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Abstract

Artificial spin ice is a self-organising system of interact-
ing nanomagnets which exhibits interesting and complex be-
haviour. In this paper we put the art in artificial spin ice,
presenting a novel mapping from a dynamical state trajectory
to MIDI music for an ensemble of instruments. An evolu-
tionary algorithm is used to search for new artificial spin ice
geometries of higher musical quality, making use of Zipfian
and entropic measures. Geometries of high fitness were dis-
covered, and music resulting from the best geometry found
is presented alongside this paper. Aside from the primary
outcome of producing novel music, this unique viewpoint of
artificial spin ice could allow for a more intuitive observation
of its dynamical properties, interpreting their state trajectories
through the medium of music.

Introduction

The rationale of extracting music from a dynamical system
(DS) often takes one of two forms: to use music as a way
to explore and gain insight into the behaviour and properties
of a DS (Bilotta et al.l 2005)), or to use the DS as a seed to
inspire or synthesise new music (Burraston and Edmonds)
2005).

Complex systems are systems in which the behaviour of
the system emerges from the behaviour of the underlying
interacting parts which make up the system. Complex sys-
tems are said to be self-organising when a large scale order-
ing arises from low-level interactions without any guiding
centralised control. Complex systems seem a natural choice
for making music as their behaviour can lie in a ‘Goldilocks
region’ between chaos and simplicity. It is easy to make an
analogy to music: music that is too simple is boring, and
music that is purely random or chaotic is equally as unsatis-
fying to listen to. |Koelsch et al.[{(2019) use predictive coding
theory to describe how music listening is an active process
where the listener is constantly making predictions about
what they will hear next. As such, music must have some
structure in order for meaningful predictions to be made, but
not be so simplistic that it requires only trivial predictions.

Artificial Spin Ice (ASI), a class of nanomagnetic spin
systems, have become a substrate of interest to both material

physicists, studying its exotic metamaterial properties (Skle-
nar et al.,[2019), and to computer scientists, exploring how
its intrinsic self-organisational properties can be exploited
for unconventional computing (Jensen et al.| [2018)). Jensen
et al.| (2018) show an ASI can exhibit a large variety of be-
haviours with regards to the number of terminal states pro-
duced by the ASI over a set of inputs, and that this behaviour
can be tuned with relative ease. Given the richness and tun-
ability of its behaviour, ASI seems a promising candidate for
automatic music composition.

In this work we stimulate an ASI with an external field,
and map the resulting state trajectory to music. We show
how the geometry of an ASI can be evolved to improve the
‘quality’ of music produced using our mapping. Though the
quality of a piece of music is subjective, we attempt to quan-
tify this quality through methods that capture some of the
phenomena which are present in aesthetically pleasing mu-
sic.

Complex Systems and Music

Cellular automata (CA) are a simple example of a complex
system exhibiting emergence and self-organisation. A num-
ber of studies have used CA to produce music through a vari-
ety of methods (Burraston and Edmonds, [2005). In general,
a mapping is devised that transforms the time evolution of
the CA into a musical representation (often MIDI). CA can
be selected based on particular desirable properties such as a
measure of complexity, or attempts can be made to optimise
the CA for music production using optimisation techniques
such as an Evolutionary Algorithm (EA).

Through sonificiation, the representation of data as sound,
audio can provide an additional dimension to the observation
of a system. Bilotta et al.|(2005)) translated certain quantita-
tive features of a Chua’s oscillator complex system into mu-
sic. They found that human listeners where able to perceive
many structures in the music which are present in the be-
haviour of the Chua’s oscillator. They conclude that, through
music, human cognitive abilities are able to analyse the com-
plicated patterns produced by Chua’s systems.

Putz and Svozill (2017) explore how elements and con-
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cepts found in quantum mechanics can be expressed in mu-
sic. Such an approach could provide a method to gain a
more intuitive understating of some of the aspects of the no-
toriously unintuitive realm of quantum mechanics.

