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In this paper, several recently published metaheuristic algorithms are adapted to optimize the NP-hard
problem of jointly mining decision and resource allocation in mobile edge computing (MEC) enabled
blockchain networks under two different encoding schemes. The first scheme represents individuals in
a way that incorporates the mining decisions, transmission power, and computing resources of all miners
for each individual, with mining decisions determined by a binary vector whose values indicate whether
miners partake in mining or not. While, the second scheme makes each individual accountable for the
transmission power and computing resources of each participant miner, treating all individuals as a sin-
gular solution to the problem. Then the Nutcracker optimization algorithm and gradient-based optimizer
are modified to propose two robust variants, MNOA and MGBO, respectively. We then combine MNOA
and MGBO to create HNOA, which further optimizes the mining decision and resource allocation in this
problem. HNOA and other variants are validated using nine instances with a range of 150 to 600 miners.
HNOA is also compared to several competing optimizers to demonstrate its efficacy in terms of several
performance metrics. The experimental findings show the superiority of the proposed algorithm.
� 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Over the past decade, blockchain networks have seen a mete-
oric rise in popularity due to their capacity to provide immutable
ledgers in a decentralized manner and also serve as platforms for
data-driven autonomous organizations (Wang et al., 2019). The
blockchain networks were first used as the backbone of a public,
distributed ledger system to handle asset transactions in the form
of digital cryptocurrencies between Peer-to-Peer clients
(Nakamoto, 2008). These networks are peer-to-peer and decentral-
ized, thus, no central authority is needed to ensure a trustworthy
ledger and safe financial dealings (Yuan and Wang, 2018). Because
of this feature, the transactions that take place on the blockchain
are secure, inexpensive, constant, fast, and tamper-proof (Yuan
and Wang, 2018). These benefits have led to the use of blockchain
networks in a variety of domains, including smart manufacturing,
the Internet of Things (IoT), supply chain, and smart grid (Wang
et al., 2021).

The elimination of all of the drawbacks associated with central-
ized systems is one of the primary reasons why the blockchain
technology has the ability to make the world a smaller place. The
mixed blockchain construction offers the potential for a large
reduction in the required amount of storage space (Tian et al.,
2019). Blockchain was designed to function as a platform for
distributed storage to facilitate decentralized registries and to
provide many methods for securing data through authentication,
authorization, and verification (Malik and Sharma, 2023). The most
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successful applications of blockchain technology to far are Ether-
eum and Bitcoin (Malik and Sharma, 2023).

Blockchain networks employ a data storage mechanism that
utilizes interconnected blocks arranged in a linked list structure.
Each block is comprised of a body and a header, where the header
includes several components, such as Nonce, merkle tree, hash of
the previous block, and timestamp, while the block body includes
the transaction and transaction counter (Malik and Sharma, 2023;
Abdelsalam et al., 2023). To add a new block to the chain, partici-
pants known as miners must undertake the Proof-of-Work (PoW)
process, which involves generating a hash value that binds the
new block to the preceding blocks in the chain. Upon completing
the PoW puzzle, miners broadcast the solution to other partici-
pants on the network for verification (Wang et al., 2021). The
new block is added to the chain if a majority of participants concur
on the validity of the solution (Xiong et al., 2018). Notably, the
mining process is computationally taxing and necessitates sub-
stantial computational resources due to the arduous computations
required to generate anti-collision hash values. Despite this, min-
ers often have limited access to resources (Wang et al., 2021).

Many studies have recently focused on the topic of blockchain
network resource management. They pay special attention to accu-
rately optimizing the mining decision to determine if a miner takes
part in mining or not and allocating the resources to the participat-
ing miners (Wang et al., 2021). Over the last few decades, wireless
blockchain networks that run on Internet of Things devices (IoTDs)
have garnered a lot of attention (Ali et al., 2018). IoTDs, on the
other hand, are unable to allow mining on local devices because
of their restricted computational capabilities (Jiang et al., 2019).
According to (Wang et al., 2019), mobile edge computing (MEC)
is an exciting new technology that has the potential to improve
the computational capabilities of miners/IoTDs by offloading the
mining tasks to a MEC server. Several studies and experiments
have been carried out on wireless blockchain networks integrated
with MEC. For example, Wang, K., et al. (Liu et al., 2018) proposed a
wireless blockchain framework enabled by MEC to offload
computation-intensive mining tasks to nearby edge computing
nodes to achieve the computational capabilities required during
the mining process. Despite this, this framework did not take into
account the MEC service provider (MSP)’s profit. Luong, N.C., et al.
(Luong et al.) developed a deep learning model for resource alloca-
tion in the wireless blockchain networks enabled by MEC. Du, J.,
et al. (Du et al., 2021) suggested a deep reinforcement learning
algorithm to determine resource allocation and price for maximiz-
ing all miners’ total profit. Several other works in MEC-supported
blockchain networks are extensively discussed in (Wang et al.,
2021).

The resource allocations and mining decision in the wireless
blockchain network enabled by MEC could be formulated as an
optimization problem that could be optimized by the metaheuris-
tic and evolutionary algorithms for maximizing the profits of all
miners. There are several metaheuristic optimization algorithms
proposed for tackling several optimization problems, some of them
are the dwarf mongoose optimization algorithm (Agushaka et al.,
2022), the gazelle optimization algorithm (Agushaka et al., 2023),
the adaptive hybrid dandelion optimizer (Hu et al., 2023), and
the opposition-based artificial hummingbird algorithm (Laith
et al., 2023). Those algorithms in the literature could achieve out-
standing outcomes for several optimization problems, so some
researchers have recently paid attention to applying them for
jointly optimizing the decision mining, transmission power, and
computing resources of all miners (Wang et al., 2021). For instance,
in (Wang et al., 2021), a new variant of the differential evolution
technique known as DEMiDRA was proposed for optimizing
resource allocation in the blockchain network. In DEMiDRA, each
solution symbolizes the resource allocation of one of the partici-
2

pant miners, and the population as a whole is comprised of the
resource allocations of all participant miners. Regarding optimizing
the mining decision to enhance efficiency, the population size is
updated based on three operators (Insertion, deletion, and replace-
ment) within the optimization process to adjust the number of
participating miners. In (Hussien et al., 2023), the Henry single
gas solubility optimization algorithm was improved using the
chaotic maps to present a new variant, namely CHSGSO, with bet-
ter exploration and exploitation operator. This variant was applied
for optimizing mining decisions and resource allocation in the
blockchain network integrated with MEC to improve the efficiency
of the mining process. In addition, Shijing Yuan et al. (Yuan et al.,
2022) developed an optimization approach for an edge video
streaming system that makes use of blockchain technology. The
approach seeks to find the best balance between precision and
power consumption by optimizing the offloading mode and allo-
cating resources accordingly.

To the best of our knowledge, no study in the literature, with
the exception of (Wang et al., 2021), has been proposed to optimize
both the MSP’s profit and the resource allocation in the wireless
blockchain network enabled by MEC technology. Even though
DEMiDRAwas proposed to optimize those two issues, it still suffers
from some shortcomings, like falling into local minima and low
convergence speed, which prevent it from achieving highly accu-
rate outcomes. In addition, a few studies have employed the meta-
heuristics algorithm for solving this problem. Therefore, in this
paper, several recently published metaheuristic algorithms are
adapted to tackle this problem under two different encoding
schemes. The first scheme represents the individuals in a form that
makes each individual includes the computing resources, trans-
mission power, and mining decision of all miners. On the contrary,
the second scheme makes each individual responsible for the com-
puting resources and transmission power of a participant miner;
hence, all individuals are considered a single solution to the tackled
problem. Regarding optimizing mining decisions under this
scheme, three operators are employed to adjust the population size
to insert, delete, and replace a participating miner at each function
evaluation in the hope of finding a near-optimal number of partic-
ipating miners that could improve efficiency. Under the first
scheme, the mining decision is based on a binary variable to deter-
mine if a miner partakes in mining or not. Since the majority of
metaheuristics were designed to deal only with continuous prob-
lems, they could not be directly applied to tackle this problem.
Therefore, various V-shaped and S-shaped transfer functions were
investigated to find the best-performing one with the metaheuris-
tic algorithms. However, we found that the performance of the
classical metaheuristics still needs robust improvements. There-
fore, both Nutcracker optimization algorithm and gradient-based
optimizer are modified to propose two robust variants, namely
MNOA and MGBO, respectively. Those variants have better explo-
ration and exploitation operators. To further optimize the resource
allocation and mining decision, both MNOA and MGBO is effec-
tively integrated to present a new variant called HNOA. Under
two encoding schemes, the proposed HNOA and the other variants
are validated using nine instances with several miners ranging
between 150 and 600. In addition, HNOA is compared to several
rival optimizers to reveal its effectiveness in terms of several per-
formance metrics. According to the experimental findings, the per-
formance of HNOA under the second encoding scheme is
significantly better than its performance under the first encoding
scheme and the rival optimizers, like DEMiDRA. The main contri-
butions of this study are as follows:

� Investigating the performance of several recently published
metaheuristic algorithms for jointly optimizing resource alloca-
tion and mining decisions.
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� Investigating the performance of two different encoding
schemes with various adapted algorithms.

� Investigating the performance of various S-shaped and
V-shaped transfer functions to pick the most effective one.

� Modifying both NOA and GBO to propose robust variants,
namely MGBO andMNOA, with better exploration and exploita-
tion operators for achieving better outcomes for the considered
problem.

� To further enhance the outcomes, both MGBO and MNOA are
effectively integrated to propose a better variant called HNOA.

� Validating HNOA and the other variants using nine instances
with a number of miners ranging between 150 and 600

� Comparing HNOA to several rival optimizers, like DEMiDRA, to
reveal its effectiveness in terms of several performance metrics

� Under the second encoding scheme, the experimental findings
disclose the HNOA’s superiority in comparison to all the rival
optimizers.

