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Abstract—Autonomous vessels have been identified as a
promising innovation in advancing marine transportation, pro-
viding an effective means to mitigate the risk of accidents,
pollution incidents, and carbon dioxide emissions. Accurate
sea state estimation (SSE) plays a critical role in facilitating
onboard decision-making and optimizing operational efficiency
for autonomous ships. Traditional SSE approaches relying on
external sensors, such as wave buoys and wave radars, are
limited by cost considerations. Model-based methods are highly
relying on the understanding of human knowledge to ships.
Data-driven models also provide promising solutions, but their
generalization is low. To address this challenge, a semi-supervised
transfer learning approach for SSE (SAFENESS) is proposed.
The model is trained using sufficient data in the source ship and
limited data from the target ship and finally applied to the target
ship. A data alignment algorithm is utilized to use the limited
data of the target ship. To enhance the learning capability of
the framework, two attention mechanisms are proposed, and a
multi-class adversarial discriminator is introduced that can align
the distributions of different domains. The effectiveness of our
approach is validated through comprehensive comparisons with
eleven established transfer learning methods, demonstrating the
superiority of our model. The competitiveness of the proposed
attention modules is verified by comparing them with state-of-
the-art attention modules. The significance of each component
and the influence of key parameters have been thoroughly
explored in the ablation and sensitivity analysis. Our method
has potential applications in maritime safety, navigation, and
operation optimization.

Index Terms—Sea state estimation, autonomous ship, time
series classification, transfer learning.

I. INTRODUCTION

AUTONOMOUS ships represent a new class of marine
vessels capable of operating without an onboard human

crew [1]. Equipped with advanced navigation and control sys-
tems, these ships autonomously perceive their surroundings,
plan routes, and execute actions [1]. The potential benefits of
autonomous ships in the realm of marine transportation are
extensive, including a reduction in accident and spill risks,
decreased emissions and fuel consumption, increased cargo
capacity, and enhanced operational flexibility [2], [3]. Fur-
thermore, autonomous ships have the potential to improve the
working conditions and welfare of seafarers. Fig. 1 illustrates
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the prototype autonomous ship of the Norwegian University
of Science and Technology (NTNU).

The evolution of autonomous ships confronts a multitude
of challenges. A foundational hurdle involves the accurate
perception of the sea state [4]. In oceanography, the sea
state is characterized by the overall wind, wave, and swell
conditions at a specific open-sea location [5]. Four prevalent
approaches exist for sea state estimation (SSE): wave-buoys,
weather forecasts, meteorological satellites, and wave radars
[6], [7], [8]. Each method, however, has its constraints. Wave
buoys are limited by their placement locations, and weather
forecasts are less effective due to delays in relaying critical
information. Meteorological satellites often grapple with cloud
interference. Wave radar, while satisfying real-time estimation
needs for onsite sea states, is a costly solution requiring regular
calibration [9].

At present, almost all ships are equipped with motion
sensors, which allow us to conceptualize the ship as a large
wave buoy, its motion response acting as an indicator of sea
conditions [10]. In effect, the ship is inherently outfitted with
a system for SSE [11]. SSE methodologies based on ship
motion responses are typically classified as either model-based
or model-free [12], [13].

Model-based approaches presuppose the existence of a
response function to map the relationship between the sea state
and ship motion. However, a significant challenge inherent in
model-based methods is the necessity for accurate response
function creation, which requires substantial human knowl-
edge [9]. In contrast, in the era of big data, model-free methods
are rapidly proliferating and exhibit substantial promise for
SSE [9], [6]. These methods extract the relationship between
the sea state and ship motion directly from the collected data,
considerably improving estimation accuracy and eliminating
the necessity for prior knowledge about the ship [14].

However, several significant challenges persist in estimating
the sea state using model-free methods.
• Ship type dependency: SSE models, relying on ship

motion data, inherently vary based on ship types. Due
to distinct hydrodynamic characteristics among different
vessels, models derived from specific ship types are
not interchangeable. Consequently, applying a model-free
SSE method trained on one ship type to another is im-
practical, which becomes particularly problematic when
attempting to model newer ships with limited historical
data from older, well-documented vessels.
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Fig. 1. Illustration of the prototype autonomous ship in the NTNU [15].

• Ship load dependency: A ship’s performance in different
sea conditions is contingent on its load. For example,
a ship may be fully loaded when departing but empty
upon arrival. Thus, SSE models constructed from ship
motion data under various load conditions may not gen-
eralize well. Models trained for one load scenario may
exhibit subpar performance when applied to a different
load condition, necessitating improvements in model-free
approaches to ensure applicability across varying loads.

• Data availability dependency: Model-free methods
heavily rely on high-quality training data, which poses
challenges in gathering comprehensive data covering a
wide range of sea states, especially when aiming to amass
sufficient volumes for training high-performance, data-
driven models in practical settings. Additionally, main-
taining consistency in data distribution between training
and testing datasets is crucial for ensuring a model’s
effectiveness in real-world applications. Real-world data
collection often falls short in terms of both quantity
and quality. Although simulators or digital twins can
generate diverse data, models trained exclusively on such
simulated data may suffer performance degradation when
applied to physical ships. Therefore, it becomes impera-
tive to establish a robust connection between the virtual
digital twin and the physical ship to effectively bridge the
simulation-reality gap.

While addressing the aforementioned challenges, transfer
learning emerges as a promising solution. Cheng et al. pio-
neered the development of the first SSE model using transfer
learning techniques [8]. However, their approach relied on a
convolutional neural network (CNN)-based Siamese network
for similarity learning, yielding competitive results but in-
troducing specific limitations: 1) Computational Complexity:
The model’s training process is computationally demanding
and time-consuming. During training, their network computes
distances between pairs of inputs, resulting in a quadratic
increase in computational complexity as the dataset size grows.
2) Assumption of Domain Similarity: Cheng et al.’s model
operates under the assumption that the source and target
domains exhibit sufficient similarity. If the data distributions
significantly differ between these domains, the transferred

knowledge may not yield substantial benefits, potentially lead-
ing to a degradation in model performance.

