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Fourier transform‑based 
method for quantifying 
the three‑dimensional orientation 
distribution of fibrous units
Riccardo Alberini 1, Andrea Spagnoli 1*, Mohammad Javad Sadeghinia 2, Bjørn Skallerud 2*, 
Michele Terzano 3 & Gerhard A. Holzapfel 2,3

Several materials and tissues are characterized by a microstructure composed of fibrous units 
embedded in a ground matrix. In this paper, a novel three-dimensional (3D) Fourier transform-based 
method for quantifying the distribution of fiber orientations is presented. The method allows for an 
accurate identification of individual fiber families, their in-plane and out-of-plane dispersion, and 
showed fast computation times. We validated the method using artificially generated 3D images, in 
terms of fiber dispersion by considering the error between the standard deviation of the reconstructed 
and the prescribed distributions of the artificial fibers. In addition, we considered the measured mean 
orientation angles of the fibers and validated the robustness using a measure of fiber density. Finally, 
the method is employed to reconstruct a full 3D view of the distribution of collagen fiber orientations 
based on in vitro second harmonic generation microscopy of collagen fibers in human and mouse 
skin. The dispersion parameters of the reconstructed fiber network can be used to inform mechanical 
models of soft fiber-reinforced materials and biological tissues that account for non-symmetrical fiber 
dispersion.

Biphasic solids, characterized by a microstructure of fibrous units embedded in a ground substance, are com-
mon in both engineered materials and biological tissues. For example, fiber-reinforced materials have emerged 
as versatile and indispensable components in a wide range of structural engineering applications, ranging from 
aerospace and automotive to construction, including fiber-reinforced polymers1–4, fiber-reinforced concrete5,6 
and non-woven fabrics7. Their importance goes beyond traditional applications and finds increasing application 
in the medical sciences and for smart materials8–10.

In addition, researchers have thoroughly investigated the mechanical behavior of biological tissues with 
a fibrous microstructure, including cornea, cartilage, skin, and blood vessels. Collagen is of particular inter-
est, it is also the most abundant protein in the human body and plays a role in providing structural integrity 
and load-bearing functions of tissues. Understanding the distribution and organization of collagen fibers has 
significant implications for the preliminary diagnosis of pathological situations. For example, alterations in 
collagen organization have been associated with diseases such as cancer11–13, abdominal aortic aneurysms14–16, 
mitral valve disease17, keratoconus18–21, and genetic disorders such as Marfan syndrome22. Quantification of the 
underlying microstructure of soft tissues is also of paramount importance for constitutive models developed 
for fibrous biological tissues. Accurate models rely on microstructural parameters, such as the mean fiber ori-
entation and dispersion, to accurately reproduce the nonlinear anisotropic response of tissues under complex 
loading scenarios23–26.

Precise imaging techniques play a crucial role in assessing the architecture of collagen fibers. Several methods, 
including histological staining27,28, polarized light microscopy29,30, optical coherence microscopy31,32, and second 
harmonic generation (SHG) microscopy33–35 are used to visualize collagen fibers. Among these techniques, SHG 
microscopy has gained prominence due to its ability to provide three-dimensional, high-resolution images of 
collagen fibers that can be detected at depth without the need for staining. However, the quantitative three-
dimensional (3D) assessment of the fiber orientation distribution (FOD) remains a challenge.
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The importance of automated techniques to measure fiber distribution cannot be overlooked. These methods 
have the potential to revolutionize the analysis of collagen organization by reducing human error, increasing 
efficiency and enabling the measurement of a greater number of features. Current approaches to quantitatively 
measure fiber distribution include texture analysis36,37, fiber segmentation and tracking algorithms (e.g., the 
CT-FIRE algorithm)38,39, pixel-by-pixel methods using gradients40,41 or directional variance42,43, Gabor filter 
methods28, and Fourier transform methods32,44–46. In particular, Fourier transform-based methods, including 
wavelet transforms, have shown promise in terms of computational efficiency irrespective of image complexity, 
computation speed, and reduced sensitivity to noise and fiber crimping32.

While numerous methods exist for two-dimensional (2D) measurements of fiber distribution, the transition 
to 3D analyses raises open technical questions. For example, fibers with a large elevation with respect to the image 
plane are not captured because their cross-section is quasi-circular and the direction cannot be recognized by 
the 2D Fourier transform47. Also, existing 2D algorithms either focus exclusively on in-plane or out-of-plane 
measurements, which limits the comprehensive understanding of fiber dispersion. Even if both the in-plane and 
out-of-plane fiber distributions are measured, the architecture cannot be combined to produce a 3D distribution 
since it is not possible to reconstruct the 3D distribution from the distribution about two perpendicular direc-
tions without information about their covariance.

Few algorithms are explicitly designed for full 3D measurements, leaving a significant gap in the field48. 
Liu et al.13 used a pixel-by-pixel method to extract a spatial description of collagen fibers, but then adopted 3D 
directional variance, an averaged metric to assess fiber concentration levels, and they provided separate in-plane 
and out-of-plane fiber distributions. Lau et al.47 used a 3D Fourier transform method, but the fiber distribution 
is computed by dividing the 3D image into regions of interests (ROIs) and finding the overall fiber orientation 
of each region. The fiber distribution within each region is not considered, so information is lost when a region 
contains two or more fiber families. In addition, the number of measurements is limited to the number of regions 
of interest.

In this work, we present a novel 3D Fourier transform-based method to characterize the FOD. Our approach 
provides a complete 3D description of fiber dispersion within an image, facilitates the identification of individual 
fiber families, and enables quantitative analysis using fitted bivariate von Mises probability density function (PDF) 
parameters. The algorithm has fast computation times even with large-sized images and is therefore extremely 
practical for research and clinical applications. To validate the algorithm, 3D images containing artificial fibers 
are generated to assess its robustness and precision in computing in-plane and out-of-plane distribution param-
eters. The performance of the algorithm is then verified for mouse and human skin collagen fibers obtained 
from SHG images.

Results
Discrete fiber orientation distribution
Fibers in biphasic materials are usually dispersed with a non-uniform orientation distribution characterized 
by one or more fiber families, each having a preferential direction and generally a non-symmetrical dispersion 
with different in-plane and out-of-plane concentrations. For example, biological tissues such as skin or arterial 
walls exhibit two distinct fiber families, together with an out-of-plane concentration that is more pronounced 
compared to the in-plane concentration49. In contrast, in 3D printed fiber-reinforced hydrogels, the fibers are 
dispersed axially along a single preferential direction, while the concentration mainly depends on the diameter 
of the deposition nozzle and the printing speed3,9.