The remaining sections of this paper are structured as that: Sec-
tion 2: Briefly discusses the problem formulation; Section 3: over-
views the classical NOA and GBO; Section 4: explains the proposed
algorithm; Section 5: reports the experimental settings; Section 6:
shows results and discussion; Section 7: presents the conclusion
and future work.
2. System model and problem formulation

In Fig. 1, wireless blockchain network with MEC is depicted.
This figure includes a set of m miners, denoted as
N ¼ 1;2; � � � ;m½ �, to take part in the mining process (Liu et al.,
2018). The miners, who decide to participate in the mining process,
need to acquire computational resources from the MSP. After that,
they need to offload their tasks to the MEC server. In this study, the
mining task of the ith miner is represented by two factors:BSi and
Zi, where they indicate the block size and computing intensity of
the task allocated to the ith miner, respectively. In the blockchain
network that was herein studied, the mining task is not deemed
to be finished until all following three steps: offloading, mining,
and propagation processes have been successfully performed. Only
after all three steps have been successfully completed is the miner
eligible to get a reward. In the event that a miner chooses not to
Fig. 1. Wireless blockchain network

3

partake in mining or is unable to successfully finish its mining task,
the miner will not be eligible for any reward (Liu et al., 2018).

In this paper, a vector D ¼ D1;D2;D3; � � � ;Dm½ � is used to repre-
sent the mining decisions of m miners; each ith dimension in this
vector includes either 0 to indicate that the ith miner does not par-
ticipate in the mining or 1 to indicate that it decides to participate.
Not all miners will participate in the mining process, so we repre-
sent the participating miners with a set N0, while the total miners
are represented with a set N. The number n0 of participating miners
could be easily computed as follows: n0 ¼Pi2NDi. Additionally,
each miner, who intends to partake in the mining process, needs
two resources, including the MEC server’s computing resources
(CPU Cycles/s) and the IoTD’s transmission power. Those resources
are represented in this paper using two vectors: the first vector is
represented as p ¼ p1; p2; p3; � � � ; pn0½ � to include the transmission
power allocated to the participant miners pi i 2 N0ð Þð Þ, and the sec-
ond vector is represented as f ¼ f 1; f 2; f 3; � � � ; f n0½ � to include the
computing resources allocated to the participating miners
f i i 2 N0ð Þð Þ.

2.1. Offloading step

During this stage of the process, all the participating miners
send their tasks simultaneously to the MEC server. The formula
for expressing the rate of transmission of the ith participant miner
is computed as follows:

Ri ¼ Wlog2 1þ piHi

r2 þPj2N0nimjpjHj

 !
;8i 2 N0 ð1Þ

where W represents the channel bandwidth, Hi indicates the
channel state data for the ith participant miner, pi refers to the
transmission power allocated to ith participant miner, r2 repre-
sents the power of the background noise. Then, the amount of time
needed for transmission and the amount of energy needed to com-
plete the task for the ith participant miner can be computed
respectively according to the following formula:

Tt
i ¼

BSi
Ri

;8i 2 N0 ð2Þ

Et
i ¼ piT

t
i ;8i 2 N0 ð3Þ
with mobile edge computing.
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2.2. Mining step

During this stage, the responsibility of the MEC server is to carry
out the mining tasks that have been communicated to the partici-
pants. The mining duration and the amount of energy required to
complete the task for the ith participant miner are respectively sta-
ted as:

Tm
i ¼ BSiXi

f i
;8i 2 N0 ð4Þ

Em
i ¼ k1f

3
i T

m
i ;8i 2 N0 ð5Þ

where k1 represents the coefficient of effective capacitance.
According to (Xiong et al., 2018), a miner on a blockchain network
who completes a mining task in a shorter amount of time has a
greater chance of being rewarded. As a result, the assumption
has been made that the probability of a miner obtaining the reward
is negatively proportional to its mining duration, which can be
modeled using the following formula (Wang et al., 2021):

Pm
i ¼ k2

Tm
i

;8i 2 N0 ð6Þ

where k2 represents the scaling factor.

2.3. Propagating step

Even if the miner successfully completes the mining phase, they
will not be eligible for a reward if the result of the mining step
takes a long time to spread throughout the network. The reasoning
behind this is based on the fact that under these conditions, it is
possible that the consensus is going to fail, and the block may be
abandoned, which is referred to as orphaning (Liu et al., 2018). In
blockchain networks, blocks are generated according to a Poisson
process with a constant mean rate, and their propagation time To

i

is proportional to the block size BSi (Xiong et al., 2018). The
orphaning likelihood of the ith miner is computed according to
the following formula (Wang et al., 2021):

Po
i ¼ 1� e�k Toi þTsið Þ;8i 2 N0 ð7Þ

To
i ¼ zBSi ð8Þ
where z represents a specific delay factor and Ts

i indicates the
time at which the ith participant miner begins mining its block.
In this study, the mining task assigned to the ith participant miner
will be carried out as soon as it is obtained by the MEC server;
hence, Ts

i ¼ Tt
i .

2.4. Profit model

The reward received by a miner is comprised of two parts: a
variable reward and a fixed reward. Furthermore, a miner needs
to consume some costs related to communication and computa-
tion. The profit earned by the ith miner who participates is deter-
mined by the following formula:

Fm
i ¼ wþ aBSið ÞPm

i 1� Po
i

� �� c1E
t
i � c2f i ð9Þ

wherew stands for the fixed reward, aBSi stands for the variable
reward, a stands for the variable reward factor, and c2 and c1 stand
for the costs of the computation resources and transmission
energy, respectively. Finally, the profit of all miners could be esti-
mated using the following formula:

FT ¼
X
i2N0

Fm
i ð10Þ
4

Furthermore, the MSP generates revenue through the sale of
computing resources to miners. However, it is imperative for the
MSP to cover its energy consumption costs, which encompass both
the energy consumed during mining and the energy consumed at
no-load. Hence, the profitability of the MSP can be mathematically
represented as follows:

FMSP ¼
X
i2N0

c2f i � c3E
m
i

� �� c3E0 ð11Þ

where c3 represents the cost of energy that is required by the
MSP, while E0 indicates the amount of energy that is consumed
by the MSP at no-load.

2.5. Problem formulation

In the blockchain network that is studied in this paper, optimiz-
ing jointly both mining decisions and resource allocations repre-
sented in the transmission power and computing resource is
considered a crucial problem that needs to be accurately tackled
to optimize the aggregate profit of all miners. According to
(Wang et al., 2021), the mathematical model of this problem is
described as follows:

MaxFT ¼
X
i2N0

Fm
i ð12Þ

Subject to the following constraints:

C1 : Di 2 0;1f g;8i 2 N

C2 : pmin � pi � pmax;8i 2 N0

C3 : f min � f i � f max
;8i 2 N0

C4 :
X
i2N0

f i < f total

C5 : FMSP � 0

C6 ¼ Tt
i þ Tm

i þ To
i � Tmax

i ;8i 2 N0

We assume that all IoTDs in the examined blockchain network
have the same minimum andmaximum transmit power pmin; pmax

� �
and compute resources f min

; f max
h i

, respectively.

3. Methods

3.1. Gradient-based optimizer

Recently, a population-based optimization algorithm, referred
to as the gradient-based optimizer (GBO), was introduced for solv-
ing global optimization and engineering optimization problems
(Ahmadianfar et al., 2020). This algorithm makes use of the New-
ton method to guide the individuals participating in the optimiza-
tion process to find the near-optimal solutions to several
optimization problems. The GBO approach consists of two parts,
each of which is discussed in greater depth below.

� Gradient search rule (GSR) phase

The GBO algorithm achieves rapid convergence and avoids
entrapment in local optima by using gradient-based directions to
ease agent motions during solution hunting. In this step, a vital
variable designated q1 is used to strike a balance between exploita-
tion and exploration, allowing the algorithm to more swiftly and
effectively avoid local minima and arrive at near-optimal solutions.
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q1 could be computed according to the following mathematical
equation:

q1 ¼ 2� r � a� a ð13Þ

a ¼ b� sin
3p
2

þ sin b� 3p
2

� �� �����
���� ð14Þ

b ¼ bmin þ bmax � bminð Þ � 1� t
tmax

� �3
 !2

ð15Þ

where bmax and bmin includes constant numbers of 1.2 and 0.2,
respectively, t represents the current function evaluation, and
tmax indicates the maximum number of function evaluations. After-
ward, The GSR based on q1 could be computed according to the fol-
lowing mathematical equation to balance between exploration and
exploitation of GBO:

GSR ¼ rn� q1 �
2Dx� Xn

X
!t

w � X		!þ e
ð16Þ

where rn is a numerical value generated at rondom using the
normal distribution, e is a so small value to avoid division by zero,

X
!t

w represents the worst solution, and X		! is the best-so-far solu-
tion. Dx is computed according to the following formula:

Dx ¼ r!� Sj j ð17Þ

S ¼
X t�1ð Þ

	 � X t�1ð Þ
a


 �
þ d

2
ð18Þ

d ¼ 2� r2 � X t�1ð Þ
a þ X t�1ð Þ

b þ X t�1ð Þ
c þ X t�1ð Þ

d

4

�����
������ X t�1ð Þ

i

 !
ð19Þ

where r2 is a number selected randomly in the interval [0, 1]
according to the uniform distribution; a, b, c, and d are the indices
of four solutions selected at random from the current population.

