the validity and limitations of 
this model on an independent sample.

Control ROIs included fatty tissue voxels because in 
breast RSI the tissues that are not cancer are considered 
background and are included in the model fitting process. 
The definition of the control ROI used to determine the 
RSI model directly impacts the estimated ADC values. 

F I G U R E  3  Di,N of a 3- component model (Sdiff (b) = C1,3 + C2,3e
−b∙D2,3 + C3,3e

−b∙D3,3) were determined by simultaneously fitting both 
control and cancer ROIs of both sites. Values of Di,N were then fixed (D2,3 = 1.4 × 10−3 mm2/s, and D3,3 = 10.2 × 10−3 mm2/s) and used to 
estimate the Ci,N. Two- dimensional plots of the magnitude of (A) C1,3 versus C2,3, (B) C1,3 versus C3,3, and (C) C2,3 and C3,3 are shown for 
fibroglandular tissue (blue circles), fatty tissue (yellow squares), and cancer (red squares) ROIs. Circles and bar represent the Ci,N ROI 
median and 25th and 75th percentiles for each subject. Ci,N, signal contribution of each component; Di,N, fixed apparent diffusion coefficients 
of each component

Parameter
Median 
CNR

CNR Interquartile 
range (range) AUC

Specificity at 80% 
Sensitivity (%)

DCE 5.1 4.5 (0.7– 17.8) † 0.79 81.0
ADC 0.8 1.0 (0.3– 11.4) ‡ 0.46 34.3
C1,2 2.8 3.1 (0.6– 11.9) ‡† 0.94 90.8
C2,2 1.3 2.0 (0– 22.0) ‡ 0.77 61.6
C1,3 2.9 3.2 (0.5– 48.5) † 0.90 82.2
C2,3 1.6 3.0 (0.1– 39.0) 0.84 73.5
C3,3 0.5 0.7 (0– 3.1) ‡† 0.36 *

f1,2 2.2 2.1 (0.3– 41.3) ‡ 0.54 44.2
f2,2 0.8 0.2 (0.2– 2.6) ‡ 0.46 35.2
f1,3 2.2 3.5 (0.3– 45.2) † 0.51 40.4
f2,3 1.1 0.4 (0.2– 5.9) ‡ 0.78 66.4
F3,3 0.3 0.5 (0– 1.2) ‡† 0.26 *

Abbreviations: AUC, area under the curve; CNR, contrast- to- noise ratio.
‡Statistical difference compared to DCE.
†Statistical difference compared to ADC.
*Maximum sensitivity of 44% and corresponding specificity of 25%.

T A B L E  5  Median CNR, AUC, and 
specificity at 80% sensitivity between 
cancer and FBG tissues extracted from 
RSI- derived maps and compared to DCE 
MRI and conventional ADC
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F I G U R E  4  Processed images from patient from site 1 in Figure 1, including images from site 1 such as (A) T2- weighted and (B) DCE 
images, (C) conventional apparent diffusion coefficient map, and the signal contributions (Ci,N) of biexponential (D- E) and 3- component  
(F- H) models. The fractional signal contributions are also shown for biexponential (I- J) and 3- component (K- M) models. Arrowheads 
indicate tumor location. Signal contribution in tumors was higher than surrounding tissues in both C1,N and C2,N in both models. The 
compartment C3,3 displays vascular flow information

F I G U R E  5  Processed images from patient from site 2 in Figure 1, including (A) T2- weighted and (B) DCE images, (C) conventional 
apparent diffusion coefficient map, and the signal contributions (Ci,N) of biexponential (D- E) and 3- component (F- H) models. The fractional 
signal contributions are also shown for biexponential (I- J) and 3- component (K- M) models. Arrowheads indicate tumor location
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Thus, we excluded fatty tissue from the RSI breast model 
fitting process and found that the main difference be-
tween RSI models was in D3,3 (excluding fatty tissue D3,3 
= 7.2 × 10−3 mm2/s vs. including fatty tissue D3,3 = 10.8 
× 10−3 mm2/s). These results indicate that by removing 
fatty tissue from the analysis, the component attributed to 
pseudo- diffusion evolves at a slower rate due to the exclu-
sion of low signal in fatty tissue. Finally, these data sug-
gest that water in both cancer and fibroglandular tissue 
also experiences restricted diffusion. The amount of water 
molecules experiencing restricted diffusion appears to be 
higher in tumor tissues (Figure 3A).

Representative DW- MRI– derived maps for each site 
are shown in Figures 4 and 5, together with T2- weighted 
and DCE images as well as conventional ADC (b values 
≤1,500 s/mm2) maps (Figures 4A– C and 5A– C). Tumor 
signal contributions in RSI outputs C1,2 and C1,3 (Figures 
4D,F and 5D,F) displayed higher intensities than in fi-
broglandular tissues, whereas signals of both tumors and 
fibroglandular tissues were similar in C2,2 and C2,3 (Figures 
4E,G and 5E,G). Thus, C1,3 and C2,3 signals were attributed 
to hindered and restricted diffusion. High signal intensi-
ties observed in C3,3 correspond to the location of vessels; 
therefore, we hypothesized that this compartment con-
tains information pertaining to vascular flow (Figures 4H 
and 5H). In the biexponential model, flow information ap-
pears to be contained in the fast signal contributions C2,2 
(Figures 4C and 5C).

The bottom rows of Figures 4 and 5 show maps of the 
normalized RSI signal contributions. It can be observed 
that the CNR between tumor and fibroglandular tissue is 
similar to that of ADC. Even though we found that the CNR 
of f1,3 (Figures 4L and 5L) was statistically higher, the con-
trast between cancer and fibroglandular tissues is visually 
very similar. In contrast, in non- normalized 3- component 
RSI model outputs, the CNR between tumor and fibroglan-
dular tissues is similar to that of DCE (Table 5) (Supporting 
Information Figure S3). More importantly, the specificity of 
RSI C1,2 and C1,3 at 80% sensitivity is comparable or higher 
(90.8% and 82.2%) than that of DCE (81.0%) —  without the 
use of exogenous contrast. In the RSI outputs, T2 informa-
tion is preserved, which increases tumor conspicuity with 
respect to healthy breast tissues and background. In our 
data, the differences magnitude in signal intensity between 
fibroglandular and cancer tissues due to T2 effects is ap-
proximately 13% (assuming T2 values of 47 and 68 msec, re-
spectively20) with the TEs used here. In contrast, the signal 
difference due to diffusion (assuming ADC values of 0.93 × 
10−3 and 1.1 × 10−3 mm2/s, from our results) is about 5% for 
b values of 500 and 1,500 s/mm2 and 1%– 2% for b value of 
4,000 s/mm2 between these tissues. The effect of TEs and T2 
values of tissues on RSI outputs will be evaluated in future 
work.

