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Abstract—This paper presents a study where the potential of
achieving autonomous net cleaning operations in commercial net
pens is demonstrated through numerical simulations. Specifically,
we investigated solutions for coping with the challenges that occur
when obstacles appear in the path of an autonomous cleaning
robot. Simulations were conducted using a net-crawling robot
specifically designed for net cleaning purposes. The robot model
was equipped with a modified version of the Elastic Band Method
(EBM) enabling it to conduct adaptive motion planning. After
proposed modifications and adaptations the method was first
parameterised and verified through simulations where the robot
had to avoid both static and dynamic obstacles along a simplistic
path. The full functionality of the method was then explored
in a simulation case study styled after commercial net cleaning
operations: The robot was assigned an initial trajectory designed
to ensure full coverage of a commercial scale net pens. Stationary
and moving obstacles (e.g. fish, cables or other structural compo-
nents, other vehicles) were then simulated by introducing regions
of avoidance interfering with the trajectory initially planned,
challenging the adaptive motion planning capabilities of the
robot.

The outcomes from the verification studies demonstrated that
the use of the EBM enabled the robot to avoid obstacles appearing
in or near its path without deviating significantly from the initial
path. This was confirmed in the simulation case study results,
implying that the original mission goals could be maintained
(i.e. achieve maximum coverage during net cleaning). These
results thus demonstrate that the Elastic Band Method is a
good candidate for implementing adaptive motion planning for
underwater vehicles tasked with complex operations in flexible
and dynamic environments.

Index Terms—Underwater robotics, aquaculture, biofouling,
grooming

I. INTRODUCTION

Biofouling, the unwanted growth of organisms (e.g. hy-
droids, mussels, algae) at artificial substrates, is a major
challenge for the marine salmon farming industry [1]. Fouling
of pen nets is particularly problematic, as it may lead to various
challenges such as reduced flow through the net (limiting
water exchange in the net pen), and increased net weight.
These factors may affect production efficiency, fish welfare
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and increase the risk of wear on the net, which in turn may
result in unwanted incidents such as fish escapes. Maintaining
an efficient biofouling mitigation regime is therefore a key
element in the management of modern fish farms.

Biofouling mitigation accounts for 5-10% of the production
cost in aquaculture [2], and most commonly relies on a
combination of copper net coatings and the use of periodic
manual in-situ pressure cleaning. This is conducted using rigs
equipped with rotating discs expelling water jets that remove
the organisms from the net. While the rigs were initially diver
or crane operated, they are now mostly attached to Remotely
Operate Vehicles (ROVs) or have inherent propulsion units to
be steered along the net. While pressure washing efficiently
removes biofouling from nets, it has side effects that may neg-
atively impact the sustainability and safety of an aquaculture
production operation.

Firstly, while pressure cleaning in itself does not cause
damage to the net, it does lead to abrasion of the net coat-
ing, increasing the release of toxic copper particles into the
environment [3]. Furthermore, the heavy equipment may lead
to holes when used incorrectly [4]. Secondly, the general trend
of increasing farm size and moving farms further offshore
may increase HSE challenges related to operation of heavy
equipment, especially as weather windows suitable for net
cleaning operations are expected to decrease in rougher off-
shore conditions. Finally, the commonly conducted bi-weekly
cleaning operation causes the removal of biofouling organisms
from the net and their subsequent release into the net pen
volume. This is a health risk to the fish as the cleaning waste
particles have the potential to harm the fish in direct contact
as well as through the transfer of pathogens associated with
the biofouling [5].

These challenges and their potential ramifications for the
fish production and HSE at a site have induced an increasing
industrial interest in exploring if autonomous systems could
enable more efficient, safe and cost-effective fouling man-
agement methods for commercial fish farms. A particularly
attractive approach could be solutions where fouling levels
are kept persistently low through continuous grooming of the



Fig. 1: The Remora net cleaning robot. Image courtesy of
Mithal AS [8].

net by autonomous devices, thus preventing occlusion of the
net as well as the release of potentially harmful cleaning
waste [5]. In the shipping industry, similar approaches have
been successfully trialled to protect ship hulls from fouling [6],
[7]. Based on this background, Mithal AS has developed a
new robot designed for continuous net grooming, called the
Remora (shown in Fig. 1). The Remora is set up with two
belts of hooks that allow it to attach to and crawl along the
net. This renders the use of thrusters for maintaining a fixed
distance to the net during inspection and cleaning obsolete. An
autonomous solution based on such a concept is believed to
have three concrete advantages over existing cleaning solutions
and practices: 1) increasing fish health and welfare by securing
ideal water flow conditions through continuous prevention of
net occlusion, as well as avoidance of the release of potentially
harmful net cleaning waste particles; 2) As grooming may be
conducted on non-biocidal net coatings, it is likely to facilitate
a reduction of the use of biocides in salmon farming; and 3)
reducing personnel needs and hence HSE risks during cleaning
operations. These benefits may become particularly important
in the future due to ongoing trends in moving operations to
more exposed locations with more challenging environmental
conditions [9].