In accordance with GSR, a new solution X1 tð Þ
i for the ith individual

could be generated as described in the following mathematical
formula:

X1 tð Þ
i ¼ X t�1ð Þ

i � GSR ð20Þ
However, this newly generated solution still needs an enhance-

ment to exploit the search space extensively. Therefore, the move-
ment direction (DM) was utilized to improve the convergence
speed of GBO for achieving the desired solutions in a less number

of function evaluations. X1 tð Þ
i based on both GSR and DM could be

computed using the following formula:

X1
	!tþ1

i ¼ X
!t

i � GSRþ DM ð21Þ

DM ¼ r � q2 � X		!� X
!t

i

� �
ð22Þ

q2 ¼ 2� r � a� a ð23Þ
However, in a new attempt to improve the exploration capabil-

ities of GBO, according to (Ahmadianfar et al., 2020); X1 tð Þ
i could be

related with the newton method according to the following
formula:

X1
	!t

i ¼ X
!t

i � rn� q1 �
2Dx 	 Xn

ypt
i � yqt

i þ e
þ r � q2 � X		!� X

!t

i

� �
ð24Þ
5

where yq t�1ð Þ
i and yp t�1ð Þ

i could be computed using the following
formula:

yp t�1ð Þ
i ¼ r

z t�1ð Þ
i þ x t�1ð Þ

i

h i
2

þ r 	 Dx
0
@

1
A ð25Þ

yq t�1ð Þ
i ¼ r

z t�1ð Þ
i þ x t�1ð Þ

i

h i
2

� r 	 Dx
0
@

1
A ð26Þ

where z t�1ð Þ
i is mathematically defined as follows:

z t�1ð Þ
i ¼ xi � rn	!� 2Dx� xn

X
!t

w � X		!þ e
ð27Þ

where rn	! is a vector assigned with numbers that are randomly

obtained according to the normal distribution. X1
	!tþ1

i is employed
for exploring the search space as much as possible to avoid getting
stuck into local minima. To strength the GBO’s exploitation opera-

tor, an additional solution X2
	!tþ1

i for the ith individual is generated
to exploit the regions around the best-so-far solution in an attempt
to accelerate the convergence speed towards the near-optimal
solution. The mathematical formula that could be used for comput-

ing X2
	!tþ1

i is defined as follows:

X2
	!tþ1

i ¼ X		!� r � q1 �
2Dx� Xn

ypt
i � yqt

i þ e
þ r � q2 � X		!� X

!t

i

� �
ð28Þ

Ultimately, in accordance with (Ahmadianfar et al., 2020), the
new solution of each individual could be generated based on three

vectors, X1 tð Þ
i , X2 tð Þ

i , and X3 tð Þ
i , as shown in the following mathemat-

ical formula:

X
!tþ1

i ¼ ra rb � X1
	!tþ1

i þ 1� rbð Þ � X2
	!tþ1

i

� �
þ 1� rað Þ � X3

	!tþ1

i ð29Þ

X3
	!tþ1

i ¼ X
!t

i � q1 � X2
	!tþ1

i � X1
	!tþ1

i

� �
ð30Þ

where ra and rb are two numerical values generated at random
in the range [0, 1] based on the uniform distribution.

� Local escaping operator ‘

The GBO algorithm is combined with a unique operator called
the local escaping operator (LEO) to further avoid being stuck in
local minima and to speed up convergence towards the near-
optimal solution. The mathematical model of this operator is
defined as follows:

X
!tþ1

i ¼

X
!t

i þ f 1 u1 x
!t

	 � u2 x
!tþ1

k


 �
þf 2q1 u3 X2

	!tþ1

i � X1
	!tþ1

i

� �� �

þ
u2 x!t

a� x!t

b


 �
2 ; r < 0:5andr1 < pr

X		!þ f 1 u1 X
		!� u2 x

!tþ1
k


 �
þf 2q1 u3 X2

	!tþ1

i � X1
	!tþ1

i

� �� �

þ
u2 x!t

a� x!t

b


 �
2 ; r � 0:5andr1 < pr

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

ð31Þ



M. Abdel-Basset, R. Mohamed, I.M. Hezam et al. Journal of King Saud University – Computer and Information Sciences 35 (2023) 101779
where pr is a predefined probability between 0 and 1 to deter-
mine the percent of applying LSO within the optimization process,
f 1, and f 2 are two random numbers chosen randomly in the range
[1, �1] according to the uniform distribution. u2, u1, and u3 are
computed according to the following formula:

u1 ¼ 2r1ifl1 < 0:5
1otherwise

�
ð32Þ

u2 ¼ r1; ifl1 < 0:5
1; otherwise

�
ð33Þ

u3 ¼ r1; ifl1 < 0:5
1; otherwise

�
ð34Þ

where r1 and l1 are numerical values generated randomly
between 0 and 1 according to the uniform distribution. xtþ1

k is com-
puted using the following mathematical equation:

x!tþ1
k ¼ x!r; ifl2 < 0:5

x!t
a; otherwise

(
ð35Þ

where xr is an individual chosen at random within the lower
bound and upper bound of the tackled optimization problems, as
defined in the following formula:

x!r ¼ x!l þ r! x!u � x!l


 �
ð36Þ

where l2 is a numerical value generated randomly between 0

and 1 according to the uniform distribution, x!l and x!u represent
the lower and upper bound of the tackled optimization problem.
The steps of GBO is described in Algorithm 1.

Algorithm 1 (GBO’s Steps).

Input: population size PS, and Tmax;

Output: X		!
1. Initialize N individuals, Xi i 2 Nð Þ.
2. Evaluate each individual and identify the best and

worst solutions
3. t = 1; %% Function evaluation counter
4. while (t < Tmax)
5. f or each i individual
6. Select randomly a–b–c–d–i.
7. // GSR strategy.

8. Generate X
!tþ1

i by (29)
9. // LEO Strategy

10. Generate Xtþ1
i by (31)

11. t++ %% Increment the current function evaluation
12. End
13. Update X		! and X

!t

w

14. End

3.2. Nutcracker optimization algorithm

In order to solve global optimization and technical optimization
challenges, the Nutcracker optimization Algorithm (NOA) was
recently introduced (Abdel-Basset, 2023). The nutcracker’s forag-
ing, storing, and retrieval of pine seeds are all modeled in NOA.
There are two main types of nutcracker behavior, and they both
happen at different times. The NOA’s steps are described in Algo-
rithm 2. Following is a detailed explanation of the two primary
strategies (Foraging and storage strategy and Cache-search and
6

recovery strategy) upon which the mathematical model of NOA
is built.

� Foraging and storage strategy
� Foraging stage: Exploration phase 1

This is considered the initial exploration stage in NOA. Initially,
the positions of the nutcrackers within the search space are deter-
mined at random. Afterwards, each nutcracker begins by examin-
ing the seed cone’s initial positions. If the nutcracker discovers
viable seeds, it will transfer them to a storage location and conceal
them in a cache. If it is unable to find any viable seeds in one pine
cone, the nutcracker will move on to another area with trees of a
different species. This pattern of behavior can be modeled as
follows:

X
!tþ1

i ¼

Xt
i;jifs1 < s2

Xt
m þ c � Xt

a;j � Xt
b;j


 �
þl: r2:xu;j � xl;j

� �
; ift � Tmax=2:0

Xt
C;j þ l � Xt

a;j � Xt
b;j


 �
þl: r1 < dð Þ: r2:xu;j � xl;j

� �
;Otherwise

8>>>>>><
>>>>>>:

otherwise

8>>>>>>>>><
>>>>>>>>>:

ð37Þ

where Xt
i;j indicates the jth decision variable of the ith solution at

function evaluation t; c includes a numerical value selected at ran-
dom according to the levy-flight; a, b, and c are the indices of three
solutions selected at random from the current population; s1, s2, r,
and r1 are numbers chosen at random in the interval [0, 1] accord-
ing to the uniform distribution; Xt

m;j is the mean of the jth dimen-
sions in all individuals; and l is a number selected at random
according to the following formula:

l ¼
s3ifr1 < r2
s4ifr2 < r3
s5ifr1 < r3

8><
>: ð38Þ

where r2, r3, and s4 are three numerical values chosen at ran-
dom in the interval [0, 1] according to the uniform distribution.
s4 is a numerical value selected at random based on the normal
distribution, and s5 is a numerical value selected at random based
on the levy-flight.

� Storage stage: Exploitation phase 1

In this stage, the nutcrackers gather and store pine seed har-
vests. This behavior is represented by the equation listed below:

X
!tþ1

i ¼

X
!t

i þ l � X		!� X
!t

i

� �
� kj j þ r1 � X

!t

a � X
!t

b

� �
ifs1 < s2

X		!þ l � X
!t

a � X
!t

b

� �
ifs1 < s3

X		! � lOtherwise

8>>>>>><
>>>>>>:

ð39Þ
where k includes a numerical value randomly selected based on

the l�evy flight. l represents a controlling factor that includes
numerical value reducing linearly from 1 to 0. The following for-
mula balances exploitation and exploration operators through a
tradeoff between the first exploitation and exploration operators
of NOA during the optimization process:

X
!tþ1

i ¼ Eq: 37ð Þ; ifu < Pa1

Eq: 39ð Þ; otherwise

�
ð40Þ
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where u is a numerical value chosen at random between 0 and
1 according to the uniform distribution, and Pa1 is estimated using
the following formula:

Pa1 ¼ 1� t
Tmax

ð41Þ

� Cache-search and recovery strategy
� Cache-search stage: Exploration phase 2

As soon as winter approaches and the trees lose their leaves,
nutcrackers begin searching for their hidden food stores. This is
the second exploration stage for the NOA. The nutcrackers use a
system that taps into their spatial memories to lead them to their
hidden stores of nuts. Many objects may be used by nutcrackers as
signals for a single cache. To keep things straightforward, the
authors assumed that each cache has only two markers or signals.
As shown in the matrix below, each nutcracker in NOA uses two
reference points (RPs) for each cache as signals:

RPs ¼

RP
	!t

1;1 RP
	!t

1;2

..

. ..
.

RP
	!t

i;1

..

.

RP
	!t

N;1

RP
	!t

i;2

..

.

RP
	!t

N;1

2
66666666664

3
77777777775

ð42Þ

where RP
	!t

i;1 stands for the first RP for the i th solution at func-
tion evaluation t. Two separate equations were devised to generate
the first and second RPs, respectively, in order to enhance the nut-
cracker searching process for hidden caches. The first RP can be
derived using (43), and the second RP can be derived using (44).

RP
	!t

i;1 ¼
X
!t

i þ a � cos hð Þ � X
!t

a � X
!t

b

� �� �
þ a � RP; if h ¼ p=2

X
!t

i þ a � cos hð Þ � X
!t

a � X
!t

b

� �� �
; otherwise

8>>><
>>>:

ð43Þ

RP
	!t

i;2 ¼
X
!t

i þ a � cos hð Þ � xu
!� xl

!
 �
� s3 þ xl

!
 �
þ a � RP


 �
�U2
	!