Several studies have used multi- compartment mod-
els to characterize the diffusion properties of cancer and 
healthy breast tissues.19,36– 40 The most commonly used 
multi- compartment model in breast is intravoxel inco-
herent motion imaging, which uses a biexponential decay 
with 2 different ADCs.41 The slow ADC (D) describes 
water diffusion in the tissue, whereas the fast ADC (Dp) 
is associated with perfusion in capillaries. The percent of 
voxel- wise signal in the capillaries is described via the per-
fusion fraction f. The values of Dp in breast tumors (mostly 
ductal) estimated at 3T range between 10.0 ± 10.1 × 10−3 
mm2/s40 and 21.7 ± 11.0 × 10−3 mm2/s,38 whereas the val-
ues of f range between 16.5 ± 13.2%40 and 6.4 ± 3.1%.38 
The magnitude of the fast diffusion compartment (D3,3 = 
10.8 × 10−3 mm2/s) of the RSI breast model determined 
here is in good agreement with the values reported for 
breast tumors. However, the fractional signal contribu-
tion of this compartment (f3,3 = 22%, interquartile range 
= 20%) is somewhat higher than those extracted using 
the intravoxel incoherent motion model. A source of this 
discrepancy may be the different number of exponential 
components. Finally, the intravoxel incoherent motion 
perfusion fraction and RSI fractional signal contribution 
(f3,3) of fibroglandular tissue are both lower than that of 
tumor tissues.38

As described above, intravoxel incoherent motion 
aims to separate water diffusion in the tissue from that 
in the capillaries (pseudo- diffusion). Moreover, multi- 
compartmental models have been developed to further 
characterize water diffusion within tissues. The breast RSI 
model presented here appears to isolate the signal from 
pseudo- diffusion (D3,3) and to decompose the diffusion- 
weighted signal from within breast tissues into hindered 
(D2,3) and restricted (D1,3) components. The persistent 
signal at high b values in cancerous tissue, as well as the 
fact that D1,3 was set to 0 mm2/s, suggests that the diffu-
sion in this compartment was too slow to be accurately 
measured with our experimental setup (i.e., long diffusion 
time42). Thus, we hypothesize that the biophysical origin 
of the slowest compartment is restricted diffusion of in-
tracellular water wherein the water molecules reflect off 
relatively impermeable cellular membranes,43 whereas 
less confined water molecules in the extracellular space 
experience hindered diffusion.44 Histological analysis will 
be used to test this hypothesis in future work.

The diffusion- weighted MR signal of breast lesions col-
lected at high b values (up to 2,500 s/mm2) was previously fit 
to bi-  and triexponential models by Nakagawa et al. to simul-
taneously characterize perfusion and diffusion properties of 
cancer lesions.45 The authors reported a correlation between 
the triexponential model- derived fast diffusion coefficient 
(Dp, attributed to perfusion) and tumor enhancement de-
rived from DCE- MR. In addition, the slowest (Ds) and fastest 
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(Dp) diffusion coefficients (attributed to restricted diffusion 
and perfusion, respectively) were statistically different be-
tween malignant and benign breast lesions. Direct compar-
ison between the results of the present study and that by 
Nakagawa et al. is not possible due to the differences in dif-
fusion models and lesions examined. However, results from 
both studies demonstrate the relevance of multi- component 
models in breast DW- MRI and indicate their potential in 
clinical applications.

Other multi- compartmental models have been devel-
oped to probe properties of tissue- specific microstructure. 
For example, in prostate, Panagiotaki et al. developed the 
vascular, extracellular and restricted diffusion for cytometry 
in tumors (VERDICT) model.46 Similarly, Gilani et al devel-
oped a model that distinguishes between the vascular, ductal, 
and cellular compartments.47 In both cases, the researchers 
demonstrated an association between estimates from multi- 
compartmental models and physiological parameters such 
as intra-  and extracellular volumes, lumen radius, and vas-
cular fraction.46,47 These 2 models and RSI are different mul-
ticompartmental approaches for describing DW- MRI signal 
that vary mainly in whether the compartmental diffusion 
coefficients are fixed between voxels. In practice, however, 
the diffusion coefficients are fixed in VERDICT as well as in 
RSI.48 Fixed diffusion coefficients enable meaningful com-
parisons of the volume parameters (C or f) between voxels. 
If the diffusion coefficients are voxel- wise independent, the 
volume parameters of each voxel would likely be derived 
using different diffusion coefficients, which would con-
found comparisons across voxels.

Similarly, in rat brain tissue, White et al. demonstrated an 
association between volume fractions and orientation distri-
bution of neurites and RSI outputs.24 In its current form, the 
RSI breast model does not utilize orientation information, 
which may be helpful in determining the different constit-
uents of cancerous or fibroglandular tissues. In the present 
work, notably, most of the cancer lesions were IDC; there-
fore, the resulting model may be biased towards identifica-
tion of such cancers. Future work will focus on increasing 
the number of other breast cancer types and incorporating 
orientation information to evaluate the ability of RSI to iden-
tify aggressive tumors and evaluate response to treatment.

5  |  CONCLUSION

The overarching goal of this work was to generate quan-
titative maps in which tumor conspicuity is maximized 
without the use of exogenous contrast agents. Signal 
contributions C1,3 and C2,3 (Figure 4) generated from 
the 3- component RSI model have similar CNR between 
cancer and fibroglandular tissues to the clinical stand-
ard DCE. However, visual inspection (Figures 4 and 5) 

reveals that this may not be in fact the case. Based on 
the plots from biexponential and 3- component models in  
Figure 2B, it becomes evident that C1,3 has a higher tumor 
conspicuity compared to C2,3. Combination of multiple RSI 
outputs is ongoing work in our laboratory and has shown 
potential for accurate automatic classification of breast le-
sions.49 Future work includes the use of RSI- derived sig-
nal contributions and advanced computer algorithms to 
evaluate the diagnostic value of multi- exponential models 
in an independent cohort. Altogether, these data may be 
used to aid in radiological differentiation between benign 
tissues and malignant breast lesions without the use of in-
travenous contrast agents.
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Discrimination of Breast Cancer from Healthy Breast
Tissue Using a Three-component Diffusion-weighted
MRI Model
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Rebecca Rakow-Penner2, and Anders M. Dale2,10

ABSTRACT
◥

Purpose: Diffusion-weighted MRI (DW-MRI) is a contrast-free
modality that has demonstrated ability to discriminate between
predefined benign andmalignant breast lesions. However, howwell
DW-MRI discriminates cancer from all other breast tissue voxels in
a clinical setting is unknown. Here we explore the voxelwise ability
to distinguish cancer from healthy breast tissue using signal con-
tributions from the newly developed three-component multi-b-
value DW-MRI model.

Experimental Design: Patients with pathology-proven breast
cancer from two datasets (n ¼ 81 and n ¼ 25) underwent multi-
b-value DW-MRI. The three-component signal contributions C1

and C2 and their product, C1C2, and signal fractions F1, F2, and
F1F2 were compared with the image defined on maximum
b-value (DWImax), conventional apparent diffusion coefficient
(ADC), and apparent diffusion kurtosis (Kapp). The ability to
discriminate between cancer and healthy breast tissue was

assessed by the false-positive rate given a sensitivity of 80%
(FPR80) and ROC AUC.

Results: Mean FPR80 for both datasets was 0.016 [95%

confidence interval (CI), 0.008–0.024] for C1C2, 0.136 (95% CI, 
0.092–0.180) for C1, 0.068 (95% CI, 0.049–0.087) for C2, 0.462 (95%
CI, 0.425–0.499) for F1F2, 0.832 (95% CI, 0.797–0.868) for F1, 0.176 
(95% CI, 0.150–0.203) for F2, 0.159 (95% CI, 0.114–0.204) for 
DWImax, 0.731 (95% CI, 0.692–0.770) for ADC, and 0.684 (95%
CI, 0.660–0.709) for Kapp. Mean ROC AUC for C1C2 was 0.984 (95%
CI, 0.977–0.991).

