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Abstract—The advancement of sensing technologies brings
digitalization into the field of offshore operations. Especially,
practitioners have paid attention to ensuring operational safety
by predicting ship motion with motion sensors and onboard
wave radars. This study proposes a novel physics-data coop-
erative approach for on-site ship motion prediction with wave
radars. First, the proposed approach makes a stochastic ship
motion prediction by using a physics-based ship model. Such a
physics-based approach is widely popular, however, it requires
extensive effort in calibrating a whole system to achieve good
performance. To improve its performance, this study employs
a linear regression model to map physics-based prediction into
true ship motion. The coefficients of the regression model are
determined in a data-driven manner. A primary challenge of such
a cooperative approach is the imbalance of datasets dominated
by samples with small motions. To improve the performance
for samples with large motions, undersampling is a key element
in the proposed approach. A large-scale validation study was
performed by employing a 33.9m research vessel with a com-
mercial virtual wave-radar system on a navigational X-band
radar. 104 samples were collected for developing and testing
the cooperative approach. Data-driven support notably improved
the performance of physics-based prediction. Undersampling was
found to be effective when roll motion is large. Thus, this study
firstly reports such a physics-data cooperative approach with a
large-scale validation study.

Index Terms—wave radar, ship motion prediction, hybrid
model

I. INTRODUCTION

THE development of sensing technologies has brought
benefits of digitalization and informatization to a broad

range of industries. Ships in the offshore industry are no
exception to this trend. They could be viewed as a large body
of a collection of sensors and electronics providing real-time
data, such as ship motions, navigation, and sea states. For
researchers both in electronics and maritime, this perspective
has gained much attention [1]. Ships have played a key role
in diverse offshore operations such as installing offshore wind
turbines [2] and offshore helicopter landing [3]. To avoid fatal
consequences that marine accidents lead to, the industry has
devoted much effort to ensuring the safety of such onboard
operations by using sensors for decision makings [4].
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Fig. 1: A snapshot of an example operation. Excessive ship
motion leads to damaging onboard equipment and compromis-
ing the safety of personnel.

In particular, ship’s wave-frequency motions in pitch, roll,
and heave directions pose a big challenge to safe onboard
operations. When ships are doing construction and loading
works, they activate Dynamic Positioning (DP) system to
keep their horizontal position and heading by using thrusters.
However, ships easily move in the heave, roll, and pitch
directions during DP operations. Fig. 1 shows a snapshot
of an example crane operation, conducted by the research
vessel Gunnerus, where ship motion prediction is of great
importance for ensuring safety. Operations must be stopped
when excessive motions are expected in the future. Otherwise,
onboard personnel and equipment could be damaged. How-
ever, operations also need to keep being conducted as much as
possible for minimizing the operation schedule. Such decision
making needs to be made on-site during operations. Hence,
to further deliver benefits of advanced sensing and electronics
into safe offshore operations, it has been a primary agenda
for the offshore industry to develop a ship motion predictor,
which works accurately on-site, using onboard sensors.

Predicting a future ship motion based on a time history
of ship motions has been an economically-feasible approach
only with traditional ship motion sensors. State-of-the-art
machine learning algorithms were employed to extract time-
history features [4], however, it does not make an accurate
prediction if sea states change. To obtain more information
about sea states in a more explicit way, Schirmann et al. [5]
developed a data-driven ship motion predictor based on the
weather forecast. It would be practical for planning sea routes
avoiding excessive ship motions, however, their approach does



not provide an on-site prediction since the spatio-temporal
resolution of the weather forecast is highly limited.

