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A B S T R A C T   

Underwater vehicles and other mobile platforms are seeing increased use as tools within fish farming, particu
larly due to current trends towards Precision Farming practices, and more exposed farming sites. Although many 
of the applications of such tools (e.g., net cleaning and inspection) have become well established industrial 
practices, it is largely unknown how much such operations disturb the fish and the consequence of this distur
bance. In this study, we explored this by exposing Atlantic salmon in commercial net cages to intrusive objects 
and monitoring the distribution of fish around these using on-board 360-degree sonars. Six different object 
designs were tested covering variations in size, shape, and colour, which are important static characteristics of 
underwater vehicles/platforms. The sonar data was first aggregated into images containing the Cumulative Fish 
Presence over 1-, 5- and 10-min periods to provide a more robust foundation for further analyses. By training a 
deep learning based method using UNet++ architecture to automatically segment the fish distribution patterns, 
the mean distance between the inner perimeter of the fish distribution and the object was assessed. Results from 
the study implied that fish keep greater distances to larger objects. There was, however, no clear impact of the 
shape. Regarding the effect of colour, fish kept greater distances to yellow than to white objects. When 
comparing results from tests on fish of different size, data indicate a positive linear relationship between fish 
weight (age) and distance to an object, that can be expressed as an avoidance distance of an average 3.8 body- 
lengths. Our findings provide new fundamental knowledge on the dynamics between the fish and objects such as 
vehicles or other mobile platforms in fish farms, and thus provides valuable insights that can be useful when 
designing such tools specifically for aquaculture.   

1. Introduction 

Aquaculture is an important source of seafood, and is likely to play 
an important role in serving the increased food demand that will 
accompany a growing world population (FAO, 2020). The Norwegian 
aquaculture industry is mostly focused around Atlantic salmon (Salmo 
salar) production conducted at sheltered fjord/coastal sites in floating 
gravity type sea cages. This industry has grown rapidly in terms of 
production volume and economy, and produced >1.6 million tonnes of 
marketable fish meat with a value of >68 billion NOK in 2021(Norwe
gian Directorate of Fisheries, 2021-05-27). 

This growth in demand has traditionally been served by establishing 
new farming sites in coastal areas, providing shelter against environ
mental forces and proximity to established infrastructure (e.g., power 

and communication grids, logistics). However, due to competing claims 
from other industries (e.g., fisheries, tourism, shipping), such coastal 
sites have now become scarce. Together with the expectation that con
ditions further from shore are more beneficial for the fish, this has 
stimulated the industry to move further offshore and to more exposed 
locations (Bjelland et al., 2015). Since changes in the production envi
ronment also require changes in the production technology and methods 
applied, the aquaculture industry has thus started shifting production 
methods from the predominantly manual and experience based opera
tions historically used to more objective approaches based on intelligent 
sensors, mathematical models, decision support systems and autono
mous methods in different stages of production, as proposed by the 
Precision Fish Farming (PFF) concept (Føre et al., 2017; Bjelland et al., 
2015; Kelasidi and Svendsen, 2022). Intelligent use of Unmanned 
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Underwater Vehicles (UUVs) is a core component in realising the aims of 
PFF. 

UUVs have been used by different industrial segments (e.g., oil and 
gas, shipping and conservation/oceanography) and the military (Kela
sidi et al., 2016, 2017; Sverdrup-Thygeson et al., 2017; Fossen, 2011; 
Paull et al., 2013) to solve several types of challenges/operations (e.g., 
mapping, monitoring, inspection and intervention). There are several 
ways in which such tools can be useful within aquaculture. For instance, 
UUVs equipped with cameras and sensors/instruments can be used for 
monitoring and inspection of fish and structural components, and can 
also conduct increasingly complex intervention operations, thus 
replacing divers and hence reducing the risk of personnel injuries 
(Kelasidi and Svendsen, 2022). However, UUVs used in aquaculture, 
such as remotely operated vehicles (ROVs), are mainly based on 
knowledge and technology developed by other industries such as the oil 
and gas sector. Unlike these other industries, aquaculture operations 
include live fish, meaning that UUV methods and vehicles also need take 
the biology into account to be applicable (Kelasidi and Svendsen, 2022). 
This entails that vehicles used for aquaculture operations should be 
designed to minimise their potential negative impact on the animals, 
thereby improving their compatibility with fish production. This is an 
exercise that requires new fundamental knowledge to identify and 
quantify the responses of fish when subjected to different impact factors. 

