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Abstract— Ship roll is a crucial metric in assessing the vessel’s
safety in offshore operations. This paper investigates input
selection for predicting short-term ship roll motion using the
Bidirectional Long Short-Term Memory Network (Bi-LSTM)
and the Sobol sensitivity analysis of ship roll based on the
predicted models. Considering the complexity of the impact
of forces, velocities, and positions with six degrees of freedom
on ship roll, a data-driven model is established to represent
the relationship adequately. Firstly, one-step prediction models
with different time intervals are established based on Bi-LSTM
to express the relationship between all input features and
output. Afterward, the Sobol sensitivity analysis is carried out to
evaluate the impact of input features on the output based on the
predicted models. Finally, mathematical statistics are utilized
to optimize input selection for multi-step prediction models
by analyzing the sensitivity results. The experimental results
demonstrate that optimizing the input feature dimensions
can improve the accuracy of one-step, five-step, and ten-step
prediction models.

Index Terms— Ship Roll Prediction, Sensitivity Analysis,
Input Selection, Bi-LSTM

I. INTRODUCTION

The evolution of intelligent ship technologies has led to an
increased demand for advanced ship motion prediction tech-
niques. Such techniques are pivotal in ensuring the safe and
efficient operation of ships, achieving navigation accuracy,
and mitigating potential risks. Ship motion prediction plays
a crucial role in various marine operators, including heavy
lifting [1], path planning [2], and trajectory tracking [3].
Numerous offshore operations are carried out under Dynamic
Positioning (DP), such as oil and gas drilling, offshore wind
turbine installation, and subsea pipeline laying, which require
the vessel to maintain stability [4]. Ship roll is directly
related to a ship’s stability, which is critical in ensuring safe
and efficient operations [5]. By building a precise ship roll
motion prediction model, operators can better anticipate and
respond to potential ship roll events, allowing them to take
appropriate actions to avoid unsafe situations.

There are generally two approaches to building ship mo-
tion prediction models: the physical model, and the data-
driven method. Some researchers employed the physical
model to predict ship motion and optimized by parameter
identification. A precise physical model is developed and
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optimized by parameter identification. Wang et al. [6] used
the Abkowitz model to predict ship motion and identified
hydrodynamic parameters under environmental disturbance
based on the support vector machine to establish accurate
mathematical models. Meng et al. [7] established the 4
DOF ship whole-ship mathematical model including rolling
motion and proposed a parameter identification scheme,
support vector regression combined with a modified grey
wolf optimizer, to identify the ship motion model. Ship
roll motions are influenced by various factors, including the
ship’s geometry, inertia forces, hydrodynamic forces, and
environmental forces, such as wind, waves, and currents [8].
Consequently, It is challenging to describe the roll motion
of a ship using the physical model.

Another commonly used method for predicting ship mo-
tion is the data-driven model. Considering the ship roll
motion is inherently sequential in nature, the recursive neural
(RNNs), specifically Long Short-Term Memory Networks
(LSTM) are used widely in ship roll motion prediction,
due to their ability to capture sequential dependencies and
temporal dynamics in time-series data. LSTM offers recur-
rent connections to memory blocks within the network and
introduces gate structures for modulating gradient flow [9].
Bi-LSTM uses two separate RNNs to process the input
sequence in opposite directions, which means it can process
the input sequence in both forward and backward directions
simultaneously. Yin et al. [10] proposed a real-time ensemble
prediction model for roll motion by combining the discrete
wavelet transform and the variable-structure radial basis
function network. Wang et al. [11] proposed a ship roll
angle prediction method based on Bi-LSTM and temporal
pattern attention mechanism combined deep learning model,
to address the issue of low accuracy in predicting ship roll
angle with traditional prediction algorithms and single neural
network model. Sun et al. [12] proposed a hybrid ship motion
prediction model based on LSTM and Gaussian Process
Regression, which adopts the idea of two-step prediction.
Wei et al. [13] proposed a hybrid three-step prediction model,
including adaptive empirical wavelet transform, multi-step
forecasting under the multi-input multi-output strategy of Bi-
LSTM, and hybrid particle swarm optimization and gravita-
tional search algorithm hyperparameter optimization, which
is suitable for different datasets and has strong robustness.
Most researchers only work on one-step and at most three-
step ship roll motion predictions, however, a multi-step
prediction will be useful in practice.
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Fig. 1: The result of 10-10 ship model prediction.