Conclusions: The C1C2 parameter of the three-component 
model yields a clinically useful discrimination between cancer and 
healthy breast tissue, superior to other DW-MRI methods and 
obliviating predefining lesions. This novel DW-MRI method may 
serve as noncontrast alternative to standard-of-care dynamic 
contrast-enhanced MRI.
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Abstract 
Purpose: Dynamic contrast-enhanced MRI (DCE) and apparent diffusion coefficient (ADC) 
are currently used to evaluate treatment response of breast cancer. The purpose of the current 
study was to evaluate a novel diffusion-weighted MRI (DWI) based tumor classification 
method (restriction spectrum imaging, RSI) combined with elastic image registration to 
automatically monitor breast tumor size throughout treatment.  
 
Experimental design: Breast cancer patients (n=27) underwent multi-parametric 3T MRI at 
four time points during treatment. Longitudinally-registered DWI was used to generate an 
automatic RSI response classifier, assessed against manual DCE size measurements and 
mean ADC values. Predictions of treatment response (pathological complete response, pCR) 
and residual tumor burden post-treatment using the RSI classifier were assessed.  
  
Results: Ten patients experienced pCR. ROC AUC (95% CI) was most significant at the early-
treatment time point 0.73 (0.48-0.97) for the RSI classifier, compared to 0.64 (0.36-0.91) for 
DCE and 0.56 (0.27-0.85) for ADC. Sensitivity for detection of residual disease post-treatment 
tumor size were 0.71 (0.44-0.90) for the RSI classifier compared to 0.88 (0.64-0.99) for DCE 
classifier and 0.71 (0.44-0.90) for ADC. Specificity were 0.90 (0.56-1.00) for the RSI classifier 
compared to 0.70 (0.35-0.93) for DCE classifier and 0.50 (0.19-0.81) for ADC.  
  
Conclusions: The RSI classifier with elastic image registration was able to predict response 
to treatment already after 3 weeks, and showed comparable accuracy to DCE for assessment 
of residual tumor post-therapy. This can be important for cost-efficient evaluation of 
neoadjuvant breast cancer treatment and improved clinical decision-making to enable tailored 
treatment regimens.  
  
  
 
 
 
  
  
  
  
  
 
 
 
 
 
 
 
 
 
 
 
 
  
  
  
  
  
  
  



Introduction 
  
Neoadjuvant therapy of breast cancer is used to enable breast-conserving surgery, to provide 
an in vivo drug-sensitivity test bed 1,2, and provide short- and long-term prognostic information. 
The goal of neoadjuvant therapy is pathological complete response (pCR),  defined as no 
remaining tumor tissue in breast and lymph nodes as measured by post-surgical pathology, 
which is associated with prognostic benefits such as improved survival and reduced 
recurrence rates3. Early assessment of treatment response is important for tailoring treatment 
regimens for the best patient outcome.  
          
Change in tumor size on dynamic contrast-enhanced MRI (DCE), manually assessed by the 
longest diameter in three dimensions 4, is the current gold standard for neoadjuvant treatment 
response assessment in breast cancer. Changes in size may take several weeks before being 
detected by DCE, however, potentially delaying critical clinical decisions, as well as requiring 
the administration of Gadolinium-based exogenous contrast agents. Furthermore, DCE-based 
manual measurements have conflicting results regarding residual cancer detection specificity 
5 and require expert radiologist readers to delineate tumor tissue at each time point. One 
contrast-free MRI modality is diffusion-weighted MRI (DWI), which is a functional 
measurement and known to be sensitive to early treatment-induced changes 6. However, 
quantitative analysis of lesions using the clinical standard DWI biomarker apparent diffusion 
coefficient (ADC) is normally predicated on time-consuming manual tumor delineation, most 
commonly on DCE images, 7 and may be confounded by treatment-related changes such as 
edema 8. This calls for exploration of alternative techniques that maximize the potential of DWI 
as an adjunct or alternative to DCE methods.  
  
Restriction spectrum imaging (RSI) is a multi-component modelling framework that uses DWI 
signal over broad ranges of diffusion weightings (b-values) to capture the restricted diffusion 
of intracellular water, which is increased in highly cellular lesions 9,10. RSI estimates of 
cellularity are shown to be directly related to histopathological tumor cellularity in preclinical 
models 11,12 and in the human prostate 13-15. Additionally, RSI is effective for treatment response 
assessment for glioma 11,16. In the breast, a three-component RSI model (RSI3C) has been 
shown to discriminate untreated breast cancer from healthy breast 17,18, but has not yet been 
evaluated for treatment response assessment. The aim of this study was therefore to assess 
the ability of RSI3C to detect lesion tissue, without user input, applied over longitudinal data 
both to assess detection of early response to treatment, and to assess detection of post-
therapy residual cancer compared to conventional methods such as manual DCE delineation, 
and subsequent DWI quantitation using ADC, both of which rely on extensive radiologist input. 
  
  
  
  
 

 

 

 

 

 

  



Methods 
 
Subject Eligibility 
Twenty-seven breast cancer patients (median age 47 years, range 20-68) were included in 
this retrospective analysis from participants in a prospective phase II clinical trial. Written 
informed consent was obtained from all patients. The studies were approved by local 
institutional review boards and conducted in accordance with the Declaration of Helsinki. 
Criteria for inclusion in the trial included biopsy-proven unilateral invasive breast cancer ≥2.5 
cm (defined on imaging/clinical examination) with indication for neoadjuvant therapy. We 
included all participants (n=31) from the University of California San Diego (UCSD) site who 
underwent multi-b-value DWI acquisition between December 2015 and June 2019. Four 
patients were excluded from further analyses due to poor image quality for DCE (n=3) and 
DWI (n=1).  

Patients underwent MRI at four time points to evaluate response to treatment: pre-treatment, 
early-treatment (3 weeks), mid-treatment (12 weeks), and post-treatment (Figure 1). 
Seventeen patients received all four scans; for three patients, scans at specific time points 
were excluded due to major patient movement (n=1) and poor DWI image quality (n=2). This 
led to the following numbers available for analysis; pre-treatment (n=27), early-treatment 
(n=22), mid-treatment (n=19) and post-treatment imaging (n=27) (Figure 1). For five patients, 
surgery was performed directly after the 12 week scan, and this was thus categorized as post-
treatment scan rather than mid-treatment. The pre-treatment scans (n=27) were previously 
used for development of RSI3C in two studies 17,19. 

 

MRI Acquisition and Image Preprocessing  
MRI data were acquired on a 3T GE scanner (MR750, DV25-26, GE Healthcare, Milwaukee, 
US) and an 8-channel breast array coil with a bilateral axial imaging plane. The MRI protocol 
included Gadolinium DCE (Gadovist or MultiHance), non-fat-saturated T1, and multi-b-value 
DWI acquisition. DCE acquisition parameters included TE = 2.6 ms, TR = 5.4 ms, flip angle = 
10º, acquisition matrix 512 x 406, reconstruction matrix 512 x 512, and voxel size 0.625 x 
0.625 (in-plane) x 2.4 (slice) mm3. DWI was performed using reduced field of view (FOV) echo-
planar imaging (EPI) including the following parameters: spectral attenuated inversion 
recovery (SPAIR) fat suppression, TE = 82 ms, TR = 9000 ms, b-values (number of diffusion 
directions) = 0, 500 (6), 1500 (6), and 4000 (15) s/mm2, FOV = 160 x 320 mm2, acquisition 
matrix = 48 x 96, reconstruction matrix = 128 x 128, voxel size = 2.5 x 2.5 x 5.0 mm3, phase-
encoding (PE) direction anterior to posterior (A/P).   
 