An initial study identifying the requirements for au-
tonomous net grooming using underwater robots pointed out
that a robust and functional control framework for the robot
is essential [10]. This framework needs to contain the nec-
essary components, not only to conduct continuous clean-
ing operations, but also to cope with unforeseen challenges
that may arise during net cleaning operations. It is crucial
that the system is able to handle such challenges without
requiring human assistance for the solution to be capable
of truly autonomous operations. An important element that
needs to be addressed in this context is the system’s ability to
avoid collisions with obstacles. Relevant obstacles one might
encounter when conducting a net cleaning operation include
both static (e.g. ropes, other net pen components) and dynamic
(e.g. fish, other vehicles, structural movements) elements that
in some way hinder the free movement of the robot along the
path originally planned to achieve the mission goals. Collisions
with obstacles could thus result in an unsuccessful cleaning

operation, and at worst cause damage to the robot, the fish,
and/or the net.

An elegant method for achieving obstacle avoidance in
robotics is to design motion planning methods that are able
to dynamically re-plan the initial path. Motion planning can
be done at different levels of complexity, the first and most
basic method being offline global motion planning, where
an entire mission is planned such that all mission objectives
are achieved. Although this approach is very intuitive from
a mission fulfilment perspective, and can be useful when
changes are less likely to arise during the mission, it is less
suitable for tasks in more dynamically changing environments.
Examples of algorithms for global motion planning include
the the A*-family, the RRT-family and Voronoi methods [11]–
[13].

The ability to cope with unforeseen challenges can be
improved by using local path planners [14]. These methods do
not aspire to solve the entire mission planning problem, but
are designed to plan a collision free path between two points
that are relatively close to each other [15]. Examples of local
path planners include specific local methods such as Ferman’s
spiral [16] and Dubins path [14], [17], but also methods that
can be used for both local and global planning, such as the
RRT-Family [13]. When combined with global path planners,
these methods can thus be used to modify the path such that
the vehicle avoids the obstacles. This has previously been done
e.g. by using a Probabilistic Roadmap (PRM) as a local path
planner modifying the global path obtained through cellular
decomposition [18].

The main challenge of handling obstacle avoidance us-
ing local motion planning is that the local planner, when
compensating for an obstacle, can become stuck in a local
minimum from which it cannot find a feasible path to the end
goal. Reactive motion planning approaches may thus serve as
better options, as they typically ensure local feasibility and are
sufficiently fast to handle the uncertainty of obstacles identified
at short time horizons [19]. Like local methods, reactive
methods generally need to be combined with a global path
planner to acquire the initial trajectory that will ensure mission
completion. Examples of reactive motion planning methods
include the lazy PRM approach [20], Deformable Virtual Zone
(DMV) [21], Braitenberg vehicles [22] and solutions based on
bio-inspired neural networks [23].

Another example of reactive motion planning of particular
interest is the Elastic Band Method (EBM), which initially
was developed for robotic motion planning, but later used
for automotive problems within lane changing and vehicle
following [24], [25]. EBM optimises a global plan locally by
minimising the path’s length while taking static and moving
obstacles into account. The path is optimised incrementally,
meaning that the algorithm will continuously improve the path
while the robot moves, resulting in a better output for longer
paths.

