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Abstract 36 

Decades of research have greatly improved our understanding of intrinsic human brain organization 37 

in terms of functional networks and the transmodal hubs within the cortex at which they converge. 38 

However, substrates of multi-network integration in the human subcortex are relatively uncharted. 39 

Here, we leveraged recent advances in subcortical atlasing and ultra-high field (7T) imaging optimized 40 

for the subcortex to investigate the functional architecture of fourteen individual structures in healthy 41 

adult males and females with a fully data-driven approach. We revealed that spontaneous neural 42 

activity in subcortical regions can be decomposed into multiple independent subsignals that correlate 43 

with, or ‘echo’, the activity in functional networks across the cortex. Distinct subregions of the 44 

thalamus, striatum, claustrum, and hippocampus showed a varied pattern of echoes from attention, 45 

control, visual, somatomotor, and default mode networks, demonstrating evidence for a 46 

heterogeneous organization supportive of functional integration. Multiple network activity 47 

furthermore converged within the globus pallidus externa, substantia nigra, and ventral tegmental 48 

area but was specific to one subregion, while the amygdala and pedunculopontine nucleus 49 

preferentially affiliated with a single network, showing a more homogeneous topography. Subregional 50 

connectivity of the globus pallidus interna, subthalamic nucleus, red nucleus, periaqueductal grey, and 51 

locus coeruleus did not resemble patterns of cortical network activity. Together, these finding describe 52 

potential mechanisms through which the subcortex participates in integrated and segregated 53 

information processing and shapes the spontaneous cognitive dynamics during rest.  54 

 55 

Keywords: resting-state, 7 Tesla, functional connectivity, dual regression, network integration 56 
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Significance statement 57 

Despite the impact of subcortical dysfunction on brain health and cognition, large-scale functional 58 

mapping of subcortical structures severely lags behind that of the cortex. Recent developments in 59 

subcortical atlasing and imaging at ultra-high field provide new avenues for studying the intricate 60 

functional architecture of the human subcortex. With a fully data-driven analysis, we reveal 61 

subregional connectivity profiles of a large set of non-cortical structures, including those rarely studied 62 

in fMRI research. The results have implications for understanding how the functional organization of 63 

the subcortex facilitates integrative processing through cross-network information convergence, 64 

paving the way for future work aimed at improving our knowledge of subcortical contributions to 65 

intrinsic brain dynamics and spontaneous cognition.   66 
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Introduction 67 

A large body of research in the past decades has focused on descriptions of the macroscopic 68 

organization of the human brain in terms of intrinsic functional connectivity (FC) and its role in 69 

orchestrating cognition and behavior (Damoiseaux et al 2006; Liégeois et al 2019; Lee et al 2019). The 70 

integration of distributed, functionally specialized brain networks is thought to be essential, especially 71 

for higher-level cognition and consciousness (Senden et al 2014; Bell and Shine 2016). With a variety 72 

of methods, specific sites for network convergence have been identified in the posterior cingulate 73 

cortex (PCC), anterior cingulate cortex (ACC), and the posterior parietal cortices (Tomasi and Volkow 74 

2011; Bell and Shine 2015; Lyu et al 2021), revealing an ensemble of transmodal regions in the cortex 75 

that enable efficient global communication (Van der Heuvel and Sporns 2011; Grayson et al 2014). 76 

With a novel multivariate approach, it was revealed that subtle signals from functionally specialized 77 

subdivisions within these regions have connectivity profiles that mirror, or ‘echo’, the activity of 78 

different networks, potentially indicating a mechanism through which they facilitate cross-network 79 

information integration (Leech et al 2012; Braga et al 2013; Braga & Leech 2015).  80 

Although this work has provided important insights, the dominating corticocentric view overlooks 81 

potential contributions from the highly diverse and interconnected structures in the subcortex (Bell 82 

and Shine 2016; Forstmann et al 2017; Tian et al 2020). This knowledge gap is likely related to the 83 

challenges associated with visualizing the subcortex using conventional MRI due to the varied magnetic 84 

tissue properties and generally weaker signal-to-noise ratio (SNR) compared to the cortex (De 85 

Hollander et al 2017; Keuken et al 2018). Nonetheless, many subcortical structures are part of 86 

extensive cortico-subcortical circuitry and demonstrate widespread FC to networks including the 87 

default mode network (Haber 2003; Bär et al 2016; Lee et al 2018; Ji et al 2019; Li et al 2021). Compared 88 

to the smaller subcortical nuclei in the deep brain, larger structures such as the thalamus and striatum 89 

have received a relatively high amount of attention, establishing their hub-like properties and roles in 90 

integrative processing (Choi et al 2012; Jarbo and Verstynen 2015; Hwang et al 2017; Seitzman et al 91 

2020; Greene et al 2020; Cheng and Liu 2021). However, most of the subcortex remains 92 
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underrepresented in human functional MRI (fMRI) studies and the majority of available evidence is 93 

based on lower field strength (3 Tesla), often combined with extensive spatial smoothing, both of 94 

which limit the spatial resolution needed to resolve smaller nuclei and increase the risk for signal 95 

blurring (De Hollander et al 2015; Forstmann et al 2017).  96 

Due to these shortcomings, the functional architecture of the subcortex and its role in integrative 97 

processing remains poorly understood. Given that subcortical dysfunction is heavily implicated in a 98 

wide range of neuropsychiatric diseases, advancing this knowledge may be vital for our understanding 99 

of healthy cognitive functioning as well as improving disease models. Charting the topography of 100 

network echoes within the subcortex provides a compelling approach to accomplish new insights into 101 

the subcortical contributions to whole-brain communication and higher-level cognition. Following 102 

previous work (Leech et al 2012; Braga et al 2013), we define an echo as a unique subregional 103 

connectivity profile that traces the activity pattern of a functional network. By leveraging recent 104 

advances in automated parcellation algorithms and sensitive fMRI protocols for the subcortex at ultra-105 

high field (Bazin et al 2020; Miletic et al 2020), we aim to extend the previously established multivariate 106 

echo analysis to a large set of subcortical structures, including those rarely studied with human fMRI: 107 

the thalamus, striatum, globus pallidus externa, globus pallidus interna, subthalamic nucleus, 108 

claustrum, hippocampus, amygdala, substantia nigra, red nucleus, ventral tegmental area, locus 109 

coeruleus, periaqueductal grey, and pedunculopontine nucleus. Similar to findings for the cortex, we 110 

expect that subcortical structures organized to facilitate multi-network integration demonstrate a 111 

heterogeneous subregional topography of intrinsic echoes from separate functional networks, which 112 

are likely hidden with previous univariate connectivity analyses.    113 
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Methods 114 