While some of the factors known to affect the behaviour of farmed 
salmon, such as temperature, oxygen and natural light, are natural el
ements in the cage environment (Oppedal et al., 2011), other factors, 
such as anthropogenic sounds (i.e., sounds arising due to human activ
ities), artificial light and intrusive objects, may be introduced due to the 
use of technological tools in the cage, including moving sensors and 
UUVs. Atlantic salmon have been found to have a hearing range of about 
100 —380 Hz (Hawkins and Johnstone, 1978; Oxman et al., 2007), and 
can respond to sounds from different audio sources. For example, (Pie
niazek et al., 2020; Magnhagen et al., 2017) found that noise from 
service vessels can lead to reduction in feeding, an effect that might also 
occur due to sounds emitted by actuated sensors and/or UUVs. The 
impact of natural or artificial light on salmon behaviour is typically 
expressed as a trade-off between having sufficient light to feed (Fraser 
and Metcalfe, 1997), and being less visible for potential predators (Juell 
and Fosseidengen, 2004). Light can lead to increased stress levels in 
salmon, and light with shorter wavelengths affect salmon more (Migaud 
et al., 2007). In addition, it is observed that salmon prefer slight dimmed 
light to bright daylight and descend or ascend in the cage accordingly 
(Fernö et al., 1995; Føre et al., 2018). UUVs carrying lights may perturb 
the lighting conditions in the cage, and could thus also have an impact 
on the spatial distribution (Fernö et al., 1995) and even stress levels 
(Migaud et al., 2007) of farmed salmon. The third factor mentioned 
above is intrusive objects, and is perhaps the most important to consider 
as a sensor or UUV deployed in a cage will immediately be perceived as 
such an object by the fish. In addition to detection through visual means, 
fish can also detect nearby objects without being in contact with them 
using e.g., the lateral line organ (Kryvi and Totland, 1997). Fish re
sponses towards intrusive objects have been found to depend on the 
object's colour, size, shape, motion and speed (Marras and Porfiri, 2012; 
Kruusmaa et al., 2020). One study performed by (Marras and Porfiri, 
2012) showed that zebrafish (Danio rerio) were more attracted to a ro
botic fish similar in colour and dimension to a fertile female zebrafish 
than elongated or monochromatic robotic fish. In a study conducted in a 
commercial fish farm, (Kruusmaa et al., 2020) found that it was more 
difficult for fish to observe a silvery robot than the yellow robot, and that 
the fish stayed farther away from larger objects than from smaller ones 
when other parameters of the objects were similar. In sum, these studies 
imply that the colour and size of an intrusive object are important factors 
determining how the fish respond to this object, and that the emission of 
sound and light could similarly induce attraction or avoidance in the 
fish. 

In this study, we sought to explore how the physical properties of an 

intrusive object affected the responses of farmed Atlantic salmon. 
Several field trials were conducted in industrial-scale fish farms at 
SINTEF ACE (SINTEF, 2023). Avoidance distance exhibited by salmon 
exposed to structures of various shapes, sizes, and colours were 
measured. The fish were stimulated in an experimental setup where 
these external impact factors were varied to assess their effects. To ac
count for how variable lighting conditions may impact the visual 
perception of the fish, the trials were conducted at different seasons but 
with the device at fixed depth, thus covering a range of natural lighting 
conditions (Oppedal et al., 2011). The potential fish responses were 
recorded using different types of echo sounders and cameras. The ana
lyses presented in this work focus on data from two 360 degree sonars. 
Rather than analysing manually, we developed a Deep Learning (DL)- 
based method for analysing the sonar data to automatically identify fish 
swimming patterns and quantify fish responses. And the DL-based 
method has been implemented and validated on the set of data we 
collected, aspiring to relate fish responses to different structure ap
pearances and sizes simultaneously. The method we have developed and 
results we have obtained in the study can therefore provide insight 
needed to develop robotic solutions better suited to a co-existence with 
fish in sea-cages. 