This paper presents a simulation study on adaptations and
applications of the Elastic Band Method to an underwater
net cleaning robot for static and dynamic obstacle avoidance



during net cleaning missions. After necessary modifications
and adaptations of the EBM proposed in [25], the adap-
tive motion planning algorithm presented in this paper has
been implemented and integrated in a simulation framework
for underwater robotic applications in complex and dynamic
environments such as aquaculture net pens. The proposed
integrated control framework consists of the model of the
net-crawling robot, the model of the net pen, the adaptive
motion planning method, and the guidance and control system.
Stationary and moving obstacles (e.g. fish, cables or other
structural components, other vehicles) were simulated by in-
troducing regions of avoidance interfering with the initially
planned trajectory, challenging the adaptive motion planning
capabilities of the robot. The full functionality of the control
framework and the modified EBM algorithm were explored
through extensive simulation case studies styled after com-
mercial net cleaning operations. The simulations were carried
out using a mathematical model of the net-crawling robot
(e.g. Remora), along with a line-of-sight (LOS) guidance
law and feedback linearising controllers. The obtained results
demonstrated that the EBM is well-suited for autonomous
net cleaning operations in dynamically changing environments
such as aquaculture net pens.

Section II describes in detail the EBM and the necessary
modifications for applications to net cleaning robots operating
in a net pen. Section III briefly introduces the robot model,
the guidance law and the controllers, as detailed descriptions
of these are beyond the scope of this paper. The results from
the simulation case studies are then presented and discussed.
Section IV concludes the paper.

II. MODIFIED ELASTIC BAND METHOD

This section gives a brief summary of the EBM, originally
proposed in [25], and presents the necessary modifications
introduced in order to apply this method for robotic operations
in aquaculture net pens.

A. Original algorithm

In basic terms, the EBM conceptualises the path as a band
of partly overlapping bubbles of varying size. The volume
within the bubbles is assumed to be unobstructed and thus
eligible for the robot to move within. The size of the bubbles
comprising a path can depend on the vehicles physical size and
the maximum vehicle speed. Furthermore, the vehicles desired
speed along the path can be determined based on the bubble
size, e.g., when an obstacle appears in or near the path, or the
planned path is otherwise adversely affected by external events
and conditions, the EBM will compensate for this by reducing
the sizes of the bubbles close to the disturbance, thereby also
reducing the desired movement speed. A reduction in bubble
size along the path may lead to a loss of the connection
between consecutive bubbles in the sense that they no longer
have sufficient overlap. To cope with this, the EBM will inter-
ject new bubbles in these areas, thus ensuring that the path is
still coherent. The result is a path representation with varying
width, resembling an elastic band that is stretched around one

or several obstacles, which is the very background for the
name of the method. Although very large environment changes
can lead to the algorithm failing to deform to a collision-free
path even if one exists, its flexibility increases the likelihood
of achieving a feasible path. Chances of success can also be
improved by implementing several elastic bands and choosing
the best one of these based on scientific criteria [25].

The EBM algorithm can be divided into four distinct phases,
each of which handles a key element of the method implemen-
tation. In Phase 1, the aim is to set up an initial path consisting
of a sequence of partly overlapping bubbles, B, each bubble
having a position and radius, i.e., B =

[
bT Rb

]T ∈ R4,
where b =

[
x, y, z

]T
contains the bubbles positions, and

Rb > 0 is the bubble radius. Optimally, the initial path, Γinit
should be constructed as the shortest path from start to final
destination considering no obstacles or other hindrances. This
will lead to a sequence of bubbles that are largely evenly
spaced along the path, and that are of similar size (i.e. Rb

being close to equal across bubbles). To prevent the method
from suggesting too fast movement (i.e. too large bubbles) or
too slow speeds/non-converging paths (i.e. too small bubbles),
the bubble size needs to be restricted. As such, the bubble size
is chosen as

Rbmin ≤ Rb ≤ Rbmax , (1)

where Rbmin = 2Dv , with Dv > 0 as the vehicles diameter and
Rbmax = |V vmax|∆T , where V vmax is the vehicles maximum
speed and ∆T > 0 is the time interval for local path planning.

Phase 2 in the EBM is dedicated to deriving how the path
should be deformed to avoid static and/or dynamic obstacles.
This is done by finding the balance between two virtual forces
emulating how a bubble (index i) is contracted onto the initial
path by bubbles i− 1 and i+ 1 (Fiint) and repulsed from the
initial path due to external obstacles (Fiext), respectively. Fiint
can be found as a geometric expression based on the relative
positions of the bubbles:

Fiint = kint

(
bi+1 − bi
||bi+1 − bi||

(||bi+1 − bi|| −Rbmin)+

bi−1 − bi
||bi−1 − bi||

(||bi−1 − bi|| −Rbmin)

) (2)

where kint is a scalar gain used to adjust the contraction
impact, and bi−1, bi and bi+1 are the positions of bubbles
i − 1, i and i + 1, respectively. In sum (2) shows that two
consecutive bubbles will induce a mutual contraction force
between themselves that increases with increased intermittent
distance, and that is limited downwards by the minimal bubble
radius, Rbmin.