Participants 115 

The study was approved by the Ethics Review Board of the University of Amsterdam and the 116 

Regional Committees for Medical and Health Research Ethics in Norway. Forty healthy adults between 117 

19 and 39 years old (21 female, mean age=26.5, SD=5.5 years) were recruited from the general 118 

population in Norway and screened for MRI compatibility. Exclusion criteria were self-reported (history 119 

of) neurological or psychiatric disease, impaired vision, or any contra-indications for MRI such as metal 120 

implants. Written informed consent was obtained from all participants prior to data collection. All 121 

materials, code, and unthresholded group-level statistical maps from multivariate as well as 122 

(supplementary) univariate connectivity analyses are publicly available in an Open Science Framework 123 

repository at https://osf.io/wt3uc. 124 

 125 

fMRI acquisition and preprocessing 126 

Neuroimaging data were collected with a Siemens MAGNETOM Terra 7 Tesla (7T) system with a 32-127 

channel phased-array head coil. Structural images were obtained with a MP2RAGE sequence (Marques 128 

et al 2010) in 224 sagittal slices at 0.75mm isotropic voxel resolution (TR=4300ms; TI1,2=840, 2370ms; 129 

flip-angles1,2=5, 6⁰; TE=1.99ms; FOV=240×240×168mm). Functional images were acquired using a 130 

gradient echo echo-planar imaging (EPI) sequence with a voxel resolution of 1.5mm isotropic (82 131 

transverse slices per volume; TR=1380ms; TE=14ms; flip-angle=60⁰; in-plane acceleration factor 132 

(GRAPPA)=3; multiband acceleration factor=2; partial Fourier=6/8). An additional EPI sequence with 133 

opposite phase-encoding direction was performed for susceptibility distortion correction purposes. 134 

Heart rate and respiratory data were acquired with a fingerclip and waistband, respectively, to correct 135 

for physiological noise, which is especially prominent in the subcortex. 136 

MR images were preprocessed with fMRIPrep (v20.2.6; Esteban et al 2018) in the Nipype 137 

framework (Gorgolewski et al 2011). The structural (T1-weighted) scan was corrected for intensity non-138 

uniformity with N4BiasFieldCorrection (ANTs v2.3.3; Tustison et al 2010) and skull-stripped with 139 
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antsBrainExtraction using the OASIS30ANTs target template. Brain tissue segmentation of 140 

cerebrospinal fluid (CSF), white matter (WM), and gray matter (GM) was performed with FAST (FSL 141 

v5.0.9; Zhang et al 2001). For each of the two resting-state runs, a reference volume and its skull-142 

stripped version were generated. A fieldmap based on the EPI references with opposing phase-143 

encoding directions was calculated with 3dQwarp (AFNI; Cox 1996) and susceptibility distortion 144 

correction was applied to the EPI reference prior to co-registration to the T1-weighted reference using 145 

the boundary-based registration cost-function in bbregister with 6 degrees of freedom (FreeSurfer; 146 

Greve and Fischl 2009). Head-motion parameters (rotation and translation) were estimated with 147 

MCFLIRT (FSL v5.0.9; Jenkinson et al 2002) and slice-time correction to half of the acquisition range 148 

(0.674s) was performed with AFNI’s 3dTshift. Following fMRIPrep, data were spatially smoothed with 149 

a full-width half-maximum Gaussian kernel of 1.5mm using SUSAN (Smith and Brady 1997) and 150 

denoised with a first-level general linear model in FEAT (Woolrich et al 2001) that included fMRIPrep-151 

derived confound regressors, including: mean signal in CSF and WM, framewise displacement (FD), six 152 

rotation and translation parameters, and discrete-cosine transform (DCT) basis functions to model low-153 

frequency scanner drifts. In addition, cardiac and respiratory sources of nuisance were based on 154 

acquired physiological data and modeled with RETROICOR (Glover et al 2000) using the Matlab PhysIO 155 

toolbox (Kasper et al 2017) in TAPAS (Frässle et al 2021). For one subject with missing physiological 156 

data, the same number of fMRIPRrep’s anatomical component-based noise correction (aCompCor; 157 

Behzadi et al 2007) regressors were entered in the model instead. The modeled data were obtained 158 

via linear regression and normalized. Finally, the two residual runs were concatenated and registered 159 

to the ICBM 152 Nonlinear Assymetrical template version 2009c (MNI152Nlin2009cAsym; Fonov et al 160 

2009) using the nonlinear registration tool in antsRegistration (Avants et al 2008) with the 161 

transformation parameters provided by fMRIPrep. 162 

 163 

 164 

 165 
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Table 1. Parcellation details for regions of interest (ROIs) 
 

 
Forebrain 

 N voxels Mean (SD) tSNR Source 

   
 Thalamus Tha 6130 47.94 (6.31) MASSP 
 Striatum Str 8552 52.17 (8.11) MASSP 
 Globus pallidus externa GPe 1241 35.44 (5.58) MASSP 
 Globus pallidus interna GPi 453 34.18 (4.39) MASSP 
 Subthalamic nucleus STN 93 32.30 (4.25) MASSP 
 Claustrum Cl 683 59.12 (4.71) MASSP 
 Hippocampus HPC 2894 37.84 (10.44) 17-network cortical parcellation 
 Amygdala Amg 1063 39.89 (7.22) MASSP 
 