To overcome these challenges, onboard wave radars seem
to be a promising on-site data source. They directly provide
onsite measurements of sea states surrounding a ship by taking
clutter images of the sea surface and processing them. Due to
the fact that they are expensive facilities that require calibration
frequently, their applications have been rather limited. How-
ever, recently, it is becoming more feasible thanks to virtual
wave radars that can be virtually installed on existing X-band
radars for navigation purposes without physically installing
new radars. Moreover, the automatic calibration [6] using
external reference data makes wave radars a more attractive
and feasible solution to the industry. Nevertheless, to the
authors’ best knowledge, only limited research and validation
work have been conducted for predicting ship motion based on
on-site wave-radar measurements so far. Next Ocean [7] and
Futurewaves [8] are companies providing a commercial ship
motion predictor based on wave-data measurements. Some
research projects have been also reported [9]–[14]. They made
deterministic motion predictions up to a-few-minute future by
using physics ship dynamic models. They reported a great per-
formance, however, extensive effort has been paid to designing
dedicated models and experiments. Physics-based approaches
offer more reliable and explainable ship motion prediction than
black-box models. However, some researchers reported that it
was challenging to achieve a good performance only by relying
on such open-loop estimation when transferring between wave
information and ship motion [5], [15] due to uncertainties in
measurements and physics-based models. To overcome this
challenge, this study proposes a novel physics-data cooperative
approach for ship motion prediction with a large-scale valida-
tion study. In this study, we conducted a large-scale experiment
to investigate the necessity and possibility of making a synergy
of physics knowledge and data. The proposed approach makes
a stochastic ship motion prediction from two-dimensional
wave spectrum observed by a commercial virtual wave-radar
system, which is installed on a conventional navigation X-
band radar. A physics-based ship response model delivers a
foundation for prediction. Data-driven linear regression models
map such physics-based prediction into true values. Hence,
this study employs a physics knowledge as a foundation while
calibrating its performance in a data-driven manner. Moreover,
we focus on a practical challenge in data-driven calibration is
the imbalance of datasets where large ship motion is rarely
observed. This study introduces the undersampling technique
which remedies such imbalance of a dataset for enhancing
prediction performance for cases with large ship motions.

In a validation study of this work, a 33.9m Research Vessel
(R/V) Gunnerus was employed for one year. She was equipped
with the Miros Wavex [16] that is a commercial virtual
wave radar on the conventional X-band radar for navigation
purposes. Along the west coast of Norway, during DP opera-
tions, 104 samples were collected with two-dimensional wave
spectrum measured by Wavex and five-minute time histories
of pitch, roll, and heave motions right after the wave-radar

measurement. In the case study, the data-driven calibration
notably improved prediction performance of the physics-based
open-loop estimation. The present undersampling was effec-
tive in enhancing prediction performance for samples with
large responses when predicting roll motions. Contributions
of this article are summarised as follows:

• Proposing a novel physics-data cooperative approach of
on-site stochastic prediction of ship motion, composed of
a commercial virtual wave radar, physics-based model,
data resampling, and data-driven calibration.

• Conducting a large-scale validation study of such an on-
site ship motion prediction for the first time.

II. RELATED WORKS

For ensuring operational safety, ship motion prediction has
gathered significant attention for years. In this section, previ-
ous works will be briefly revisited to clarify the contribution of
this work. They are grouped into two categories: approaches
without/with using onboard wave radars.

A. Approaches without using wave radars

This category has been a majority since it offers the
most economically-feasible solution without installing on-
board wave radars. They predict a short-term ship motion
by analyzing time series of past ship motion. Traditionally,
physics-based [17] and statistical approaches [18] are known.
Thanks to the recent advancement of machine-learning (ML)
technologies, ML models opened a new era of data-driven
models in this category. In particular, the Long Short-Term
Memory (LSTM) [4], [19] is becoming the gold standard,
which is powerful in recognizing time-series features. On
the other hand, researchers are also aware of the fact that
wave data are important for ship motion prediction. [20] built
LSTM models for predicting motions of a semi-submersible in
an experiment tank where wave probes were installed. They
reported that the prediction performance was 10-15% better
with wave data than that without wave data. In addition, this
category relying on past ship motion can not deal with a
change of sea states. To be more informed of wave data, [5]
employed wave forecast to predict ship motion. Their approach
would be helpful for planning sea routes, however, it would not
be applied to onboard decision makings since wave forecast
has a low spatiotemporal resolution.