Optimizing the input vector space of the LSTM deep
learning model has the potential to enhance the accuracy
of ship motion prediction [14]. Forces in the six degrees
of freedom are coupled and the degrees of influence on
them are different under different degrees of environmental
forces [15]. Wang et al. [16] proposed the single-input single-
output and the multi-input single-output ship roll prediction
methods based on Bi-LSTM, studied the influence of input
variables on the ship roll prediction model, and concluded
that simply adding input features does not necessarily im-
prove the prediction performance of the model. Zhang et
al. [3] employed the wavelet transform to decompose ship
motion signals into several frequency scales, which makes
LSTM capture the inherent law of ship motion from each
frequency scale to establish a multi-scale attention-based
LSTM model for the shipboard stabilized platform. Reducing
the input dimension of the network has positive effects on
computation time as well as network interpretability and
generalization ability [17]. To enhance the accuracy of the
prediction model, we employ Sobol sensitivity analysis [18]
to optimize the input features.

This paper establishes multi-step roll motion prediction
models based on Bi-LSTM. Firstly, the data generated by
Offshore Simulator Center AS is processed, including down-
sampling and filtering. Secondly, to enhance the accuracy
of the ship prediction model, a Sobol sensitivity analysis is
performed to optimize the input features. Finally, the multi-
step models are tested using multi-dimension input features.
The rest of the paper is organized as follows. Section II
elaborated on the methodology, mainly including Bi-LSTM
and sensitivity analysis. In Section III, the experiment results
are shown. Then, Section IV offers a summary of the paper
and presents future work.

II. FRAMEWORK OF MULTI-STEP SHIP ROLL MOTION
PREDICTION

In this section, an effective multi-step prediction scheme is
proposed for multi-step ship roll motion prediction when the
environmental forces are stable, as shown in Fig. 1. The ship
roll motion prediction model is built based on the Bi-LSTM,
which is a classical neural network for time-series prediction
and can extra time-series information bi-directionally. To
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Fig. 2: The structure of the LSTM.

improve the accuracy of Bi-LSTM, the Sobol sensitivity
analysis is conducted to input selection.

A. Bidirectional Long Short-term Memory Model

LSTM is specifically designed to handle long-term de-
pendencies and information retention in time-series data, the
structure as shown in Fig. 2. LSTM is a specialized type
of RNN that includes a recurrent neural network module in
a chain-like architecture for capturing temporal correlations
in data. LSTM incorporates three gates, namely the forget
gate, input gate, and output gate, for selectively retaining and
discarding sequence information and prolonging information
storage in the network. Specifically, the forget gate and
the input gate are used to regulate forgetting or updating
information in the current state, while the output gate controls
which information is output during the current state, as
shown in Eq. (1)-(6).

ft = σ (Wf · [ht−1, xt] + bf ) (1)
it = σ (Wi · [ht−1, xt] + bi) (2)

C̃t = tanh (WC · [ht−1, xt] + bC) (3)

Ct = ft · Ct−1 + it · C̃t (4)
ot = σ (Wo [ht−1, xt] + bo) (5)
ht = ot ∗ tanh (Ct) (6)

where ht−1 represents the output of the previous cell and
xt represents the input of the current cell. σ represents the
sigmoid function. Wf ,Wi, and Wo are the weights of the
forget gate ft, the input gate it, and the output gate ot, and
WC is the weight of the state update C̃t. bf , bi, bc, and bo
are the biases.

Traditional LSTM networks process input sequences in
chronological order, only considering past information and
ignoring future information. In contrast, bidirectional LSTM
networks can process input sequences in both chronological
orders, from past to future and from future to past. The
hidden states of a bidirectional LSTM are the concatenation
of the hidden states from the forward and backward LSTM
networks. By considering both past and future information,
bidirectional LSTM networks can update the hidden state
and cell state more accurately, leading to more accurate
predictions at the current time step.