All data analysis was performed using MATLAB 2020b (MathWorks, Natick, MA). DWI data 
were averaged across diffusion directions for each b-value, corrected for eddy current 
artifacts, motion 9 and geometric distortion 20, and resampled to match the geometry of the 
DCE images.  
 
Fast longitudinal image registration (FLIRE) 21 was used to co-register DWI data to non-fat-
saturated T1 and to longitudinally register all images and ROIs to the pre-treatment time point. 
FLIRE is based on a well-established non-rigid deformable brain registration technique  22, 
which when optimized for the breast has been shown in preliminary studies to outperform 
existing registration methods, with significantly reduced run time 21. 
  
 
 
 
  



Tumor Assessment by DCE 
To provide standard-of-care response assessment, the longest diameter of cancer in any 
plane (in cm) was manually defined on post-contrast DCE by a breast radiologist (RRP) for 
each individual time point. For cases with several cancer lesions, the largest conglomerate of 
connected lesions was used as the definition of the cancer. 
 
Automatic Tissue Classification and Tumor Measurement using RSI 
Full-lesion cancer and control regions of interest (ROIs) were manually defined at the pre-
treatment time point on DWI images, validated by a breast radiologist (RRP) as described in 
prior publications 17,19. Cancer ROIs were drawn for the lesions corresponding to pathology-
proven cancer; for cases with several cancer lesions, the largest conglomerate of connected 
lesions was defined as the cancer ROI. Control ROIs were defined using a semi-automatic 
approach with the aim to include all representative healthy breast tissue; first, a rectangular 
box was placed around the entire healthy contralateral breast (only unilateral breast cancer 
was included in this study), then the background was masked using intensity thresholding and 
3D connected components.  
 
The DWI signal for all voxels across all available b-values was fitted to a previously-developed 
RSI3c model 17,19, given as: 
 
 𝑆𝐷𝑊𝐼(𝑏) =  𝐶1 exp(−𝑏 ∙ 𝐴𝐷𝐶1) + 𝐶2 exp(−𝑏 ∙ 𝐴𝐷𝐶2) +  𝐶3 exp(−𝑏 ∙ 𝐴𝐷𝐶3) 
  
where SDWI is the diffusion signal in arbitrary units, b is the b-value in s/mm2, and Ci denotes 
the voxel-wise, unit-less signal contribution of each component. The apparent diffusion 
coefficient (ADCi) values, given in mm2/s, were fixed as previously reported in Rodríguez-Soto 
et al 17. The data were normalized to the 95th percentile of intensity of the computed geometric 
mean of C1 and C2 of the control ROI for each patient. 
  
To create a global RSI tissue classifier applicable across patients and time points, the first two 
components of RSI3C (C1 and C2) were selected, as these have demonstrated excellent 
discrimination of cancer from healthy breast tissue 16. Joint C1 and C2 probability density 
functions (PDFs) for voxels in the cancer and control ROIs were calculated for all patients 
simultaneously at the pre-treatment time point, generating a lookup table of posterior 
probability of cancer, given C1 and C2 measurements for any voxel. This was used to create 
voxel-wise probability maps for each individual patient at each time point.  
  
To estimate the longest tumor dimension after voxel classification, the defined cancer ROI at 
the pre-treatment time point was uniformly expanded by 1 cm to generate a ‘tumor-containing 
region’ and used for analysis on the voxel-wise probability maps (Figure 2). The largest single 
connected component within the tumor-containing region on the voxel-wise probability maps 
was identified and the longest diameter (in cm) was automatically calculated. To account for 
any tumor growth outside of the tumor-containing region, any components connected to the 
tumor-containing region above a threshold of 0.4 on voxel-wise probability maps were 
included in the tumor-containing region in analysis. For two cases, any enhancement from the 
skin was masked as the focus of this study was the primary tumor. The tumor-containing 
region at pre-treatment was applied for all time points, thus limiting manual definition of cancer 
ROI and semi-automatic definition of control ROI to the pre-treatment time point.  
 
Diffusion quantification using ADC  
Conventional apparent diffusion coefficient (ADC) maps were calculated as described by 
Jensen et al 22 using b-values < 1000 s/mm2 taken from the multi-b-value RSI acquisition.  The 
mean ADC value was assessed within the pre-treatment cancer ROI, applied to each 
successive time point, was used to assess treatment response. This approach thus avoids the 
time-consuming and technically difficult manual delineation of a tumor undergoing treatment.  
 



Clinical response definition 
The primary endpoint was pathological complete response (pCR), defined as no residual 
invasive disease with or without ductal carcinoma in situ in either breast or axillary lymph 
nodes after neoadjuvant therapy (ypT0/is, ypN0) 23. Assessment of pCR was performed on 
the post-surgical histological specimen, and patients were categorized into pCR and non-pCR 
groups. The post-treatment size and residual tumor cellularity of the post-surgical specimen 
were recorded. 
 
Assessment of Treatment Response by Imaging Metrics 
The tumor size from DCE and RSI measurements, as well as ADC values, were analysed for 
all patients (n=27) at the post-treatment time point. In addition, for the patients who underwent 
all four scans (n=17), response to treatment during the course of treatment was assessed 
using the relative change in measured diameter sizes (∆RSI, ∆DCE) and change in mean 
ADC (∆ADC) from pre-treatment to each of the early, mid, and post-treatment time points.  
 
In addition, a radiological response endpoint, early imaging response, was assessed. We 
defined early imaging response as a ≥30% decrease in diameter size (∆RSI, ∆DCE) at the 
early-treatment time point, when validated by a corresponding ≥30% decrease at the mid-
treatment time point. 
 
  
Statistical analysis 
For cases with all four scans (n=17), the receiver operating characteristics (ROC) area under 
the curve  (AUC) was assessed for the ability of ∆RSI, ∆DCE, ∆ADC to predict non-pCR at 
the early, mid, and post-treatment imaging time points. Additionally, ROC curves were 
calculated for all cases (n=27) at the post-treatment time point. Absolute values were used for 
DCE, RSI, and ADC at the post-treatment time point. At the post-treatment time point, our 
DCE and RSI measures examined the ability to detect residual tumor tissue (i.e. positive was 
defined as a patient with remaining tumor tissue, meaning non-pCR, and so accurate detection 
of pCR corresponded to a negative classification in the imaging). We used an a priori 
assumption that an increase in mean ADC 6,7,24-27 and a decrease in RSI and DCE size 
represents response to treatment, in line with previous experience. The classification 
thresholds, as well as ROC metrics accuracy, specificity and sensitivity were calculated. 
Diagnostic sensitivity and specificity between techniques was compared by McNemar’s test, 
while DeLong’s test was used to compare ROC curves. Alpha was set to 0.025 due to 
correction for two primary outcomes (AUC and sensitivity/specificity).  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Results 
After post-surgical histology, 10/27 (37%) patients were classified as showing pCR. Of the 17 
non-pCR patients, the RSI classifier correctly identified 12 using a threshold of 0.87 cm for 
non-pCR definition, with 5 false negatives that showed generally small remaining tumor size 
and varied cellularity (Figure 3A). Correspondingly, the DCE classifier correctly classified 15 
non-pCR patients, with only 2 false negatives (using a threshold 0.60 cm for non-pCR 
definition). Example classifications are shown in Figure 3B.  
  
Full ROC metrics for the post-treatment time point are given in Table 2. Sensitivity, specificity, 
and accuracy for absolute post-treatment tumor size were 0.88, 0.70, and 0.81 for the DCE 
classifier, and were 0.71, 0.90, and 0.78 for the RSI classifier, and ADC at post-treatment 
gave 0.71, 0.50 and 0.63. The corresponding ROC AUCs were 0.79 for DCE, 0.79 for RSI, 
and 0.53 for ADC. 
 