B. Approaches using wave radars

Wave radars provide on-site observation of waves sur-
rounding ships. It is believed that it plays a key role in a
future framework of onboard decision support [21]. Real-
world case studies have been performed in several research
projects such as CASH [9], ESMF [10], [11], and OWME
[12], [13] projects. In these projects, physics-based transfer
functions map wave-radar observations into ship motions. It
requires extensive effort in developing accurate physics-based
ship response models. However, in real-life applications, as
reported in [5], it is known that it is time/effort-consuming



Fig. 2: A schematic overview of the proposed approach.

to achieve a good performance solely relying on the physics-
based model. On the contrary, in [22], neural networks were
built such that they map a wave-radar observation into ship
motion in a data-driven manner instead of building physics-
based models. They validated their work with simulation
experiments, however, it is expected that we face challenges
in real-life applications. A primary challenge would be the
fact that real-life datasets are highly imbalanced. Thereby,
pure black-box models fully relying on data would be hardly
accepted due to hurdles in training efficiency, reliability, and
interpretability. Hence, both physics-based and data-driven
models would face practical challenges. In this study, we
present data-driven support for the performance of the physics-
based mapping from wave-radar observation into ship motion.

III. METHODOLOGY

A. Overview

A schematic overview of the proposed approach is shown
in Fig. 2. A dataset is constructed by collecting measurements
from the onboard wave radar and ship motion sensors. Taking
clutter images of the sea surface, the wave radar outputs a two-
dimensional wave spectrum, which is a matrix of wave energy
for different wave frequencies and directions. Given that this
study employs a commercial virtual wave-radar system [16],
this section does not explain their technology in detail. In
this study, a target of prediction is a standard deviation of
ship motions σi, which has been used for representing how
harsh ship motion is [5]. This study assumes wind and current
forces have marginal impacts on this value. First, raw data
are pre-processed. In this step, from long-history data, we
extract samples composed of two-dimensional wave spectrum
and ship motion, which satisfy criteria for data extraction.
Extracted samples are grouped into training and test datasets.
The test dataset is used not for model development but only for
model evaluation. Subsequently, data balancing is performed

to remedy a negative impact of having a poorly-balanced
training dataset on the prediction performance. However, it
would be the scope of our future work since this study is
a preliminary work for validating a physics-data cooperative
approach with a large-scale experiment. By using a physics-
based ship linear response model, standard deviations of heave,
pitch, and roll motions σ̂m

i are predicted. A suffix i in variables
represents the variable is defined for the ith Degree of Freedom
(DoF) of the ship motion; namely, i = 3, 4, and 5 are for the
heave, pitch, and roll motions, respectively. In this study, such
physics-based predictions provide a baseline estimation. In the
case study, true values and physics-based predictions showed
a qualitative agreement, however, they had room to be cali-
brated. Physics-based prediction is an open-loop estimation,
thereby, it accumulates errors coming from measurements, a
physics model, and nonlinear ship dynamics. It takes much
effort to identify multiple sources of errors and calibrate all the
components properly. Moreover, it seems difficult to interfere
with a data-processing system of commercial wave radars with
upcoming data. Thereby, in this study, we develop a simple
linear-mapping function of physics-based prediction into true
values to calibrate such errors since it was found to be effective
in the training dataset in the case study. Target values σi are
given by history ship motion in the collected dataset. Once the
linear function is estimated, it makes physics-data cooperative
prediction for a new sample in the test dataset.

B. Data extraction

A raw onboard dataset gives a long time history of ship
motion and two-dimensional wave spectrum taken by a virtual
wave radar. The radar was not always used for the purpose
of monitoring waves but for navigation, thereby, we firstly
make combinations of the wave-radar observation and five-
minute time series of ship motions right after the observation.
Hereinafter, we call these combination samples. We remove
samples of which time series have an overlap with that of



the previous sample. As we focus on making ship motion
prediction during DP operations, samples are further removed
if the ship maneuver is not stationary. Samples with a warning
of poor accuracy of wave-radar observation are also removed
in this step. The remaining samples are eligible for being
involved in modeling. Samples are grouped into the training
and test datasets. The training dataset is used for model de-
velopment. The test dataset is used only for model evaluation.
When dividing samples into two datasets, they are not shuffled.