; ifh ¼ p=2

X
!t

i þ a � cos hð Þ � xu
!� xl

!
 �
� s3 þ xl

!
 �
� U2
	!

; otherwise

8>>>><
>>>>:

ð44Þ

U1
	! ¼ 1r2

!
< Prp

0otherwise

(
ð45Þ

where r2
! represents a vector including numerical values gener-

ated at random between 0 and 1 based on the uniform distribu-
tion; h is a number chosen at random in the range [0, 1]
according to the uniform distribution; and Prp represents the
exploration rate and is predefined between 0 and 1; and a is esti-
mated by the following equation:

a ¼
1� t

Tmax


 �2 t
Tmax

; ifr1 > r2

t
Tmax


 �2
t
; otherwise

8>><
>>: ð46Þ
7

NOA employs the following formula to activate the spatial
memory of the ith nutcracker for the first RP:

X
!tþ1

i ¼
X
!t

i ; iff X
!t

i

� �
< if RP

	!t

i;1

� �

RP
	!t

i;1; otherwise

8><
>: ð47Þ

� Recovery stage: Exploitation phase 2

In the first scenario, a nutcracker recalls the cache’s location
using the initial RP. The following mathematical model illustrates
this behavior:

Xtþ1
ij ¼

Xt
ij; ifs3 < s4

Xt
ij þ r1 � X	

j � Xt
i;j


 �
þ r2 � RP

	!t

i;1 � Xt
c;j

� �
; otherwise

8><
>:

ð48Þ
where r1; r2; s3ands4 are numerical values chosen at random

between 0 and 1 according to the uniform distribution. If a nut-
cracker is unable to access its cache using the first RP, it will use
its spatial memory to move to the second RP, as shown in the fol-
lowing equation:

X
!tþ1

i ¼
X
!t

i ; iff X
!t

i

� �
< if RP

	!t

i;2

� �

RP
	!t

i;2; otherwise

8><
>: ð49Þ

Eq. (48) is altered in NOA to search for the cache’s location using
the second RP, as defined in the following equation:

Xtþ1
ij ¼

Xt
ij; ifs5 < s6

Xt
ij þ r1 � X	

j � Xt
ij


 �
þ r2 � RP

	!t

i;2 � Xt
cj

� �
; otherwise

8><
>: ð50Þ

where s5ands6 are two numbers selected at random between 0
and 1 according to the uniform distribution. The following equa-
tion depicts the tradeoff between the second and first RPs in recov-
ery behavior:

X
!tþ1

i ¼ Eq: 48ð Þ; ifs7 < s8
Eq: 50ð Þ; otherwise

�
ð51Þ

where s7 and s8 are two numbers selected at random between 0
and 1 according to the uniform distribution. In order to locate the
cache, the spatial memory between the second RP, the first RP, and
the current position is activated using the following equation:

X
!tþ1

i ¼ Eq: 47ð Þ; iff Eq: 47ð Þð Þ < f Eq: 49ð Þð Þ
Eq: 49ð Þ; otherwise

�
ð52Þ

The recovery and cache-search phases are then randomly
switched using the following formula in order to strike a balance
between exploitation and exploration operators:

X
!tþ1

i ¼ Eq: 51ð Þ; if/ < Pa2

Eq: 52ð Þ; otherwise

�
ð53Þ

where Pa2 is a predetermined value in the range between 0 and
1 that represents the likelihood of reaching the exploitation stage
throughout the optimization process. However, in the NOA algo-
rithm, the nutcracker will remain in its existing position if the
quality of its current solution is better than that of the new solu-
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tion; otherwise, the new solution is used in the next generation
instead of the current solution, as defined in the following
equation:

X
!tþ1

i ¼
X
!tþ1

i ; iff X
!tþ1

i

� �
< f X

!t

i

� �

X
!t

i ; otherwise

8><
>: ð54Þ

Algorithm 2 (Steps of NOA).

Input: population size PS, xl
!, xu

!, and Tmax;

Output: X		!
1. Initialize PS individuals, Xi i 2 Nð Þ.
2. Evaluate each individual and identify the best and

worst solutions
3. t = 1; %% Function evaluation counter
4. while (t < TmaxÞ
5. r, r1, and u: three numerical values generated at

random in the interval 0 and 1.
6. If r < r1 //* Foraging and storage strategy*//
7. for i = 1:N
8. if u <Pa1 /* Exploration phase1*/

9. Generate X
!tþ1

i using (37) and (54)
10. else /*Exploitation phase1*/

11. Generate X
!tþ1

i using (39) and (54)
12. end if
13. t þþ
14. end for
15. else //* Cache-search and recovery strategy *//
16. Calculate RP matrix using (42), (43) and (44).
17. for i = 1:N
18. if / <Pa2 /*Exploitation phase2*/

19. Generate X
!tþ1

i using (51) and (54)
20. else /*Exploration phase2*/

21. Generate X
!tþ1

i using (52) and (54)
22. end if
23. t þþ
24. end for
25. end while
Fig. 2. Solutions representation using t

8

4. Proposed algorithm

4.1. Solution representation

The first step for solving the majority of the optimization prob-
lems is based on picking the optimal encoding scheme that could
efficiently represent the solutions inside the population in the
hope of fulfilling two purposes: (1) Alleviating the high dimension-
ality problem and (2) Making all variables in the solution homoge-
nous to avoid mixed-variable problems that might deteriorate the
performance of the optimization technique. The problem tackled in
this paper is considered a mixed-variable optimization problem
because its solutions include binary and continuous variables.
The binary variables symbolized as D aim to determine whether
miners take part in the mining process or not, while the continuous
variables represent the computing resources and transmission
power for each participant miner. In the literature, two encoding
schemes were proposed to represent the solutions to this problem.
The first scheme is widely used, while the second scheme is
recently proposed and still needs further investigation to confirm
its efficiency with the recently published metaheuristics. In detail,
those two encoding schemes are discussed in the next section.

� Commonly-used encoding scheme (Wang, 2021): This scheme
has been widely considered in the literature for solving this
problem, but it is not considered optimal because it suffers from
high dimensionality problems in addition to mixing both binary
and continuous variables in the same solution. In a more sense,
it integrates the computing resources, transmission power, and
mining decision for each miner in each individual inside the
population. Hence, if the number of miners is m, the length of
dimensions for each solution must be 3m, as depicted in
Fig. 2. This is not considered a feasible manner, especially with
increasing the number of miners. Furthermore, this scheme
mixes both binary and continuous variables in the same solu-
tion, and hence the metaheuristic algorithms could not be
directly adopted for solving this problem because their majority
is only designed for continuous optimization problems. In our
study, we investigate the performance of this scheme with
some recently-published metaheuristic algorithms to experi-
mentally show its poor performance. To adopt these algorithms
for the binary variables, one of the S-shaped and V-shaped
transfer functions, which are modeled in Table 1 and depicted
in Figs. 3 and 4, is used to normalize the continuous values of
he widely-used encoding scheme.



Table 1
Mathematical model of S-shaped and V-shaped.

S-Shaped V-Shaped

S1 F X
!
 �

¼ 1

1þe�X
! V1 F X

!
 �
¼ 2

p arcTan p
2 X
!
 ���� ���

S2 F X
!
 �

¼ 1

1þe�2X
! V2 F X

!
 �
¼ tanh X

!
 ���� ���
S3 F X

!
 �
¼ 1

1þe�
X
!
2

V3 F X
!
 �

¼ affiffiffiffiffiffiffiffiffiffiffi
1þX
!

2

q
������

������
S4 F X

!
 �
¼ 1

1þe�
X
!
3

V4 F X
!
 �

¼ erf
ffiffiffi
p

p
2 X
!
 ���� ���

Fig. 3. S-shaped transfer functions.

Fig. 4. V-shaped transfer functions.
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the decision mining between 0 and 1. Then, they are compared
to random value (randÞ to convert them into binary values 0 and
1, as shown in (55). Those transfer functions are investigated
with HNOA to pick the most effective one that could maximize
its performance when jointly optimizing the resource allocation
and mining decision.

X
!

bin X
!
 �

¼ 1 if F X
!
 �

� r and

0 otherwise

(
ð55Þ

� Recently-proposed encoding scheme (Wang, 2021): This
scheme has been recently proposed to overcome the drawbacks
of the former scheme. In this scheme, the transmission power
and computing resources for each miner are represented by a
unique individual in the population; hence, if the number of
miners is m, the number of dimensions in each solution is fixed
to 2 and the population size (PS) is ofm to make each individual
responsible for only a miner, as depicted in Fig. 5. This scheme
avoids the dimensionality problem because it fixes the number
of dimensions to 2 and extends the individuals in the popula-
tion according to the length of participating miners. In the
end, all individuals are considered a solution to the tackled
problem, and the profit of each individual or miner is computed
and summed with the others to compute the total profit that
9

represents the objective value to all individuals in the popula-
tion. Notably, this encoding scheme takes mining decisions into
account even though they are not explicitly encoded into
population.

4.2. Modified gradient-based optimizer

In GBO, a new solution for each individual could be generated
based on relating three vectors, X1tþ1

i , X2tþ1
i , and X3tþ1

i using ran-
dom numbers as modeled in (29). However, using random num-
bers might deteriorate the stability of the algorithm, and hence
the algorithm might lose its ability to find better solutions within
the rest of the optimization process. To avoid this problem, in
our proposed, Eq. (29) is modified to alleviate the randomization
process as an attempt to aid GBO in achieving better outcomes
within the optimization process; this new variant of GBO is called
MGBO. This modification is based on removing the random num-
ber rb from the equation and relate three vectors using only the
random number ra as shown in the following mathematical
equation:

X
!tþ1

i ¼ ra X1
	!tþ1

i þ X2
	!tþ1

i

� �
þ 1� rað Þ � X3

	!tþ1

i ð56Þ

In this equation, if ra is small, then the preference is toward the

third vector X3
	!tþ1

i ; otherwise, the preference is toward the addi-
tion of the other two vectors. This equation could achieve better
outcomes than the original one because reducing the randomiza-
tion numbers makes the optimization process dependent more
on the individual’s information in the population. For example, in
the original equation, using two different random numbers might
cause the algorithm to move in several directions within the opti-
mization process and hence if the near-optimal solution is found in
a specific direction. The algorithm could not follow it because the
random numbers might differ. Therefore, reducing the random
number in the equation aids the algorithm in following the experi-
ence of the individuals to achieve better outcomes. To further
improve the MGBO’s performance, the LEO operator is eliminated
to minimize the population diversity within the optimization pro-
cess as an attempt to accelerate the convergence speed towards
the near-optimal solution. Finally, the MGBO’s pseudocode is
shown in Algorithm 3.