This work extends the efforts to tackle the challenge of poor
generalization exhibited by data-driven models, building upon
the groundwork laid by Cheng et al. [8]. Our focus is on con-
structing a data-driven SSE model capable of seamless transfer
between various ship types and consistent performance across
different loading levels of the same ship. More precisely, we
endeavor to develop an SSE model utilizing ample source ship
data alongside limited target ship data. In this pursuit, we
frame the SSE problem as a time series classification task,
aligning with prior research in the field [9], [6], [8].

The main contributions of this work are as follows:
• This research presents a novel Semi-supervised

trAnsFer lEarNing approach for sEa State eStimation
(SAFENESS). This innovative approach facilitates the
transfer of knowledge from a source vessel, abundant in
data, to a target vessel with limited data, transcending
different ship types and varying load conditions. To
achieve this, we introduce a data alignment algorithm,
which aligns the source and target domains in both
feature and label spaces, effectively mitigating domain
discrepancies. Moreover, we incorporate two attention
mechanisms to assess the importance of each sensor
and time step for SSE. To discern between the source
and target domains and to address the computational
complexity and significant domain shift, we employ
adversarial training.

• We evaluate our approach on two cases: transferring
knowledge between different types of ships and between
different loading levels of the same ship. Compara-
tive results, which include eleven state-of-the-art transfer
learning models, highlight the competitive nature of our
proposed model. A comprehensive ablation and sensitiv-
ity analysis is conducted to examine the significance of
each component and the impact of key parameters.

This research is structured as follows. A literature review
on SSE and transfer learning is offered in Section II. The
SAFENESS architecture is described in Section III. Section
IV discusses the experiment results, and Section V describes
our conclusions.

II. RELATED WORK

This section reviews some related works on SSE and
transfer learning, and provides some background knowledge
and definitions that are relevant to the proposed approach. The
section also discusses the advantages and disadvantages of
different SSE methods and transfer learning techniques, and
identifies the research gap that this paper aims to fill.

A. Sea State Estimation

Sea state, traditionally gauged by diverse sensors, can be
monitored over vast oceans by satellites and unmanned aerial
vehicles. However, their slow update rates and communica-
tion delays make them unsuitable for real-time applications.
Although seabed and sea surface sensors can provide real-time
measurements, the high costs of installation restrict their use
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[16]. Standard incoherent wave radars gather sea state data by
measuring wave surface backscatter and ship motion, while
advanced coherent systems estimate wave height using the
Doppler effect [17]. Despite their precision, these methods are
expensive and can be disrupted by ship movement.

A current trend in sea state estimation (SSE) is to use a ship
as a sensor [10], [6], [18]. This concept has led to two main
SSE methodologies: model-based and data-driven. Model-
based methods use a transfer function to map the sea state to
the ship’s motion [19], dividing further into frequency-based
and time-based techniques [11], [20]. For instance, Ren et al.
proposed a method to estimate the directional wave spectrum
using a non-parametric approach, an L1 optimization, and a
novel smoothness constraint [16].

Data-driven methods, on the other hand, extract hidden
information from ship motion data. Machine learning and
deep learning methods have been developed, with the key
difference being the latter’s reliance on learned features rather
than human-made ones. Tu et al. developed the first machine
learning method [9], while Cheng et al. introduced the first
deep learning model [7]. More recently, Han et al. developed
a hybrid model integrating the strengths of both methods [21].

Despite the success of data-driven methods, challenges per-
sist. First, the ship type dependency issue: SSE models depend
on ship motion data, and therefore their effectiveness varies
with different ship types. This is problematic when a new ship
lacks sufficient data for training. Second, load dependency: A
ship’s loading condition influences SSE models’ performance,
as varying cargo capacity and operational status affect a ship’s
stability across sea states. To address these issues, transfer
learning might offer a viable solution, allowing the reuse of
data-driven models across different scenarios.

B. Transfer Learning

Transfer learning, a technique facilitating the reuse of data-
driven models across distinct domains or tasks, has been
extensively investigated in various fields such as computer
vision and natural language processing, demonstrating signifi-
cant efficacy [22]. This method strives to acquire and transfer
knowledge from a source domain or task to a designated target
domain or task. However, the current body of literature reveals
a paucity of studies applying transfer learning to the realm of
SSE.

SSE typically utilizes time series data, effectively framing
the application of transfer learning to SSE as a task of adapting
transfer learning techniques to time series data. Several studies
have ventured into this expansive realm. Fawaz et al. were
pioneers in exploring the problem of time series classification
using transfer learning techniques [23]. Gupta et al. delved
into improving model performance on clinical time series data
through transfer learning [24]. In the field of transportation
systems, a transfer learning model has been proposed for driver
model development [25]. Furthermore, Li et al. have innovated
a transfer learning method based on a Gaussian process [26].

In the context of SSE, the first transfer learning model
was created by Cheng et al., employing a Convolutional
Neural Network (CNN)-based Siamese network for similarity
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Fig. 2. Illustration of the proposed transferable framework for sea state
estimation.

learning [8]. Despite achieving a competitive performance, this
model required considerable training time due to its intricate
structure.

Depending on whether there are labels in the source and
target domains and the relationship between them, transfer
learning can be classified as supervised, semi-supervised, or
unsupervised. Unlike supervised learning, unsupervised trans-
fer learning does not rely on labeled data that require substan-
tial effort to annotate. However, unsupervised transfer learning
may suffer from low performance due to lack of information
about the target domain. Semi-supervised learning can serve as
a compromise between supervised and unsupervised methods
by using both labeled and unlabeled data from both domains.