The three-dimensional fiber organization can be described by a FOD function that returns the normalized 
amount of fibers along all directions in the angular domain of a hemisphere, where θ and φ are the azimuthal and 
elevation angles with respect to the in-plane and out-of-plane directions of a single fiber. The FOD reveals the 
architecture of the fiber network: the location of a local maximum in the FOD identifies the mean fiber direction, 
while the standard deviations σθθ and σφφ provide a measure of the in-plane and out-of-plane concentrations. A 
lower standard deviation corresponds to a higher fiber alignment along the mean direction.

We propose an algorithm that takes advantage of the directional information carried by the 3D discrete 
Fourier transform to obtain a discrete fiber orientation distribution (dFOD). First, the spectrum of a three-
dimensional grayscale image of the fiber network is filtered with a set of filters to obtain a raw dFOD d(θ ,φ) 
(Materials and Methods, Eq. (6)). Then, we remove the interference due to the reciprocal overlaps of the filters in 
the frequency domain with a deconvolution step to obtain the actual (deconvoluted) dFOD d′(θ ,φ) . Finally, we 
estimate the parameters of the fiber orientation distribution by fitting a bivariate von Mises PDF to the decon-
voluted dFOD (Materials and Methods, Eqs. (2) and (3)). For multiple fiber families, the parameters of each 
n-th family are obtained by fitting a combination of bivariate von Mises PDFs ρ =

∑

n νf ,nρn , where νf ,n is the 
volume fraction of the family. The parameters of the distribution include the azimuthal and elevation angles αn 
and βn of the mean fiber direction, the rolling angle γn of the family about the mean direction, and the in-plane 
and out-of-plane concentration parameters an , bn (see Fig. 9 in Materials and Methods).

Figure 1 illustrates an application of the algorithm to an artificially generated fiber network. A fiber dispersion 
image ( 256× 256× 256 voxels) with N = 1 000 randomly generated fibers of diameter t = 3 voxels was gener-
ated according to a prescribed von Mises distribution ( n = 1 ) with mean orientation angles α = β = γ = 0◦ 
and concentrations a = 0.5 , b = 5 . The raw and deconvoluted dFODs are shown in Fig. 1c,d. In particular, the 
latter show that the algorithm is able to precisely recover the prescribed von Mises distribution ρ ( R2 = 0.981).

Algorithm calibration and validation
We employed artificial fiber stacks with prescribed distributions to calibrate the algorithm and assess its robust-
ness and precision (see Materials and Methods).
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Calibration
The shape of the deconvoluted dFOD d′(θ ,φ) is controlled by a power parameter q applied to the spectrum of 
the fiber image before the filtering process (Eq. (6)). Since the spectrum power parameter affects the standard 
deviations of d′(θ ,φ) , we analyzed the relative errors �σθθ and �σφφ between the standard deviations of the 
prescribed and the measured distributions. For this purpose, we generated four different single-fiber family 
distributions representing four scenarios of high/low in-plane and out-of-plane concentrations: Case 1: low 
concentration in both planes ( a = 0.5 , b = 0.5 ); Case 2: high out-of-plane concentration ( a = 0.5 , b = 5 ); Case 
3: high in-plane concentration ( a = 5 , b = 0.5 ); Case 4: high concentration in both planes ( a = 5 , b = 5 ). In 
total we assumed α = β = γ = 0◦ and generated 10 three-dimensional images ( 256× 256× 256 voxels) each 
with N = 6 000 fibers of diameter t = 3 voxels.

Figure 2a shows contour plots of the prescribed von Mises PDFs. The relative error �σθθ is represented in 
Fig. 2b. For both Case 1 and 2, the error seems small and increases slightly with q, always staying below 6% . 
In Case 3, on the other hand, the error drops quickly from 50% to less than 10% without significant variations 
between q = 2.4 and q = 2.8 . In Case 4, the error decreases significantly with increasing values of the spectrum 
power parameter q and reaches its minimum at q = 2.8 . Regarding the relative error �σφφ in the elevation 
angle, the results are shown in Fig. 2c. In Cases 1 and 3, the error increases with q and always stays below 5% . 
In Case 2, the errors are quite high, except for q = 2.4 , as in Case 4, where we observed a decreasing trend for 
q. We also found that errors are higher when concentrations are high along each direction. This is because the 
standard deviation is smaller at high concentrations and the relative error is more sensitive to small differences 
in the measured standard deviation since the standard deviation of the prescribed distribution tends to zero.

Robustness
We tested the ability of the algorithm to accurately measure dFOD, independently of the fiber number N and 
diameter t in the 3D image. The results are also compared in terms of fiber density δ , defined as the average of 
the voxel intensity over the entire 3D image volume, where 0% corresponds to an empty volume and 100% to 
completely bright voxels.
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Figure 1.   Application of the 3D discrete Fourier transform algorithm: (a,b) maps of the azimuthal and 
elevation angles (θ ,φ) of a representative artificial fiber dispersion with N = 1000 fibers of t = 3 voxel 
diameter. The prescribed von Mises distribution parameters are α = β = γ = 0◦ , a = 0.5 , b = 5 ( n = 1 ); (c) 
corresponding raw dFOD (discrete fiber orientation distribution) d(θ ,φ) discretized with D = 31 angular 
intervals ( 5.8◦ angular resolution) and spectrum parameter q = 2.4 ; (d) deconvoluted dFOD d′(θ ,φ) , with 
overlapping prescribed von Mises distribution ρ (wire-frame plot).
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We generated three-dimensional images ( 256× 256× 256 voxels) with increasing numbers of fibers and same 
diameter t = 3 voxels. Representative distributions with parameters a = 0.5 , b = 5 , α = β = γ = 0◦ ( n = 1 ) were 
generated containing N = 1 000 , 2 000 , 5 000 , 10 000 , 20 000 , 50 000 , 75 000 , 100 000 fibers, corresponding to fiber 
densities between δ = 0.72% and δ = 28.23% (Fig. 3a). For each case 10 three-dimensional images are generated.

As above, we assessed the algorithm performance by computing the relative errors in the standard deviations 
along the azimuthal and elevation directions (Fig. 3b). It was found that the error �σθθ depends slightly on the 
fiber number N and generally reduces at higher N. This trend might change at higher N because for N → ∞ 
( δ → 100% ) fibers cannot be distinguished and no distribution can be measured. However, a volume with 
N = 100 000 fibers ( δ = 28.23% ) represents a density beyond that observed in real collagen fiber tomographies, 
as shown in the following applications to skin tissue ( δ = 16.97% for human skin, δ = 16.31% for mouse skin). 
With regard to the elevation angle, the error �σφφ appears to be practically insensitive to N and shows small 
values, except for N = 100 000.