Since a scenario may contain several obstacles and some
of these may even be moving, finding the virtual external
repulsion force acting upon bubble i requires that all obstacles
(Oj = [xj , yj , zj , R

O
j ],∀j) are considered. This is done by

first finding the obstacles close enough to have an impact



(i.e. where ||bi − Oj || < Rbi + ROj ), and then computing
the repulsion force for each of these obstacles:

f jext(bi) = kext · e−Da

(
bi −Oj

||bi −Oj ||

)
(3)

where kext is a scalar value used to adjust the impact of the
repulsion. The fading function e−Da is used to ensure that the
repulsive effect of an obstacle decreases with distance, i.e.,

Da = max {||bi −Oi|| −Dsafe, 0} . (4)

Finding the total repulsive force (Fiext) affecting bubble i is
then a matter of summing up the contributions of all relevant
obstacles:

Fiext =

N∑
j=1

f jext(bi) (5)

The internal and external forces are then summed to yield
a total virtual force acting upon bubble i:

Fitotal = αFiint + βFiext (6)

where α and β are scalar weighting factors that are used to
scale between the contributions of internal and external forces
in the path deformation.

The resulting virtual force is then used to find an updated
position for bubble i by multiplication with the step size for
bubble modification (γ) and addition of the result to the present
position of bubble i:

Pi
new = Pi

old + γFitotal (7)

The method iterates through these steps for each bubble
i until the new position is clear from the obstacle or the
deformation exceeds a predefined tolerance level, whereupon
the size of the bubble is set equal to the clearance to the
nearest obstacle as long as this distance conforms with (1).
This process is conducted for all bubbles until the method
results in an updated new path, ΓEB , with updated bubble
positions and sizes that ensure avoidance of the obstacles.

In Phase 3, the aim is to ensure that the new path, ΓEB ,
is feasible and efficient in being used for navigation purposes,
and mainly focuses on reorganising the bubbles comprising the
path. The first step is to check if the deformation conducted
in Phase 2 has led to some bubbles becoming redundant. A
bubble is redundant if it is entirely within the radius of another
bubble, i.e.,

|Rk −Rk−1| ≥ ||bk − bk−1|| (8)

or if it is within the overlapping area of two other bubbles,
i.e.,

Rk+1 +Rk−1 > ||bk − bk−1||+ ||bk+1 − bk|| (9)

Bubbles identified as redundant by the algorithm are removed
from ΓEB , thereby reducing the total number of bubbles.

The second task in Phase 3 is to ensure the connectivity of
the path, i.e. to ensure that there are no gaps between con-
secutive bubbles in ΓEB . This is done by iterating through all

bubbles and checking if the distance between each consecutive
pair of bubbles is covered by their respective radii, i.e.:

Ri +Ri−1 − dol < ||bi − bi−1|| (10)

where dol is a parameter specifying the desired overlap be-
tween two consecutive bubbles. For cases where (10) holds,
the method will insert a new bubble with suitable parameters
to fill in the gap.

While the first three phases of the EBM are likely to result
in the generation of a collision free path that also fulfils the
main mission criteria, there is no guarantee that this path
is in fact feasible for a vehicle to follow. Phase 4 of the
EBM is therefore aimed at transforming the trajectory to a
format that is less likely to contain unrealistic jumps and
kinks in position, heading or speed. The first step in achieving
this is to smooth the path using e.g., the cubic B-spline
method [26]. This will result in effectual filtering of unrealistic
and unnecessary waypoints. However, this comes at a cost
of increased inaccuracy as the waypoints originally derived
by the elastic band deformation may then be exchanged with
points that adhere less to the planned mission and more to
ensuring obstacle avoidance. Smoothing with such methods
should therefore be done carefully to avoid compromising the
mission objectives and obstacle avoidance.

The final step in Phase 4 is to adjust the desired velocity of
the vehicle based on the properties of the elastic band. This
can be done by evaluating the equation:

Vi =
bi+1 − bi

Tc
(11)

where Tc is a predefined time interval (typically the simulation
time step) [26]. The speed of the vehicle when following the
path ΓEB will thus be determined by how close consecutive
bubbles are to each other, leading to slower movement when
bubbles are close (typically close to an obstacle or at tight
corners) than when bubbles are far from each other (typically
straight lines with no obstacles). It is also possible to scale
the speed directly based on the bubble size, an approach that
would give a relatively similar effect [24].