B. Sobol Sensitivity Analysis

The sensitivity analysis can identify and prioritize the
most influential inputs based on the relationships between the
input variables and the output. The Sobol sensitivity analysis
method assesses the impact of input parameters on the output
through variance decomposition. The model is represented
as Y = f(X), where X = X1, X2, ...Xd is an input vector
with d uncertain inputs and Y is a univariate model output.
Eq. (7) offers the decomposition of f(X).

Y =f0 +

d∑
i=1

fi (Xi) +

d∑
i<j

fij (Xi, Xj) + · · ·

+ f1,2,...,d (X1, X2, . . . , Xd)

(7)

where f0 is a constant, fi is a function of Xi, and fij is a
function of Xi and Xj . Assuming that the function f(X) is
square-integrable, we can square and integrate the functional
decomposition to Eq. (8).

∫
f2(X)dX− f2

0 =

d∑
s=1

d∑
i1<...<is

∫
f2
i1...isdXi1 . . . dXis

(8)
The variance of Y is equal to the expression on the left-

hand side of Eq. (8), and the terms on the right-hand side
represent the decomposed variance terms with respect to sets
of Xi. Therefore, the expression can be transformed into the
decomposition of variance, as shown in Eq. (9).

Var(Y) =

d∑
i=1

Vi +

d∑
i<j

Vij + · · ·+ V12...d (9)

where

Vi = VarXi
(EX−i

(Y | Xi)) (10)

Vij = VarXij

(
EX−ij

(Y | Xi, Xj)
)
− Vi − Vj (11)

where X−i denotes the set of all variables, excluding Xi.
The first-order sensitivity index, also known as the main

effect index, is a direct variance-based measure of sensitivity
denoted by Si and expressed as shown in Eq. (12).

Si =
Vi

Var(Y )
(12)

When dealing with a high number of variables, computing
2d−1 indices poses a computational challenge. The solution
to this problem is the widespread use of the measurement
known as the total-order index in the field, STi, as shown in
Eq. (13).

STi = 1−
VarX−i

(EXi
(Y | X−i))

Var(Y )
(13)

The first-order sensitivity index obtained by measuring the
effect of changing Xi alone and standardized by the total
variance indicates how much the main effect of variable Xi

contributes to the variance of the output. The total-effect

TABLE I: Test ship specifications

Description Values
Length Between Perpendiculars 82.7 m
Breadth 23.058 m
Draught 7.5 m
Mass 1.0179× 107 kg

index measures the overall contribution of Xi to the output
variance, including all the variances caused by its interactions
with any other input variable of any order. The value range
of STi indices is between 0 and 1, where a higher value
indicates a higher contribution of the corresponding input
parameter to the output variance.

III. EXPERIMENT

A. Experiment Setting

The experimental data used in this paper come from a
commercial professional simulator developed by the Nor-
wegian company Offshore Simulator Center AS. It features
a simulated environment in which users may manipulate
the wind, waves, and ocean currents to simulate real-life
conditions and offers a library of virtual vessels to choose
from. Table I shows the ship specifications we use. In this
paper, the ship is in dynamic positioning and the environ-
mental forces are including wind, wave, and swell. The data
are generated by the simulator when wind direction, wind
velocity, wave direction, and wave height change randomly,
wherein the vessel is allowed to return to a balanced state
and remain stable before the next change. So in every
case, the wind direction, wind velocity, wave direction, and
wave height are random constants, since the environmental
forces do not change drastically in a short time. During
this process, the swell height is kept constant at 0.1 m.
During this process, the northern coordinates of the ship
are located within the range of (-30.56, 47.15), whereas the
eastern coordinates fall within the range of (-20.15, 27.67).
Selecting data with constant environmental forces, we obtain
12 groups of data, of which 10 groups are used as a training
set and two groups are used as a testing set. Each group
contains 16-dimensional features that record the ship’s state
and environmental conditions for 8 minutes, including roll
angle, roll velocity, pitch angle, pitch velocity, yaw angle,
yaw velocity, surge, sway, heave, north, east, wind direction,
wind velocity, wave direction, and wave height. The data
time interval is downsampled to 1 s, so there are 480 data
points in every group.