Fig. 5. Solution representation using the recently-proposed encoding scheme.
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Algorithm 3 (MGBO’s Steps).

Input: population size PS, and Tmax;

Output: X		!
1. Initialize N individuals, Xi i 2 Nð Þ.
2. Evaluate each individual and identify the best and

worst solutions
3. t = 1; %% Function evaluation counter
4. while (t < Tmax)
5. f or each i individual
6. Select randomly a–b–c–d–i.
7. // GSR strategy.

8. Generate X
!tþ1

i by (56)
9. t++ %% Increment the current function evaluation

10. End
11. Update X		! and X

!t

w

12. End
Fig. 6. Flowchar

10
4.3. Modified nutcracker optimization algorithm

NOA is based on two exploration operators and two exploita-
tion operators. Those operators aid in achieving outstanding out-
comes for several optimization problems. The no-free theorem
says that whether the algorithm performs well on some optimiza-
tion problems, it is not essential that it have the same performance
on other optimization problems. Therefore, in this paper, we try to
improve the performance of NOA for jointly optimizing the
resource allocation and mining process by dispensing for some
equations and observing its performance under others. After
observing all possible combinations of the NOA equations, we
found that NOA could perform well in this problem when reformu-
lated (37) into (57) and formulated (39) into (58). Those equations
are implemented in the same order as the classical NOA to propose
t of HNOA.
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a modified variant known as MNOA, as shown in algorithm 4.
Regarding the other equations, we found that dispensing for them
could significantly improve the performance of NOA

X
!tþ1

i ¼
Xt

i;jifs1 < s2

Xt
C;j þ l � Xt

a;j � Xt
b;j


 �
þ l: r1 < dð Þ: r2:xu;j � xl;j

� �
;

n
otherwise

8<
:

ð57Þ

X
!tþ1

i ¼
X
!t

i þ l � X		!� X
!t

i

� �
� kj j þ r1 � X

!t

a � X
!t

b

� �
ifs1 < s2

X		!þ l � X
!t

a � X
!t

b

� �
Otherwise

8>>><
>>>:

ð58Þ

Algorithm 4 (MNOA).
Input: population size PS, xl
!, xu

!, and Tmax;

Output: X		!
1. Initialize N individuals, Xi i 2 Nð Þ.
2. Evaluate each individual and identify the best and

worst solutions
3. t = 1; %% Function evaluation counter
4. while (t < TmaxÞ
5. r, r1, and u: three numerical values generated at

random in the interval 0 and 1.
6. for i = 1:N
7. if u <Pa1 /* Exploration phase*/

8. Generate X
!tþ1

i using (57) and (54)
9. else /*Exploitation phase*/

10. Generate X
!tþ1

i using (58) and (54)
11. end if
12. t þþ
13. end for
14. end while

4.4. Hybrid nutcracker optimization algorithm

MGBO has a robust exploration operator that enables it to
extensively explore the search space for finding the most promis-
ing regions, which might involve a near-optimal solution. How-
ever, its ability to exploit the regions around the current
solutions in the population is weak because its updating process
for the current solution is based on the three vectors discussed
before. On the contrary, MNOA has an outstanding exploitation
operator, which enables accelerating the convergence speed by
extensively focusing on the regions around the current solution
and the best-so-far solutions. So, both MNOA and MGBO are effec-
tively combined with a probability P to achieve a balance between
the exploration and exploitation operators. This is done to avoid
getting stuck in local optima and to speed up convergence so that
the near-optimal solution can be found in a small number of func-
tion evaluations. Eq. (59) defines how both MGBO and MNOA are
hybridized together to present a new strong variant called hybrid
NOA (HNOA) for jointly optimizing resource allocation and mining
decisions. The pseudocode of HNOA and its flowchart are pre-
sented in Algorithm 4 and Fig. 6, respectively.

ExecuteMNOAifr > P

ExecuteMGBO; otherwise

�
ð53Þ
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Algorithm 4 (HNOA).

Input: population size PS, xl
!, xu

!, and Tmax;

Output: X		!
1. Initialize N individuals, Xi i 2 Nð Þ.
2. Evaluate each individual and identify the best and

worst solutions
3. t = 1; %% Function evaluation counter
4. while (t < TmaxÞ
5. r, and u: three numerical values at random in the

interval 0 and 1.
6. if r <P %% Applying modified MNOA
7. for i = 1:N
8. if u <Pa1 /* Exploration phase*/

9. Generate X
!tþ1

i using (57) and (54)
10. else /*Exploitation phase*/

11. Generate X
!tþ1

i using (58) and (54)
12. end if
13. t þþ %% Increment the current function evaluation
14. end for
15. Else %% Applying modified MGBO
16. for each i individual
17. Select randomly a–b–c–d–i.
18. // GSR strategy.
19. Generate X

!tþ1

i by (56)
20. t þþ %% Increment the current function evaluation
21. End
22. End
23. end while

4.5. Adaptation of HNOA under commonly used encoding scheme

Before starting the optimization process, PS individuals are cre-
ated, where each individual is compounded of 3m dimensions. The
first m dimensions represent the mining decision for each miner
and are randomly initialized with 0 and 1 to decide whether the
miner corresponding to the current initialized dimension takes
part in the mining process or not; the following m dimensions rep-
resent the transmission power and are randomly initialized within
their lower and upper bounds of 0.1 and 2, respectively; the last m
dimensions represent the computing resources, which are also ini-
tialized at random in the range [0.01, 1] as its search boundaries, as
used in (Wang, 2021). After encoding the solutions, they are
assessed by (12) to determine their quality, and the solutions with
the highest profit, also referred to as objective value, are identified

as the best-so-far solution ( X		!), while that with the lowest objec-

tive value is considered the worst solution (X
!t

wÞ. Afterward, the
optimization process of HNOA starts to generate new solutions.
Those new solutions are fixed to convert the first m dimensions
in each solution into binary values, while the other dimensions
that exceed their lower and upper bounds are brought back again.

The fixed solutions are assessed using (12), and X		! and X
!t

w are
updated if there are better and worse solutions, respectively. This
optimization process is continued until reaching Tmax.

4.6. Adaptation of HNOA under recently proposed encoding scheme

Under this scheme, a number of PS individuals equivalent to the
number of miners is generated, where each individual includes two
dimensions, which represent the transmission power and comput-
ing resources, respectively. Those individuals are randomly initial-
ized within the search boundary of each dimension. All individuals
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represent a solution to the tackled optimization problem, and its
objective value is computed using (12). This solution is simultane-
ously considered the best-so-far solution and the worst solution.
Afterwards, the optimization process of HNOA and the other rival
optimizers is started to generate a new population in the hope that
it can optimize resource allocation accurately.

However, the mining decision has not been considered so far,
and hence the efficiency of the mining process might be worsened
due to the participation of some unpromising miners. Therefore, in
(Wang et al., 2021), the mining decision for the miners is consid-
ered by designing three operators: insertion, deletion, and replace-
ment operators. Those operators generate three new populations,
which could steadily increase, reduce, or remain unchanged. How-
ever, all operators are not applied in the same function evaluation
in an attempt to exploit the maximum function evaluation as accu-
rately as possible. According to (Wang et al., 2021), a single oper-
ator is selected in each function evaluation based on the random
values found in a probability vector r. This vector includes three
random numbers r1; r2; r3½ �; each number represents the selection
probability of each operator. Regarding the unpromising miners,
they are added to a tabu list, namely Tlist; this list is empty in
the beginning. In the beginning, all miners participate in the min-
ing process, so a vector m is generated and initialized with the
number of participating miners. This vector in addition to the cur-
rent population are updated based on the previous operators to
manage the participating miners. More details for three operators
are presented in the following list:

� Selection operator: This operator selects a miner at random
from those who are not already mining (Existing in m) or in
Tlist. Then, a new mining decision listm0 is generated to include
this miner, and then the resource allocation of the ith solution in
the newly generated population Xtþ1 is set to this miner in a
new population known as X0. Note that, before applying any
operator, X0 is equal to Xt , and m0 is equal to m.

� Deletion operator: In the beginning, this operator set Xt to X0,
and m to m0. Then, it randomly selects a miner from X0 and
delete it from X 0 and m0.

� Replacement operator: This operator randomly selects a miner
from X0 and assign it with the computing resources and trans-
mission power of the ith individual in the newly generated
population.

The objective value and constraint satisfaction of X 0 is computed
and compared to that of the current population Xt . If the fitness
value of X 0 is greater than that of Xt and its constraints are satisfied,
Xtþ1 ¼ X 0; otherwise, Xtþ1 ¼ Xt .
5. Experimental settings

In this paper, to validate the performance of HNOA, it is tested
on several instances with several miners ranging between 50 and
Table 2
The used blockchain network’s parameter settings.