B. Modifications and adaptations of EBM

The following modifications to the EBM presented in [26]
have been applied:

1) Updated redundancy check: In Phase 3 of the original
EBM a situation may occur where a bubble is evaluated to
be both redundant and ”missing” at the same time. This can
happen if the desired overlap, dol is greater than the overlap
between bk+1 and bk−1. A solution to this is to add the
desired overlap to (9), i.e,.

Rk+1 +Rk−1 > ||bk − bk−1||+ ||bk+1 − bk||+ dol (12)

2) Decide new bubble radius: During Phase 2 of the EBM
presented in [26] a bubble’s radius is decided based on the
smallest clearance distance to all the obstacles. We propose
that this process is repeated in Phase 3 as well, since the
path may have been significantly altered when a bubble is



removed or inserted during the initial steps of Phase 3. This
modification is implemented to ensure collision free operations
since we are conducting operations in a highly dynamic
environment with static and moving obstacles.

3) Avoiding marginal improvements: In order to prevent
the EBM from spending time trying to marginally improve
the path, a condition is added to the algorithm. That is, if

||ΓEBi
−Pi

new|| < sc (13)

where ΓEBi
is the position of bubble i in the modified path,

Pi
new is the proposed new position of bubble i and sc ≥ 0

is a constant determined by the user that determines whether
the new proposed position should be accepted or rejected. By
avoiding marginal improvements, we put priority on securing
real-time implementation of the algorithm for operations in
complex underwater environments.

4) Bubble size to determine desired velocity: In [26] the
relative bubble position is used to determine the velocity of the
robot, see (11). For our application the velocity is calculated
by multiplying (11) by a factor, i.e.,

Vi = κ
bi+1 − bi

Tc
, (14)

where κ > 0, in order determine a realistic desired velocity
for the net-crawling robot. This is done since it is essential to
respect the physical constraints of the robotic system related
to the maximum operational velocity of the robot.

5) Using a guidance law: In the work presented in [24] and
[26] the EBM produces a trajectory for the robot to follow.
In this paper, we instead propose using a LOS guidance law
to generate the desired course angle for the robot. This is
done by considering the generated bubbles as waypoints along
the path. This obviates the need for path smoothing with e.g.
cubic B-spline as the look-ahead distance parameter of the
LOS guidance law can be used to ensure smooth transitions to
new waypoints. Furthermore, a reference model that smooths
out the changes in desired heading and speed can be applied
to avoid jumps and kinks in the reference signals.

6) Adaptation to cylindrical coordinates: While the math-
ematical model of the net-crawling robot, Remora, was pro-
grammed to navigate using cylindrical coordinates, the EBM
method is designed for using Cartesian coordinate systems.
This meant that the EBM method had to be expanded with
capabilities to operate on cylinder coordinates to be applica-
ble to simulations using the model of a net-crawling robot
proposed in [27]. This was solved by adapting the coordinate
conversion in (17).

III. INTEGRATED CONTROL FRAMEWORK AND
SIMULATION RESULTS

The integrated control framework proposed in this paper
consisting of the model of the net-crawling robot, the model
of the net pen, the adaptive motion planning method, and the
guidance and control system was implemented in SINTEF’s
software platform FhSim (Figure 2). FhSim offers numerical

models of several different sub-systems relevant for simulat-
ing aquaculture operations, including net pens, ropes/cables,
underwater vehicles and fish [28]. Implementation into FhSim
also enabled access to a built-in 3D-visualisation engine based
on OGRE, allowing for more advanced visualisation of the
simulations. In subsections below, the components of the
integrated control framework will be introduced followed by
the simulations results obtained in this paper.

Remora

Vehicle

Visualisation

Elastic

Band Method

FhSim

Motion Planning

Simulation Env.

Net

pen

Path Following

FL-Controllers

PI

Surge

PID

Heading

Fig. 2: Illustration of the integrated control framework.