In this paper, we explore semi-supervised transfer learning
when there are sufficient data samples in the source domain
and scarce data samples in the target domain. Because our
focus is on autonomous ships in real-world environments, it is
possible to obtain limited labeled data samples at a low cost.
Moreover, improved encoder and adversarial discriminator are
utilized for better knowledge transfer.

III. SEMI-SUPERVISED ADVERSARIAL TRANSFER
LEARNING FOR SSE

This section describes the architecture and components of
the proposed semi-supervised transfer learning approach for
SSE (SAFENESS). The section explains how the approach
uses a data alignment algorithm, two attention mechanisms,
and an adversarial discriminator to achieve effective knowl-
edge transfer from a source ship to a target ship. The section
also presents the loss functions and optimization methods used
in the approach.

A. Problem Description

In the context of semi-supervised transfer learning for SSE,
our premise rests upon the source domain ship gathering
extensive data paired with corresponding sea states. On the
contrary, for the target domain ship, which may be a newly
commissioned vessel, the available data is expected to be
notably limited. This paucity of data presents an obstacle to
the development of a high-performance, data-driven model,
thereby highlighting the necessity for transfer learning.
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In the source domain, the ensemble of samples is defined as
Ds = (X i

s ,y
i
s)

ns
i=1, wherein Xs and ys symbolize the samples and

their respective labels. The term ns signifies the total number of
samples. Meanwhile, the target domain harbors a more modest
assortment of samples denoted as Dt = (X i

t ,y
i
t)

nt
i=1, where Xt

and yt stand for the samples and corresponding labels in the
target domain. The term nt represents the total number of these
samples. Given the relative scarcity of target domain data,
it is anticipated that ns will be significantly greater than nt ,
indicating dissimilar probability distributions across the source
and target domains.

The effectiveness of a deep learning model will likely
diminish if a model trained using source domain data, Xs, is
subsequently applied to target domain data, Xt . It is impracti-
cable to solely utilize the limited data from Xt to train a deep
learning model given the considerable data prerequisites for
such a task. To address this predicament, we advocate for the
development of a transfer learning model that can effectively
navigate the aforementioned challenges.

TABLE I
NOTATIONS USED IN THIS WORK

No. Para. Meaning No. Para. Meaning
1 B Batch size 14 MLP multilayer perceptron

2 CNN convolutional
neural network 15 ns

number of
source samples

3 Conv1D 1D convolution 16 nt
number of
target samples

4 CA channel attention 17 ReLU rectified linear unit
5 Ds source domain 18 SSE sea state estimation
6 Dt target domain 19 TA temporal attention
7 Es Training epochs 20 Xs source samples
8 Eadv Training epochs 21 Xt target samples
9 Etot Training epochs 22 ys source labels

10 H learned features
by Conv1d 23 yt target labels

11 LCE
loss function
for encoder 24 Φ encoder

12 Ladv

loss function for
adversarial
discriminator

25 Ψ classifier

13 Ltotal total loss function 26 Ω
adversarial
discriminator

B. Framework

To realize the outlined objective, several hurdles required
to be addressed. Initially, the scarcity of information for the
target domain presented a conundrum of optimally exploiting
this limited data. Secondly, the task of effectually transferring
knowledge from the source to the target vessel demanded care-
ful consideration. Lastly, the determination of the necessary
feature extraction for facilitating knowledge transfer was also
crucial.

To surmount these challenges, we applied data alignment
to the limited target ship data to maximize its utilization.
Following that, adversarial learning was implemented on the
aligned data with the intention of aligning the semantic

information across both source and target vessels. Conclu-
sively, we adopted a novel Convolutional Neural Network
(CNN) structure equipped with two attention modules, de-
signed specifically to extract semantic features of higher value.
This composite approach was intended to effectively enable
the transfer of SSE knowledge from one maritime context to
another despite the disparity in data abundance.

The architecture of the proposed scheme for SSE is depicted
in Fig. 2. The framework begins by instituting a cleaning
process on the ship motion data, carried out identically across
both source and target domains. Subsequently, data alignment
is implemented, aiming to exploit the limited, yet critical,
target information available. Upon alignment, the processed
data is channeled through a specifically designed feature
encoder to derive distinct features for the source and target
domains. These features then dictate the refinement of the
respective source and target encoders, guided by adversarial,
source classification, and target classification losses. An in-
depth explanation of each module within the proposed transfer
learning framework is provided in the succeeding sections of
this paper.

C. Data Alignment
As previously established, our model is designed to leverage

a relatively sparse amount of information from the target ship.
In an effort to enhance this scarce information, we employ
the pairs of samples as suggested by [27]. This seemingly
simple strategy proves to be extremely effective in creating
a meaningful alignment between the source ship, character-
ized by an ample number of samples, and the target ship,
characterized by a limited quantity. Four types of pairings are
constructed. The first pairing comprises samples originating
from ships sharing an identical class label. The second pairing
also consists of samples possessing the same label, however,
one sample originates from the source ship while the other is
from the target ship. The third pairing is composed of samples
from source ships belonging to different class labels. Finally,
the fourth pair consists of samples from different class labels,
where one is obtained from the source ship and the other from
the target ship.

The choice of four pairings represents a carefully considered
balance between data alignment effectiveness and computa-
tional efficiency. The rationale behind this decision is that
increasing the number of pairs may not necessarily contribute
to performance enhancement, but rather it may inadvertently
introduce noise or redundancy into the data. Additionally, it
is worth noting that expanding the number of pairs would
invariably augment the computational complexity and prolong
the training time of our model.

It is evident that the second pairing category has the fewest
number of samples. To ensure consistent sample count across
all pairing categories, we judiciously select samples from the
first, third, and fourth pairs to match the sample size of the
second pairing category.