To assess the performance of the algorithm in terms of the fibers diameter, we analyzed artificial fiber stacks 
with the same number of fibers N = 2 000 and increasing fiber diameters of t = 3 , 5, 7, 9, 11 and 13 voxels, 
corresponding to densities from δ = 1.28% to 64.80% . For each diameter we generated 10 three-dimensional 
images ( 256× 256× 256 voxels) with same dispersion parameters, a = 0.5 , b = 5 , α = β = γ = 0◦ ( n = 1 ). 
Representative images for each diameter are shown in Fig. 4a. As illustrated in Fig. 4b, the algorithm appears 
to be precise and insensitive to the fiber diameter along the azimuthal direction and predicts the true standard 
deviation with an error �σθθ smaller than 3.5% , with no significant variations. On the other hand, the error along 
the elevation direction is small only for fiber diameters between 3 and 7 voxels ( �σφφ < 8.7% ) and increases 
thereafter to about 50% for t = 13 voxels.

Interestingly, the behavior observed in these two analyses is similar and is directly related to fiber density. In 
fact, by comparing the errors in Figs.3b and 4b with respect to the density δ , it follows that �σθθ and �σφφ are 
correlated. The errors �σθθ are small in in both cases and almost insensitive to the fiber density, while �σφφ is 
small only for densities lower than δ ≈ 25% ( N = 75 000 , t = 3 voxels; N = 2000 , t = 7 voxels) and increases 
significantly for densities δ > 28% ( N = 100 000 , t = 3 voxels; N = 2000 , t = 9 voxels). This suggests that the 
algorithm only responds to fiber density and not individually to the number of fibers or their diameter. However, 
the difference between �σθθ and �σφφ is probably due to the small prescribed standard deviation σφφ (higher 
concentration) along the elevation direction, increasing the relative error even though the absolute error is small.
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Figure 2.   Algorithm calibration: (a) contour plots of the prescribed bivariate von Mises distributions ( n = 1 , 
α = β = γ = 0◦ ). Case 1: a = 0.5 , b = 0.5 ; Case 2: a = 0.5 , b = 5 ; Case 3 a = 5 , b = 0.5 ; Case 4 a = 5 , b = 5 . 
Relative errors between the standard deviation of the measured dFOD (discrete fiber orientation distribution) 
and the prescribed distribution (mean and standard deviation of 10 images); (b) error �σθθ along the azimuthal 
direction θ for different power parameters q; (c) error �σφφ along the elevation direction φ for different q. Means 
not sharing uppercase letters differ significantly by the Tukey-test at the 5% significance level. Letters must be 
compared among the same cases.
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Precision
The precision of the algorithm is measured by its ability to estimate the parameters of the in-plane and out-of-
plane distributions. For each of the combinations of parameters described below, a series of 10 three-dimensional 
images ( 256× 256× 256 voxels) was generated with N = 6 000 fibers of t = 3 voxel diameter.

For the in-plane parameters, we explored all combinations of mean angles α = 0◦ , 30◦ , 60◦ , 90◦ with con-
centrations a = 0 , 0.5, 1, 2, 5, while the out-of-plane angle β = 0◦ and concentration b = 1 remained fixed. For 
reasons of symmetry, negative angles are not considered. Errors between the estimated and true parameters are 
evaluated by the difference for the in-plane concentration and the absolute difference for the mean in-plane 
angles. The results are summarized in Fig. 5.

The estimate of the true concentration at seems almost insensitive to the true mean fiber orientation αt , 
except for at = 5 where the algorithm underestimates the true concentration with an average error of −0.745 
(Fig. 5a). In absolute terms, the error increases with increasing at . The opposite behavior can be observed for 
the estimation error of the mean angle (Fig. 5b). The isotropic case at = 0 is not shown because the mean angle 
in not relevant in this case. Thereby, the precision improves with concentration at since the uncertainty on the 
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Figure 3.    Influence of fiber number: (a) maps of the azimuthal angle θ of 8 representative artificial fiber 
stacks ( 256× 256× 256 voxels), with N = 1 000 , 2 000 , 5 000 , 10 000 , 20 000 , 50 000 , 75 000 , 100 000 fibers of 
diameter t = 3 voxels, and distribution parameters a = 0.5 , b = 5 , α = β = γ = 0◦ ; (b) relative errors �σθθ and 
�σφφ between the standard deviations of the measured dFOD (discrete fiber orientation distribution) and the 
prescribed distribution (mean and standard deviation of 10 images). Means that do not use capital letters differ 
significantly by the Tukey-test at the 5% significance level. Letters must be compared in the same cases.
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angular peak location reduces for more concentrated dFODs. Errors are independent of the true mean fiber 
orientation αt , show no significant variations (except for three means) and remain small for all values of at and 
αt , with a maximum of 1.8◦.

For the out-of-plane precision assessment, we analyzed all combinations of mean angles β = 0◦ , 30◦ , 60◦ , 90◦ 
with concentrations b = 0 , 0.5, 1, 2, 5 while the in-plane angle α = 0◦ and concentration a = 1 remained fixed. 
For reasons of symmetry, we have not considered negative angles. The results regarding the errors between the 
estimated and the true parameters are summarized in Fig. 6.

The estimated out-of-plane concentration parameter (Fig. 6a) shows a moderate dependence on the angle βt , 
with low values and no significant differences between 0◦ and 60◦ for concentrations bt ≤ 2 . However, for bt = 5 
the concentration is underestimated at lower angles, but for βt = 60◦ the error tends to decrease and for βt = 90◦ 
it becomes positive. Regarding the mean out-of-plane angle (Fig. 6b), the error shows almost no dependence 
on βt , with significant variations between the different concentrations only at βt = 90◦ . Similar to the in-plane 
case, the errors are generally low with a maximum of 1.65◦ and tend to decrease with increasing concentration bt.

Application to skin tomography
We applied the algorithm to compute the dFOD and relative distribution parameters from SHG tomography of 
human and mouse skin tissue (see Materials and Methods).