Midbrain 

    

 Substantia nigra SN 481 31.51 (5.32) MASSP 
 Red nucleus RN 232 33.75 (3.05) MASSP 
 Ventral tegmental area VTA 220 37.68 (3.05) MASSP 
 Periaqueductal grey PAG 198 32.37 (10.56) MASSP 
 
Brainstem 

    

 Locus coeruleus LC 98 39.01 (7.31) 7T Probabilistic LC Atlas 
 Pedunculopontine nucleus PPN 135 40.00 (3.29) MASSP 

 166 

 167 

Experimental design and regions of interest 168 

Two runs of 15 minutes eyes-open wakeful rest (fixation on centered cross) were collected together 169 

with anatomical scans during the first of four sessions that were part of a larger multi-session 7T study. 170 

The anatomical and experimental data acquired during the other sessions are not part of this study. 171 

Figure 1 provides an overview of the analysis, extending the data-driven echo approach (Leech et al 172 

2012; Braga et al 2013) to the subcortex. With this multivariate technique, unique FC patterns are 173 

estimated while controlling for other subsignals within a region, revealing a more subtle subregional 174 

functional organization beyond a region’s global connectivity profile that remains concealed with 175 

univariate analyses (Leech et al 2012).  176 

Fourteen subcortical regions of interest (ROIs) were defined based on open-source parcellations 177 

(Table 1, Figure 2a). Binary ROI masks were computed from the Multi-contrast Anatomical Subcortical 178 

Parcellation algorithm (MASSP; Bazin et al 2020) that is based on quantitative MRI data (N=105, ages 179 

18-80) from the 7T Amsterdam ultra-high field adult lifespan database (AHEAD; Alkemade et al 2020) 180 

in high-resolution MNI space (MNI152Nlin2009bAsym; Fonov et al 2009). The MASSP parcellations 181 

include the thalamus (Tha), striatum (Str), claustrum (Cl), globus pallidus externa (GPe), globus pallidus 182 



9 
 

interna (GPi), substantia nigra (SN), subthalamic nucleus (STN), ventral tegmental area (VTA), red 183 

nucleus (RN), amygdala (Amg), periaqueductal grey (PAG), and pedunculopontine nucleus (PPN). The 184 

locus coeruleus (LC) was defined with the 7T Probabilistic LC Atlas based on 53 healthy adults aged 52-185 

84 years (Ye et al 2021). In addition, the 17-network cortical parcellation (Yeo et al 2011) was used for 186 

extracting a mask of the hippocampus (HPC), which was taken from the Default C network. To validate 187 

the results for non-cortical structures, we also assessed if we could reproduce the pattern of echoes 188 

within various cortical regions, including the PCC, medial prefrontal cortex (mPFC), and visual cortex 189 

(Braga et al 2013). We used the same cortical network parcellation to derive masks for the striate and 190 

extrastriate cortex (Visual Central network) and the PCC and mPFC (Default A network). For bilateral 191 

ROIs, left and right hemispheres were combined into a single binary mask and all masks were 192 

resampled to the resolution of the functional data with FLIRT using nearest-neighbor interpolation 193 

(v6.0; Jenkinson and Smith 2001). The probabilistic LC mask was thresholded liberally so that voxels 194 

that overlapped 1% or more were included in the resampled mask. 195 

 196 

Statistical analysis 197 

The individual preprocessed resting-state timeseries were masked with each of the binary ROIs and 198 

decomposed into 10 spatiotemporal independent subregions with a spatially-restricted group 199 

canonical independent component analysis (canICA) as implemented in Nilearn. Although the 200 

temporal concatenation ICA approach is a popular technique in combination with dual regression, 201 

biases in the estimation of group-level networks may arise with varying degrees of inter-individual 202 

variability (Hu and Yang 2021). Instead, canICA applies a hierarchical approach in which individual data 203 

is decomposed prior to canonical correlation analysis to identify group commonalities (Varoquaux et 204 

al 2010). The ROI-wise canICA’s were restricted to find 10 independent components. Model order 205 

selection constitutes a main challenge in ICA, and the exact number of underlying signals in the diverse 206 

subcortical structures remains unknown. While prior analyses on the PCC demonstrated qualitatively 207 

similar outcomes for various model orders (Leech et al 2012), conducting such comprehensive 208 
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comparisons for all included structures was beyond the scope of this study. Instead, we opted to follow 209 

previous approaches and fix the number of components, addressing interregional differences in 210 

network echoes rather than precise dimensionality of individual structures.  211 

Following spatiotemporal decomposition, the unique whole-brain FC of each independent 212 

component (subregion) was then investigated with dual regression (Beckmann et al 2009; Zuo et al 213 

2010). First, the 10 spatial maps from the canICA were regressed onto every individual’s whole-brain 214 

resting-state data to estimate the subject-specific timecourse for each subregion. By simultaneously 215 

entering all 10 spatial maps as design matrix, the timecourse for each subregion was estimated while 216 

statistically controlling for the variance in the other subregions’ timecourses. Second, the 10 subject-217 

specific independent timecourses were regressed onto the subject’s resting-state data to obtain spatial 218 

maps corresponding to the whole-brain, voxel-wise unique FC of each subregion. These subject-level 219 