A. Robot model

Simulations were conducted using a recently devel-
oped mathematical model of the net-crawling robot (e.g.
Remora) [27]. Unlike a free-swimming ROV that operates in
six degrees of freedom (DOFs), the Remora’s design, with
hooked belts interlinking with the net pen, enables it to crawl
along the net, essentially meaning that it operates in a 3
DOF cylindrical coordinate system. The states defining the
robots’ movement are thus the azimuth angle (av) describing
the position along the circumference of the pen, the robots’
depth (D) and the heading angle(ψ). The equations of motion
are defined in [27] as

˙̄η = Jc(ψ)ν̄ (15)
˙̄νr = M−1

c (−Dl,cν̄r −Dn,c(ν̄r)ν̄r + τ c) (16)

where η̄ =
[
av D ψ

]T
contains the robots’ position and

heading angle, and ν̄r =
[
ur r

]T
contains the robots’

relative surge speed, ur, and yaw rate r. The matrices M c,
Dl,c and Dn,c contains parameters for the robots’ inertia,
linear damping and nonlinear damping, respectively, while τ c
contains the input force and moment. As the robots’ position is



defined in a cylindrical coordinate system, a conversion to the
Cartesian North-East-Down system can be realised through

N = rc(t) cos(av)

E = rc(t) sin(av)

D = D ,

(17)

where rc(t) is the radius of the net pen at the current position
of the robot (and thus defined by the azimuth, av , and time
as the net pen may deform due to external forces leading to a
varying radius). See [27] for more information.

B. Guidance and control system

The reference heading was realised using a Line of Sight
(LOS) guidance law [29, Ch. 10.3.2], which sought to min-
imise the cross-track error between the net-crawling robot and
a virtual straight line between the position of the previous
bubble and the next bubble in the elastic band. Furthermore,
the desired speed of the robot was determined by how close
consecutive bubbles were to each other. This is further elabo-
rated later in this section.

To ensure that the surge speed and heading angle of the
robot followed the reference values, a feedback linearisation
controller was used [27]. This has the advantage of enabling
the perfect cancellation of the nonlinear terms and that the
origin of the closed-loop system became a Uniformly Globally
Exponentially Stable (UGES) equilibrium point. As a conse-
quency, it was possible to focus more closely on the particulars
of the EBM method. However, feedback linearisation control
can be challenging in physical experiments as the required
assumptions, e.g., perfect parameter knowledge, are often not
met in these situations. This may render the closed-loop
system unstable. As such, model independent control concepts
such as PI or PID controllers can be used when performing
physical experiments.

C. Simulation case studies

1) Parameterisation and functional verification: The initial
simulation case studies were designed to verify the basic
functionality of the EBM, and establish ranges for some of the
crucial parameters used by the method. This was done using
an initial path that started at 5 m depth. The path then moved
to the surface where it followed a half-circle with a radius of
25 m, resembling tracing the perimeter of a net pen. The path
then moved to 15 m depth before commencing a similar half-
circle motion, returning to the starting angular position, then
moving directly upwards until the starting point was reached,
see Fig. 4. Two static obstacles were inserted on the net plane,
along the path, one at the surface and one at 15 m depth,
to induce action from the adaptive motion planning method.
The success criteria in these simulations were that the EBM
should provide a path that 1) is sufficiently smooth for the
robot to follow, 2) avoids all regions of avoidance (obstacles),
3) followed the initial path as well as possible while respecting
1) and 2).

The simulations were performed using five different sets
of values for the parameters kint, kext, α and β (Table I),

TABLE I: Parameter configurations for the EBM tested in the
parameterisation study.

Config# kint kext α β
1 0.5 0.5 0.5 0.5
2 0.05 0.5 0.5 0.5
3 0.05 0.5 0.1 0.5
4 0.05 5 0.1 0.5
5 0.05 5 0.1 0.01

Final 0.1 3 0.25 0.75

to identify the sensitivity of the EBM to changes in these
particular values. In all simulations the bubble modification
step size was set to γ = 0.01, the desired overlap to dol = 0.25
and the marginal improvement constant to sc = 0.1. The
feedback linearising surge speed controller had parameters
kp,u = ki,u = 4 for the proportional and integral parts,
respectively, while the feedback linearising heading controller
had parameters kp,ψ = 5, ki,ψ = 1 and kd,ψ = 5 for the
proportional, integral and derivative parts, respectively. Both
controllers were tuned using trial and error. The lookahead
distance in the LOS guidance law was set to 3 m as this was
found to give a satisfactory transient with an acceptable trade-
off between settling time and overshoot (Figure 3).