D. Attention-Enabled Encoder
To capture richer and more relevant features, we introduce

an attention-infused Convolutional Neural Network (CNN) as
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Fig. 4. Illustration of the CA module.

our feature encoder, as illustrated in Fig. 3. This encoder
comprises three convolutional blocks and integrates two novel
attention modules, namely Channel Attention (CA) and Tem-
poral Attention (TA). Each convolutional block is composed
of a 1D convolutional layer (Conv1D), a batch normalization
layer (BatchNorm as shown in Fig. 3), a Rectified Linear Unit
(ReLU) layer, and a CA module. It’s important to note that
the parameters for each Conv1D layer are indicated in brackets
following the Conv1D label.

The Conv1D layer performs sliding convolutional opera-
tions along the temporal dimension of the input, subsequently
producing a tensor of outputs [28]. This is followed by the
batch normalization layer, which normalizes the output of the
Conv1D layer to mitigate internal covariate shifts and enhance
training stability [29]. Finally, the ReLU layer applies a non-
linear activation function to the output of the batch normaliza-
tion layer, thereby instilling non-linearity and sparsity within
the network [30].

1) CA module: In this study, a 1D Convolutional Neural
Network (Conv1D) serves as our feature extractor, deriving the
feature RT×C from the raw data or feature map RT×N . Here, C
represents the number of feature channels. However, one of the
limitations of traditional CNNs is that they treat each channel
equally, thereby failing to highlight the essential information
embedded within the learned features. To surmount this issue,
a Channel Attention (CA) module is incorporated.

The primary function of the CA module is to allocate
differential weights to the varying channels. The calculation
process implemented by the CA module is illustrated in
Fig. 4. Assuming the features learned by Conv1D to be
H = [x1,x2, ...,xC] ∈ RT×C, we initially apply global average

pooling and global max pooling to the learned features to
comprehend the intra-relationships across different channels.
The representations of these relationships are subsequently
dispatched to two Multilayer Perceptrons (MLPs) with shared
weights to calculate the attention weights. Lastly, the derived
attention weights are utilized to calibrate the raw CNN fea-
tures.

2) TA module: While the Channel Attention (CA) module
emphasizes critical channels, it might neglect the temporal
information within the time dimension. To counteract this
issue, we introduce a Temporal Attention (TA) module. The
calculation process employed by this module is depicted in
Fig. 5.

Assuming the input to the TA module to be H ∈ RT×C,
it is first mapped to H̃ ∈ RT×K via a Multilayer Perceptron
(MLP). A bidirectional Gated Recurrent Unit (BiGRU) is then
employed to extract the temporal information. We leverage the
principles from the CA module for the TA module to highlight
the most relevant temporal features.

Furthermore, H̃ is also directed through average pooling
and max pooling operations, with the resulting pooled features
being repeated along the time axis. These features then feed
into two MLPs with shared weights. This process ensures
that the key temporal characteristics within the input are duly
highlighted, thereby improving the overall model performance.

E. Adversarial Discriminator

Let Es and Et denote the source and target encoders,
respectively. A rudimentary approach to estimate sea states
might involve the initialization of the target encoder Et using
the already trained source encoder Es. This strategy is based
on leveraging the insights and knowledge accumulated by
the source encoder to bootstrap the target encoder, thereby
enabling predictions about the sea state using the limited target
data. However, this approach is not infallible, particularly
when stark disparities exist between the source and target data.
Therefore, to ensure accuracy in such situations, it becomes
crucial to devise a methodology capable of minimizing the
divergence between the source and target domains.
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In this study, we put forward the proposition of employ-
ing adversarial learning for model training. The underlying
principle of this approach is to train the network in a way
that the generated output is indistinguishable from samples
drawn from a source distribution for a discriminator [31].
This methodology facilitates the enhancement of the network’s
performance on a specific task by prompting it to produce
output that closely resembles the source distribution. The
objective here is to learn a mapping from the target domain
to the source domain such that the distribution of the mapped
target data mimics the source data distribution as closely as
possible. This can aid in overcoming the issue of distribution
discrepancies between the source and target data sets.

In the current work, a multi-class discriminator with four
distinct outputs is deployed to categorize sample pairs into
different classes. This innovative approach allows the network
to generate output that aligns semantically and class-wise with
the source distribution while simultaneously confounding the
discriminator. The network and discriminator are trained in
an adversarial fashion, with the overarching aim of enabling
the network to yield output that the discriminator struggles to
categorize accurately. Specifically, the objective is to bewilder
the discriminator concerning pairs 1 and 2, and pairs 3 and 4.
This strategy is predicated on the fact that pairs 1 and 2 share
the same class label but originate from different distributions,
while pairs 3 and 4, despite arising from distinct distributions,
possess different class labels. Should the discriminator find
it difficult to differentiate between pairs 1 and 2 or between
pairs 3 and 4, it can be concluded that the adversarial learning
method has achieved its intended goal.

Our methodology is distinct from other adversarial learning
techniques in that it also utilizes information from the target
distribution during the training phase. This aids in effectively
managing scenarios where there is insufficient target data
available for training. As illustrated in Fig. 3, the adversarial
discriminator is composed of three fully connected (FC)
blocks, which are responsible for the classification of the input
sample pairs. It’s worth noting that the first two FC blocks
consist of an FC layer and a RELU layer, while the final
block only contains an FC layer supplemented by a softmax
layer (not depicted in Fig. 3). By employing this training
methodology for the network and the discriminator, we can
accomplish our objective of discovering a shared feature space
that is both invariant to the domain and semantically aligned.