Artificial Spin Ice

ASI are complex systems consisting of many interacting
nanomagnets, typically arranged on a 2D lattice. The nano-
magnets are elongated along one axis, causing their spin to
always align along this elongated axis. This allows us to
consider the nanomagnet as a single binary spin. The state
of the full ASI is therefore the ensemble of all the binary
spins in the system. The spin of a magnet can change or
“flip’ due to magnetic fields from its neighbouring magnets,
or from stimuli such as an applied external field.

ASI exhibits self-organisation. Each magnet in the sys-
tem can be viewed as an agent with the goal of minimising
its energy. The energy of the magnetic agent depends on its
spin and the spins of neighbouring magnets. As such there
are competing interactions as the state which benefits one
agent might be detrimental to another. These competing lo-
cal interactions give rise to interesting large scale orderings.

The geometry of an ASI refers to the positions and ori-
entations of the magnets in the system. The geometry plays
a primary role in determining how magnets interact locally
with each other and thus has a substantial effect on the large-
scale behaviour of the ASI, emerging from these local inter-
actions. This makes geometry an obvious parameter to vary
in order to tune the ASI to have a desired property or be-
haviour.

Typically ASI require some stimulus to prevent the sys-
tem from freezing (getting stuck in one state). Stimulus
can be provided through perturbing the system with exter-
nal magnetic fields, or through applying heat to the system.
Temperature provides a stochastic stimulus to the system,
causing magnets to flip randomly with a probability given
by their energy state. An external magnetic field allows
for a more controllable and targeted stimulus and as such
is a good medium for encoding inputs to the system. The
strength and angle of the external field can be adjusted.

Mapping ASI to Music

To create music from a given ASI geometry we must first
obtain the time evolution of its state, which we do using the
flatspin ASI simulator (Jensen et al., [2022). To prevent the
dynamics of the system from freezing, we provide a stimulus
in the form of an external global magnetic field. The field
is applied with constant strength, but at each time step the
angle at which it is applied is incremented by an angle 6.
Through some preliminary experimentation, an angle § =
23° was chosen, as it was found to have some effect on the
system but not foo much. Furthermore, as 23 is coprime
with 360, the field angle can be stepped in this way many
times before the angle repeats (359 times), the idea being
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Figure 1: This figure shows how a grid of a given dimension
(here 4x4) can be super imposed on the spin state of a ASI
(top) and used to produce a locally aggregated view of the
system (bottom) by summing the spins within each grid cell
to obtain a macrospin. In some cases the cells in the aggre-
gate view are empty because there are no magnets in those
cells, whereas other cells are empty because the spins of the
magnets within the cell cancel out.

that the constant changing of the stimulus is carried through
to the music, preventing it from becoming too repetitive or
monotonous.

From the flatspin simulation, we obtain a time series of
the state of the system. In Fig. [T] we can see an example
of a state. The figure also shows how we can superimpose
a grid on to the state and sum the binary spins within each
cell to obtain a aggregate spin or ‘macrospin’ for each cell.
This is a common approach when visualising ASI as it can
make large scale patterns more apparent (e.g. ferromagnetic
or anti-ferromagnetic ordering).

Our mapping applies a grid on to the ASI and associates
each cell with a different instrument. The state of a cell in
a timestep ¢ determines what note the corresponding instru-
ment is playing, and as such the full system state represents
the notes for an ensemble of instruments or orchestra.

Specifically we use three properties of a cell’s spin to pro-
duce a note. We choose three properties of a MIDI note to
control with the mapping: pitch, velocity and duration.

The pitch and duration of a note simply refer to how high
or low a note is and for how long the note is sustained. The
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Figure 2: Different musical properties of a note are extracted
from the a macrospin. (a) The pitch of the note is given by
the angle of the macrospin which is discretized or rounded
to a given scale. (b) The velocity of the note is given by
the magnitude of the spin, and again is rounded into discrete
bins. (c) The duration of a note is determined by looking
along the time axis and observing how long the macrospin
remains within the same pitch sector.

velocity of a note in MIDI terminology refers to how ‘hard’
a note is played, i.e., how hard a string is struck or reed is
blown. Though velocity is most noticeable in the volume of
a note, it can also be used to affect the timbre as it would on
a physical instrument.