Parameter Value Parameter

k 1=600 k1
f i 0:1;2½ � GCycles/s E0
a 0.005 Token/bit c1
c2 10 Token/GCycles Ti;max

r2 �174 dBm/Hz B
X 1:8eþ 5 Cycles/bit z
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600. The MEC server in the used blockchain network was placed
in the center of 1000� 1000m square area where all miners were
randomly dispersed. The other parameter settings of this net-
work are listed in Table 2. Broadly speaking, in this study, two
different experiments are conducted to investigate the perfor-
mance of HNOA under two different encoding schemes discussed
before. Under the commonly-used encoding schemes, nine meta-
heuristic algorithms, including generalized normal distribution
optimization (GNDO) (Zhang et al., 2020); gradient-based opti-
mizer (GBO) (Ahmadianfar et al., 2020); artificial gorilla troops
optimizer (GTO) (Abdollahzadeh et al., 2021); differential evolu-
tion (DE) (Wang et al., 2021), prairie dog optimization (PDO)
(Ezugwu et al., 2022); pelican optimization algorithm (POA)
(Trojovský and Dehghani, 2022), dandelion optimizer (DO)
(Zhao et al., 2022), NOA, and Kepler optimization algorithm
(KOA) in addition to the proposed HNOA are applied to find the
near-optimal solution that could optimize both the mining deci-
sion and resource allocation. However, this scheme suffers from
the high dimensionality problem because it generates solutions
of 3n, where each one is divided into three parts: the first part,
which is of the same length as the used miners, includes either
0 to identify that the miner does not participate in the mining
or 1 to show that the miner will participate; the second and third
parts includes the computing resources and transmission power
of all used miners. Due to the poor performance of the meta-
heuristics under this encoding scheme, the authors in (Wang
et al., 2021) proposed a novel encoding scheme that aids in solv-
ing the dimensionality problem in addition to considering the
resource allocation for the participating miners only. To confirm
that, those two encoding schemes are employed with some
recently-published metaheuristic algorithms to find the most
effective algorithm for optimizing the resource allocations of all
miners.

All algorithms were compared using several performance met-
rics, including best fitness, average fitness, worst fitness, standard
deviation (SD), p-value returned by the Wilcoxon rank sum test,
Friedman mean rank (F-rank), convergence curve, and computa-
tional cost, to disclose their effectiveness and efficiency. The best
fitness, average fitness, worst fitness, and F-rank show the out-
comes’ accuracy; SD shows the algorithms’ stability; the computa-
tional cost reports the efficiency; the Wilcoxon rank-sum test is
used to measure the difference between the outcomes of HNOA
and those of each rival optimizer; and finally; and the convergence
curve is used to reveal the convergence speed of each algorithm.
Regarding the parameter of the rival optimizers, they are set as rec-
ommended in the cited papers (See Table 3). This study’s experi-
ments were executed on a computer with MATLAB R2019a, a
2.40 GHz Intel(R) Core(TM) i7-4700MQ processor, 32 GB of RAM,
and a 64-bit version of Windows 10 Pro. Due to the fact that all
algorithms examined in this study are stochastic, they are executed
30 times independently under a number of function evaluations up
to 10,000, and the obtained outcomes are analyzed in terms of the
previous performance metrics.
Value Parameter Value

1e�27 k2 1
70J pi 0:01;1½ �W
20Token= J w 2
4s f total 800GCycles=s

10 MHz Di 1;2½ �Kbit
1:00e�4 c3 3Token=J



Table 3
Parameter settings of HNOA and rival optimizers.

Algorithms Parameters Value Algorithms Parameters Value

GTO (Abdollahzadeh et al., 2021) p
Beta
w
N’

0.03
3
8
120

DE (Wang, 2021) Scaling factor
Crossover rate

0.9
0.5

GBO (Ahmadianfar et al., 2020) pr
bminbmaxN

0.5
0.2
1.2
50

GTO (Abdollahzadeh et al., 2021) P
Beta
w

0.03
3
0.8

PDO (Ezugwu, 2022) rho
eps

0.005
0.1

DO(Zhao, 2022) a
k

[0, 1]
[0, 1]

KOA (Abdel-Basset, 2023) T, M0, k 3, 0.5, 10 NOA Alpha
Pa2
Prb

0.05
0.2
0.2

POA (Trojovský and Dehghani, 2022) R 0.2 HNOA P 0.8
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6. Results and discussions

Herein, the findings of the conducted experiments under each
encoding scheme are reported to illustrate the outperformance of
HNOA over the rival optimizers. The effectiveness of the
recently-proposed encoding scheme over the commonly-used
one is also discussed in this section.
6.1. Comparison under commonly utilized encoding scheme

This section first investigates the performance of various trans-
fer functions to pick the most effective one that could improve
HNOA for efficiently finding the participant miners that could max-
imize the total profits. HNOA under various transfer functions has
been executed 30 independent times, and the average fitness value
Table 4
Comparison among various transfer functions with HNOA under commonly-used encodin

m Metrics S1 S2 S3 S4

50 Ave 2501.20 2501.29 2500.50 249
F-rank 2.40 2.20 2.76

100 Ave 4895.85 4894.20 4887.45 488
F-rank 2.520 2.960 3.440

150 Ave 6815.81 6950.28 6494.07 612
F-rank 5.84 4.76 7.16

200 Ave 8474.61 8999.52 7913.30 750
F-rank 6.12 4.84 7.00

250 Ave 9921.29 10939.04 9028.20 820
F-rank 6.160 4.680 7.040

Fig. 7. Average F-rank of HNOA with various transfer f
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and F-rank are computed and presented in Table 4. This table dis-
closes the superiority of V4 when the number of miners is greater
than 100; otherwise, both S1 and S2 are competitive. To clearly
show the effectiveness of each transfer function, the average of
the F-rank values presented in the last-stated table is computed
and presented in Fig. 7. Inspecting this figure discloses that V4 is
the best, followed by S2, while S4 is the worst. Based on that, in
the next experiments, V4 is integrated with some recently-
published metaheuristic algorithms to investigate their perfor-
mance against HKOA for jointly optimizing the resource allocation
and mining decision when using the commonly-used encoding
scheme.

Under the commonly-used encoding scheme, all algorithms
with V4 and S2 have been executed 30 independent times using
a maximum number of function evaluations and population size
g scheme.

V1 V2 V3 V4

9.65 2467.25 2469.00 2467.25 2464.01
3.04 6.28 6.40 6.48 6.80
3.82 4866.83 4862.34 4858.08 4867.68
4.120 5.600 5.760 6.080 5.52
5.52 7065.24 7105.16 7110.12 7134.11
7.80 3.32 2.76 2.36 2.00
7.80 9200.41 9260.03 9277.10 9331.78
7.84 3.16 2.64 2.40 2.00
6.43 11214.89 11309.43 11264.84 11354.37
7.800 3.160 2.240 2.960 1.96

unctions under commonly-used encoding scheme.



Table 5
Comparison among algorithms with S2 under commonly-used encoding scheme.

m Metrics HNOA NOA GNDO DO GTO PDO KOA GBO POA DE

50 Worst 2498.68 2476.66 1416.41 1942.51 2456.43 1312.51 2100.86 2358.80 1541.15 1968.21
Ave 2501.75 2493.83 1505.30 2225.58 2491.83 1492.28 2307.94 2472.15 1862.54 2099.39
Best 2504.43 2499.40 1629.25 2457.91 2508.59 1599.13 2470.03 2503.43 2346.76 2185.87
SD 1.630 5.044 54.075 113.618 16.216 65.218 113.352 30.96 230.19 55.62
p-value 2.E-09 1.E-09 1.E-09 5.E-01 1.E-09 1.E-09 1.E-07 1.E-09 1.E-09
F-rank 1.52 2.84 9.44 5.88 2.20 9.52 5.40 3.52 7.72 6.96

100 Worst 4809.23 4789.92 2610.74 3499.80 4855.78 2431.76 2690.23 3899.39 2911.96 2167.36
Ave 4891.15 4866.51 2716.04 3960.32 4943.98 2707.69 3798.94 4683.93 3578.06 2359.91
Best 4929.00 4910.77 2864.96 4358.65 4988.73 2897.76 4802.20 4921.37 4439.05 2701.20
SD 35.258 29.397 69.037 164.963 39.038 103.038 539.891 264.14 402.09 129.07
p-value 1.E-03 1.E-09 1.E-09 2.E-05 1.E-09 1.E-09 1.E-05 1.E-09 1.E-09
F-rank 2.28 2.96 8.36 5.64 1.2 8.64 5.88 3.68 6.44 9.92

150 Worst 6782.44 6410.08 3477.94 2822.51 6381.45 2695.35 3534.79 3860.34 3795.03 2030.40
Ave 6950.24 6637.80 3633.14 3751.19 6947.59 3337.03 4318.74 5383.41 5092.00 2367.78
Best 7039.46 6812.37 3779.53 4299.34 7265.34 3741.12 5890.35 6643.59 6073.59 2761.78
SD 64.823 126.632 76.329 394.538 209.969 262.900 582.142 736.43 688.66 146.60
p-value 2.E-09 1.E-09 1.E-09 7.E-01 1.E-09 1.E-09 1.E-09 1.E-09 1.E-09
F-rank 1.48 2.96 7.68 7.32 1.60 8.68 5.96 4.36 4.96 10

200 Worst 8709.30 7815.87 4500.19 2785.66 8079.35 3064.56 3924.39 1919.07 4424.51 2246.06
Ave 8982.91 8530.39 4669.73 3968.41 9073.81 3664.25 5518.86 5801.89 6139.21 2597.25
Best 9158.75 8903.12 4910.69 4825.52 9591.88 4210.87 8067.33 8404.10 7807.01 3052.13
SD 107.143 246.648 120.283 527.507 366.175 318.840 1107.481 1432.19 970.10 210.46
p-value 6.E-09 1.E-09 1.E-09 4.E-01 1.E-09 1.E-09 1.E-09 1.E-09 1.E-09
F-rank 1.52 2.88 6.48 8.12 1.6 8.56 5.64 5.44 4.84 9.92

250 Worst 10433.65 9156.46 5125.90 3812.35 8760.65 2656.88 4315.33 3539.57 4975.298 2192.621
Ave 10838.38 10193.51 5609.13 4633.32 10727.24 4064.41 6093.01 6904.13 7119.363 2674.308
Best 11143.14 10787.96 5976.05 5864.63 12355.57 4854.68 9686.32 9533.93 9030.397 3451.257
SD 214.19 376.12 182.62 516.46 835.55 486.86 1387.20 1670.28 1125.496 267.0089
p-value 3.E-08 1.E-09 1.E-09 9.E-01 1.E-09 1.E-09 1.E-09 1.E-09 1.E-09
F-rank 1.52 2.84 6.12 7.88 1.68 8.64 6.08 5.16 5.08 10