McNemar’s test for comparison of sensitivity and specificity did not show significant 
differences for comparison between any modalities. 
 
ROC AUC for change in measured tumor size from pre-treatment for early-treatment, mid-
treatment, and post-treatment time points were 0.64, 0.71 and 0.80 for the ∆DCE classifier; 
0.73, 0.62 and 0.76 for the ∆RSI classifier; and 0.56, 0.39 and 0.44 for ∆ADC (under the 
assumption of ADC increase with response). DeLong’s test for comparison of ROC curves for 
early-treatment time point resulted in p-values throughout: ∆DCE vs. ∆RSI p=0.55, ∆DCE vs. 
∆ADC p=0.71, ∆RSI vs. ∆ADC p=0.48, mid-treatment time point: ∆DCE vs. ∆RSI p=0.54, 
∆DCE vs. ∆ADC p=0.19 and ∆RSI vs. ∆ADC p=0.21, and post-treatment: ∆DCE vs. ∆RSI 
p=0.66, ∆DCE vs. ∆ADC p=0.08, and ∆RSI vs. ∆ADC p=0.08.  
 
With the observation of ADC data giving ROC AUC < 0.5, closer examination indicated that 
the ADC classification improved if the assumption increasing diffusion with response was 
reversed, contrary to expectation; the AUCs then became 0.47 for the post-Tx (n=27) cohort 
(sensitivity, specificity, accuracy: 1.00, 0.20, 0.71; threshold 0.8 × 10-3 mm2/s), and for the 
early-, mid-, and post-Tx cohort (n=17) these became 0.44 (0.73, 0.5, 0.65; 0.1), 0.61 (0.82, 
0.5, 0.71; 0), and 0.56 (1.00, 0.17, 0.71; -0.32) respectively. 
 
The early imaging response criteria identified manual DCE and RSI classifiers correctly 
captured early treatment response in 2/10  and 7/10 cases, respectively, with accuracy of 0.67 
and 0.74 (Figure 5). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Discussion 
  
Our study shows that the classifier based on automatic cancer tissue detection using 
restriction spectrum imaging (RSI), has some ability to predict early response to treatment 
with significant changes detected after only three weeks of neoadjuvant breast cancer therapy. 
In the later phase of treatment, the automatic RSI classifier showed approximately the same 
accuracy as manual tumor measurement on DCE. In contrast to DCE, which requires manual 
user input in the form of ROIs or tumor diameter measurement, the RSI classifier is automatic 
beyond the pre-treatment MRI scan. In addition to classification at the post-treatment stage, 
the RSI classifier appeared more sensitive at the early time point when compared to DCE, 
classifying more tumors as early responders according to the -30% imaging criterion size 
decrease imaging criterion, and giving a threshold of more than 50% decrease for most 
accurate classification using ROC analysis compared to a small (7%) decrease in the 
corresponding DCE analysis. The development of advanced DWI classifiers such as in this 
study lays the foundation for a quantitative, easily implemented, and cost-efficient response 
assessment framework that may complement standard DCE in evaluation of neoadjuvant 
breast cancer treatment in both early and late-phase treatment and improve clinical decision-
making to enable tailored treatment regimens. 
  
The improved predictive performance at the early treatment time point is probably due to the 
RSI classifier’s quantification reflecting tumor cellularity, rather than tumor vascular perfusion 
as in DCE. The RSI classifier is sensitive to slow diffusion within hypercellular tumors while 
simultaneously suppressing signal from healthy fatty and fibroglandular breast tissue 17. It is 
expected that the RSI classifier reflects the decrease in cellularity through the course of 
neoadjuvant therapy, consistent with RSI’s known estimation of tumor cellularity across 
organs 11-15. This might reflect the mechanism of action of the primary chemotherapy used in 
this study, Taxol, which arrests cells in mitosis 4,25 and thus leads to cell death. This may help 
resolve early-phase diagnostic challenges of tumors that regress with diffuse cell loss, 
observable in functional measurements such as DWI, rather than with direct tumor shrinkage, 
meaning little or no change in overall tumor size on DCE.   
  
Assessment of treatment response at an early time point is important for clinical decision-
making and enables tailored treatment regimens. The current findings of accurate response 
assessment after only three weeks by the RSI classifier (both pathological and imaging 
response) yields valuable information of in vivo treatment efficacy. Thus, establishing early 
response status may allow for non-responding patients in adaptive treatment regimens to 
switch to alternative treatment regimens pre-surgery. This allows for planning of additional 
systemic therapy for non-responders, which is known to improve survival 28,29. On the other 
hand, establishing early complete responders may facilitate deescalated treatment strategies 
such as shortened treatment regimens 30, thus avoiding unnecessary chemotherapy with toxic 
side-effects.   
  
The RSI classifier is also informative of tumor cellularity in later phases of therapy, which is 
important as post-therapy cellularity is associated with overall patient survival 29. However, 
RSI did not reflect post-therapy size as well as conventional DCE measures. This may have 
contributed to the low sensitivity for detection of remaining tumor tissue post-therapy. Thus, 
DCE-based methods still have a more prominent role than the RSI classifier in the context of 
surgical planning after neoadjuvant therapy. The RSI classifier may have a role in 
complementing DCE in this setting, as suggested by the (although non-significantl in this work) 
higher specificity than DCE post-therapy.  
 
Our ADC results were generally poorer than might be expected from the literature  6,7,24-27. It 
is worth noting that there are conflicting results in the literature regarding the predictive value 
of ADC; while several single-center trials have reported that ADC is predictive of response in 



the early phase, 6,26 27 the multi-center I-SPY trial 7, and a recent study by Almutlaq et al. 24 
show low predictive value of ADC at this time point. Unexpectedly, we observed a ROC AUC 
< 0.5, indicating a superior classification performance associated with the reverse hypothesis 
(decrease in ADC equals response to treatment) at the mid and post-treatment time points 
(although not at the pre-treatment time point). This behavior is unexpected and is not seen in 
other literature, and indicates that the results for ADC in this study may not provide useful 
information. The ROI definition in our study may be a source of this unexpected behavior, 
where the same cancer ROI, defined on the first time point, was used for all subsequent time 
points. This differs from conventional analysis, where cancer ROIs normally are manually 
defined for each time point. The rationale for this approach was to avoid time-consuming and 
technically difficult manual delineation of a tumor undergoing treatment. However, this 
approach necessarily creates some uncertainty of the nature of the tissue in the ROI, which 
would include some surrounding healthy tissue if the tumor decreases in size. ADC mean in 
this study is therefore influenced by the diffusion properties of the surrounding tissue, in 
addition to tumor-related necrosis. In addition, the choice of b-values will influence ADC 
values, and our study was not optimized for ADC estimation. Since our dataset focused on 
high b-values acquired for RSI, only 0 and 500 s/mm2 were available for ADC calculation, and 
not a range of several low b-values as in comparable studies 7. These methodological factors 
in our ADC analysis, differing from more conventional ADC analysis, indicate that it is difficult 
to determine if RSI performs better than ADC based on our study.  
 