In our mapping, the angle of the macrospin determines the
pitch of the note. The spin angle contains the most promi-
nent information so its a natural choice to express through
pitch, a salient feature in the resulting music. Furthermore,
this gives a nice analogy between the correspondence and
patterns in spins of the ASI, and the harmony (or dishar-
mony) of the instruments in the produced music. The map-
ping must be supplied with a scale in the form of an ordered
set of n,, pitches. We then partition a circle drawn around
the origin of each macrospin into 7, discrete sectors. The

pitch is then given by the sector in which the macrospin lies
(Fig. 2R).

The velocity of a note is given by the magnitude of the
macrospin. Again, this is quite a natural choice as it means
when more of the sub-spins making up a macrospin align
the note produced will be stronger, whereas, when the spins
cancel each other, only a faint sound is produced. In this
way the volume of an instrument expresses the energy of a
system. As with the pitch, a list of n, values defining the
different velocities the system may produce is provided by
the user. The interval given by the range of the macrospin
magnitude is then evenly partitioned into n, segments and
used to determine the velocity (Fig. [2p).

The duration of a note is not determined by the macrospin
in single timestep, but by looking across the time axis. To get
the duration of a note we look forward in time too see how
many timesteps must pass before the macrospin changes
enough that the pitch will change. In effect this means con-
secutive notes of the same pitch on the same instrument
are grouped into one long held note. The results of this
is that systems or macrospins with fast changing dynamics
will produce many short quick notes, while slower dynam-
ics will produce long droning notes. We set an upper bound
on how long a note is held dp,y, after which the instrument
remains silent until a note of a different pitch is played (Fig.
k). A notable limitation that follows from this is that an
instrument cannot play two separate notes of the same pitch
consecutively.

Evolution

EAs are a class of bio-inspired optimisation methods which
use the Darwinian concepts of variation and natural selec-
tion to provide solutions to certain problems. EAs are par-
ticularly useful when there is no obvious gradient to follow
in the performance of a task, e.g., “how should I tweak this
magnet to make my song sound better?”. The three neces-
sary components to make use of EA are: a population of in-
dividuals representing a solution to the given task, a method
to mutate or make small changes to an individual, and a
method to compare or evaluate the fitness of an individual
at the given task.

The individuals in our population are ASI geometries. We
have previously shown EAs to be a useful tool in finding new
ASI geometries with desired properties (Penty and Tuftel
2021},2022)). In contrast to the tile-based approach used pre-
viously, we use a simpler, lattice based approach to represent
the full ASI geometry. We now describe the process of map-
ping an individual to its geometry. This process is illustrated
in Fig. 3]

The positions of the magnets in the ASI geometry are the
points in the 2D lattice spanned by two basis vectors by and
b1. To allow for a greater diversity of geometries we tile a
binary matrix H over the lattice to determine which mag-
nets are ‘expressed’. Finally a matrix of angles A is tiled
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Figure 3: The process described in section “Evolution” of
building a geometry from the basis vectors by, b, hole ma-
trix H and angle matrix A. The first step (a) is to repeatedly
apply the basis vectors starting from the origin until be have
a lattice of the desired size. (b) shows how the hole matrix
is tiled over the lattice. Any lattice points that align with a
zero in the hole matrix are removed. (c) The angle tile is
then tiled over the lattice to determine the angle of the mag-
net to be placed at each lattice point.

over the lattice to determine the angle of the magnet at that
position. Each individual in the population consists of two
basis vectors by and by, a hole matrix H and an angle matrix
A.

Mutation of an individual is achieved through randomly
selecting one of its components to modify. In the case of the
basis vectors and angle matrix, a Gaussian mutation can be
selected where Gaussian noise with a mean of zero is added
to the selected vector or matrix. Both the angle matrix and
hole matrix can be modified using a swap mutation where
two elements in the same matrix have their values swapped.
The hole matrix can be mutated with a bit flip point mutation
where an element has its binary value flipped. Finally, both
matrices can be mutated to have their size in one of their
dimensions altered. For further variation, we implement a
simple crossover operator that can create new individuals
as offspring by mixing two parent individuals. Offspring
sample their attributes (vectors and matrices) randomly from
their two parents.