F. Training Process

In order to achieve the intended model performance, this
study adopts a step-wise training methodology. The specifics
of the algorithm are presented in Algorithm 1. The initial
step (rows 1 to 8) involves training the source encoder and
its associated classifier utilizing the ship motion data from
the source ship. The optimization of the source encoder and
its corresponding classifier is facilitated by the loss function
defined as follows:

LCE =− 1
m

m

∑
i=1

yi log(ŷi) =−
1
m

m

∑
i=1

yi log(Ψ(Φ(xi
s))) (1)

where yi is the true value for class i. Φ denotes the encoder. Ψ

means the classifier. xi
s is the samples of the i-th class from the

source ship. Ψ(Φ(xi
s)) is the value of the i-th class predicted

by the proposed SAFENESS.
Given the limited information available from the target

ship, a data alignment algorithm and a multi-class adversarial
discriminator have been proposed in this study to utilize
this information. In contrast to the conventional adversarial
discriminator, which only generates binary outputs (true/false),
our work utilizes a multi-class approach due to the creation of
four pairs to leverage the restricted target samples.

Hence, the second step (lines 9 to 17 in the algorithm)
involves training the adversarial discriminator using the four
constructed pairs. Throughout this training phase, the encoder
and classifier remain frozen and are not updated. The cross-
entropy (CE) loss function as defined in Eq. (2) is employed to
optimize the model during this step. This process essentially
serves to initialize the discriminator with data from the four
different pairs.

L
′
adv =−

1
k

k=4

∑
i=1

yi
p log(ŷi

p) =−
1
k

k=4

∑
i=1

yi
p log(Ω(Φ(xi

p)) (2)

where xi
p and yi

p mean the true value for class i of the pair
data. Ω denotes the adversarial discriminator. Ω(Φ(xi

p)) is the
predicted value of the i-th class by the proposed SAFENESS.
There are four pairs used, the k is thus set to 4.
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Algorithm 1 Training algorithm
Input : Φ, Ψ, Ω, Es, Eadv and Etot , B, (Xs,ys), (Xt ,yt), refer

TABLE I for detail information.
Output: Well-trained model: Φ, Ψ, and Ω

1 for e = 0; e < Es; e = e+1 do
2 for b = 0; b < B; b = b+1 do
3 b-th batch samples (Xb

s ,y
b
s ) from the source dataset

4 ypre
out ←Ψ(Φ(Xb

s ))
5 ls← LCE(y

pre
out ,yb

s )
6 Ws←Ws−λs∇ls(Ws)
7 end
8 end
9 for e = 0; e < Eadv; e = e+1 do

10 for b = 0; b < B; b = b+1 do
11 Getting four pairs as described in Section III-C.
12 b-th batch samples (Xb

ps,y
b
p) and (Xb

pt ,y
b
p) from the four

paired data.
13 ypre

out ←Ω[concat((Φ(Xb
ps)),Φ(Xb

pt)))].
14 ladv← L

′
adv(y

pre
out ,yb

p).
15 Wadv←Wadv−λadv∇ladv(Wadv)
16 end
17 end
18 for e = 0; e < Etot ; e = e+1 do
19 for b = 0; b < B; b = b+1 do
20 Getting the second and fourth pairs as described in

Section III-C.
21 b-th batch samples (X

′b
ps,y

′b
ps,y

′b
p ) and (X

′b
pt ,y

′b
pt ,y

′b
p ) from

the two paired data.
22 ypre

out ←Ω[concat((Φ(X
′b
ps)),Φ(X

′b
ps)))].

23 ladv← Ladv(y
pre
out ,y

′b
p ).

24 ls← LCE(y
pre
out ,y

′b
ps)

25 lt ← LCE(y
pre
out ,y

′b
pt)

26 lsum = lt + ls +η ∗ ladv
27 Ws←Ws−λsum∇lsum(Ws)
28 end
29 for b = 0; b < B; b = b+1 do
30 Getting the four pairs as described in Section III-C.
31 b-th batch samples (Xb

ps,y
b
p) and (Xb

pt ,y
b
p) from the four

paired data.
32 ypre

out ←Ω[concat((Φ(Xb
ps)),Φ(Xb

pt)))].
33 ladv← L

′
adv(y

pre
out ,yb

p).
34 Wadv←Wadv−λadv∇ladv(Wadv)
35 end
36 end

In the third step of the process (lines 18 to 36 in the
algorithm), there are two sub-steps. The initial sub-step (lines
19 to 28) involves freezing the discriminator and training the
encoder and classifier using samples from the second and
fourth pairs out of the four data pairs. In an attempt to confuse
the discriminator between pairs 1 and 2, and pairs 3 and 4,
the true label for the second pair is borrowed from the first
pair, and the true label for the fourth pair is borrowed from the
third pair. The loss function utilized in this sub-step is defined
as follows:

Ltotal = ηLadv +LCE(Xs,Ys)+LCE(Xt ,Yt)

Ladv =−y1
plog(Ω(Φ(x2

p)))− y3
plog(Φ(x4

p))
(3)

where η is used to balance the classification and confusion. Xs
and Ys are the samples from the source ship. Xt and Yt are the
samples from the target ship. y1

p and y3
p are the true value of

the first pair data and the third pair data, respectively. x2
p and

x4
p are the samples from the second pair data and the fourth

pair data.
The second sub-step (lines 29 to 36 in the algorithm)

involves training the discriminator while the encoder and
classifier are held constant. During this sub-step, we employ
all four pairs of data to train the discriminator in the same
manner as we did in the second step of the algorithm. This
approach ensures that our adversarial learning framework is
capable of robustly distinguishing between different classes
of data pairs, even when they come from differing source and
target distributions.

IV. EXPERIMENT

This section presents the experiment settings and results of
the proposed approach. The section introduces the datasets,
evaluation metrics, baseline methods, and implementation de-
tails used in the experiment. The section then reports and
analyzes the performance of the proposed approach in two
cases: transferring knowledge between different types of ships
and between different load levels of the same ship. The section
also conducts an ablation study and a sensitivity analysis to
examine the significance of each component and the impact
of key parameters in the approach.