2. Materials and methods 

2.1. Experimental setup and data acquisition 

Tests were conducted at SINTEF's industrial-scale research fish farm 
sites in Mid-Norway, SINTEF ACE (SINTEF, 2023), in June 2021 (P1), 
October 2021 (P2) and September 2022 (P3). P1 and P2 were both 
conducted at the fish farm site Tristeinen, while P3 was conducted at the 
fish farm site Korsneset. Korsneset is located within a fjord, and there
fore less exposed to waves and currents than Tristeinen. Tristeinen had 8 
pens, while Korsneset included 12 pens, each cage containing up to 
200,000 fish of the size range 1 kg to 6 kg (see Table 1). Fish observed in 
the three trials originated from three commonly used genetic strains (P1: 
Rauma, P2: SalmoBreed, P3: MoWi). Typically, the fish are fed for 
several hours during the day. As feeding elicits strong reactions in fish 
(Føre et al., 2011) which could mask the impacts of the factors of in
terest, all the trials were conducted while feeding was paused. While the 
experimental timing for P1-P3 (June, September and October) was 
mostly chosen based on site availability, the large range in seasonality 
improved the robustness of the method as the different trials were thus 
conducted under variable natural light levels. All tests were conducted 
in normal daylight hours (i.e., between 09:00 and 17:00) to reduce the 
potential impact of daily variations in natural light on the perception of 
the fish. 

A test structure was designed for these experiments consisting of a 
cylindrical centre structure containing three stacked cylinders with di
mensions Ø18 × 15, Ø30 × 30, Ø18 × 15 cm (shown to the left in Fig. 1) 
designed to house the sensors and actuators used in the field trials. This 
centre structure was mounted inside shell structures of different shapes 
and colours to test for the different impact factors, as shown in Fig. 1; a 
small cylinder with dimensions Ø30 × 30 cm, a cube with dimensions 
60 × 60 × 60 cm, and a big cylinder with dimensions Ø60 × 60 cm. Note 
that the small cylinder was created by covering the middle cylinder of 
the centre structure (to the left in Fig. 1) in fabric, and therefore has the 
same dimensions as the centre structure. The centre structure was 
equipped with two Ping360 sonars: one close to the top, placed so that 
the beams had a clear path through the openings at the top of the shell 
structures, and one on the bottom extending below the lower edge of the 
shell structure. To capture video footage of the fish reactions as sup
plementary information, the structure was in addition equipped with 
either i) four GoPro (Hero4) cameras in equal distance to each other, 
pointing outwards in four directions (P1 and P2) or ii) a stereo camera, 
which enabled monitoring from the surface via a live feed (P3). In all 
trials, the structure was placed at a water depth of 8 m using a buoy and 
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ropes, as shown in Fig. 1. The choice of depth was influenced by several 
factors: (i) 8 m is a depth where fish are known to be present during 
daylight hours (Føre et al., 2018), (ii) it represents roughly the middle of 
the main cage volume, and thus a typical ROV operation depth, and (iii) 
limitation related to waterproofing of chosen equipment. To ensure 
comparability across the entire experiment, the structure was therefore 
fixed at this water depth using a buoy and ropes in all trials. 

Trials conducted at the three different times tested different combi
nations of factors (Table 1). In P1 and P2 conducted in 2021 the rect
angular yellow shell structure described as “Cube yellow” in Fig. 1 was 
used. The tests were conducted on fish of two different size classes 
(2.5–2.6 kg and 5.0 kg). In P3 conducted in 2022, all six different shell 
structures shown in Fig. 1 were tested on fish of 1 kg. Tests P1 and P3 
were performed in 2 cages each, while P2 could only be performed in 
one cage. To reduce the potential impact of the fish habituating to the 
object and thus introducing differences between the first and last mea
surement in a set, the inert object was installed some time ahead of the 
six replicate measurements being conducted in each cage. While this 
might not remove potential effects due to repeated exposure, it may 
reduce transient effects due to completely naive fish seeing the object for 
the first time. A measurement consisted of a 12 min recording of fish 
responses, where the data recorded in the first and last minute were 
discarded when analysing the data. Between replicate measurements the 
structure was moved laterally for approx. 25 s. 

The data used in the analyses was obtained using 360 degree me
chanical sonars (Ping360 - Scanning Image Sonars, BlueRobotics Inc.). 
These sonars can be set up to acquire images at a range of up to either 5 
or 10 m from the instrument. While sonar measurements obtained with a 
10 m range provide data over a larger viewing area, the resolution will 
be lower than when set up with a 5 m range, which impacts the ability to 
identify and quantify fish distribution and swimming patterns. We 
conducted preliminary analyses to investigate this trade-off, and found 
that data obtained with 10 m range were too coarse to achieve the 
desired precision and accuracy for our study. All Ping360 data utilized in 
this study were therefore obtained using a 5 m range. An additional 
motivation for this choice was that the sonar uses longer time (increase 
of approximately 30%) per circular scan when using a 10 m range 
compared with a 5 m range. 