B. Sensitivity Analysis

The one-step prediction models are established for the
purpose of conducting sensitivity analysis. This is because
sensitivity analysis can only analyze models with scalar
output, and it is difficult to describe time series by one scalar
value. Furthermore, the LSTM networks capture dynamic
information of time series data by propagating the hidden
state between time steps, so the input and output time steps



Fig. 3: The result of sensitivity analysis.

Fig. 4: The statistical result of sensitivity analysis for the
one-step model.

of it must match in length. Thus the multi-step prediction
model should be divided into multiple one-step prediction
models. The sensitivity analysis of multi-step prediction is
transformed into several analyses of the impact of input
features on the model output for different time intervals. The
analysis needs to determine the degree of influence that input
features have on the model output for each time interval. The
twenty-one-step models are constructed to predict the ship
roll motion for each future nth second (0 < n ≤ 20) based
on the current time state. These models are then used for
individual sensitivity analyses, and the sensitivity results are
shown in Fig. 3.

The sensitivity analysis results indicate that as the time
step changes, the input features have varying impacts on the
ship roll angle. Therefore, building up models with different
time steps requires different input feature dimensions, which
has a significant impact on the output.

C. Input Selection

Statistical analysis is performed to determine the appro-
priate input selection for establishing a multi-step ship roll
motion prediction model based on the results of sensitivity
analysis. To build an effective model, the model should
incorporate the parameters with higher sensitivity analysis
values as they have a more significant impact on the roll.

• The one-step model predicts the ship roll motion in the
next step, using the current ship states. The results of the

Fig. 5: The statistical result of sensitivity analysis for the
five-step model.

Fig. 6: The statistical result of sensitivity analysis for the
ten-step model.

sensitivity analysis for the one-step prediction model are
presented in Fig. 4 through the total-effect index STi. Si

only measures the impact of a single input variable on
the model output, while STi accounts for the influence
of that variable on the model output, as well as their
interactions with the variable. Thus, STi is preferable
for model input selection. The values of STi values for
the roll angle and roll velocity are higher than those of
other variables; accordingly, the one-step model should
use roll angle and roll velocity as input features.

• The five-step model predicts the ship roll motion in
the next five steps, using the current five-step ship
states. Consequently, the model must account for the
interrelation in time intervals ranging from one to nine.
The largest time interval takes place when predicting
the next fifth step by the current time state, with
the middle interval being nine. Thus, the total-effect
index STi of variables is summed from the 1s to the
9s time intervals, as shown in Fig. 5. The sensitivity
values for the five-step prediction model do not exhibit
noteworthy distinctions when compared with those of
the one-step prediction model. To remove the effect of
the insignificant input features, the first fifty percent
of the parameter values would be considered. This
decision is based on the finding that the difference
between the eighth-largest value, north 0.555, and the



Fig. 7: The result of the one-step ship model prediction.

Fig. 8: The result of the five-step ship model prediction.

ninth-largest value, pitch velocity 0.541, is negligible.
Thus, all values beyond the eighth are discarded. As
a result, the model input includes only the first seven
variables, including roll angle, roll velocity, yaw angle,
yaw velocity, surge, sway, and east.

• The ten-step model predicts the ship roll motion in the
ten steps, using the current ten-step ship states, which
is similar to the five-step model. So the largest time
interval will happen when predicting the next tenth step
by the current time state, with the middle interval being
nineteen. Thus, the total-effect index STi of variables is
summed from the 1s to the 19s time intervals, as shown
in Fig. 6. It is worth noting that, the STi statistical
results of the ten-step prediction model has a similar
tendency to that of the five-step prediction model. So
the chosen model input features include the first seven
variables, which are the same as those of the five-step
prediction model.