FC maps were then combined in a non-parametric group-level analysis using random permutation 220 

testing (5000 permutations) with threshold-free cluster enhancement (TFCE). This resulted in one 221 

group-level t-statistical map for each of the 10 subregions within each individual ROI that was 222 

thresholded with family-wise error (FWE) correction at p<.05.  223 

To quantify the presence of echoes from canonical resting-state networks within subcortical 224 

regions, the thresholded group-level FC maps were spatially correlated with data-driven reference 225 

networks obtained from a canICA on the whole-brain timeseries restricted to find 20 independent 226 

components. Based on visual inspection and low spatial Pearson product-moment correlation 227 

coefficients with an established 17-network cortical parcellation (Yeo et al 2011), four independent 228 

components (r=.05, r=.04, r=.13, r=.04) were identified as artifactual and removed from further 229 

analysis. The resulting 16 reference networks were masked with the cortical network parcellation to 230 

remove any voxels located outside cortical grey matter (e.g., cerebral white matter, subcortex, CSF).  231 

The extent of the spatial correlation between the FC map for each subregion and the reference 232 

networks was used to identify whether patterns of cortical network activity were mirrored, or echoed, 233 

in the unique subregional timecourses.   234 
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Results 235 

Data-driven networks correspond to existing cortical network parcellations 236 

The 16 data-driven reference networks were labeled automatically according to their maximum 237 

spatial correlation with the well-established 17-network cortical parcellation (Yeo et al 2011; Figure 238 

2b), which is based on rs-fMRI data from 1000 individuals. Despite large differences in field strength, 239 

data resolution, and parcellation method, we found correlation coefficients ranging from 0.21 to 0.67 240 

(mean r=.44, SD=.14), generally indicating moderate to good spatial overlap with their reference 241 

network counterparts (Figure 2b, lower right): Somatomotor A (r=.66), Somatomotor B (r=.30), Control 242 

A (r=.46), Control B (r=.51), Control C (r=.57), Salience/Ventral Attention A (r=.34), Salience/Ventral 243 

Attention B (r=.54), Temporal Parietal (r=.21), Dorsal Attention A (r=.46), Dorsal Attention B (r=.25), 244 

Default A (r=.42), Default B (r=.47), Limbic A (r=.30), Limbic B (r=.41), Visual Central (r=.49), and Visual 245 

Peripheral (r=.67). The data-driven Temporal Parietal network also partially overlapped with the 246 

Control A network parcellation (r=.15). 247 

Together, the reference networks covered 66% of cortical grey matter defined in the parcellation 248 

by Yeo et al (2011). The strongest deviation was observed in the anterior temporal cortex, which was 249 

not remedied by increasing model order (40 or 100 independent components) or a cortically-restricted 250 

canICA. To assess corresponding variations in temporal SNR (tSNR), we calculated voxel-wise tSNR 251 

values as the ratio of the mean and standard deviation of the resting-state timeseries after temporal 252 

high-pass filtering (1/128s). Individual tSNR maps were registered to standard MNI space and averaged 253 

(voxel-wise) across subjects and runs. Compared to other cortical areas, reduced tSNR in the temporal 254 

lobe was observed, and as a consequence, temporal networks were underrepresented in the analysis 255 

(Figure 2-1).  256 

 257 

Subcortical structures echo signals from different resting-state networks 258 

The 10 thresholded FC maps for each ROI, representing the unique whole-brain FC of each 259 

subregion at the group-level, were spatially correlated with the 16 unthresholded spatial maps of the 260 
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data-driven reference networks. Figure 3a summarizes the degree of network echoes for the nine ROIs 261 

that demonstrated at least one spatial correlation with any reference network above a threshold that 262 

was arbitrarily set at the 97th percentile of all spatial correlations (r=0.16). Echoes were summarized 263 

by counting above-threshold spatial correlations in terms of (1) the number of reference networks 264 

represented in each ROI and (2) the number of subregions that echoed a reference network. For 265 

example, six distinct striatal subregions displayed FC profiles that spatially correlated above-threshold 266 

with in total 10 different resting-state networks. Figure 3b presents the actual maximum spatial 267 

correlations between each ROI and each reference network, independent of subregion. The reference 268 

network that was represented most often was the Salience B network, correlating above-threshold 269 

with seven ROIs, followed by Default A, Control C, and Visual Peripheral, each with at least one above-270 

threshold spatial correlation with six different ROIs. 271 

Seven subcortical ROIs echoed signals from more than one network, including: the thalamus (Tha), 272 

striatum (Str), hippocampus (HPC), claustrum (Cl), globus pallidus externa (GPe), substantia nigra (SN), 273 

and ventral tegmental area (VTA). The former four ROIs furthermore showed that the echoes from 274 

different reference networks were distributed among multiple subregions, indicating evidence for a 275 

heterogeneous functional organization. In contrast, both the amygdala (Amg) and pedunculopontine 276 

nucleus (PPN) showed medium and small spatial correlations, respectively, with only one reference 277 

network (Amg: r=.37 [DefA]; PPN: r=.19 [SalB]). The globus pallidus interna (GPi), subthalamic nucleus 278 

(STN), red nucleus (RN), periaqueductal grey (PAG), and locus coeruleus (LC) failed to show evidence 279 

of echoes as none of their subregions demonstrated a connectivity pattern that resembled the pattern 280 

of an intrinsic connectivity network. In some cases, a subregion’s FC profile was widespread and shared 281 

spatial similarity with more than one reference network. Figure 3-1 presents a few FC maps to illustrate 282 

the diversity and similarity in connectivity profiles to different reference networks across a subset of 283 

subcortical structures. 284 

The FC maps of each subregion were also spatially correlated with the 17-network cortical 285 

parcellation (Yeo et al 2011), which yielded generally lower spatial correlations but a qualitatively 286 
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similar pattern of results (Figure 3-2). To validate these novel results for the subcortex, we repeated 287 

the analyses for three cortical regions that were previously investigated. Results for the PCC, mPFC, 288 

and visual cortex are presented in Figure 3-3 and are largely consistent with previous findings (Leech 289 

et al 2012; Braga et al 2013). 290 

 291 

Topographic organization of functionally heterogeneous subcortical structures 292 