Note that, as our study investigated the effect of the introduction of a 
novel object into a fish population, the ‘control distance’ would be the 
distance between individual unhindered swimming fish. Since the naked 
sonar attached to its holder including a weight presents in itself an object 
which likely would affect the behaviour of the fish, it was not possible to 
collect comparative data in the absence of an intrusive object. Therefore, 
our study compared the effect of various objects to each other. 

To summarise, Table 1 lists all the different trials conducted for 
shape, size and colour during P1, P2 and P3, including which cages and 
locations were used, and which impact factors the trials were used to 

Table 1 
Overview of fish participating in field trials and factors tested.  

Trial Location Cage # Fish Fish weight [kg] Shape x Size Colour Date Impact Factors 

P1 Tristeinen 1 195,000 2.5 Cube Yellow 16-Jun 2021 FW 
8 180,000 2.6 Cube Yellow 17-Jun 2021 FW 

P2 Tristeinen 1 99,000 5.0 Cube Yellow 18-Oct 2021 FW 
P3 Korsneset 12 172,000 1.0 Cube Yellow 7-Sep 2022 FW, SSS, SC 

White 7-Sep 2022 SSS, SC 
Small cylinder Yellow 8-Sep 2022 SSS, SC 

White 8-Sep 2022 SSS, SC 
Big cylinder Yellow 6-Sep 2022 SSS, SC 

White 5-Sep 2022 SSS, SC 
14 175,000 1.0 Cube Yellow 7-Sep 2022 SSS-C, SC-C 

White 6-Sep 2022 SSS-C, SC-C 
Small cylinder Yellow 7-Sep 2022 SSS-C, SC-C 

White 7-Sep 2022 SSS-C, SC-C 
Big cylinder Yellow 6-Sep 2022 SSS-C, SC-C 

White 5-Sep 2022 SSS-C, SC-C 

Impact factors - SSS: Structure Shape and Size; SC: Structure Colour; FW: Fish weight; -C: Cage effect. 

Fig. 1. Experimental setup. The centre structure (left) was equipped with a sonar on the top and on the bottom as well as either a stereo camera (on top) or four 
GoPro cameras (not shown), and decorated in a total of six different appearances that varied in shape, size, and colour. 
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analyse. 

2.2. Data processing 

Since manually analysing the data collected with the Ping360 would 
be very difficult and time consuming, we developed a method for 
automatic processing of the data based on Machine Learning methods. 
Specifically, a Deep Learning (DL) semantic segmentation approach was 
adapted to automatically determine fish swimming patterns around the 
structure and then estimate the distances the fish avoided the structures. 
This section outlines how this method was adapted to our study, and 
how the datasets were prepared before the automated analyses. 

2.2.1. Data preparation 

2.2.1.1. Ping360 images and fish swimming patterns. Two sonars were 
used in all trials listed in Table 1, but since the bottom and top sonars 
provided similar results in all cases (see data excerpt in Appendix A, 
Fig. 10), we therefore assumed that the same distances are experienced 
at different depths of the intrusive object and analyses were limited to 
the data from the bottom sonar. 

It took approximately 8 s for the single-beam Ping360 sonar to 
complete a circular scan when set to a range of 5 m. The raw sonar data 
from each scan are given as time-series arrays of intensity values 
reflecting echo strength in a Cartesian coordinate system. To make the 
data more intuitive, the raw data were represented in polar coordinates 
and converted into images providing a 360-degree view of the sonar's 
surroundings, as exemplified by Fig. 2(a). 

Based on the findings of (Kruusmaa et al., 2020), it is likely that the 
propensity of salmon towards keeping a certain distance from structures 
observed in their proximity will induce circular swimming patterns 
around the structure. Such behaviour would appear as rings in the sonar 
images, and it is thus likely that the minimum distances the fish avoid 
the structures can be determined by finding the inner boundaries of the 
“fish school rings” (e.g., the closed red line in Fig. 2(a)). For conve
nience, in this article, we refer to the minimum distance fish keep away 
from the structure as fish avoidance distance to structure, denoted by 
dvpref, and refer to the inner boundary of a “fish school ring” as a fish 
swimming pattern. 