C. Data balancing

There exist different approaches to deal with the imbalance
in a dataset. In particular, undersampling has been offering
a great performance only by removing some samples from
the original dataset [23]. Undersampling technique draws a
line to group samples in the original dataset into rare and
nominal groups. In this study, the 90% percentile of target
values in the training dataset is the line dividing two groups. To
balance the number of samples in two groups, undersampling
technique randomly picks out samples from samples in the
nominal group such that the size of the selected samples is
equal to that of the rare group. Thus, undersampling improves
prediction performance for samples in the rare group. It was
implemented in the resreg package [24] in Python in this study.

D. Ship motion

The target of the proposed ship motion predictor is the
standard deviation of the heave, pitch, and roll motions. This
prediction provides stochastic insights of future ship motions
for us so that we can make a decision if offshore operations
can be conducted with such a sea state during DP operations.
In the model training phase, these target values are given as:

σi =

√√√√ 1

Nt

Nt∑
t=1

(ηti − ηi) (1)

where ηi = [η1i , ..., η
Nt
i ] is the time history of the ship motion

in five minutes after the wave-radar observation, ηi is its
average, and Nt is the length of the time history.

E. Physics-based prediction

Based on the measured two-directional wave spectrum, σ̂m
i

is predicted based on the understanding of ship dynamics.
Assuming the linear relationship between waves and ship
motions, the wave buoy analogy method is popular [15] to
relate the energy spectrum of ship motion Si(ω) and two-
directional wave spectrum as:

Si(ω) =

∫ π

−π

|RAOi(ω, θ)|2Sw(ω, θ)dθ (2)

where ω is the angular frequency, θ is the relative direction
of waves with respect to ship’s heading, RAOi(ω, θ) is the
Response Amplitude Operator (RAO) of the ship for the i-th
direction, and Sw(ω, θ) is the directional wave spectrum. Note
that the encounter wave frequency is assumed to be identical
to the wave frequency since we focus on DP operations. In this

TABLE I: Specifications of the R/V Gunnerus

Specification Value
Mass 584t

Breadth middle 9.6m
Length between perpendiculars 33.9m

study, Sw(ω, θ) measured by the wave radar is a discretized
36 × 32 matrix where it has 36 different wave directions
with 10◦ interval and Nω = 32 different wave frequencies
with 0.01Hz interval from 0Hz to 0.32Hz. Corresponding
discretized RAOi is calculated through a hydrodynamic work-
bench ShipX [25] based on the ship’s specifications and
geometries. It yields a vector of energy spectrum of ship
motion Si(ω) in the discretized form. Its zeroth-order moment
of mi is:

mi =

Nω∑
k=1

Si(ω) (3)

Then, σ̂m
i =

√
mi is derived for the heave, pitch, and roll

motions.

F. Linear mapping of physics-based prediction

σ̂m
i =

√
mi are mapped into the physics-data cooperative

prediction by using a linear regression function:

σ̂i = ασ̂m
i (4)

α is a coefficient of this linear-mapping function. σ̂m
i becomes

zero if the wave energy observed by the wave radar is zero.
Thereby, the zero intercept of the linear mapping is estimated.
It is estimated such that it minimizes Mean Squared Error
(MSE) between predicted and true vectors in the training
dataset as:

α = (xTx)−1xTy (5)

where x = [σ̂m
i,1, ..., σ̂

m
i,j , ..., σ̂

m
i,N ] is the input vector, σ̂m

i,j is
σ̂m
i for the j-th sample in the training dataset, N is the number

of samples in the training dataset, y = [σi,1, ..., σi,j , ..., σi,N ]T

is the target vector, and σi,j is σi for the j-th sample in the
training dataset.

IV. CASE STUDY

To validate the proposed approach in the real-life applica-
tion, a large-scale case study was performed.

A. Data

1) Data collection: Data collections were carried out from
January 2021 to May 2022 by 33.9m-length RV Gunnerus.
Her specifications are listed in Tab. I. During DP operation,
she employs two azimuth thrusters and one tunnel thruster
to maintain her horizontal positions and heading actively
under environmental disturbances. During data collection, we
sampled ship motion in 1Hz including the following measure-
ments:

• Positions: Latitude and longitude of the ship’s position
were provided by GPS. Heading in the global coordinate
was also measured.