Table 6
Comparison among algorithms with V4 under commonly-used encoding scheme.

m Metrics HNOA NOA GNDO DO GTO PDO KOA GBO POA DE

50 Worst 2446.65 2461.90 1409.36 1217.15 2444.91 1377.53 2242.14 2214.04 1679.25 2178.33
Ave 2472.67 2468.93 1519.06 1408.66 2474.03 1512.13 2339.23 2433.72 1911.53 2287.97
Best 2497.13 2472.92 1618.48 1647.47 2506.15 1643.82 2422.11 2487.37 2318.80 2355.83
SD 16.404 2.511 55.665 115.613 14.728 59.290 54.796 64.73 185.00 48.16
p-value 8.E-01 1.E-09 1.E-09 5.E-01 1.E-09 1.E-09 1.E-02 1.E-09 1.E-09
F-rank 2.36 2.68 8.64 9.48 1.92 8.88 5.08 3.16 6.96 5.84

100 Worst 4790.70 4807.32 2633.18 2188.48 4689.91 2598.58 3435.40 4301.31 3016.05 2598.53
Ave 4850.84 4852.95 2729.58 2495.68 4903.82 2774.70 4020.69 4693.54 3400.73 2770.40
Best 4897.61 4883.42 2917.56 2733.52 4988.61 2926.79 4675.62 4894.46 4048.38 3014.97
SD 30.198 19.277 71.033 133.161 80.932 95.682 300.134 180.84 319.34 120.57
p-value 7.E-01 1.E-09 1.E-09 2.E-04 1.E-09 1.E-09 3.E-04 1.E-09 1.E-09
F-rank 2.64 2.56 8.12 9.8 1.48 8.04 5.08 3.36 5.88 8.04

150 Worst 6872.59 6875.57 3496.75 1718.01 6283.55 1113.84 3848.84 4577.26 3361.74 2246.919
Ave 7009.34 6965.13 3707.52 2433.99 7015.27 3519.04 5110.86 5653.28 4460.64 2609.6
Best 7204.18 7062.57 3866.74 2999.22 7346.25 3894.88 6048.92 6906.74 5673.26 2951.60
SD 76.09 49.82 103.73 331.08 271.50 607.02 663.23 722.04 563.382 164.46
p-value 3.E-02 1.E-09 1.E-09 4.E-01 1.E-09 1.E-09 2.E-09 1.E-09 1.E-09
F-rank 1.96 2.32 7.36 9.56 1.8 7.72 4.96 4.32 5.72 9.28

200 Worst 8786.46 8997.63 4454.95 2372.58 8062.97 983.91 4974.82 5247.69 3955.64 2433.41
Ave 9161.32 9098.55 4690.69 2820.76 9265.50 3782.53 6149.59 6941.23 5717.98 2820.51
Best 9375.93 9180.08 4912.50 3399.68 9990.20 4975.48 7994.66 8692.74 7819.64 3352.6
SD 123.86 47.06 123.81 260.58 398.90 1156.27 764.18 988.49 941.61 205.38
p-value 4.E-03 1.E-09 1.E-09 3.E-02 1.E-09 1.E-09 1.E-09 1.E-09 1.E-09
F-rank 1.88 2.52 7.12 9.24 1.6 8.16 5 4.48 5.72 9.28

250 Worst 10861.36 10858.88 5291.29 2667.84 9763.82 920.39 5609.71 4982.40 4828.12 2394.94
Ave 11237.03 11095.92 5649.08 3357.35 11247.44 3767.19 7510.31 7807.95 6681.43 2870.13
Best 11573.14 11263.71 6044.51 3730.38 12401.26 5751.49 9598.97 10569.17 9421.90 3397.68
SD 166.81 115.19 148.82 299.83 555.65 1632.03 1084.14 1717.37 1368.37 241.93
p-value 9.E-04 1.E-09 1.E-09 6.E-01 1.E-09 1.E-09 1.E-09 1.E-09 1.E-09
F-rank 1.56 2.48 6.56 8.76 1.96 8.44 4.8 5.04 5.76 9.64
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Fig. 8. Average Friedman mean rank of each algorithm under a common encoding scheme.
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of 10,000 and 50, respectively. The outcomes of each algorithm
under each transfer function within these runs have been analyzed
in terms of six performance metrics (worst, ave, best, SD, p-value,
and F-rank) and reported in Tables 5 and 6. Inspecting Table 5 dis-
closes that HNOA under S2 has better values for the majority of the
performance metrics under various utilized miners (M), while its
performance for other metrics is somewhat competitive with the
GTO. Under V4, the performance of NOA slightly degrades in com-
parison to GTO. To reveal the rank of each algorithm, the average of
the F-rank values of each algorithm under each transfer is com-
puted and presented in Fig. 8; this figure reveals that GTO and
HNOA come in the first rank, followed by NOA, while DE is the
worst algorithm. From that, it is concluded that the performance
of HNOA relies on the used transfer function, where its perfor-
mance is competitive with the others under S2 and inferior under
V4. Also, the second thing that might deteriorate the performance
of HNOA is that each solution includes both binary and continuous
values, and hence it must have a high ability to accurately explore
the continuous and discrete search spaces to reach the desired
solutions. Therefore, this encoding scheme is replaced with a
recently proposed one for two reasons:

� To create each solution with continuous values only, and hence
the recently published metaheuristic algorithms could be
directly adopted for tackling this problem.

� To avoid the high-dimensionality problem that might degrade
the performance of several metaheuristic algorithms, like
HNOA.

The outcomes under this encoding scheme are discussed in
detail in the next section.
6.2. Comparison under recently-proposed encoding scheme

Under the most recent encoding scheme, six algorithms, which
have robust performance under the commonly used encoding
scheme in addition to the recently-proposed robust algorithm
known as DEMiDRA, were executed 30 times independently with
a maximum of 10,000 function evaluations and a population size
equal to the number of miners. The outcomes of each algorithm
derived from these runs were analyzed using seven performance
metrics (worst, average, best, SD, p-value, F-rank, and time) and
are presented in Table 7. This table reveals that HNOA has superior
values for all performance metrics, except for time, under several
miners ranging between 150 and 600. To determine the ranking
of each algorithm, the average of the F-rank values reported in
15
Table 7 for each algorithm has been computed and displayed in
Fig. 9; this figure demonstrates that HNOA is the best algorithm,
followed by GBO, DO, and NOA, respectively, while PDO is the
worst performing algorithm. Regarding computational cost,
Fig. 10 computes and reports the average computational cost
incurred by each algorithm across all instances used. This figure
reveals that HNOA comes in at the fourth rank in terms of the con-
sumed computational cost, while GNDO is the most consumed
algorithm. With the exception of M300, where the proposed algo-
rithm slightly differs from GTO, the p-value from the Wilcoxon
rank-sum test which is reported in the last-stated table, indicates
that HKOA could produce significantly different results in compar-
ison to all competing algorithms. In a nutshell, HNOA with the
recently-proposed encoding scheme could outperform all others
for the used miners, and this indicates the effective performance
of this encoding scheme with the proposed HNOA.

Finally, we could conclude that the proposed HNOA with the
recently-proposed encoding schme is considered a strong alterna-
tive for accurately optimizing the mining decision and resource
allocation in a MEC-enabled blockchain networks. In addition, this
algorithm could be applied to several real-world applications that
are widely reliant on blockchain networks, like those in the finan-
cial sector, healthcare, the energy sector, cybersecurity, and IoT
systems, for efficiently allocating the resources to the participating
miners in addition to getting rid of the unpromising miners that
might reduce the mining process efficiency.
6.3. Convergence speed analysis

This section depicts the convergence curves of the proposed
HNOA in comparison to the other seven optimizers on six instances
(M150, M200, M250, M300M, M350, and M400), as shown in
Fig. 11. From this figure, it is evident that HNOA’s performance is
substantially superior to that of all competing algorithms for all
used instances at the first half of the optimization process, as it
was able to achieve the highest fitness value much more quickly
than the competitors. However, at the end of the optimization pro-
cess, certain algorithms could compete with the proposed algo-
rithm in terms of solution quality. GNDO and PDO have the
slowest convergence rates. This demonstrates that HNOA is not
only effective for convergence speed but also for final quality.
6.4. HNOA’ performance analysis under two encoding schemes

In Fig. 12, we display HNOA’s performance under two different
encoding schemes to illustrate how far the recently published



Table 7
Comparison among algorithms with recently-used encoding scheme.

m Metrics HNOA NOA DEMiDRA GNDO DO GTO GBO PDO

150 Worst 7514.77 7513.54 7466.15 7137.93 7514.50 7501.03 7495.87 5280.73
Ave 7516.60 7516.25 7491.78 7204.98 7516.18 7514.88 7515.77 7017.62
Best 7516.70 7516.66 7505.12 7282.54 7516.59 7516.60 7516.67 7434.26
SD 0.381 0.784 12.367 35.554 0.472 3.683 4.148 525.090
p-value 1.62E-07 1.42E-09 1.42E-09 2.87E-08 1.84E-08 1.65E-06 1.42E-09
F-rank 1.24 3.28 6.00 7.48 4.08 4.08 2.32 7.52
Time 54.00 52.49 55.62 71.05 55.46 51.75 56.07 51.10

200 Worst 10061.65 10035.66 9979.28 9058.25 10056.39 9704.45 10060.71 6491.53
Ave 10062.97 10057.68 10005.98 9478.40 10061.59 10042.46 10062.78 9104.32
Best 10063.11 10062.73 10031.55 9631.09 10062.80 10062.73 10063.01 9816.23
SD 0.302 7.137 14.947 134.624 1.377 72.037 0.452 963.622
p-value 5.85E-09 1.42E-09 1.42E-09 2.05E-08 9.29E-09 7.39E-06 1.42E-09
F-rank 1.12 4.16 5.92 7.48 3.68 4.16 1.96 7.52
Time 58.88 58.34 61.00 80.92 60.54 56.83 62.57 56.15