The RSI classifier is able to automatically estimate tumor volume following a single cancer 
ROI definition, which is an advantage compared to conventional DWI that requires manually-
defined regions for every time point. Automatic assessment is particularly useful in the 
treatment setting, as defining tumor volume is especially difficult when the tumor shrinks in 
size and may be affected by treatment- and procedure-related changes. These results also 
add to current literature demonstrating that DWI-based response assessment may precede 
changes in tumor size measured by DCE 6. In another directly comparable I-SPY trial  25, RSI 
performed better than the longest diameter of manual DCE, which had an AUC of predicting 
pCR at the early time point of 0.64; AUC increased to 0.70 using a threshold-based DCE 
model (functional tumor volume, FTV).  
  
The RSI classifier may bring about a computationally efficient and standardized framework for 
breast cancer treatment response assessment. The RSI classifier is based on the multi-
component RSI model that uses globally-determined, fixed component ADCs, thus allowing 
rapid fitting of the diffusion signal suitable for application as a turn-key processing stream on 
multiple MRI platforms 17. Furthermore, the RSI classifier uses an effective rapid longitudinal 
registration 21 incorporating the pre-treatment MRI scan which automates the response 
evaluation and requires no user-input. These factors are important for implementing RSI in 
standard-of care breast MRI. 
  
There were some limitations to our study. Most notably, the sample size of this longitudinal 
study was small. There were 27 patients included, where 17 had all four scans in the study 
protocol, and this limits the generalisability of the conclusions. Also, in this study we did not 
correct for overall differences in DWI signal intensity for the RSI classifier across time points, 
which could be expected to affect resulting tumor detection and is therefore an area of interest 
for future method development. One minor limitation of the RSI classifier method is the 
remaining requirement for user input for generating the pre-treatment ROI, although tumors 
that receive neoadjuvant chemotherapy are generally large (> 4 cm) and relatively easy to 
detect on pre-treatment MRI scans, whereas the more challenging task of delineating tumors 
that are affected by treatment is avoided. Lastly, as discussed above, the ADC value appeared 
to associate a decrease in ADC with response for the mid and post-treatment time points; this 
behavior was unexpected and should be investigated further in a larger cohort to understand 
its origin. 



In conclusion, our study demonstrates that the RSI classifier, an automatic quantification 
procedure based on the three-component RSI DWI model and incorporating elastic image 
registration, showed promising ability to assess response to treatment after only three weeks 
of neoadjuvant breast cancer therapy. The classifier eliminates the need for pre-defined 
lesions for each imaging time point that is required for conventional DWI and DCE. We 
propose that the RSI classifier is a novel response biomarker that can work as a diagnostic 
tool in both early and late-phase of treatment, and shows highly promising diagnostic 
properties which warrant large-scale studies for validation in routine breast cancer detection 
and follow-up in comparison to DCE and ADC metrics. 
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Tables 
 
Table 1 
 

No. Patients 27 

Median patient age, years (range) 47 (20-68) 

Lesion type mass (mass vs. NME) 

Mass 24 

Mass + NME 3 

Histologic type 

NST 24 

Metaplastic carcinoma 2 

Mixed IDC/ILC 1 

MBR score 

1 1 

2 11 

3 15 

ER status 

Positive 15 

Negative 12 

PR status 

Positive 13 

Negative 14 

HER2 status 

Positive 3 

Negative 23 

Not analyzed 1 

pCR status 

pCR 10 

non-pCR 17 

Median time from therapy start to MRI scan, days (range) 

Early-treatment 19 (15-26) 

Mid-treatment  81 (48-94) 

Post-treatment  147 (98-190) 

  
  
 



Table 2 
Sensitivity, specificity and accuracy for prediction of non-pCR for dynamic contrast-enhanced 
MRI (DCE) classifier, restriction spectrum imaging (RSI) classifier and the mean apparent 
diffusion coefficient (ADC) after all neoadjuvant therapy prior to surgical intervention (post-Tx 
time point).  
  

DCE classifier RSI classifier  ADC classifier 

Threshold value 0.60 cm 0.87 cm 1.5 × 10-3 mm2/s 

Sensitivity (95% CI) 
Post-Tx  

0.88  
(0.64-0.99) 

0.71  
(0.44-0.90) 

0.71  
(0.44-0.90) 

Specificity (95% CI) 
Post-Tx 

0.70  
(0.35-0.93) 

0.90  
(0.56-1.00)  

0.50  
(0.19-0.81) 

Accuracy (95% CI) 
Post-Tx 

0.81  
(0.61-0.94) 

0.78  
(0.58-0.91) 

0.63  
(0.42-0.81) 

ROC AUC 0.79 0.79 0.53 

 
pCR = pathological complete response, Tx = treatment.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 3 
ROC AUC performance of ∆DCE classifier, ∆RSI classifier and ∆ADC for prediction of non-
pCR at each time point. Note that post-Tx time point is after all neoadjuvant therapy prior to 
surgical intervention. Threshold values are unitless multiplication factors. 
   

∆DCE classifier ∆RSI classifier ∆ADC classifier 
(↑ = response) 

Early-Tx 
(3 weeks) 

AUC (95%CI) 
Sens. 
Spec. 
Accu. 
Thresh. 

0.64 (0.36-0.91) 
0.54 
1.00 
0.71 
-0.07 

0.73 (0.48-0.97) 
0.91 
0.50 
0.76 
-0.58 

0.56 (0.27-0.85) 
0.82 
0.50 
0.71 
0.36 

Mid-Tx 
(12 weeks) 

AUC (95%CI) 
Sens. 
Spec. 
Accu. 
Thresh. 

0.71 (0.45-0.96) 
0.91 
0.33 
0.71 
-0.73 

0.62 (0.34-0.90) 
0.45 
1.00 
0.65 
-0.06 

0.39 (0.10-0.69) 
1.00 
0.17 
0.71 
0.98 

Post-Tx AUC (95%CI) 
Sens. 
Spec. 
Accu. 
Thresh. 

0.80 (0.59-1.00) 
0.73 
0.83 
0.76 
-0.72 

0.76 (0.52-0.99) 
0.64 
1.00 
0.76 
-0.78 

0.44 (0.14-0.74) 
0.91 
0.17 
0.65 
0.94 

 
Area under the receiver operating curve = AUC, pCR = pathological complete response, Tx = 
treatment, ∆DCE classifier = change in size from pre-treatment time point for dynamic 
contrast-enhanced MRI, ∆RSI classifier = change in size from pre-treatment time point for 
Restriction Spectrum Imaging, ∆ADC = change in mean value from pre-treatment time point 
for apparent diffusion coefficient.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Figures 
  
Figure 1 

 
  
Figure 1: Trial schematic showing neoadjuvant treatments in relation to pre-treatment, early-
treatment, mid-treatment and post-treatment MRI, followed by surgery.  17 patients were 
scanned at all four time points.  
 
  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



Figure 2 

  
  
Figure 2: DCE classifier, RSI classifier, and ADC maps with corresponding size (DCE and 
RSI) and mean calculation (ADC) for all four time points for a non-responding case with 
invasive carcinoma of no special type measuring 7.5 cm on final post-surgical pathology. The 
cancer region (green outline) at the pre-treatment time point was uniformly expanded by 1 cm 
to generate a cancer-containing region (blue outline). The longest diameter of cancer (in cm) 
was manually defined on post-contrast DCE for each individual time point. As demonstrated 
for this case, the largest conglomerate of connected lesions was defined as cancer (ie. both 
lesions were included). For the RSI classifier, the largest single connected component within 
the cancer-containing region was identified and the longest diameter (in cm) was automatically 
assessed. To account for tumor growth outside of the tumor-containing region, any 
components connected to the tumor-containing region above a threshold of included 0.4 were 
included in analysis. The tumor-containing region at pre-treatment was applied for all time 
points. Also note that the RSI classifier is well-defined within the cancer ROI (region outline) 
at the pre- treatment time point. The mean ADC was calculated within the cancer region (green 
outline) for each time point. 
  