As stated in section “Mapping ASI to Music”, the ASI
is driven by an external magnetic field of constant strength,
with a varying angle. A suitable value for this field strength
is highly dependent on the geometry of the ASI it is being
applied to. Due to this, we also place the strength of this
field under evolutionary control. Each individual possesses
its own field strength parameter which can be selected for
Gaussian mutation. In crossover offspring randomly inherit
the field strength value from one of their parents.

While creating and modifying individuals we place con-
straints on their parameters. The shape of the angle matrix
ismy X n4 suchthat 0 < my,n4 < 5, and the shape of the
hole matrix is myg X nyg such that 0 < mg,nyg < 7. The
lengths of the basis vectors is in the range [0.5, 1.1] to ensure
the magnets are not too far away (resulting in too weak in-
teractions) or too close together (overlapping magnets). We
also ensure the angle between the two basis vectors remains
in the interval [45°,180° — 45°] so that the lattice does not
become too sheared and to prevent the bases from becoming
parallel. We constrain the hole matrix to have no more than
70% of its elements as Os to prevent empty or very sparse lat-
tices. Finally, we constrain the field strength of the external
stimulus field to be in the interval [0.03, 0.27].

The flatspin parameters used for the simulation were dis-
order = 0.1 and alpha = 0.01. All other parameters used
the default values as of flatspin version 2.2. For an expla-
nation of the flatspin parameters and their default values,
please refer to the flatspin documentation (flatspin contribu-
tors), [2022).

Musical Fitness Function

Creating a formula to fully describe the quality of a given
piece of music is extremely difficult and likely impossible
due to the inherent subjectivity of music quality. Such is
the difficulty in creating a fitness function, some attempts
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at evolving music rely on humans for evaluation (Biles
et al.,|1994). But human-in-the-loop evolution, while neatly
sidestepping the problem of implementing a quantitative
measure for musicality, suffers from slowness and incon-
sistency. The alternative is to use heuristics as a surrogate
for a true musical fitness, to guide evolution towards regions
where musicality is more likely to be found.

The fitness function we devise to assess the quality of mu-
sic expressed in an individual’s state trajectory is made of
two heuristics. For the first heuristic we measure how Zip-
fian the produced music is. Zipf’s law is a statistical rela-
tionship first observed in the word frequency of natural lan-
guages (Zipf} [1949). It states the frequency with which a
certain occurrence is observed is inversely proportional to
the rank of that occurrence in order of frequency. Specifi-
cally, in terms of language, it means the most common word
in a text occurs twice as frequently as the second most com-
mon word and thrice as frequently as the third most com-
mon word, and so on. Zipf’s law has been observed in many
fields, including the arts. |Manaris et al. (2003) compiled
distributions from various aspects of a large corpus of music
and found Zipf’s law to be a necessary condition on certain
dimensions of the music, though they stress it alone is not
sufficient for aesthetically pleasing music. This has lead to
Zipf’s law being used or suggested as fitness function for
evolutionary music composition in a number of works (Ma-
naris et al., [2005; INCRA! 2015; |Kirke and Mirandal 2007}
Jensen, 2011).

Specifically in our case we calculate the Zipfian error of
three aspects of our music, the distribution of pitches, the
distribution of note velocities and the distribution of note
length. In each of these cases we calculate the Zipfian er-
ror by ordering the frequencies and normalising such that
the largest frequency becomes 1, then we sum the absolute
difference between each frequency and the frequency that
would be expected given the idealised Zipfian distribution.
This is formulated as:
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creasing order.

As mentioned in Manaris et al.| (2003)), just following
Zipf’s law is not the only requirement for satisfying mu-
sic. From our preliminary studies of using only the Zipfian
loss metric as a fitness function, one stark deficiency noticed
was a tendency to produce music where all instruments were
playing the same notes at the same time, which led to the
produced music sounding quite boring. This deficiency is
not captured in the Zipfian metrics used as if one instrument
is playing a stream of Zipfian notes, then this stream can be
replicated on all instruments without incurring any loss from
the Zipfian metric.