Human skin
Figure 7a shows a tomography of human skin collagen fibers constructed from a sequence of SHG images 
acquired in a volume of 465µ m × 465µ m × 116.25µ m (fiber density δ = 16.97% ). A detailed animated view 
of the tomography is shown in the Supplementary Video 1 available online. In contrast to the artificial straight 
fibers considered in the previous sections, collagen fibers in the skin are wavy and compacted in bundles of dif-
ferent sizes and diameters50. The bundles are in turn interwoven, making it difficult to distinguish them within 
the volume. However, this does not affect the accuracy of the measured dFOD as the algorithm can detect any 
fibrous unit within the specified diameters. In addition, wavy fibers can be viewed as a continuous sequence of 
smaller straight fibers.

The global dFOD, reported in Fig. 7b, is obtained by dividing the volume into 16 cubic ROIs with a size of 
M = 256 voxels ( 116.25µm), as specified in the Materials and Methods section, and summing the respective 16 
dFODs. The distribution has an angular resolution of 5.8◦ ( D = 31 ) and is normalized such that the volume under 
the surface is one. As expected from experimental evidence51, the concentration along φ is higher than along θ , 
which means that almost all fibers lie in a co-planar plane x-y with the skin surface. Although the distribution 
shows only one main peak at around θ = −60◦ and φ = 0◦ , qualitatively indicating the presence of a single fiber 
family, a combination of two bivariate von Mises PDFs ( n = 2 ) (wireframe in Fig. 7b) is adopted to improve the 
quality of the fit. Note that the algorithm may underestimate the two out-of-plane concentrations bi , because 
both values are outside the tested range in the out-of-plane precision analyses.

In Fig. 7c, the planar distribution computed with the 3D discrete Fourier transform-based algorithm is 
compared with that obtained using a classic 2D discrete Fourier transform-based approach32,44,45,52. With our 
algorithm (gray histogram), the planar distribution is obtained by summing the dFOD along the direction φ 
shown in Fig. 7b, while the 2D case (red histogram) is realized by adding the individual distributions of all 
in-plane x-y slices of the tomography, each derived with the 2D algorithm (angular resolution of 1◦ ). The two 
distributions are qualitatively similar with both peaks located around θ = −55◦ and showing comparable con-
centrations. This observation is also confirmed by the parameter set obtained from fitting the 2D von Mises 
distribution (red solid curve).
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must be compared within the same concentration bt.



8

Vol:.(1234567890)

Scientific Reports |         (2024) 14:1999  | https://doi.org/10.1038/s41598-024-51550-5

www.nature.com/scientificreports/

Mouse skin
Figure 8a shows a tomography of mouse skin collagen fibers constructed from a sequence of SHG images 
acquired in a volume of 465µ m × 465µ m × 116.25µ m (fiber density δ = 16.31% ). Collagen fibers in mouse skin 
are finer compared to human fibers and warp around hair follicles, appearing as cavities in the tomography. A 
detailed animated view of the tomography is shown in the Supplementary Video 2 available online.

As for human skin, the global dFOD is calculated by dividing the volume into 16 cubic ROIs with a size of 
M = 256 voxels ( 116.25µ m) and summarizing the respective 16 dFODs (schemes of the ROIs are omitted here). 
The distribution shown in Fig. 8b appears to be more clustered along the horizontal plane x-y with respect to 
the human skin, showing two distinct peaks at about θ = −65◦ and θ = 60◦ ( φ = 0◦ ). A combination of two 
bivariate von Mises PDFs ( n = 2 ) is adopted for the fitting (wireframe in Fig. 8b).

The comparison between the planar distributions obtained with the 2D and 3D discrete Fourier transform-
based algorithms is reported in Fig. 8c. Here the two peaks observed in the distribution constructed from the 3D 
dFOD in Fig. 8b are also observed in the 2D discrete Fourier transform-based distribution, although the trend 
seems smoother. In this case, the in-plane parameters present noticeable differences between the two algorithms. 
This is likely due to the inability of the 2D algorithm to detect fibers with high elevation, where quasi-circular 
fiber cross-section is detected as isotropicly distributed in the x-y plane. With the 2D approach, the concentration 
parameters are lower and the volume fractions appear more unbalanced. In addition, the mean in-plane fiber 
directions are closer to the x direction ( θ = 0◦ ). However, despite the noticeable differences, the two collagen 
families are well captured by both algorithms.

Figure 7.   Collagen dFOD (discrete fiber orientation distribution) in human skin: (a) SHG (second harmonic 
generation) tomography of human skin collagen fibers and subdivision of the volume into cubic ROIs; (b) 3D 
surface plot and its projected contour on the θ-φ plane of the dFOD. The wire-frame plot represents the fitted 
distribution ρ using two bivariate von Mises functions ( a1 = 2.34 , b1 = 6.15 , α1 = −54.39◦ , β1 = −4.33◦ , 
γ1 = −8.22◦ , νf ,1 = 0.44 , a2 = 0.38 , b2 = 12.45 , α2 = 90◦ , β2 = −0.35◦ , γ2 = 0.84◦ , νf ,2 = 0.56 ). (c) 
Comparison of the planar dFOD derived from the 3D discrete Fourier transform and the 2D discrete Fourier 
transform algorithm ( a1 = 3.46 , α1 = −53.59◦ , νf ,1 = 0.26 , a2 = 0.19 , α2 = 90◦ , νf ,2 = 0.74).
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Discussion
We proposed a discrete Fourier transform-based algorithm that extends the classical 2D discrete Fourier 
transform-based methods of measuring fiber orientation to the 3D case45,49,53,54. The filter used to identify the 
orientation of fibers in the 3D space is obtained by rotating a 2D band-pass filter (wedge filter) about its axis. 
However, in the 3D case, an extra step is required before finding the actual dFOD d′(θ ,φ) . In particular, a 
deconvolution process is applied to clean each directional measurement of the interference from all other direc-
tions. Such interference is caused by the intersections of the 3D filters pivoting around the fixed frequency point 
(u, v,w) = (M/2,M/2,M/2) in the frequency domain, where M is the size of the 3D cubic image. Unlike the 
2D case, where wedge filters can be shaped without overlap, filters in a 3D framework always intersect, even in 
case they degenerate to discs. Therefore, deconvolution is a necessary step to mathematically obtain a faithful 
representation of the actual fiber orientation distribution.