Tx = treatment, DCE = dynamic contrast-enhanced MRI, RSI = Restriction Spectrum Imaging, 
ADC = apparent diffusion coefficient.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure 3 

 
Figure 3: A. Cases with remaining tumor tissue on final post-surgical pathology are included 
for RSI and DCE classifier. RSI classifier has more false negative plots, which were associated 
with low pathological size. B. Two example cases, where (upper row) a true positive case for 
both RSI (1.5 cm) and DCE classifier (2.0 cm) had corresponding high cellularity of 70% (size 
1.1 x 0.6 cm) on final post-surgical pathology, while (lower row) a false negative for RSI (0 
cm) and DCE classifier (0 cm) had low cellularity of 1% and similar size (0.6 x 0.5 cm) on final 
post-surgical pathology.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Figure 4 

 
  
Figure 4: DCE classifier, RSI classifier, and ADC maps with corresponding size (DCE and 
RSI) and mean calculation (ADC) for all four time points for a subject with no remaining tumor 
tissue on final post-surgical pathology. The RSI classifier shows a more pronounced size 
decrease at the early-treatment time point compared to the DCE classifier. The RSI classifier 
was more specific at the post-treatment time point, while there was still some remaining tumor 
left within the tumor bed at the post-treatment time point for the DCE classifier (red arrow). 
Also note that the RSI classifier is well-defined within the cancer ROI at the pre-treatment time 
point (green outline).  
 
Tx = treatment, DCE = dynamic contrast-enhanced MRI, RSI = Restriction Spectrum Imaging, 
ADC = apparent diffusion coefficient.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure 5 

 
  
Figure 5: Early imaging response were identified for all cases a with a ≥30% decrease in size 
at the mid-treatment time point on RSI classifier (n=10) or DCE classifier (n=10). Change in 
tumor size from the pre-treatment time point by longest tumor diameter by the DCE classifier 
(red) and RSI classifier (blue) for imaging responders (≥30% decrease in size from pre-
treatment time point was considered response to treatment). The RSI classifier identifies early 
responders in five out of ten cases, while the DCE classifier identifies early responders in two 
out ten cases. Change in mean ADC (green) are plotted for reference, where an increase in 
ADC represents response to treatment. Note that for graph 9, there was a post-biopsy 
hematoma connected to the tumor gave an increase in size at the Early-Tx time point for RSI.  
 
Tx = treatment, DCE = dynamic contrast-enhanced MRI, RSI = Restriction Spectrum Imaging, 
ADC = apparent diffusion coefficient.  
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Supporting Information 
 
Supporting Information Table S1. Signal contributions of cancer for data from both sites 

estimated using individual site models.  

 
 

Model Parameter 
Site 1 Site 2  

Median 
(range) 

IQ Range Median  
(range) 

IQ Range p-value 

Bi-
exponential  

C1,2 
 

C2,2 

1.42 
 

1.71 

1.77 
 

2.12 

1.50 
 

1.76 

1.79 
 

2.04 

p>0.05 
 

p>0.05 

f1,2 
 

f2,2 

0.31 
 

0.69 

0.23 
 

0.23 

0.31 
 

0.69 

0.19 
 

0.19 

p>0.05 
 

p>0.05 

Three-
component 

C1,3  
 

C2,3 
 

C3,3 

0.89 
 

4.61  
 

0.73 

1.01 
 

6.44 
 

1.27 

1.19 
 

5.44  
 

0.16 

1.35 
 

6.98 
 

0.24 

p>0.05 
 

p>0.05 
 

p<0.05* 

f1,3  
 

f2,3 
 

f3,3 

0.19 
 

0.65 
 

0.16    

0.20 
 

0.34 
 

0.16 

0.25 
 

0.72 
 

0.03    

0.20 
 

0.26 
 

0.09 

p>0.05 
 

p>0.05 
 

p<0.05* 

 
  



Supporting Information Figure S1. Example images of A) dynamic contrast-enhanced (DCE) 

MRI, B) DCE pre/post contrast subtraction, C) T2-weighted, and D) DW-MRI b=0 s/mm2 volumes 

from site 1. Overlaid regions of interest (ROIs) are control (blue), cancer (red), and noise (grey), 

respectively. 

 

  



Supporting Information Figure S2. Example images of A) dynamic contrast-enhanced (DCE) 

MRI, B) DCE pre/post contrast subtraction, C) and E) T2-weighted, and F) and D) DW-MRI b=0 

s/mm2 volumes from site 2. Overlaid regions of interest (ROIs) are control (blue), cancer (red), 

and noise (grey), respectively. Note that control ROIs were placed on a different image to avoid 

inclusion of tumor tissue/peritumor infiltration in the control ROI.  

 
 
 
 



Supporting Information Figure S3. Median contrast-to-noise ratio (CNR), area under the curve 

(AUC) and specificity at 80% sensitivity between cancer and fibroglandular tissues extracted from 

RSI-derived maps and compared to dynamic contrast-enhanced (DCE) MRI and conventional 

apparent diffusion coefficient (ADC).  
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Supplementary Table 1: Data are mean (95% CI) for the US dataset.  

ADC, conventional apparent diffusion coefficient; AUC, area under the curve; C, signal contribution; DWImax, 

image defined on maximum b-value; F, signal fraction; FPR80, false positive rate given sensitivity of 80%; Kapp, 

apparent diffusion kurtosis; ROC, receiver operating curve; S0, signal at b-value = 0 s/mm2.  

  
 ROC AUC SENSITIVITY SPECIFICITY ACCURACY FPR80 
C1C2 0.984 (0.976 - 0.991) 0.974 (0.965 - 0.983) 0.965 (0.952 - 0.977) 0.969 (0.960 - 0.979) 0.017 (0.007 - 0.027) 
C1 0.914 (0.883 - 0.945) 0.903 (0.868 - 0.937) 0.876 (0.835 - 0.917) 0.889 (0.861 - 0.918) 0.138 (0.088 - 0.188) 
C2 0.949 (0.934 - 0.964) 0.957 (0.944 - 0.969) 0.894 (0.870 - 0.917) 0.925 (0.910 - 0.940) 0.072 (0.051 - 0.093) 
F1F2 0.617 (0.581 - 0.653) 0.938 (0.925 - 0.951) 0.448 (0.404 - 0.492) 0.693 (0.673 - 0.713) 0.492 (0.450 - 0.533) 
F1 0.250 (0.206 - 0.294) 0.970 (0.950 - 0.991) 0.145 (0.101 - 0.188) 0.557 (0.540 - 0.575) 0.817 (0.775 - 0.859) 
F2 0.868 (0.848 - 0.888) 0.936 (0.921 - 0.950) 0.765 (0.735 - 0.796) 0.850 (0.832 - 0.868) 0.192 (0.163 - 0.222) 
DWIMAX 0.889 (0.851 - 0.926) 0.915 (0.885 - 0.945) 0.827 (0.776 - 0.879) 0.871 (0.839 - 0.903) 0.176 (0.119 - 0.233) 
ADC 0.402 (0.359 - 0.446) 0.946 (0.932 - 0.959) 0.232 (0.184 - 0.280) 0.589 (0.569 - 0.609) 0.713 (0.667 - 0.759) 
KAPP 0.437 (0.407 - 0.468) 0.884 (0.851 - 0.917) 0.334 (0.290 - 0.377) 0.609 (0.595 - 0.623) 0.671 (0.642 - 0.700) 
S0F1F2 0.976 (0.967 - 0.986) 0.952 (0.937 - 0.967) 0.956 (0.944 - 0.968) 0.954 (0.942 - 0.966) 0.028 (0.014 - 0.042) 
S0F1 0.920 (0.890 - 0.949) 0.909 (0.878 - 0.940) 0.879 (0.839 - 0.918) 0.894 (0.866 - 0.921) 0.128 (0.080 - 0.175) 
S0F2 0.948 (0.933 - 0.963) 0.957 (0.946 - 0.968) 0.890 (0.865 - 0.915) 0.924 (0.908 - 0.939) 0.074 (0.053 - 0.096) 

 
 

 

 

Supplementary Table 2: Data are mean (95% CI) for the European dataset.  