The outcomes of the simulations with configurations 1-5 in
Table I were then used to establish a final set of parameters
which is provided in the last line of the table. This parameter
set was used in the remainder of the simulations conducted in
this study.

The simulation results clearly illustrated the effect of vary-
ing the parameters: Reducing kint by a factor of 10 (con-
figuration 1 to 2) led to the robot following the initial path
more closely (Figure 4), while reducing α by a factor of 5
(configuration 2 to 3) resulted in a less smooth path. Moreover,
increasing kext by a factor of 10 (configuration 3 to 4) led
to the robot avoiding the region of avoidance with a slightly
wider margin, while decreasing β by a factor of 50 led to
a large reduction in the impact of the obstacles on the path,
essentially making the robot unable to avoid the obstacle. The
parameters labelled as Final were used in the remainder of the
experiments, as this set of values led to the robot successfully
avoiding the obstacles while not significantly deviating from
the initial path.

The variations between the cases also illustrated that the
parameter sensitivity of the method was as expected, with
kint and α scaling the propensity of the method to stick close
to Γinit and kext and β scaling the deformation caused by
obstacle avoidance. While the interplay between these factors
is what yields the final result, the sensitivity level appears to
vary between them. For instance, while changing α with a
factor of 5 elicited a response in the final ΓEB , β had to be
subjected to a 10 times larger change to have a similar effect.
This may have ramifications for how the method should be
tuned for a specific purpose in that larger modifications in
behaviour are implemented by adjusting α, while β is only
adjusted to obtain smaller changes.

Another simulation using the same path as in the param-



(a)

(b)

Fig. 3: a) Cross track error with different values of the looka-
head distance ∆ during the simulation presented in Fig. 4,
with the final parameter set. b) Zoomed view of the cross
track error with the settling time Ts visualized.

eterisation study was set up using the final parameters given
in Table I. This simulation also contained two obstacles, but
with the obstacle at the surface being dynamic (e.g. it was
moving along the initial path of the robot but in the opposite
direction). The purpose of this was to explore if a dynamic
obstacle would compromise the method’s abilities in adaptive
motion planning.

The robot steered clear of the moving obstacle at the
surface in the second simulation, indicating that the EBM was
also able to handle dynamic obstacles (Figure 5). The main
difference between the static and dynamic obstacle avoidance
was that the deviation from the initial path (Γinit) due to
the dynamic obstacle was slightly longer than for the static

Fig. 4: Trajectories obtained when using different parameter
configurations for the Elastic Band Method. Γinit represents
the initial path.

obstacle.
When using the final choice of parameters, the robot demon-

strated a clear ability to avoid both obstacles while deviating
minimally from the initial path and hence the mission goals.
This demonstrates that the Elastic Band Method is a viable
tool for adaptive motion planning for underwater robots faced
by unpredictable obstacles occurring in their path. The method
appears robust in terms of parameter variations, and finding
a set of parameters that will work for a particular application
should not be an insurmountable challenge, even for cases
where there are several unknown factors.

The introduction of a dynamic obstacle did not compro-
mise the ability of the EBM to both avoid the obstacle and
return to the prescribed path after this. This illustrates that
this method can be used for adaptive motion planning also
when the obstacles and conditions are dynamic. The increased
deviation around the surface obstacle in the dynamic case
occurred because the path modification induced by the EBM
is cumulative. This means that it at startup modified the path
based on the initial position of the obstacle. At the next update
time step for the EBM, the already modified path would be
further deformed to avoid the obstacle in its new position.
This would be repeated at the next EBM update time step,
and so on, until the robot is past the obstacle, a feature that
could potentially render the use of EBM for adaptive planning
challenging in situations where the robot needs to account for
one or more dynamic obstacles.

Since the EBM cumulatively updates the path based on
the instantaneous positions of all known obstacles, a moving
obstacle can cause quite large path deformations even though
the vehicle is not in direct risk of colliding with it. This
can potentially lead to larger path deformations than strictly
necessary, which may in turn prevent the vehicle from fol-
lowing the initial path that was designed based on the mission
goals. Since this could lead to mission failure (e.g. incomplete
net cleaning), the EBM should be equipped with measures
to reduce or correct the deviations between initial and actual
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Fig. 5: Trajectory of the robot when encountering a dynamic obstacle at the surface and a static obstacle at the bottom. a)
Starting position, b) robot deviates to avoid dynamic obstacle, c) robot deviates to avoid static obstacle, d) robot returns to
starting point.

paths, especially for longer trials. One way of doing this could
be to let the vehicle retain the initial path through the entire
campaign, and then set the EBM up to periodically check the
deviation between the current path and the initial path, and
dynamically correct larger deviations.