The algorithm is based on three parameters that need to be adjusted: the cut-off frequencies fmin and fmax and 
a spectrum power parameter q (see Materials and Methods). The two frequencies are derived directly from the 
examined maximum and minimum fiber diameters, respectively, while the parameter q is calibrated to match 
the output dFOD with the true distribution of artificial fiber stacks. This parameter behaves similarly to the one 
proposed by Polzer et al.45, with the difference that in their case the entire distribution d(θ) is raised instead of 
the spectrum |ĝ | . The three-parameter method gives satisfying results, but more sophisticated filtering techniques 
developed for 2D algorithms can also be integrated into our method. For example, Witte et al.46 proposed an 
adaptive filtering technique based on the propagation of uncertainties that excludes spectrum magnitudes not 

Figure 8.   Collagen dFOD (discrete fiber orientation distribution) in mouse skin: (a) collagen fiber SHG 
(second harmonic generation) tomography of mouse skin; (b) 3D surface plot and its projected contour on the 
θ-φ plane of the dFOD. The wire-frame plot represents the fitted distribution ρ using two bivariate von Mises 
functions ( a1 = 3.93 , b1 = 11.09 , α1 = −67.74◦ , β1 = 0.05◦ , γ1 = −17.73◦ , νf ,1 = 0.44 , a2 = 1.83 , b2 = 9.61 , 
α2 = 58.85◦ , β2 = −4.32◦ , γ2 = 7.22◦ , νf ,2 = 0.56 ). (c) Comparison of the planar dFOD derived from the 
3D discrete Fourier transform and the 2D discrete Fourier transform algorithm ( a1 = 2.17 , α1 = −62.05◦ , 
νf ,1 = 0.29 , a2 = 0.64 , α2 = 50.64◦ , νf ,2 = 0.71).
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carrying fiber-related information, thus, eliminating the need to define specific cut-off frequencies based on 
fiber diameters.

Given the fundamental importance of q in the proposed method, we performed a calibration analysis to 
assess its influence on the concentration parameters a and b of the von Mises distribution. Ideally, the errors 
�σθθ and �σφφ of the measured standard deviations should be independent on the specific dispersion analyzed 
and dependent only on q. In other words, there should be a unique value of q for which the errors �σθθ and 
�σφφ are minimized simultaneously and independently of the true fiber distribution. In practice, however, the 
errors also depend on the specific fiber dispersion considered. From Fig. 2b,c we can deduce that for increasing 
concentrations the algorithm tends to produce a smoother dFOD than the true one. This suggests that a larger 
spectrum power parameter q might be necessary to increase the sharpness of the measured distribution.

This behavior is also reflected in the Figs. 5a and 6a, in which the true concentrations are underestimated 
for high concentrations ( at = 5 , bt = 5 ). Their precision would improve if the value of q were increased, but on 
the other hand the algorithm would overestimate at lower concentrations. Since our goal was to get accurate 
estimates of the fiber dispersion parameters in most of the cases, we identified q = 2.4 as an acceptable compro-
mise. In contrast to the concentration parameters, the true mean orientation angles αt and βt depend only on 
the distribution peaks and are not directly affected by q. As shown in Figs. 5b and 6b, their precision generally 
increases with concentration as the uncertainty about the peak location is reduced for sharper distributions. Note 
that the precision of the parameters depends on the algorithm, while the nonlinear least squares fit ensures a 
reliable estimate of the dispersion parameters. The robustness analysis revealed that the reliability of our method 
is not affected by the number of fibers N and their diameter t, although they limiting factors may become larger 
in the out-of-plane measurements when fiber density δ is greater than about 25% . In order to understand the 
capabilities of the proposed method in detail, future analyses should deal with, e.g., the influence of noise46 and 
the influence of the fiber waviness.

Despite the approximations and limitations discussed, the algorithm provides accurate quantitative descrip-
tions of the spatial arrangement of complex fiber dispersions. In contrast to 2D approaches, where fibers that 
are strongly inclined from the x-y plane are difficult to detect due to their small cross-section, our method can 
consider all fibers with any orientation in 3D space. Differently from existing 3D methods13,47, which provide 
separate distributions along θ and φ , our algorithm provides a complete description of the spatial fiber distribu-
tion over the entire 3D angular domain. This allows to identify the different fiber families in the volume and to 
compute for each family the specific set of parameters without ambiguities. In fact, when multiple fiber families 
are present, the different peaks cannot be combined together if only the separate in-plane and out-of-plane 
distributions are known, without information on how they co-vary in the two-dimensional angular domain.

In practice, as shown for human and mouse skin, this scenario rarely occurs in biological soft tissues where 
fibers are mainly aligned in the x-y plane (Figs. 7b and 8b). In these cases, the fiber families and their in-plane 
parameters can be computed from the in-plane distribution, while the out-of-plane parameters can be extracted 
from the 2D distribution of a vertical tissue section. However, this is still an approximation since all the fiber 
families are assigned a unique concentration b23. Another benefit of full 3D distributions is the ability to measure 
the rolling angle γ , which allows for general rotations of the fiber family in space and compensates for slight 
planar misalignments of the samples during 3D imaging.

In addition, our method is fast and robust. To analyze stacks of 1024× 1024× 256 voxels ( 465µm× 465µ m 
× 116.25µ m) the overall computation took 65 s for human skin (60.1 s for the computation of the raw dFOD 
and 4.9 s for the deconvolution), and 61 s for mouse skin (56.2 s for the computation of the raw dFOD and 5.1 s 
for the deconvolution, on a 2.20GHz CPU, 32GB RAM Desktop PC). Of course, the computation speed depends 
on the resolution of the dFOD, since the number of computations increases proportionally with the angular 
interval D2 . Also, memory can be a limiting factor, since the free memory needed to store the filters increases 
proportionally to D2 ×M3 . However, with a value of D = 31 adopted in the provided examples, distributions 
with a good angular resolution can be obtained in a reasonable computation time.

The robustness analysis showed that the algorithm reliably predicts the same FOD for stacks with a fiber 
density of up to 25% . This represents a major advantage over pixel-by-pixel methods, which are affected by ori-
entation uncertainties in the pixels when two or more fibers overlap in very dense fiber dispersions43. In general, 
approaches based on discrete Fourier transforms are less affected by image complexity since fiber orientations are 
computed from the frequency domain, which is insensitive to fiber overlaps in the spatial domain32. It is impor-
tant to note that the proposed method requires high-quality stacks with a z resolution comparable to that in the 
x-y plane, which are typically expensive and time-consuming to obtain. The SHG stack of human and mouse skin 
collagen in Figs. 7a and 8a (shown after the vertical resampling) is acquired with our equipment at the highest 
possible z resolution ( �z = 0.57µm), each requiring up to 2h to complete the acquisition. In addition, to reduce 
the blurring effect along the z direction due to the diffraction of the confocal microscope, we pre-processed the 
tomographies by applying three-dimensional deconvolution. This process is slow and computationally expensive, 
but recent deep learning techniques have shown promising results in deconvolution of microscope images55 as 
well as in reducing noise56. Furthermore, since the algorithm is based on grayscale 3D images, any technique 
can be used to capture the stacks, making our method applicable to various imaging technologies, including 
x-ray computational tomography (xCT)57, optical coherence tomography (OCT), and ultrasound imaging58,59.