Fig. 3: Locations of 104 samples in the case study. All samples
were taken along the west coast of Norway.

Fig. 4: Sub datasets for the case study.

• Velocities: surge, sway, and yaw velocities were mea-
sured.

• Wave-frequency motion: displacements in heave, pitch,
and roll were measured.

In addition, onboard measurement of two-dimensional wave
spectrum was provided by miros Wavex radar system [16].
Wavex is a commercial wave radar system virtually installed
on the conventional X-band navigation radar. In the case study,
it was installed on a Furuno 2xx7 series X-band navigation
radar. It enables present work to be easily applied to ships
with smaller costs without physically installing a new radar.
Wavex provides two-directional spectrum based on sea clutter
images taken by an X-band radar. It is connected to ship
motion sensors and the impact of ship motions on sea clutter
images is automatically compensated for.

2) Data extraction: In the collected dataset, only samples
that satisfy the following criteria were extracted for the case
study.

• Data quality: The quality of wave-radar measurements
can be degraded due to factors such as wind drops and
heavy precipitations. Wavex is equipped with automatic
data quality control. Samples with unacceptable quality
were removed.

• Surge speed limit: Samples with surge speed > 2.0 knots
were removed since maneuvering operations are not the
scope of this case study.

• Steady heading: If the heading changes over 15◦ within
five minutes after the wave-radar observation, the samples
were removed.

• Heave motion: The scope of the case study is the ship
motion under wave excitation. If the standard deviation
of the five-minute time history of the heave displacement
was smaller than 0.025m, the samples were removed.

These criteria yielded 104 samples without overlaps. These
samples were taken in the diverse locations as shown in Fig. 3.
They were taken from diverse locations mainly off the coast
of Trondheim and Ålesund. As shown in Fig. 4, 104 samples
were grouped into six sub datasets for the case study. To avoid
data leakage between sub datasets, samples in different subsets
were taken on different dates or 20-min time intervals were
taken between subsets.

In this section, six case studies from Case Study (CS) 1
to CS6 were conducted. For the CSk, the sub dataset k was
employed as a test dataset used only for the model evaluation.
The other five sub datasets were used for developing linear
mapping functions.

B. Performance evaluation

Fig. 5 shows distributions of target values σ3−5 in training
and under-sampled datasets in six case studies. It is clearly
seen that the original training datasets are highly imbalanced in
terms of three-direction motions. Ships for offshore operations
need a motion prediction over a wide range of motions,
however, as shown, it is a challenge that real-life datasets
are dominated by small-motion samples since ships mostly
operate under the mild sea states for safety reasons. By
applying undersampling, as shown in green bars in Fig. 5, such
imbalance was notably remedied by removing small-motion
samples from the training datasets.

In Fig. 6, scatter plots of true and predicted ship motions
in the test dataset in heave, pitch, and roll directions for six
case studies are shown. Green, red, and blue dots represent
results made by the physics-based response model, its linear
mapping with original training datasets, and its linear mapping
with under-sampled datasets. The diagonal lines in the figures
show true lines where predicted values are equal to true values.
If a dot is above the line, prediction is larger than the true
value, and vice versa.

In the heave direction, the physics-based model showed
a qualitative agreement with true values in all case studies,
however, it was found to be mostly larger than true values.
Prediction by the physics-based model is open-loop, thereby,
a quantitative agreement was hardly accomplished. On the
other hand, with a linear mapping trained with a corresponding
training dataset, such error was notably reduced for most sam-
ples. In the CS3, the linear mapping worsened the prediction
performance of the physics-based model for two samples with
motion σ3 > 0.3. It is seemingly because the training dataset
of the CS3 did not have samples with such large motions.
In the pitch direction, the same trend as shown for the heave
direction is seen. For both heave and pitch motions, a positive
impact of undersampling the training datasets was found to



(a) Heave

(b) Pitch

(c) Roll

Fig. 5: Distributions of target values, which are standard deviations σi in the (a) heave, (b) pitch, and (c) roll motions.
Blue histograms show distributions in the original training dataset for each case study. Green histograms show that after
undersampling was performed.

be marginal. By removing samples with small motions from
the training datasets, prediction performance for large motions
was slightly improved in return for having a slightly worse
performance for small motions.