Figure 4 shows the topographic pattern of network echoes in the subregions of the seven ROIs with 293 

more than one above-threshold spatial correlation. Subregions are color coded according to the 294 

reference network they echoed most strongly, whereas subregions with a maximum spatial correlation 295 

below threshold (r<0.16) are translucent. For every ROI, there were several subregions that did not 296 

mirror the activity in any intrinsic connectivity network, because they were predominantly functionally 297 

connected to other subcortical structures or because their signal largely reflected noise upon visual 298 

inspection. 299 

Five thalamic subregions echoed signals from various reference networks, demonstrating a 300 

heterogeneous organization that was mostly symmetrically distributed in bilateral subdivisions. Left 301 

and right ventromedial subregions were both most strongly correlated to the Somatomotor A network 302 

(left: r=.26, right: r=.20), although the right subregion’s connectivity profile also spatially overlapped 303 

with Salience B (r=.20). A more dorsomedial bilateral subregion displayed a connectivity pattern that 304 

correlated with the pattern of multiple reference networks, including Default A (r=.38), Default B 305 

(r=.32), and Control A (r=.25). Another bilateral subregion, more dorsolaterally located, correlated 306 

most strongly with the Dorsal Attention A network (r=.31), although there was also spatial overlap with 307 

Somatomotor A (r=.29), Dorsal Attention B (r=.25), and Visual Peripheral (r=.24) networks. Finally, the 308 

Default B network was represented in the posterior part of the left-sided thalamus (r=.22).   309 

Within the striatum, there were six different subregions that echoed one or more reference 310 

networks, located mostly within the caudate nucleus. A subregion primarily in the left tail of the 311 

caudate nucleus spatially correlated with the Default B network (r=.21), whereas a subregion covering 312 
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more of the right tail of caudate nucleus most strongly echoed Control B (r=.26), although its 313 

widespread connectivity pattern also overlapped with Temporal Parietal (r=.23) and Salience A (r=.22) 314 

networks. A bilateral subregion covering the nucleus accumbens correlated most strongly with Default 315 

A (r=.40), whereas another bilateral subregion in the mediodorsal part of the caudate head was 316 

functionally connected with Control A (r=.26) and Default B (r=.21) networks. Subregions that most 317 

strongly echoed the Salience A network included a division in the posterior parts of the left caudate 318 

tail and left putamen (r=.20) as well as a bilateral region in the lateral nucleus accumbens (r=.19).  319 

For the hippocampus, we observed that different intrinsic connectivity networks were echoed 320 

within four different subregions. In the left hemisphere, a posterior dorsal subregion correlated most 321 

strongly with Default A (r=.34), whereas a more ventrally located subregion correlated exclusively with 322 

the Limbic A network (r=.24). A bilateral anteromedial subregion was functionally connected to the 323 

Visual Central network (r=.21), whereas a posterior dorsal subregion in the right hemisphere echoed 324 

the Visual Peripheral (r=.30) as well as the Dorsal Attention networks (DorA: r=.28, DorB: r=.30).  325 

Five subregions of the claustrum showed an FC profile that correlated with different reference 326 

networks. A small, bilateral subregion in the ventral claustrum had a widespread cortical connectivity 327 

that had the strongest spatial similarity with Dorsal Attention A (r=.23), but also Somatomotor A 328 

(r=.20), Dorsal attention B (r=.19), and Salience B (r=.19) networks. Left and right subdivisions in the 329 

posterior part both echoed the Salience A network (r=.26 and r=.21, respectively). In addition, an 330 

exclusive functional connection with the Default B network was observed in an anterior subregion of 331 

the left claustrum (r=.32) and with the Somatomotor A network in a more posterior subregion of the 332 

right claustrum (r=.35).  333 

The GPe and SN each had one subregion with a widespread connectivity profile comprising seven 334 

and three reference networks, respectively (Figure 3b). In the GPe, a bilateral dorsolateral subdivision 335 

most strongly echoed the Somatomotor A network (r=.26), but its signal also correlated with activity 336 

in Dorsal Attention A (r=.23) and Control networks A and B (r=.20 and r=.22, respectively). The most 337 

pronounced network echo within the SN was from Default A (r=.24) and came from a bilateral 338 
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subregion in the medial anterior SN. The same subregion also showed traces from Salience B (r=.22) 339 

and Control C (r=.16) networks. For the VTA, a large inferomedial subdivision in the right hemisphere 340 

was most strongly connected to Salience B (r=.19) and just below threshold to Visual Peripheral (r=.15) 341 

networks. Echoes from the Default A network were furthermore present in two other subregions of 342 

the VTA, but spatial correlations were weaker (r=.15 and r=.13).  343 
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Discussion 344 

Despite accumulating insights into the mechanisms of functional integration within the cortex, 345 

subcortical substrates of cross-network convergence are largely unexplored. Nonetheless, the 346 

subcortex is embedded within an extensive cortico-subcortical architecture that is thought to serve 347 

integrative rather than purely segregated functions (Haber 2003). Here, we aimed to more closely 348 

examine the underlying functional organization of subcortical nuclei and their subregional connectivity 349 

to functional networks across the cortex. 350 

Consistent with our expectations, we show that individual subcortical structures contain a 351 

composite of neural signals that can be decomposed into activity traces of intrinsic network activity. 352 

In their study, Braga et al (2013) showed that activity in multiple networks converges at specific 353 

transmodal zones in the cortex, as reflected in a mixture of signals that partially correlate with different 354 

networks. We demonstrate that this property is not limited to cortical regions by revealing potential 355 

mechanisms for multi-network integration in the subcortex. The results provide the strongest evidence 356 

for functional heterogeneity within the thalamus, striatum, claustrum, and hippocampus, for which we 357 

observed a complex pattern of subregional whole-brain FC that resembled spontaneous activity in 358 

distinct functional networks. Subregions in left and right hemispheres had similar spatiotemporal 359 

signatures that echoed the same functional networks, showing a symmetrical bilateral topography that 360 

is consistent with prior work (Cheng and Liu 2021).  361 

The thalamus and striatum are the most commonly represented non-cortical structures in studies 362 

of global brain connectivity, providing support for their putative role as hub regions (Bell and Shine 363 