In summary, the presented novel algorithm is able to reliably quantify the fiber network obtained from 3D 
images by determining the dispersion parameters of each individual fiber family. These parameters can be used 
to inform mechanical models of soft fiber-reinforced materials and biological tissues that account for non-
symmetrical fiber dispersion.
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Materials and methods
Orientation and distribution of fibers
A general fiber orientation distribution can be assumed as a combination of a finite number of fiber families, 
each of which is described by a PDF ρ(N) providing the normalized angular density of the fibers in the direction 
of the unit vector N . We introduce two different bases: a general basis {Ea}a=1,2,3 , and a principal basis of the 
fibers {M , Mip , Mop} , where M represents the mean fiber direction, (M,Mip) is the plane containing the mean 
direction of the fiber family and Mop is the out-of-plane normal (Fig. 9). With respect to the principal frame, 
the fiber unit vector N is written as

where � and � are the azimuthal and elevation angles of the fiber unit vector N with respect to the principal 
frame (Fig. 9a).

The PDF can be decomposed as a bivariate distribution of the form ρ(N) = ρ(�,�) = ρip(�)ρop(�) , where 
ρip and ρop represent the in-plane and out-of-plane distribution functions, respectively. In terms of the global 
frame, the general expression of the PDF is as follows

where θ and φ represent the azimuthal and elevation angles of the unit vector N(θ ,φ) in the global frame (Fig. 9b).
We consider a rigid rotation of the fiber families in Euclidean space by introducing the Tait-Bryan angles α , 

β , γ . The first two angles denote the azimuthal and elevation angles of the mean direction M and γ the rotation 
of the principal fiber frame by M (Fig. 9c). In general, the functions �(θ ,φ) and �(θ ,φ) in Eq. (2) are implicit 
and depend on the three angles α , β , γ . Explicit expressions are only available for some simple cases, such as 
β = γ = 0 for which � = θ − α and � = φ.

The functions ρip(�) and ρop(�) are provided by two π-periodic von Mises distributions of the form23

where a  and b  are the in-plane and out-of-plane concentration parameters, respectively, 
I0(x) = 1

π

∫ π

0 exp(x cos t)dt is the modified Bessel function of the first kind of order zero, and erf  is the error 
function given by erf (x) = 2√

π

∫ x
0 exp(−t2)dt . Large values of a and b correspond to a fiber distribution with 

a high degree of alignment along the mean fiber direction M , while for a, b → 0 an isotropic distribution is 
obtained. This choice for the in-plane and out-of-plane functions satisfies the symmetry requirement 
ρ(N) = ρ(−N) , or equivalently ρ(θ ,φ) = ρ(θ + 180◦,−φ) , and the normalization condition over the unit 
sphere S2 , 14π

∫

S2
ρ(N)d� = 1 , required in mechanical models23,24.

3D discrete Fourier transform‑based algorithm for measuring fiber orientation distributions
We have developed a novel method based on the 3D discrete Fourier transform in combination with a so-called 
funnel filtering to extract directional data from three-dimensional images. The algorithm is implemented in a 
custom Matlab code.

Raw discrete fiber orientation distribution
Let g(x, y, z), g : N3 → R , be the signal in the discrete spatial domain representing a M ×M ×M image (voxel 
volume). We assume that the x, y, z axes are aligned with the global basis vectors E1,E2,E3 , so that the definition 
of the azimuthal and elevation angles θ and φ is the same in both frames. If g(x, y, z) depicts a bundle of straight 
fibers all oriented along a certain direction (θ ,φ) (Fig. 10a), then its spectrum ĝ(u, v,w) , ĝ : N3 → C , is defined 
by the 3D discrete Fourier transform

(1)N(�,�) = cos(�) cos(�)M+ cos(�) sin(�)Mip + sin(�)Mop ,

(2)ρ(N) = ρ(θ ,φ) = ρip(�(θ ,φ))ρop(�(θ ,φ)),

(3)ρip(�) = exp(a cos 2�)

I0(a)
, ρop(�) = 2

√

2b

π

exp[b(cos 2�− 1)]
erf (

√
2b)

,

a b c

Figure 9.   Schematic representation of the orientation of the unit fiber N (in black), the global basis {Ea}a=1,2,3 
(in blue) and the principal basis {M , Mip , Mop} (in red): (a) unit vector N in the principal frame; (b) unit vector 
N in the global basis; (c) rotation of the principal basis with respect to the global basis using the Tait-Bryan 
angles. Dashed vectors represent Mip and Mop before the rotation about M.
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where the dominant magnitudes |ĝ(u, v,w)| are scattered in a plane that pass through (u, v,w) = (M/2,M/2,M/2) 
and perpendicular to the frequency direction (θ ,φ) (yellow voxels in Fig. 10b). Note that the values of the spec-
trum are shifted such that the lower frequencies occupy the central position, with frequency f = 0 located at 
(u, v,w) = (M/2,M/2,M/2) . Gibbs artifacts characterized by high magnitudes distributed along the u, v, w axes 
are removed by tapering g(x, y, z) with a 3D Tukey window with 40% cosine before the transform.