The results of input selection are shown in Table. II.
The vessel’s dynamic positioning mode and a constant en-
vironmental force result in the input to the network being a
constant value. The environmental force impacts the network
output by influencing changes in other directional forces and
moments. It is critical to note that the results of sensitivity
analysis obtained under the DP algorithm’s influence may
not be generalizable to other conditions of predicting roll.

Fig. 9: The result of the ten-step ship model prediction.

TABLE II: The results of input selection

Models The Input Features
The one-step prediction model roll angle, roll velocity

The five-step prediction model roll angle, roll velocity, yaw angle,
yaw velocity, surge, sway, east

The ten-step prediction model roll angle, roll velocity, yaw angle,
yaw velocity, surge, sway, east

D. Ship Roll Motion Prediction

Based on the result of input selection, the one-step, five-
step, and ten-step ship roll motion prediction models are es-
tablished, respectively. The Bi-LSTM model is implemented
using Keras deep learning library. The model architecture
consists of three layers. The first layer of the model is
a Bi-LSTM layer with 128 units, which accepts the input
sequence and returns an output sequence of equal length.
After the LSTM layer, there is a Dropout layer included, with
a dropout rate of 0.2. To predict output for each time step
in the sequence, a TimeDistributed Dense layer is added to
the model. The model is compiled using the Adam optimizer
with the mean squared error loss function. The models with
different input feature dimensions are built up to test the
effectiveness of input selection.

In Fig. 7, 8, and 9, the Bi-LSTM model is established to
predict the ship roll motion in the next one, five, and ten
steps, respectively, based on input features in the previous.
The green line shows the predicted roll angle of the Bi-LSTM
model with two-dimensional input features (roll angle and
roll velocity), the input selection results of the one-step ship
roll motion prediction model. The red line presents the pre-
dicted roll angle of the model with seven-dimensional input
features, including roll angle, roll velocity, yaw angle, yaw
velocity, surge, sway, and east, the input selection results of
the five-step and ten-step ship roll motion prediction model.
Additionally, the orange line represents the predicted roll
angle of the 16-dimensional input features model, including
roll angle, roll velocity, pitch angle, pitch velocity, yaw angle,
yaw velocity, surge, sway, heave, north, east, down, wind
direction, wind velocity, wave direction, and wave height,
which are all the input features of the data.

To evaluate the validity of the model prediction, mean



TABLE III: The error of the prediction models

Error One-Step Prediction Five-Step Prediction Ten-Step Prediction
16-dimension 2-dimension 7-dimension 16-dimension 2-dimension 7-dimension 16-dimension 2-dimension 7-dimension

MAE 0.0512 0.0459 0.0473 0.1625 0.1673 0.1513 0.1903 0.2156 0.1806
MSE 0.0039 0.0034 0.0040 0.0454 0.0624 0.0465 0.0619 0.1021 0.0626

RMSE 0.0623 0.0587 0.0629 0.2130 0.2492 0.2156 0.2489 0.3196 0.2502

absolute error (MAE), mean square error (MSE), and root-
mean-square error (RMSE) are adopted as the evaluation
criteria. The error results are shown in Table III. It can be
found that the performance of the predicted model is superior
upon input feature selection. Input features required for
different steps predicted networks exhibit variability. Since
the five-step prediction and the ten-step prediction produce
the same input feature result, one could speculate that the
input feature would remain constant as the number of steps
increases.

IV. CONCLUSION

The multi-step ship roll motion prediction model is estab-
lished based on the Bi-LSTM, including one, five, and ten
steps. To improve the accuracy of the prediction model, the
input selection is conducted through Sobol sensitivity anal-
ysis. Because the sensitivity analysis can be only conducted
on the model with the scalar output, the sensitivity analysis
of multi-step prediction is separated into that of prediction
with different time intervals. The results show the efficiency
of the multi-step prediction and input selection. The ability to
predict roll motion with a high degree of accuracy can help
to enhance the safety and efficiency of maritime operations,
reduce the risk of injury and damage, and improve the
comfort and well-being of crew and passengers. Efforts for
future work will be made to improve the LSTM network
to make it more suitable for roll prediction, enhance the
accuracy of the short-term roll motion prediction and extend
the predicted horizon.
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