2015, 2016; Van der Heuvel and Sporns 2011). Whereas several studies report an amalgamation of 364 

primarily sensory information within thalamic subregions consistent with its gating function (Tomasi 365 

and Volkow 2011; Ji et al 2019), we observed traces of somatomotor as well as default mode and dorsal 366 

attention networks. The somatomotor subdivisions also spatially overlapped with cingulo-opercular 367 

regions of the salience network, which aligns with findings of a ‘motor integration zone’ within ventral 368 

thalamic nuclei (Greene et al 2020). Additionally, dorsal attention, somatomotor, and visual networks 369 
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converged in a dorsolateral subregion, similar albeit slightly less posterior to the ‘visual integration 370 

zone’ in the pulvinar nucleus reported earlier (Greene et al 2020). For the striatum, we observed signal 371 

echoes from default mode, control, and salience networks predominantly within the caudate head and 372 

left tail, right tail, and left putamen, respectively. Despite large methodological differences across 373 

studies, these findings are consistent with prior evidence for ‘cognitive’ integration within the striatum 374 

(Choi et al 2012; Greene et al 2020; Seitzman et al 2020) and supports thalamic and striatal roles in 375 

information integration and higher-level cognitive functioning (Haber, 2003; Hwang et al 2017). 376 

Although organizational principles may broadly concur, precise functional boundaries and network 377 

connections diverge across studies. For example, the subregional profiles identified here partially 378 

deviate from another data-driven co-partitioning (Cheng and Liu 2021) and a voxel-wise winner-take-379 

all approach (Seitzman et al 2020) for the thalamus, as well as the from the striatal architecture 380 

reported by Choi et al (2012). Additionally, we found inter-hemispheric differences in the hippocampus 381 

– i.e., visual and dorsal attention network echoes in the right and default mode and limbic in the left 382 

side – that are inconsistent with reports of lateralized subdivisions along an anterior-posterior axis, as 383 

well as the location along this axis of the preferential connection to the default mode network (Blessing 384 

et al 2016; Cheng et al 2020; Ezama et al 2021). Given differences in connectivity with entorhinal and 385 

parahippocampal cortex (Qin et al 2016; Seoane et al 2018), it is possible that the extent of 386 

hippocampal and surrounding voxels included in the analysis explains some of the discrepancies across 387 

studies, which might be further exacerbated by the effects of spatial smoothing. Furthermore, high 388 

degrees of individual variability in subcortical anatomy and functional connectivity may result in 389 

distortions of group-level estimations (De Hollander et al 2015; Sylvester et al 2020; Greene et al 2020; 390 

Tian et al 2020; Marek and Greene 2021).  391 

Similar to previous observations for the cortex (Braga et al 2013), we demonstrate that functional 392 

heterogeneity is not ubiquitously present throughout the subcortex. Within the GPe, SN, and VTA, only 393 

one subregion’s connectivity profile resembled patterns of functional network activity. A region in the 394 

dorsolateral GPe echoed somatomotor as well as dorsal attention and control networks, indicating an 395 
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integrative site that may support its known role in voluntary, planned movement. Both the SN and VTA 396 

showed a pattern of converging signals from default mode and salience networks, although less 397 

evident in the VTA. Whereas this association with the default mode network is more established (Bär 398 

et al 2016; Edlow 2021; Zhang et al 2016; Li et al 2021), connectivity to the salience network is less 399 

known and may indicate involvement in attention and spontaneous cognition (O’Callaghan et al 2020).  400 

No clear evidence for functional integration was observed for the amygdala and PPN. Whereas the 401 

PPN likely takes part in more specialized subcortical circuitry involved in arousal and locomotion 402 

(Martinez-Gonzales et al 2011; Bennarroch 2013), the amygdala was previously proposed as hub 403 

structure (Tomasi and Volkow 2011) and showed dissociable FC profiles from its separate nuclei 404 

(Kerestes et al 2017). Although we did not find evidence for such heterogeneity when controlling for 405 

other subregional timecourses, we observed an intact connection with the default mode network, 406 

which is supported by other work (Kerestes et al 2017; Sylvester et al 2020; Harrison et al 2021). For 407 

the remaining structures – i.e., GPi, STN, RN, PAG, and LC – we failed to find network echoes. Although 408 

previous univariate FC studies have indicated correlations with widespread cortical activity for some 409 

of these structures (e.g., Zhang et al 2016; Anteraper et al 2018), the multivariate analysis here did not 410 

result in a clear group-level pattern of cortical connectivity. Similar to the PPN, these structures may 411 

be less involved in integrating spontaneous signals from distributed functional processes across the 412 

cortex, but are likely more strongly embedded in local networks to support segregated functional 413 

processing (Singh et al 2022). Recent findings suggest that neuromodulatory nuclei for dopaminergic 414 

and noradrenergic systems are driving systems-level integration and cognition (Liu et al 2017; De Gee 415 

2017; Zhang et al 2016). However, not all findings converge. For example, Bär et al (2016) showed that 416 

LC connectivity to the default mode network disappeared when controlling for adjacent neural signals 417 

and that hub-like features of midbrain nuclei were not supported by a graph theory analysis. The 418 

results presented here align with this observation and emphasize that integrative properties of these 419 

structures, among which the LC, remain somewhat elusive. Given proposed roles of the LC in mediating 420 

the dynamics of cortical connectivity and neural gain (Aston-Jones & Cohen 2005; Munn et al 2021), it 421 
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is perhaps not surprising that no dissociable traces of functional network activity are observed. That 422 

is, the LC may drive global states of network integration and segregation rather than serving as a 423 

convergence zone in itself.  424 

In summary, our results suggest that subcortical structures exhibit varying degrees of functional 425 

heterogeneity. This characteristic might be expressed along a gradient, where structures adjacent to 426 

the cortex seem more likely to support multi-network integration compared to deep brain nuclei. 427 