For the roll motion, it seems that the prediction performance
of the physics-based model was rather limited although it
captured a rough trend of true values. Linear mappings with
the original training datasets notably reduced such error only
for small motions. For large motion, with the original training
datasets, linear mappings of the physics-based predictions
underestimated the motion. It is because the original datasets
are dominated by small motions, thereby, linear mapping
did not efficiently learn the trend for large motions. By
undersampling the training dataset, the prediction performance
of linear mappings were found to be significantly improved for
large motions as shown in the CS3, 4, and 5.

C. Discussion

In the case studies, the physics-based prediction mostly
overestimated true motions while it captured a qualitative trend
of true motions. Performance of the physics-based prediction

could be improved by devoting more effort and expertise to
carefully conducting measurements and modeling, however, it
can be difficult in real-life applications. The present calibration
in performance of the physics-based prediction with a simple
linear-mapping function was validated to offer one solution to
this challenge while data-driven tuning of the whole system
requires more effort with directly intervening commercial
systems. The linear function is interpretable, thereby, designers
could also utilize its estimated coefficient to improve their
models and measurement systems.

As discussed, a huge obstacle for pure data-driven models
is the fact that real-life datasets have limited samples for large
motions. It is hard to ensure reliability of pure data-driven
models trained with such imbalanced datasets. Since it is also
hard to achieve a good performance with a physics-based
model, we need to focus on making a physics-data synergy
for developing accurate and reliable models. With a large-
scale experiment, this study becomes the first milestone in
presenting the idea of such a cooperative approach for on-site
ship motion prediction with using virtual wave radars.

This study proposed a whole package of on-site ship motion



(a) Heave

(b) Pitch

(c) Roll

Fig. 6: True versus predicted values in the (a) heave, (b) pitch, and (c) roll directions in the test datasets for all case studies.
(green: Physics) predictions only with the physics-based model. (red: Physics-data) predictions with the physics-based model
and its data-driven mapping by using the original training datasets. (blue: Physics-data-US) predictions with the physics-based
model and its data-driven mapping by using the UnderSampled (US) training datasets.

prediction, which is composed of virtual wave radar, motion
sensors, under sampling, and linear-mapping function. It is
a great contribution that this study performed a large-scale
validation study for such a package for the first time. However,
it is still a preliminary study and the authors plan to act
toward further improving each component of the package.
In particular, imbalance of real-world datasets needs more
attention. In the future work, we might be able to develop
an unsupervised-learning model for detecting large motions
given that we have limited samples for large motions.

V. CONCLUSION

For ensuring safe offshore operations during dynamic po-
sitioning, this article proposed a novel physics-data cooper-
ative approach of on-site ship motion prediction composed
of a virtual wave radar, motion sensors, a physics-based ship
motion model, undersampling, and data-driven performance
calibration. It predicted a standard deviation of heave, pitch,
and roll motions based on two-dimensional wave spectrum
observed by an onboard virtual wave radar. To validate the

proposed method, we conducted a large-scale experiment by
the 33.9m-length research vessel along the west coast of
Norway. Such a large-scale case study was conducted for
wave-radar-based ship motion prediction for the first time.
In the case study, physics-based prediction showed qualitative
agreement with true ship motions, however, its simple linear
mapping showed a better quantitative agreement. With un-
dersampling technique, samples with small and large motions
were well balanced. It contributed to having a better prediction
performance for samples with large motions especially for
predicting the heave motion. The presented work becomes the
first milestone of physics-data cooperative approaches which
seem to be a promising direction for dealing with system
uncertainties and imbalance of real-life datasets. Although this
study presented a validity of on-site ship motion prediction
with a virtual wave radar in a physics-data cooperative way,
some works remain for our future research. Our primary
agenda for future work is to further investigate how to make
use of data-driven models while having a physics-based pre-
diction as a prediction foundation.
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