, SN is a sequence of frequency counts in de-

To remedy this, we introduce a second heuristic, the joint
entropy of the notes played over each instrument. Joint en-
tropy gives a measure of the uncertainty of different parts of
a system in relation to each other. In our case we can think
of the joint entropy as measuring a form of correspondence
between the instruments, e.g., if knowing what note the vi-
olin is playing lets you predict with high confidence what
notes the cello and viola are playing, then these would be
said to have low joint entropy as only a small amount of in-
formation allows you to infer the full state of all variables.
The joint entropy is given by

H(X1, ., Xp) =
-3 Y Pla, e za) logy [P(an, oy z,)] (D

T1€EXT  TR€X,

We can estimated P(z1, ..., z,) as the number observations
of (z1,...,x,) divided by the total number of all observa-
tions.

Given these two heuristics we can construct a fitness func-
tion. We create normalised versions of the two heuristics E,
and H such that they produce values in the range [0, 1]. For
the Zipfian error this is done by dividing by the maximum
possible error, which is attained when all the values of the
sequence are equal. The normalised entropy measure H is
obtained by setting the base of the log in Eq[I|to the largest
possible number of unique occurrences (1, ..., ). Our fit-
ness function f can then be defined as

J(P,V,D,X) = A(X) = 3[B(P) + B(V) + B.(D)]

where P, V and D are the rank distributions for the pro-
duced music’s pitches, velocities and durations respectively
aggregated over all instruments. X is the series X1, ..., Xy
where each X; is the scale from which the ™ instrument’s
pitches are taken. By multiplying the sum of the Zipf met-
rics by one third, we obtain a fitness function that equally
weights the importance of the Zipf metric and the entropy
metric. The result of applying the fitness function is a a
value in the range [—1, 1] where 1 is the perfect score and
—1 is the worst possible score.

We set up our EA using the individual representation, mu-
tation operators and crossover operator as defined in section
“Evolution”, and with the fitness function defined in sec-
tion “Musical Fitness Function”. A population is created by
generating 100 randomly initialised individuals. For each
generation of the EA new individuals are created using the
mutation operators and crossover operator. We use a rela-
tively large mutation rate and crossover rate of 50%, though
in both cases we retain a copy the unmodified parent individ-
ual in the population. At the end of each generation, selec-
tion occurs. The fitness of all individuals is measured, and
individuals not in the top 100 are discarded.
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Figure 4: The ASI geometry of highest fitness in the final
generation of the evolutionary run.

The EA was run for 300 generations, with individuals
grown until they contained at least 200 magnets. For the
music mapping a 12-note C major scale was supplied, the
list [0.2,0.4,0.6,0.8, 1] was used as the possible values the
velocity could take, and the maximum note duration dp,x
was set to 8. A 3 x 3 grid was used to create the macrospins,
resulting in an ensemble of 9 instruments.

Results

The results of this evolutionary run are shown in Fig. f] &
Fig. Bl From the top-left panel of Fig. [5] we see that the
best fitness in the generation started out quite high at 0.56
and quickly increase up to 0.895 at generation 22 at which
it peaks and is then constant for the remaining generations.
Often in EAs a fast increase in fitness followed by long pe-
riods of no improvement is a symptom of premature conver-
gence, where the EA over-fits and the population loses di-
versity. Though the other panels in Fig. [5|appear to indicate
there is still diversity in the population, at least phenotypic
diversity.

We can also see the Zipfian error metric is consistently
low and as such the change in fitness seem to be mostly
driven by the change in the entropy metric. This can be seen
very clearly in the two panels on the right in Fig. 5] which
show the fitness very closely mirrors the joint entropy met-
ric. The mean entropy metric and thus the mean fitness can
be seen to fluctuating greatly. This likely indicates that the
mutation on crossover operators have a high probability of
deleterious effect or the effect they have on the phenotype is
too large.

The best individual in the final generation was used to cre-
ate MIDI music, the instruments used were randomly sam-
pled from a subset of the set of general MIDI instruments,
with some of the more unusual ‘instruments’ excluded (dog
barks and telephone rings etc.). Each instrument was also
randomly assigned the octave for the first note of its scale.
We also use the Microsoft GS Wavetable Synth to synthesise
the MIDI file into an audio file, to gives a device indepen-
dent way to listen to the music as, unlike the MIDI file, it
sounds the same on all devices. This music can be listened

toat: https://osf.io/h7tcd/.