However, several factors may confound interpretations of interregional differences in the subcortex. 428 

For example, deep brain nuclei are generally smaller in size and have weaker SNR, while subcortex 429 

near the cortex is susceptible to signal bleeding from adjacent cortical voxels, to which they are also 430 

reciprocally connected (Choi et al 2012). This issue might be especially prominent in the claustrum, 431 

which is a thin sheet-like structure situated directly between the striatum and insula. In a recent study, 432 

Krimmel et al (2019) used a novel regression technique on similar high-resolution fMRI data (1.5mm 433 

isotropic voxels) to isolate the signal in the claustrum from nearby cortical and striatal voxels, which 434 

preserved the widespread FC with cortical networks involved in attention and cognitive control. Even 435 

though we did not correct for potential signal bleeding beyond limiting the amount of spatial 436 

smoothing, our finding of functionally heterogeneous network echoes within the claustrum’s 437 

subdivisions coincides with this work and its postulated role in attention and cognition (Bell and Shine 438 

2015; Krimmel et al 2019; Smith et al 2020).  439 

It should be noted that recent work highlights the difference in FC between eyes-open and eyes-440 

closed resting-state conditions, particularly with regard to internetwork connectivity of visual and 441 

sensorimotor networks to default mode and salience networks (Agcaoglu et al 2019; Costumero et al 442 

2020; Han et al 2023). While a large portion of studies on subcortical connectivity cited here are 443 

correspondingly based on eyes-open resting-state fMRI (e.g., Greene et al 2020; Choi et al 2012; 444 

Seitzman et al 2020; Hwang et al 2017; Blessing et al 2016; Sylvester et al 2020), future efforts could 445 

contrast our results to potential reconfigurations during other resting-state and experimental 446 

conditions. Investigating changes in the pattern of echoes according to external factors, such as 447 
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cognitive demand, and internal state are likely necessary to illuminate their functional relevance (e.g., 448 

Leech et al 2012). 449 

Although the precise significance of network echoes for cognition and behavior is not resolved, we 450 

strengthen the evidence that the subcortex participates in cross-network integration through echoing 451 

intrinsic network activity. These results may ignite new intriguing hypotheses on the mechanisms of 452 

spontaneous cognitive processes such as mind wandering (Mittner et al 2016; Zuberer et al 2021). 453 

Previous work has shown that mind wandering correlates with activity and connectivity in the default 454 

mode and frontoparietal control networks as well as the subcortex (Mittner et al 2014; Kucyi et al 455 

2017; Groot et al 2022). Given that both subtle and pronounced reorganizations in FC occur with 456 

changes in task demand (Leech et al 2012; Braga et al 2013; Tian et al 2020), investigations of how the 457 

complex pattern of echoes in the subcortex is perturbed by attentional changes may reveal novel 458 

insights into the mechanisms that drive mind wandering.   459 
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Figure/Table legends 700 

 701 
Figure 1. Overview of the data analysis. 702 

Figure 2. Parcellations of subcortical regions of interest and reference networks. (a) Subcortical regions of 703 
interest defined with open-source atlases and (b) data-driven reference networks from a whole-brain canonical 704 
ICA on the resting-state timeseries, labeled according to their maximum spatial correlation with a 17-network 705 
cortical parcellation. Corresponding whole-brain tSNR maps are shown in Figure 2-1. Labels: thalamus (Tha), 706 
striatum (Str), globus pallidus externa (GPe), globus pallidus interna (GPi), claustrum (Cl), hippocampus (HPC), 707 
amygdala (Amg), substantia nigra (SN), subthalamic nucleus (STN), ventral tegmental area (VTA), red nucleus 708 
(RN), periaqueductal grey (PAG), pedunculopontine nucleus (PPN), locus coeruleus (LC), Somatomotor A/B 709 
(SomA/B), Control A/B/C (ConA/B/C), Temporal Parietal (TemPar), Dorsal Attention A/B (DorA/B), Default A/B 710 
(DefA/B), Visual Central (VisC), Visual Peripheral (VisP), Limbic A/B (LimA/B), Salience/Ventral Attention A/B 711 
(SalA/B). 712 

Figure 3. Echoes of intrinsic connectivity networks in the subcortex. (a) The number of distinct subregions within 713 
a ROI with a functional connectivity profile that resembled a reference network (‘Subregions’) and the number 714 
of different reference networks that were echoed within a region (‘Networks’) both defined by counting above-715 
threshold spatial correlations. (b) The maximum spatial correlation between each ROI and each reference 716 
network, independent of subregion, for nine ROIs that demonstrated at least one above-threshold spatial 717 
correlation to any reference network. Subregional connectivity profiles for a subset of structures and their spatial 718 
correlation with reference networks are illustrated in Figure 3-1. The same analysis was repeated with reference 719 
networks taken from the 17-network cortical parcellation (Yeo et al 2011) shown in Figure 3-2 as well as for three 720 
cortical ROIs (Figure 3-3). Labels: thalamus (Tha), striatum (Str), globus pallidus externa (GPe), claustrum (Cl), 721 
hippocampus (HPC), amygdala (Amg), substantia nigra (SN), ventral tegmental area (VTA), pedunculopontine 722 
nucleus (PPN), Somatomotor A (SomA), Somatomotor B (SomB), Control A (ConA), Control B (ConB), Control C 723 
(ConC), Temporal Parietal (TemPar), Dorsal Attention A (DorA), Dorsal Attention B (DorB), Default A (DefA), 724 
Default B (DefB), Visual Central (VisC), Visual Peripheral (VisP), Limbic A (LimA), Limbic B (LimB), Salience/Ventral 725 
Attention A (SalA), Salience/Ventral Attention B (SalB). 726 