A. Experiment settings

1) Data source: The data employed in this research was
simulated by the Offshore Simulator Centre AS (OSC), a
recognized training platform in the field of offshore operations
[32]. In order to demonstrate the effectiveness of the proposed
model, we established two distinct scenarios: the first scenario
involves knowledge transfer between two different types of
vessels, and the second scenario involves knowledge transfer
between the same type of vessel but under different loading
conditions. These scenarios were designed to thoroughly test
the proposed model’s ability to handle diverse conditions and
transfer knowledge effectively.
• Different types of ships: Two research vessels (hereafter

named RV G and RV Z) owned by the Norwegian Uni-
versity of Science and Technology (NTNU) are used to
simulate the zigzag motion in the five different sea states.
The RV G is smaller than RV Z. There are only three
thrusters in RV G but there are six thrusters in RV Z.
The knowledge transfer from RV G to RV Z is labeled
as G→Z, and RV Z to RV G is labeled as Z→G.

• Same type of ships: The motion behavior of a ship in
different sea conditions will be different under different
load conditions, so we conduct the experiment of knowl-
edge transfer between the same type of ship but with
different loadings. The research vessel RV G is chosen
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as for the simulation. One case is that the RV G is empty,
and another is the RV G is with loading of 100 tons. The
knowledge transfer from empty loading to full loading is
labeled as E→F, and full loading to empty loading is
labeled as F→E.

In this study, we consider nine parameters in Xs and Xt : roll,
yaw, pitch, surge velocity, sway velocity, heave velocity, roll
velocity, pitch velocity, and yaw velocity. The sea states are
defined based on the observed wave height, with ten categories
ranging from calm to extreme conditions [5]. These sea states
also have associated probabilities of occurrence, which have
been outlined in the existing literature.

However, for the purposes of this work, we limit our
consideration to sea states 0 through 5. These six states
represent approximately 96% of the sea conditions that are
typically encountered. Given the similarity between sea states
0 and 1, we choose to consolidate these into a single state for
the ease of analysis.

2) Metric: The metric F1 is used to evaluate the models.
The definitions of F1 is presented as follows:

Precision =
TP

TP+FP
Recall =

TP
TP+FN

(4)

F1 =
2×Precision×Recall

Precision+Recall
(5)

where T P, FP, FN, and T N represent true positive, false
positive, false negative and true negative, respectively.

All models are implemented by Pytorch and all experiments
are repeated five times. To be fair, we select samples from the
target ships according to different random seeds each time.

B. Comparison with simple transfer learning methods

Fine-tuning, direct transfer learning, and learning from
scratch are three common simple transfer learning methods
widely utilized in the literature: 1) Fine-tuning: This method
involves taking a pre-trained model, typically a deep neural
network, and further training it on a specific target task.
Instead of retraining the entire model from scratch, earlier
layers (often the lower ones) are frozen, while only the
later layers’ weights are updated to adapt to the new task.
2) Direct Transfer Learning: Similar to fine-tuning, direct
transfer learning modifies a pre-trained model for a target task.
However, it can involve more significant alterations, such as
replacing or modifying specific layers in the pre-trained model
to better align with the new task’s requirements. 3) Learning
from Scratch: In contrast to transfer learning, learning from
scratch entails training a model entirely anew, starting with
random initial weights and without relying on pre-trained
knowledge. The model is trained from the ground up on the
target task using available data.

Based on our experimental results shown in Fig.6, it is
evident that our proposed method consistently achieves the
highest level of performance. Fine-tuning emerges as the
second-best approach, showcasing notable improvements in
various transfer tasks. Specifically, we observe enhancements
of 21.52%, 30.38%, 14.07%, and 7.66% in the G→Z, Z→G,
E→F, and F→E transfer tasks, respectively. The superior

53.95%

49.3%
47.33%

65.56%

55.68%

45.87%

40%

72.6%

61.34%

50.46%

59.85%

69.97%

65.31%

44.76%

60.03%

70.31%

F1
 (

%
)

FT
Scratch

Direct
Ours

Fig. 6. Comparison of simple transfer learning methods.

performance of fine-tuning can be attributed to its ability
to leverage both source data and limited information from
the target domain. In contrast, the other two methods lack
this capability, which accounts for their comparatively lower
performance levels.

In the context of direct transfer learning, it is evident that
knowledge transfer between ships of the same type yields
superior accuracy compared to transfers between different
types of ships. Specifically, the performance in tasks G→Z
and Z→G lags behind that in tasks E→F, and F→E. This
discrepancy aligns with expectations, as the distribution dif-
ference between ships of the same type is inherently smaller
than that between ships of different types.

Regarding learning from scratch, it is noteworthy that the
achieved performance is nearly identical in both cases, par-
ticularly in terms of average accuracy. This observation is
intriguing, given that this method is susceptible to overfitting
due to the limited information available for model training. It
is plausible that this overfitting challenge constitutes a primary
reason for the absence of a significant performance advantage
in this approach.

C. Comparison with state-of-the-art deep transfer learning
methods

To evaluate our model, we compare it to eight state-of-
the-art approaches, implemented as follows: 1) DAN (Deep
Adaptation Network) is a classical method for transfer learning
(i.e., domain adaptation). We replace the backbone with our
proposed encoder. The learning rate is set to 3e-3 [33].
2) DAAN (Dynamic Adversarial Adaptation Network) can
dynamically learn domain-invariant features [34]. The learning
rate is set to 0.01. 3) DANN (Domain-adversarial neural
network) is used for tasks in which training and testing data
have similar but different distributions [35]. 4) DeepCoral is a
method that integrates the CORAL and deep networks. Deep-
Coral has more powerful non-linear learning capabilities and
works seamlessly with deep networks [36]. 5) BNM (Batch
Nuclear-norm Maximization) improves both discriminability
and diversity by using batch nuclear-norm maximization on the
output matrix [37]. 6) CADA (Contrastive Adversarial Domain
Adaptation) is used for predicting cross-domain remaining
useful life. It is built on the adversarial domain adaptation
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architecture with a contrastive loss [31]. 7) FADA (Few-
shot Adversarial Domain Adaptation) provides a framework
for addressing the problem of transfer learning when there
are sufficient labeled data in the source domain but limited
labeled data in the target domain [27]. 8) STLSSE is a recently
proposed model for SSE based on transfer learning [8].