Note that the orientation of the plane in the frequency domain is invariant with changes in fiber position 
in the spatial domain. Therefore, the sum of the moduli |ĝ(u, v,w)| filtered from this plane is a measure of the 
amount of straight fibers oriented towards (θ ,φ) . Due to the aliasing filter plane, however, this measure reacts 
sensitively to small variations in the sampled direction (θ ,φ) . To reduce this sensitivity, we perform the com-
putation over a finite solid angle rather than the exact direction, so the filter corresponds to a volume obtained 
by enveloping all planes of all directions within the solid angle. The volume is still aliased along its boundary 
(Fig. 10c), but it represents only a lower fraction of the total number of frequencies filtered. Therefore, it is less 
sensitive to small changes in the sampled direction. To exclude the part of the spectrum that does not contain 
relevant fiber information the filter is reduced to include magnitudes only between minimum and maximum 
cut-off frequencies fmin and fmax . Assuming a conical solid angle with the amplitude ε and the mean direction 
(θ ,φ) the funnel-shaped filter is defined by

(4)ĝ(u, v,w) =
M−1
∑

x=0

M−1
∑

y=0

M−1
∑

z=0

g(x, y, z)e−i2π( ux
M + vy

M + wz
M ),

(5)h(u, v,w; θ ,φ) =
{

1 if ũ2 − tan (ε/2)2
(

ṽ2 + w̃2
)

≤ 0 and fmin ≤
√
ũ2 + ṽ2 + w̃2 ≤ fmax,

0 else,
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Figure 10.   Illustration of the 3D discrete Fourier transform algorithm: (a) signal g(x, y, z) of a 256× 256× 256 
representative image in the discrete spatial domain with N = 14 fibers aligned to (θ ,φ) = (60◦, 60◦) ; (b) center-
shifted spectrum |ĝ(u, v,w)| in the frequency domain, with a sketch of the overlapping funnel filter sampling 
the frequencies associated with the fibers with orientations within the cone, shown in (a), with mean direction 
(θ ,φ) = (60◦, 60◦) and opening ε ; (c) cross section of the filter in the local v-w plane at u = 128 . The filter is 
axisymmetric about the direction (θ ,φ) (note that the symmetry axis shown is slightly skewed with respect 
to the v-w plane); (d) raw dFOD (discrete fiber orientation distribution) of the representative fiber dispersion 
shown in (a) using q = 2.4 , and D = 31 , corresponding to an angular resolution of �θ = �φ = 5.8◦ ( ε is taken 
to be equal to �θ = �φ).
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where �ũ, ṽ, w̃�T = R
−1
w (θ)R−1

v (−φ)�u−M/2, v −M/2,w −M/2�T , Rw and Rv are the rotation matrices around 
the w and v axes, respectively (Fig. 10b).

We can then define the raw dFOD as a function d : O → R,

computed along all the discrete directions (θ ,φ) ∈ O =
{(

−90◦ + 2i−1
2 �θ ,−90◦ + 2j−1

2 �φ

)

|i, j = 1, . . . ,D
}

 , 
where �θ = �φ = 180◦/D defines the angular resolution in terms of D evenly spaced angles (Fig. 10d).

In Eq. (6) we introduced an exponent q to correct the distribution. Usually, in 2D discrete Fourier transform-
based algorithms53,54,60, the exponent is set to q = 2 , but other values can be used to achieve better results45. The 
calibration analysis is used to identify the optimal value of the parameter to match the dFOD to the prescribed 
distribution of artificial fiber images. To ensure a thorough measurement of all fibers in the discrete angle set, 
we assume that the cone opening corresponds to the angular resolution ε = �θ = �φ . Assuming an image 
size of M = 256 voxels, which is suitable for most biological applications, and without assumptions about the 
investigated fiber diameter, we set the cut-off frequencies to fmin = 4 and fmax = 43 to exclude high frequencies 
associated with noise and low frequencies associated with exposition variations within the image54. Given the 
relationship f = M/(2t) , this frequency range corresponds to fiber diameters between t = 32 and t = 3 voxels. 
However, this does not necessarily mean that fibers larger than 32 voxels and smaller than 3 voxels will not be 
detected, since the information conveyed by the discrete Fourier transform about a specific fiber diameter t ′ is 
spread in a band of about f ′ ± 0.1f ′53.

An essential aspect of the proposed method is that the signal g and accordingly the spectrum ĝ correspond 
to cubes with the same size M ×M ×M . Different sizes along the three dimensions of g and ĝ would result in 
an inaccurate dFOD since the higher number of frequencies along the dominant direction would make a larger 
contribution with respect to other directions in the Eq. (6).

Another aspect to consider is computational efficiency. For computational reasons, all filters are computed 
before the analysis, which requires free memory proportional to the product between the number of directions 
D2 and the number of voxels in the filter M3 . This might become too demanding when analyzing high-resolution 
3D images ( M ≈ 1024 ). To limit the amount of memory required for the computations while maintaining a 
cubic shape for ĝ , the 3D image is divided into ROIs of 256× 256× 256 voxels. Then the raw dFOD d(θ ,φ) is 
computed as the sum of the raw dFODs of each individual ROI. The sum does not require any weighting, since ĝ 
already takes into account the luminance, i.e. the overall amount of fibers within the ROI. If the dimensions are 
not a multiple of 256, the 3D image can be divided into cubic ROIs of different size (possibly close to 256), which 
can be scaled up or down to M = 256 by volumetric interpolation before the 3D discrete Fourier transform.

Deconvolution of the dFOD
The distribution d(θ ,φ) needs to be deconvoluted to obtain the actual dFOD d′(θ ,φ) . Because the filters overlap 
in the frequency domain, the measured amount of fibers along a generic direction I = (θi ,φj) contains a per-
centage of the actual amount of fibers from all other directions J = (θk ,φl) that is proportional to the number 
of shared magnitudes between filters along I and J directions.

Mathematically, we can write the raw dFOD in vector form by the linear relationship d = Kd
′ , where d′ 

denotes the unknown deconvoluted dFOD in vector form. The symmetric convolution kernel matrix KIJ rep-
resents the normalized number of common magnitudes between filters I and J. Since the distributions can be 
arbitrarily rearranged from matrix to vector, we use the index rule I = (j − 1)D + i . We obtain the deconvoluted 
vector d′ using the iteratively constrained Tikhonov-Miller algorithm, which gives the optimal non-negative 
solution to

Here the second term depends on the discrete Jacobian operator matrix L and the regularization parameter 
� ∈ [0, 1] which was introduced to avoid noise amplification in the solution61. This method is required because 
direct matrix inversion would provide noisy and possibly non-physical (negative values) results. A step-size of 
0.1 and � = 10−3 is used for the iterations. Once the solution is found, the deconvoluted vector d′ is rearranged 
again as a matrix using the aforementioned reordering rule, providing the sought dFOD d′(θ ,φ).