Figure 4. Topography of network echoes within heteromodal subcortical structures. Spatiotemporal 727 
decomposition of subcortical structures into independent subregions, color coded according to their strongest 728 
network echo or made translucent if their maximum spatial correlation with any reference network did not reach 729 
threshold. Labels: thalamus (Tha), striatum (Str), globus pallidus externa (GPe), claustrum (Cl), hippocampus 730 
(HPC), substantia nigra (SN), ventral tegmental area (VTA), Somatomotor A (SomA), Somatomotor B (SomB), 731 
Control A (ConA), Control B (ConB), Control C (ConC), Temporal Parietal (TemPar), Dorsal Attention A (DorA), 732 
Dorsal Attention B (DorB), Default A (DefA), Default B (DefB), Visual Central (VisC), Visual Peripheral (VisP), Limbic 733 
A (LimA), Limbic B (LimB), Salience/Ventral Attention A (SalA), Salience/Ventral Attention B (SalB). 734 

Figure 2-1. Whole-brain temporal signal to noise ratio (tSNR). For each of the two fMRI runs, voxel-wise tSNR 735 
values were calculated as the ratio of the mean and standard deviation of the resting-state timeseries after 736 
temporal high-pass filtering (1/128s) to remove low-frequency signal drifts. Individual tSNR maps (n=40) were 737 
registered to standard MNI space (MNI152Nlin2009cAsym) with ANTs before voxel-wise tSNR values were 738 
averaged across subjects and runs to create the group-level map. The black contours outline the regions of 739 
interest that were included in the study.  740 

Figure 3-1. Functional connectivity patterns of subcortical subregions and their spatial overlap with intrinsic 741 
connectivity networks. Diversity in whole-brain functional connectivity (FC) of distinct subregions of subcortical 742 
structures plotted on cortical surface meshes and the maximum spatial correlation with data-driven reference 743 
networks (four out of sixteen networks shown for illustration). Although the spatial correlations are calculated 744 
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from the unthresholded spatial maps, the reference networks were thresholded by assigning each voxel to its 745 
most strongly associated network based on the group canICA (i.e., every voxel is assigned to only one network 746 
and networks are non-overlapping) for illustration purposes. The subregion-specific FC maps are the group-level 747 
results of a dual regression analysis on the timecourse for each subregion while controlling for the variance in 748 
the other subregions, statistically tested with random permutation testing and thresholded at p<.05. Labels: 749 
thalamus (Tha), striatum (Str), claustrum (Cl), hippocampus (HPC), subsantia nigra (SN), globus pallidus externa 750 
(GPe), Default A (DefA), Default B (DefB), Somatomotor A (SomA), Salience/Ventral Attention A (SalA). 751 

Figure 3-2. Echoes of well-established cortical intrinsic connectivity networks in the subcortex. (a) The number 752 
of distinct subregions within a region of interest (ROI) with a functional connectivity profile that resembled a 753 
reference network (‘Subregions’) and the number of different reference networks that were echoed within a 754 
region (‘Networks’) both counted as the number of above-threshold spatial correlations. Reference networks 755 
were taken from the 17-network cortical parcellation (Yeo et al 2011). (b) The maximum spatial correlation 756 
between each ROI and each reference network, independent of subregion, for nine ROIs that demonstrated at 757 
least one above-threshold spatial correlation. Labels: thalamus (Tha), striatum (Str), globus pallidus externa 758 
(GPe), claustrum (Cl), hippocampus (HPC), amygdala (Amg), substantia nigra (SN), ventral tegmental area (VTA), 759 
pedunculopontine nucleus (PPN), Somatomotor A (SomA), Somatomotor B (SomB), Control A (ConA), Control B 760 
(ConB), Control C (ConC), Temporal Parietal (TemPar), Dorsal Attention A (DorA), Dorsal Attention B (DorB), 761 
Default A (DefA), Default B (DefB), Default C (DefC), Visual Central (VisC), Visual Peripheral (VisP), Limbic A (LimA), 762 
Limbic B (LimB), Salience/Ventral Attention A (SalA), Salience/Ventral Attention B (SalB).  763 

Figure 3-3. Echoes of intrinsic connectivity networks in cortical regions of interest. (a) The maximum spatial 764 
correlation between the whole-brain functional connectivity (FC) of each cortical ROI with data-driven reference 765 
networks. The results demonstrate greater functional heterogeneity within posterior cingulate cortex (PCC) and 766 
medial prefrontal cortex (mPFC), as evident in more distributed patterns of FC with default mode, control, and 767 
salience networks compared to the visual cortex (VC), which showed a more uniform organization dominated by 768 
a preferential connection with the visual peripheral network. This is consistent with previous work (Braga et al 769 
2013) and provides a validation for our novel application of the multivariate analysis within subcortical regions 770 
of interest. (b) The results of an identical analysis but with the 17-network cortical parcellation (Yeo et al 2011) 771 
as reference networks, revealing a less pronounced but qualitatively similar pattern of results compared to the 772 
data-driven networks. Labels: Somatomotor A (SomA), Somatomotor B (SomB), Control A (ConA), Control B 773 
(ConB), Control C (ConC), Temporal Parietal (TemPar), Dorsal Attention A (DorA), Dorsal Attention B (DorB), 774 
Default A (DefA), Default B (DefB), Default C (DefC), Visual Central (VisC), Visual Peripheral (VisP), Limbic A (LimA), 775 
Limbic B (LimB), Salience/Ventral Attention A (SalA), Salience/Ventral Attention B (SalB).  776 

 777 

Table 1. Parcellationd details for regions of interest. Number of voxels (N voxels) in functional space (1.5mm 778 
isotropic voxel size) and mean and standard deviation (SD) of ROI-wise temporal signal-to-noise ratio (tSNR) 779 
values. *Source: Multi-contrast Anatomical Subcortical Parcellation (MASSP, Bazin et al 2020); 17-network 780 
cortical parcellation (Yeo et al 2011); 7T Probabilistic LC Atlas (Ye et al 2021). 781 