Also included in this repository is a manually ‘mastered’
version of the music to give an idea of how the music could
sound with some minimal input from a human (setting the
master volume level for each instrument, choosing the oc-
taves and using a more modern virtual instruments of the
their given type). A benefit of producing music in this way
is that it also provides a natural music video, or visualisation.
For both the raw music version and the manually mastered
version we include a video showing the state of the system
that is producing the music alongside the aggregated state.

Listening to the music, we can with some confidence
claim that we achieved our baseline goal of creating music
that is somewhere between too simple and too chaotic. The
music certainly has some kind of structure to it, we hear pat-
terns of repeated pitches and rhythms. Due to the changing
angle of the field and the internal memory of the system, the
music is never repeating itself exactly. Though, as the music
goes on there is some sense that the music is ‘treading water’
becoming slightly tedious. This could be due to a flatlining
of the musical tension in the piece.

Tension is an abstract, hard to formulate, concept from
music theory which describes the perceived increase and re-
lease of unrest or anticipation in a piece of music (Farbood,
2012). The tension is a complex function of many musi-
cal dimensions including pitch, volume, rhythm and speed.
Not considering the tension during composition can lead to
monotonous or tedious sounding music. In our system the
lack of musical tension could arise from the energy of the
system being too similar over time, or a lack of richness in
the input stimulus.

Conclusion

In this work we have laid out a method of extracting mu-
sic from ASI and a means of evolving them in search of
aesthetically pleasing music. The mapping was able to pro-
duce interesting musical patterns and a variety of different
behaviour over different instruments.

In terms of the fitness function chosen, the results were of
high quality. Though the quick speed the EA reached this
fitness indicates that the fitness used maybe too lenient. Fur-
thermore, while there is not much room for improvement
in the achieved fitness, the musical output of the systems
could certainly be improved upon. These observations point
to the need to further develop the fitness function to take into
account other musical aspects such as the tension. Alter-
natively, different stimuli could be explored. By swapping
between different stimulus style, a chorus-verse like struc-
ture could be imprinted, which may help to break up the
monotony the system appears to tend towards.

While the mapping produced the notes to play automati-
cally, there were still aspects such as instrument choice and
octave range that had to be chosen either at random or by
a human. An obvious extension to this work would be to
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Figure 5: In the top-left plot we see for each generation the maximum fitness, maximum joint entropy measure, and minimum
Zipfian error. The remaining graphs show how the mean and standard deviation of the three properties changed over the course
of the run. Though the algorithm was run for 300 time steps we show only the fist 200 as after the 150" generation the

algorithms behaviour does not change substantially.

somehow put these choices under the control of the system.
Additionally, more features could be extracted from the ASI
simulations to control other aspects of the produced MIDI
such as pitch bend or to add percussion.

One necessary design choice was choosing how to drive
the system. Even if constrained to interacting with the
system using a global field, there are many different input
schemes that could be used, each giving a different musical
interpretation of an ASI geometry. As such, evaluation of
an ASI geometries musical quality, or investigating its prop-
erties via music, is always done with respect to the chosen
input encoding. To investigate the ASI geometry more gen-
erally, several input encoding may need to be evaluated. Al-
ternatively, the dependence on the driving field can viewed
as an avenue for user interaction. Real time manipulation of
the driving field could allow an ASI geometry to be “played”
as an instrument.

Another direction for future study is to use such a map-
ping to perceive the physical properties of an ASI via obser-
vation of its state trajectory. We already mentioned that mu-
sical tension could be an analogy for, amongst other things,
the energy present in an ASI. But, in a much broader scope,
the richness of the state trajectory of an ASI, or DS in gen-
eral, is of interest for many different reasons. Through an
appropriate mapping of the state trajectory to music, it may
transform the problem evaluating a state trajectory to a more
human-friendly problem of evaluating the quality of music.
This could allow for humans to get an intuitive sense of the
richness of DS’s state trajectory or even where its deficien-
cies may lie.

This work presents the first step into the domain of nano-
magnetic music, a fusion of cutting edge material science,
physics and music.
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