ADC, conventional apparent diffusion coefficient; AUC, area under the curve; C, signal contribution; DWImax, 

image defined on maximum b-value; F, signal fraction; FPR80, false positive rate given sensitivity of 80%; Kapp, 

apparent diffusion kurtosis; ROC, receiver operating curve; S0, signal at b-value = 0 s/mm2. 

 
 ROC AUC SENSITIVITY SPECIFICITY ACCURACY FPR80 

C1C2 0.985 (0.971 - 1.000) 0.980 (0.965 - 0.996) 0.968 (0.947 - 0.990) 0.974 (0.960 - 0.989) 0.012 (-0.003 - 0.026) 
C1 0.907 (0.851 - 0.962) 0.839 (0.780 - 0.897) 0.905 (0.854 - 0.955) 0.872 (0.830 - 0.914) 0.129 (0.030 - 0.227) 
C2 0.961 (0.927 - 0.995) 0.980 (0.970 - 0.989) 0.917 (0.866 - 0.969) 0.949 (0.920 - 0.977) 0.054 (0.011 - 0.096) 
F1F2 0.723 (0.658 - 0.788) 0.907 (0.885 - 0.929) 0.582 (0.507 - 0.657) 0.745 (0.706 - 0.783) 0.365 (0.290 - 0.439) 
F1 0.151 (0.084 - 0.219) 0.989 (0.979 - 1.000) 0.077 (0.018 - 0.135) 0.533 (0.506 - 0.560) 0.883 (0.819 - 0.947) 
F2 0.909 (0.863 - 0.955) 0.970 (0.960 - 0.981) 0.823 (0.757 - 0.890) 0.897 (0.861 - 0.933) 0.124 (0.064 - 0.183) 
DWIMAX 0.929 (0.898 - 0.959) 0.858 (0.827 - 0.889) 0.887 (0.849 - 0.924) 0.873 (0.843 - 0.902) 0.104 (0.052 - 0.156) 
ADC 0.293 (0.219 - 0.368) 0.944 (0.914 - 0.973) 0.167 (0.090 - 0.245) 0.555 (0.526 - 0.585) 0.788 (0.718 - 0.857) 
KAPP 0.303 (0.259 - 0.348) 0.949 (0.926 - 0.972) 0.229 (0.183 - 0.275) 0.589 (0.573 - 0.605) 0.728 (0.688 - 0.768) 
S0F1F2 0.979 (0.958 - 0.999) 0.959 (0.932 - 0.985) 0.961 (0.932 - 0.991) 0.960 (0.936 - 0.984) 0.031 (-0.010 - 0.071) 
S0F1 0.911 (0.858 - 0.965) 0.848 (0.790 - 0.905) 0.904 (0.857 - 0.951) 0.876 (0.835 - 0.917) 0.120 (0.023 - 0.218) 
S0F2 0.961 (0.927 - 0.995) 0.978 (0.968 - 0.989) 0.918 (0.867 - 0.969) 0.948 (0.919 - 0.977) 0.054 (0.011 - 0.097) 

 

 

 

 

 

 



Supplementary Table 3: Data are median (interquartile range) for average signal of the cancer and control 

regions of interest (ROIs) for both datasets combined. All cancer and control regions were significantly different 

(p < 1 × 10-9).  

ADC, conventional apparent diffusion coefficient; Au, arbitrary unit, C, signal contribution; DWImax, image 

defined on maximum b-value; F, signal fraction; Kapp, apparent diffusion kurtosis 

 
 

 Cancer Control 
C1C2 [au] 0.264 (0.608) 0.013 (0.015) 
C1 [au] 0.252 (0.257) 0.104 (0.086) 
C2 [au] 1.039 (0.856) 0.152 (0.111) 
F1F2 [au] 0.144 (0.061) 0.102 (0.040) 
F1 [au] 0.208 (0.102) 0.513 (0.216) 
F2 [au] 0.731 (0.074) 0.359 (0.185) 
DWImax [au] 0.238 (0.232) 0.131 (0.103) 
ADC [mm2/s x 10-3] 1.052 (0.412) 0.710 (0.388) 
Kapp [au] 1.105 (0.300) 2.437 (1.449) 
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Supplementary Materials II 

Supplementary Figure 1-106: 

Probability density colormaps for the three-component model given C1 and C2 for all voxels 

per patient for all 81 cases from the US dataset (Supplementary Figure 1-81) and 25 cases from 

the European dataset (Supplementary Figure 82-106) and are given for (A.) cancer (cancer 

ROI) and (B.) healthy breast tissue (control ROI). The discriminatory performance between 

cancer and healthy breast tissue is given by FPR80 for each case (C.). Colormaps are given on 

a logarithmic scale normalized to the maximum probability density value. Y- and x-axis are 

defined by the maximum value for each case. Color bars are identical for all figures and given 

for the first (Supplementary Figure 1) only. Au, arbitrary unit; C, signal contribution; FPR80, 

false positive rate given sensitivity of 80%.  
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Supplementary Materials III 

Supplementary Figure 1-106: 

Probability density colormaps for the three-component model given C1 and C2 for all voxels 

per patient for all 81 cases from the US dataset (Supplementary Figure 1-81) and 25 cases from 

the European dataset (Supplementary Figure 82-106) and are given for (A.) cancer (cancer 

ROI) and (B.) healthy breast tissue (control ROI). The discriminatory performance between 

cancer and healthy breast tissue is given by FPR80 for each case (C.). Colormaps are given on 

a logarithmic scale normalized to the maximum probability density value. Y- and x-axis are 

defined by the maximum value for each case. Color bars are identical for all figures and given 

for the first (Supplementary Figure 1) only. Au, arbitrary unit; C, signal contribution; FPR80, 

false positive rate given sensitivity of 80%.  
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Supplementary Materials IV 

Supplementary Figure 1-106: 

Probability density colormaps for the three-component model given C1 and C2 for all voxels 

per patient for all 81 cases from the US dataset (Supplementary Figure 1-81) and 25 cases from 

the European dataset (Supplementary Figure 82-106) and are given for (A.) cancer (cancer 

ROI) and (B.) healthy breast tissue (control ROI). The discriminatory performance between 

cancer and healthy breast tissue is given by FPR80 for each case (C.). Colormaps are given on 

a logarithmic scale normalized to the maximum probability density value. Y- and x-axis are 

defined by the maximum value for each case. Color bars are identical for all figures and given 

for the first (Supplementary Figure 1) only. Au, arbitrary unit; C, signal contribution; FPR80, 

false positive rate given sensitivity of 80%.  
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