TABLE II
COMPARISON WITH SOTA TRANSFER LEARNING METHODS (F1 (%))

Methods Different type of ships Same type of ships
G→Z Z→G Average E→F F→E Average

DAN 54.33 55.47 54.90 62.67 62.36 62.52
DAAN 53.43 56.49 54.96 58.85 60.57 59.71
DANN 53.61 56.37 54.99 58.68 60.57 59.63

DeepCoral 53.43 54.99 54.21 59.03 60.80 59.92
BNM 34.62 35.64 35.13 36.55 35.94 36.25

CADA 20.34 20.34 20.34 20.38 19.00 19.69
FADA 54.88 66.77 60.83 52.43 67.23 59.83

STLSSE 61.23 63.54 62.39 65.38 68.97 67.18
ours 65.56 72.60 69.08 69.97 70.31 70.14

The results are displayed in TABLE II. It is evident that
our proposed method consistently achieves the best results
across all four cases. When considering the knowledge transfer
between different types of ships, Z→G attains a higher F1
accuracy than G→Z for most methods. STLSSE delivers the
second-best performance, followed by FADA. In compari-
son to STLSSE, our method offers improvements of 7.07%,
14.26%, and 10.72% in the G→Z, Z→G, and average cases
respectively.

When assessing knowledge transfer between the same type
of ship but with different loadings, STLSSE again ranks
second-best for both E→F and F→E scenarios. Compared to
STLSSE, our proposed method shows improvements of 7.02%,
1.94%, and 4.41% in the G→Z, Z→G, and average cases
respectively. Interestingly, CADA’s performance appears to be
equivalent to random guessing, given there are five sea states
and its F1 score is approximately 20%.

D. Comparison with different encoders

TABLE III
ENCODER PERFORMANCE COMPARISON (F1 (%))

Methods Different type of ships Same type of ships
G→Z Z→G Average E→F F→E Average

CNN 52.52 50.24 51.38 62.07 67.46 64.77
LSTM 43.45 48.44 45.95 46.09 48.35 47.22
GRU 40.44 44.71 42.58 40.41 42.69 41.55
MLP 21.27 35.75 28.51 28.12 28.58 28.35
MLF 63.70 68.03 65.87 69.10 67.78 68.44
FCN 64.24 69.77 67.01 66.93 65.03 65.98

DenseNet 63.22 66.95 65.09 62.07 64.43 63.25
ours 65.56 72.60 69.08 69.97 70.31 70.14

To illustrate the performance of the proposed encoder, we
compared it to seven baselines, implemented as follows: 1)
CNN: A one layer CNN was utilized. The number of filters
was 128 with size of 7. 2) LSTM: A one layer LSTM was
employed with a hidden size selected from {8, 16, 32, 64}.
The best performance was chosen for comparison. 3) GRU:
A one layer GRU was employed with a hidden size selected
from {8, 16, 32, 64}. The best performance was chosen for
comparison. 4) MLP: A three-layer MLP was utilized. The
hidden size was set to 500 in each layer. The dropout layer was
applied between different layers. 5) MLSTM FCN (MLF):
A parallel structure integrating LSTM and FCN was utilized
[38]. The LSTM had one layer with hidden size of 8 and
FCN has three layers with filters (128, 7), (256, 5) and (128,
3). 6) FCN: A three-layer FCN was employed. The numbers
of filters in each layer were 128, 256, and 128. The filter sizes
were 7, 5, and 3 in each layer. 7) DenseNet: The DenseNet
was adapted from [6].

The results are presented in TABLE III. When considering
knowledge transfer between different types of ships, our
proposed method demonstrated the best performance. FCN
obtained the second-best performance among the compared
methods. For knowledge transfer between the same type of
ship but with different loadings, our method again achieved the
best performance, while MLSTM FCN obtained the second-
best performance. Notably, MLP performed poorly in both
cases, indicating its limited capability to learn effective fea-
tures. It is interesting to observe that DenseNet, despite its
complex structure, did not yield the best performance in either
case. These results highlight the importance of designing an
encoder that is suitable for the task at hand, rather than simply
relying on the most complicated architecture.

E. Comparison with different attention mechanisms

Four widely-used attention mechanisms were employed to
further illustrate the performance of the proposed attention
mechanism for sea state knowledge transfer between ships.

The details of the attention modules used are as follows:
1) SE is the most classical attention module. It can learn
the importance of each channel in CNN and then give more
attention to these influential information [39]. 2) GC provides
a pioneering method for learning long-range relationship from
the data. This method can achieve high accuracy but with
significantly fewer computations [40]. 3) CA-SFCN offers a
good solution for capturing the long-range dependencies of the
time series data and learning the interactions between different
variables [41].

In this comparison, we removed all of the attention models
we proposed and inserted the attention mechanisms into the
position of CA. As illustrated in Fig. 7, our proposed method
had the best performance, as compared to the other three atten-
tion mechanisms. From the results, we also determined that SE
was second-best, followed by GC and CA-SFCN (which was
the worst). This may have been due to the following aspects.
First, our proposed method can learn features from the channel
and temporal dimensions at the same time, while other models
(e.g., SE) can only learn the channel information. Second,
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Fig. 8. Ablation analysis.

both GC and CA-SFCN adopted a structure similar to self-
attention, which can capture spatial information but performs
poorly when learning temporal information.

F. Ablation Analysis

In order to further illustrate the rationality of the model
designed here, we conducted an ablation study to evaluate the
importance of each component. As the most complicated part
is the encoder, we focused on the influence of each component
therein. There were three variants built for the comparison,
implemented as follows: 1) TA: the temporal attention module
was not used in the encoder. 2) CA: all channel attention
modules were removed from the encoder. 3) NO: There were
no any attention modules in the encoder.