250 Worst 12531.06 12563.22 12458.59 10953.48 12588.01 12428.00 12593.00 7713.77
Ave 12604.75 12597.30 12500.64 11572.16 12604.03 12560.03 12604.36 11134.91
Best 12608.30 12607.75 12541.23 11897.04 12607.17 12606.04 12607.87 12247.16
SD 15.36 10.62 24.06 198.33 3.88 54.41 7.26 1260.05
p-value 1.99E-07 1.60E-09 1.42E-09 8.55E-08 1.31E-08 2.11E-04 1.42E-09
F-rank 1.28 3.76 5.88 7.48 3.28 4.6 2.2 7.52
Time 63.46 64.65 67.52 90.32 67.03 62.41 68.60 60.42

300 Worst 15004.06 14839.07 14686.18 13029.97 14975.09 5828.62 15011.28 9294.91
Ave 15021.64 14983.52 14793.38 13405.58 15009.16 14465.92 15020.61 12563.59
Best 15025.45 15024.31 14889.58 13827.03 15022.53 15022.17 15024.48 14641.30
SD 5.57 44.81 42.40 201.30 13.73 1820.44 4.27 1749.92
p-value 1.01E-06 1.42E-09 1.42E-09 5.12E-06 3.58E-08 5.23E-02 1.42E-09
F-rank 1.64 3.56 5.68 7.4 3.36 4.88 2 7.48
Time 79.16 77.57 80.67 117.48 80.58 74.42 85.56 72.20

350 Worst 17470.32 17374.92 17066.26 13621.29 17487.01 16281.62 17474.05 5448.49
Ave 17529.10 17470.87 17185.46 15089.47 17521.95 17314.57 17523.04 13433.30
Best 17540.13 17538.32 17316.04 16081.80 17536.15 17530.37 17538.03 16412.04
SD 15.88 51.97 69.51 639.00 13.88 311.54 15.75 2754.48
p-value 3.21E-06 1.42E-09 1.42E-09 3.84E-03 4.00E-08 2.20E-02 1.42E-09
F-rank 1.68 3.72 5.88 7.4 2.68 4.44 2.6 7.6
Time 81.35 79.23 81.90 120.51 81.33 76.13 86.19 74.82

400 Worst 19911.87 19503.80 19336.25 15136.25 19761.07 17349.70 19780.18 6014.04
Ave 19977.88 19778.00 19496.61 16514.96 19927.17 19347.64 19948.87 14970.00
Best 19995.20 19958.93 19673.30 17413.09 19982.77 19917.79 19989.77 18651.98
SD 22.16 128.23 92.55 625.36 62.11 693.16 46.25 3049.68
p-value 5.85E-09 1.42E-09 1.42E-09 2.55E-05 1.80E-09 6.38E-04 1.42E-09
F-rank 1.44 4.16 5.48 7.36 2.68 5.04 2.24 7.60
Time 87.80 88.59 91.53 128.61 86.67 81.61 91.74 80.87

450 Worst 19884.03 19341.12 19105.91 17110.43 19931.37 17405.59 19812.35 8315.61
Ave 20280.79 19940.48 19804.90 18242.98 20182.95 20011.10 20173.51 16432.80
Best 20393.97 20292.36 20205.42 19294.54 20361.14 20338.12 20331.35 19106.86
SD 114.96 248.86 259.78 662.20 126.69 591.38 137.36 3048.88
p-value 1.99E-07 1.04E-08 1.42E-09 1.04E-03 1.13E-04 1.95E-04 1.42E-09
F-rank 1.76 4.48 5.16 7.36 2.92 3.44 3.28 7.60
Time 85.11 85.47 87.03 130.98 87.64 82.67 92.25 80.67

500 Worst 20093.99 19511.51 19443.26 17743.75 19936.71 12374.30 19027.26 6306.08
Ave 20311.78 20065.38 19835.76 18886.11 20215.45 19770.48 20142.67 14292.61
Best 20423.21 20332.41 20165.14 19749.81 20372.32 20350.36 20384.57 19098.36
SD 85.16 218.19 166.71 393.60 119.91 1560.77 279.15 4522.12
p-value 1.23E-06 2.03E-09 1.42E-09 3.84E-04 9.70E-06 6.38E-04 1.42E-09
F-rank 1.76 3.92 5.48 7.00 2.84 3.92 3.16 7.92
Time 87.51 86.77 90.11 139.88 88.89 85.64 93.77 84.38

600 Worst 19923.95 19145.87 19409.92 18506.78 19892.74 19260.51 19622.92 8081.86
Ave 20277.39 19870.09 19792.44 19045.76 20194.16 20079.94 20081.64 16322.62
Best 20400.19 20370.52 20160.94 19538.71 20426.61 20353.03 20352.78 19401.14
SD 104.18 325.45 213.23 294.00 148.38 322.04 224.23 3260.90
p-value 3.88E-06 4.64E-09 1.42E-09 3.44E-02 4.34E-03 5.14E-04 1.42E-09
F-rank 1.96 4.4 5.24 7.04 2.76 3.32 3.4 7.88
Time 98.97 99.21 104.45 161.34 101.97 100.27 112.08 94.94
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scheme could improve HNOA. From this figure, it is obvious that
the performance of HNOA is almost the same under the two stud-
ied encoding schemes when M is less than or equal to 200. Higher
than that, the performance of HNOA with the recently-proposed
16
scheme is dramatically improved, while its performance with the
other scheme has substantially deteriorated. As a result, the pro-
posed HNOA under the different encoding schemes almost has
the same performance with the small dimensions However, when



Fig. 9. Average Friedman mean rank.

Fig. 10. Average Computational cost.
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increasing the number of dimensions, the HNOA with the recently-
proposed scheme is significantly improved, with an improvement
percentage ranging between 2% and 10%.
6.5. Effects of various improvements

In this section, the influence of various algorithms used to
design the proposed algorithm is investigated to disclose their
importance. These algorithms include MGBO and MNOA, which
are effectively integrated to present the proposed HNOA. In addi-
tion, the classical GBO and NOA are added to the comparison to
show the difference between GBO and MGBO and between MNOA
and NOA experimentally. The average total profits obtained by
each algorithm under various miners ranging between 150 and
600 are presented in Fig. 13. This figure reveals that MGBO is better
than GBO, with an improvement percentage ranging between 0.1
and 2, and HNOA is better than NOA, with an improvement rate
reaching 1.5%, while HNOA is better than all the optimizers for
the majority of utilized miners.
6.6. Parameter settings

The proposed HNOA has only one effective parameter that has
to be accurately estimated to maximize its performance; this
parameter is abbreviated as P and employed to determine the
tradeoff probability between MGBO and HNOA. To estimate the
17
near-optimal value for this parameter, extensive experiments
under various values, including 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9, and 0.9, are conducted to determine under any value
the performance of HNOA is maximized. These experiments’ out-
comes are reported in Fig. 14, which shows that HNOA performs
better when P = 0.8.
7. Conclusion and future work

Offloading mining tasks to a mobile edge computing (MEC) ser-
ver has been used to increase the processing capacity of IoTDs.
However, if many miners are trying to offload work to the MEC ser-
ver at the same time, there may be significant transmission delays
due to interference. To effectively solve the transmission delay
problem in the MEC server, it is necessary to solve the combined
resource allocation and mining decisions of all miners in a MEC-
enabled blockchain network, which is an NP-hard optimization
problem. In this study, we first adapt several recently published
metaheuristic algorithms to test how well they perform when
applied to this problem using two distinct encoding schemes. In
the first encoding scheme, each solution is encoded in a manner
that takes into account the mining decisions, transmission power,
and computational resources of all miners. In contrast, the second
scheme holds each individual responsible for the transmission
power and computational resources of a participant miner, with
the result that the whole population is treated as a single solution



Fig. 11. Comparison among algorithms for convergence speed.

Fig. 12. HNOA’s performance under different encoding schemes.
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to the problem at hand. The first encoding technique deals with the
mining decisions of all miners by a binary vector whose values
indicate whether or not the miners participate in mining. In order
to make the solutions of the metaheuristic algorithms applicable to
this problem under the first encoding scheme, we used various V-
shaped and S-shaped transfer functions. Those encoding schemes
are employed with two robust modified variants of NOA and
GBO, namely MNOA and MGBO, which are herein proposed for
optimizing mining decisions and resource allocation in a block-
chain network. Furthermore, both MNOA and MGBO are efficiently
combined to present a new variant, termed HNOA, with better bal-
ancing between exploration and exploitation operators to aid in
avoiding getting stuck in local minima and accelerating the conver-
gence speed. Validation of the proposed HNOA using nine
18
instances with 150–600 miners is performed under two encoding
techniques. In addition, it is compared against a number of differ-
ent optimizers so that its effectiveness in terms of a variety of per-
formance measures can be demonstrated. According to the
findings of the experiments, the performance of HNOA using the
second encoding scheme is noticeably superior to both its perfor-
mance using the first encoding scheme and the performance of
competing optimizers. The main limitation of HNOA is that it con-
sumes a slightly higher computation cost than some compared
algorithms.

Our future work is presented in the following list:

� We will investigate the performance of HNOA when using
heterogeneous miners in the used blockchain network.



Fig. 13. HNOA’s performance under different encoding schemes.

Fig. 14. Tuning the parameter P.
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� Investigating the performance of HNOA for solving several other
optimization problems, like task scheduling challenge in fog
and cloud computing, multilevel thresholding image segmenta-
tion problem, and several else

� Assessing the performance of some recently proposed binary
optimization algorithms for jointly optimizing the mining deci-
sions of all miners in the studied blockchain network.

� Observing the performance of integrating HNOA with some
mechanisms like Levy flight, chaotic maps, quantum computing,
and ranking-based update strategy.
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