Fiber orientation distribution parameters
To estimate the parameters of the fiber orientation distribution, the function ρ(θ ,φ) = ρ(θ ,φ) cos(φ) is fitted 
to the deconvoluted dFOD d′(θ ,φ) , where ρ(θ ,φ) is defined in Eqs. (2) and (3). The cosine of the elevation 
angle φ accounts for the surface area d� on the unit sphere ( d� = cosφdθdφ ). Note that d′(θ ,φ) represents the 
normalized quantity of fibers along each discrete direction, while the PDF ρ(θ ,φ)n needs to be multiplied by 
the surface element area to obtain a normalized fiber quantity. For the multi-fiber distribution, a linear combi-
nation ρ =

∑

n νf ,nρn is used, where ρn is the function with respect to the n-th fiber family and νf ,n its volume 
fraction, with 

∑

n νf ,n = 1.
The operation is performed in Matlab using the integrated nonlinear least squares function lsqnonlin. 

To assess the quality of the fit, we use the coefficient of determination R2.

(6)d(θ ,φ) =
M−1
∑

u=0

M−1
∑

v=0

M−1
∑

w=0

|ĝ(u, v,w)|qh(u, v,w; θ ,φ),

(7)arg min
d′
(

�Kd′ − d�2 + ��Ld′�22
)

.
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Statistical analysis
A two-way ANOVA analysis is used to calibrate the algorithm and to analyze the precision of the estimated 
parameters of the in-plane and out-of-plane fiber orientation distribution. Instead, a one-way ANOVA is used 
to evaluate the robustness of the algorithm. For all analyses, a post-hoc Tukey HSD (honestly significant differ-
ence) test is used to assess pairwise differences between groups. The results are considered significant at the 5% 
level. Due to the high number of pairwise comparisons, we use the compact letter display with uppercase letters 
to report the results. The data analysis is carried out employing the Real Statistics Resource Pack software62.

Artificial fiber dispersion volume
Using a custom Matlab code, we generated artificial grayscale 3D images with a number N of straight fibers 
with known fiber orientation distribution within a volume of M ×M ×M voxels. The midpoint (x, y, z)k of 
each fiber, k = 1, . . . ,N  , is chosen randomly according to a three-dimensional uniform distribution, while 
the orientation angles (θ ,φ)k are sampled from the PDF given in Eq. (2) using a rejection method. The sam-
pling is performed by generating uniformly distributed random points within the three-dimensional domain 
D = {(θ ,φ, r)| − 90◦ ≤ θ ≤ 90◦,−90◦ ≤ φ ≤ 90◦, 0 ≤ r ≤ max (ρ)} and selecting only those points that fall 
under the function ρ(θ ,φ).

Once the fiber positions (x, y, z)k and orientations (θ ,φ)k are computed, a 3D binary image of M ×M ×M 
voxels is generated with an intensity Y = 1 for voxels belonging to a fiber and Y = 0 elsewhere. All fibers are of 
the same aspect ratio of more than 10, in order to enable a meaningful evaluation of the FOD using the discrete 
Fourier transform methods53,54. The image is then smoothed using a Gaussian kernel with a standard deviation of 
0.7 voxel to reduce the sharpness of fibers that might introduce artifacts in the spectrum. This operation converts 
the image from binary to the grayscale image. Since smoothing reduces the maximum intensity Ymax , all voxels 
are scaled by a factor Y−1

max to restore the maximum intensity to 1.

Collagen fiber tomography
Images of collagen fibers were acquired from human skin samples harvested from the abdominal region during a 
routine surgical procedure. The study was approved by the Regional Committee for Medical and Health Research 
Ethics (Project ID: 474249). All examinations were performed according to the rules for the investigation of 
human subjects set out in the Declaration of Helsinki. All study participants provided written informed consent.

In addition, we analyzed ex vivo skin samples from the dorsal region of mice. The skin tissue was obtained 
from mice used for in vivo studies in another project. After sacrifice by cervical dislocation under isoflurane 
anesthesia performed manually by trained personnel, the tissue was donated to the present project for ex vivo 
studies. The animal laboratory (Department of Comparative Medicine at Norwegian University of Science and 
Technology) is approved for animal tests by the Norwegian Food and Animal Safety Authority in document 
VSID 3506. In this document the laboratory’s systems for animal care and ethics are approved according to the 
relevant national and EU regulations.

Samples were cleaned from adipose tissue and stored at −28◦ within 2h of harvest. Prior to SHG imaging, 
tissue was thawed at room temperature ( 22◦ ) and prepared according to the SeeDBp protocol63, consisting of 
a fixation step in 4% paraformaldehyde for 12h and 6 optical clearing steps in fructose solution in 0.1×PBS of 
increasing concentration. Specifically, the samples were incubated for 4h each in a 20% , 40% , 60% w/v solution, 
then for 12h each in a 80% , 100% w/v solution and finally for 24h in a 80.2% w/w solution (SeeDB solution). All 
steps took place at 25◦ C. This technique allows biological tissues to be cleared without significant morphologi-
cal changes, even in the case of fibrous tissue64. After completing the clearing process, the samples were placed 
in a press-to-seal silicone isolator (CoverWell™ Imaging Chambers, Grace BIO-Labs, Oregon, USA) filled with 
SeeDBp solution and sealed with two rectangular glass coverslips at the top and bottom.

For SHG imaging of collagen fibers, we used the confocal multiphoton microscope Leica TCS SP8 (Leica 
Microsystem, Germany) with a Leica HCX IRAPO 25× , NA 0.95 water objective with a working distance of 
2.4 mm. The second harmonic of collagen is induced using a multiphoton laser source tuned at 890 nm (Cha-
meleon Ultra I; Coherent Corp., Saxonburg, PA, United States) and the signal emitted at 445 nm is detected in 
the forward and backward directions. The images were acquired on a square target of 465µ m × 465µ m with a 
x-y resolution of 0.454µm/px every 0.57µ m (minimum vertical step of the microscope) in the z direction, for 
a total of ∼ 116.25µ m scanned thickness. To compensate for blurring effects due to light diffraction from the 
confocal microscope, especially along the z direction, the 3D image was pre-processed in Fiji65 using the open 
source DeconvolutionLab2 plugin for deconvolution microscopy61. In particular, we used the Richardson-Lucy 
algorithm with total-variation regularization (regularization parameter � = 10−3 , 30 iterations), adopting the 
Gibson and Lanny 3D optical model for the point spread function66,67. Then, to match the z spacing with the x-y 
resolution, the 3D image was resampled vertically using the imresize3 Matlab function with a stretch factor 
of �z/�x = 0.57/0.454 ≈ 1.26.

Data availibility
The data that supports the results within this paper are available from the corresponding author upon reason-
able request.

Code availability
The custom code of the proposed method is available in the Zenodo repository at https://​zenodo.​org/​doi/​10.​
5281/​zenodo.​10119​628.
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