The results are shown in Fig. 8. Our proposed model showed
a better performance than the three variants, illustrating the
rationality of the proposed model. The results show that the
accuracy drop was significant when the CA module was
removed, a condition similar to NO, which did not use any
attention modules. Conversely, the accuracy did not decrease
significantly when TA is removed. However, it is worth noting
that we used three channels of attention, but only one TA
of attention. Thus, it was difficult to verify if CA was more
important than TA.

G. Sensitivity Analysis

A sensitivity analysis was conducted to better understand the
influence of the number of target samples and η . We varied
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Fig. 9. Sensitivity analysis.

these important variables but kept other parameters unchanged.
The variation range for the number of target samples and η

is {2, 3, 4, 5, 6, 7} and {0.2, 0.4, 0.6, 0.8, 1.0}, respectively.
The results are shown in Fig. 9(a) and Fig. 9(b).

In the four cases, it is clear that the accuracy increased with
the increasing number of target samples (see Fig. 9(a)). This
was reasonable because if more samples were provided by
the target, there would be more information for the proposed
model to learn. However, we could not draw the same con-
clusion from Fig. 9(b). From the results alone, the effect of
η was not obvious. Section III-F shows that we trained our
model step-by-step, and η mainly affected one loss function
of one step in the training process. Other loss functions also
affected the training results. In other words, the step-by-step
training method may have resulted in a coupling effect because
the model was affected by multiple loss functions.

H. Discussion

Given the observed limited generalizability of data-driven
models in the realm of sea state estimations, this study
introduces a novel approach employing a transfer learning-
based, data-driven model for said estimations. This research
is predicated on the assumption that a substantial volume of
data pertaining to a multitude of sea states can be amassed by
the source vessel. However, the data accessible for utilization
by the target vessel remains significantly constrained.

In order to substantiate the efficacy of the proposed model,
it was juxtaposed with a range of methodologies under two
distinct settings: (1) transfer between varying ship types and
(2) transfer between different load conditions within the same
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ship type. Experimental findings suggest that our model yields
substantial enhancements over state-of-the-art transfer learning
methodologies, such as learning from scratch, direct transfer,
unsupervised, and semi-supervised techniques. The relatively
inferior performance of the learning from scratch, direct trans-
fer, and unsupervised techniques can primarily be attributed to
the ineffective utilization of the limited data derived from the
target ship.

Our model surpasses semi-supervised methods primarily
due to the innovative feature encoder that incorporates two
novel attention modules. More specifically, in comparison with
the transfer learning method specifically tailored for sea state
estimation (i.e., STLSSE), our approach diverges in three
critical ways:
• The data alignment technique employed for the utilization

of limited target information is distinctly different, with
our approach demonstrating a more straightforward and
effective design.

• To optimize the knowledge transfer from the source
ship to the target ship, adversarial learning is preferred
over similarity learning as implemented in STLSSE. This
alternative approach is applied to the aligned data to
synchronize the semantic information between the source
and target vessels.

• To extract useful features from ship motion data, a unique
feature encoder is employed, marking a key departure
from the methodology used in STLSSE.

Despite the promising results, there are certain limitations
to the proposed model:

1) The model necessitates a minimal amount of information
from the target ship. However, this may not always be feasible
in real-world situations - for instance, if the model were to
be applied to a newly launched ship without any existing
historical data. A potential solution might be the execution
of the model that enables knowledge transfer between two
distinct types of ships, without the requirement for information
from the target ship.

2) A further constraint of the proposed method is that it
only considers sea state codes 0 to 5, with codes 0 and 1 being
consolidated. Despite the more severe sea states constituting
only 4% of the total, they hold substantial significance in
certain circumstances, such as decision support, hull condition
monitoring, and control systems.

3) The third limitation pertains to the application of our
method to complex sea states, which may include multiple
wave systems or nonlinear wave interactions. In this study,
we assumed that the sea state could be characterized by a
single wave system with a dominant wave direction and height.
However, real-world sea states might be more intricate and
dynamic, involving multiple wave systems with varying direc-
tions and heights, or nonlinear wave interactions such as wave
breaking or wave-current interactions. These complex sea
states may present challenges for our approach, as they might
require more descriptive features or parameters, or additional
data to accurately capture their characteristics. Therefore,
applying our approach to complex sea states remains an open
problem in our research. A potential solution might involve the
use of a more sophisticated model that can manage multiple

wave systems or nonlinear wave interactions. For instance,
a directional spectrum model could be employed that can
estimate the directional wave spectrum from ship motion data.
Alternatively, a nonlinear model could be utilized that can
account for the nonlinear effects of waves on ship motion.

In conclusion, the proposed model demonstrates a signif-
icant enhancement over other contemporary methodologies.
It presents a valuable alternative for SSE, particularly during
exigent circumstances such as epidemics when there is an
elevated demand for ships.

V. CONCLUSIONS

This research explored how to construct a transferable
SSE model that could be used to ensure the safety of ship
operations. This study proposed SAFENESS, a model that
can be trained using sufficient data from a source domain
and limited information from a target domain. To achieve this
goal, we utilized an algorithm for data alignment that employs
limited data from the target domain and sufficient data from
the source domain. To maximize knowledge transfer between
the source and target domains, we employed an adversarial
learning-based framework. Two attention mechanisms were
proposed to enhance the learning capabilities of the frame-
work. The model proposed in this research was verified via
two cases. The first was one in which the ship types of the
source and target domains were different, and the other was
one in which the same ships were used, but with different
loads. Through comprehensive comparisons of our proposed
method to state-of-the-art approaches, it was determined that
our model achieved superior performance. Future work will
put more attention to these sea states. Moreover, we will also
explore physically-informed SSE to leverage the strength of
this model, and also compare the model performance between
physical-model based methods and data-based methods.
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