2) Simulation case study: The simulation case study was
designed to resemble an actual cleaning operation in a fish
farm to better relate the results to industrial practices. Simu-
lations were conducted using a model of a commercial size
net pen (25 m radius and 15 m vertical net wall depth). A
virtual docking station was placed on the net at 5 m depth.
The robot was programmed to follow an initial path (Γinit)
that spiralled down along the net from the surface to the
bottom of the vertical net section. The path was designed such
that it covered the vertical net section, and thus simulated
a full cleaning cycle. Early in the simulation, a dynamic
obstacle was programmed to move along the water surface,
thus interfering with the initial stages of the motion plan for
the robot. The robot was thus forced to modify its path to
avoid collision with the obstacle. Later in the simulation, the
robot was programmed to report a low battery level (less than
20%). This should prompt the robot to return to the docking

station to charge. After charging, the robot should resume
the operation from the point where it decided to return for
charging. Finally, the robot encountered a static obstacle near
the bottom of the net pen, before the sequence concluded
when a full coverage of the net was achieved. Together, these
elements should contribute to demonstrating the efficacy of
the method for dynamic motion planning.

The EBM modified trajectory of the robot (ΓEB) demon-
strates that the robot was able to avoid both the dynamic and
the static obstacles, without significantly deviating from the
initial path (Γinit). Moreover, the robot returned to the virtual
docking station when the battery level was low, and after
recharging resumed the planned path from the point where
it left to dock.

The robot avoided colliding with all obstacles in the clean-
ing simulation case and otherwise followed the prescribed
initial path closely. Furthermore, it was able to go to the
docking station to recharge, and then resume the path from the
point where it left to dock. Since these are all elements that
may impact an actual cleaning operation in aquaculture, this
implies that the Elastic Band Method is an attractive approach
for adaptive motion planning for aquaculture robotics. In
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Fig. 6: Resulting trajectory (ΓEB) for a simulated net pen cleaning operation with an initial trajectory (Γinit) that covers the
net using a spiral pattern. The colour of the trajectory describes the simulated battery level (green = high, red = low), and the
asterisk marks the point where the robot decides to return to the docking for charging. The black arrow denotes the movement
direction of the robot.

industrial terms the simulation results would translate to the
robot being able to cover almost all the net pen surface, barring
only the segments nearest to the obstacles.

To investigate the real-time capabilities of the EBM, the
runtime of the algorithm was compared for different configura-
tions, and with different number of points along the path. This
is shown in Figure 7. The average runtime of the algorithm,
for all cases, was approximately 0.272 milliseconds which can
be argued to be low enough for applications in an aquaculture
setting, considering the movement speed of the robot and the
obstacles, which can be assumed to be low (≤ 1 m/s).

Fig. 7: Time complexity with 3 different configurations, eval-
uated against the number of points along the path, ΓEB .

For all the investigated simulation case studies, the robot
performance was evaluated based on a set of criteria including

the ability to re-plan the path in real-time, the error between
desired and actual path, and various controller performance
metrics.

IV. CONCLUSIONS AND FUTURE WORK

This paper presented a study where the potential of achiev-
ing autonomous net cleaning operations in commercial aqua-
culture net pens is demonstrated through numerical simula-
tions. The EBM has been implemented and integrated in a
simulation framework, with the necessary modifications and
adaptations for use in an underwater robotic application in
complex and dynamic environments. In particular, the EBM
method has been integrated in a general control framework
consisting of a model of the net-crawling robot, a model of
the net pen, and a guidance and control system, to demonstrate
applications of the Elastic Band Method to an underwater net
cleaning robot for static and dynamic obstacle avoidance dur-
ing net cleaning missions. The full functionality of the method
was then explored through extensive simulation case studies
styled after commercial net cleaning operations. The obtained
results demonstrate that the adapted EBM method is well-
suited for autonomous net cleaning operations in dynamically
changing environments such as aquaculture net pens.

As future work the authors propose verifying the EBM
for underwater net cleaning robots in a physical experiment.
However, for such experiments to be successful, one would
first need to acquire or develop methods for underwater
positioning of the robot, and dynamic detection of obstacles.
Such methods could be based on acoustic or optical means.
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