2.2.1.2. Cumulative Fish Presence (CFP) images. Due to the high varia
tion in individual fish behaviours, fish swimming patterns around the 
structure may vary greatly over short periods of time. This makes 

determining fish avoidance distances from one-circular-scan images an 
inaccurate approach. To acquire a more robust approach, we derived 
sonar images called Cumulative Fish Presence (CFP) images that accu
mulated the data from all circular scans over 1-, 5-, and 10-min periods 
to determine fish avoidance distances around structures. 

Sonar data typically contains stripe noises and structure signals that 
may be greatly emphasised when accumulated over time as when 
deriving CFP images. To compensate for this, the data used to derive 5- 
and 10-min CFP images was destriped prior to the conversion to polar 
coordinates by applying morphological closing with a rectangular- 
shaped structuring element of size 1 × 3 to the raw data array (Gonza
lez and Woods, 2006). To further reduce the impact of such error 
sources, the 5- and 10-min CFP images were subjected to additional 
post-processing to produce higher quality images. This was done by 
conducting histogram equalisation on the CFP images to balance image 
intensity after their completion (Gonzalez and Woods, 2006). These pre- 
and post-processing procedures were not applied when generating 1- 
min CFP images since these were less affected by stripes and structure 
signals presented and since the preprocessing tended to weaken fish 
signals in the 1-min CFP images, resulting in inaccurate fish swimming 
patterns. 

2.2.1.3. Invalid data. After the CFP image datasets had been derived 
from the collected data, we identified different types of CFP images that 
should be considered invalid as they were unlikely to yield useful out
comes when subjected to the DL method adapted in this study. Three 
different types of data (Fig. 3) were categorised as invalid, and the DL 
method was trained to filter out all CFP images matching these and not 
use them in the final analyses. The first type of invalid data was char
acterised by strong noise around the sonar that overrode fish signal as 
seen in Fig. 3(a). Noise reduction methods such as reducing the intensity 
of potential noise pixels detected by Otsu's method (Otsu, 1979) were 
investigated. Although this improved some datasets, the noise around 
the sonar was too strong to be effectively reduced in other cases. In the 
second type of invalid data identified in this study (Fig. 3(b)), the fish 
swimming pattern covered less than a semicircle. Although such data 
may sometimes be representative of the actual fish response and dis
tribution, the resulting distance estimates from the DL-method were 
considered more uncertain and less conclusive than when based on data 
showing a ring shaped distribution. The third type of invalid data was 
mainly one-circular-scan images, showing very few fish swimming 
around the structures (Fig. 3(c)). While this type of invalid data was not 
common in CFP images, they were used as additional training data to 

Fig. 2. (a) One-circular-scan sonar image of fish around the structure. Green scale intensities represent reflections from fish and other objects, the red line represents 
the boundary of the fish swimming pattern; (b) Annotation mask of fish swimming pattern. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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increase the diversity of the training data to obtain a more robust DL 
model. 

2.2.1.4. Deep Learning (DL) method for automatic recognition of fish 
swimming patterns. The first step in developing the DL model was to 
create a dataset of annotate CFP images suitable for training, validating 
and testing the model. We obtained >4000 CPF images (1-, 5- and 10- 
min) and 10% of them (150, 108 and 150 images, respectively) were 
randomly selected for training. As the 5-min images were generally 
similar to the 10-min ones, we reduced the number of 5-min images used 
for training in order to increase balance in the training dataset. In 
addition, 120 one-circular-scan images were used to increase the di
versity of the training dataset. These non-cumulative images were not 
analysed in the present study. The images were then annotated by la
beling the images with solid white polygons covering the areas devoid of 
fish (indicating that they avoided the structures) in the sonar data. A 
binary mask denoting the inner boundary of the covered region was then 
derived, as shown in Fig. 2(b). Solid-filled polygons were used here 
instead of closed curves because they have more foreground pixels than 
curves which helps balance positive and negative samples in the dataset, 
thereby making it easier to train a model with good performance. <10% 
of all CFP images were categorised as invalid data according to the 
previously mentioned criteria, and were annotated by solid black masks 
to indicate that they should not be used in further analyses. The resulting 
annotated dataset was randomly split into 80% for training, 10% for 
validation, and 10% for testing. 

2.2.1.5. Deep learning model. Several state-of-art (SoA) DL semantic 
segmentation models, such as FCNs (Long et al., 2015), SegNet (Badri
narayanan et al., 2017), and U-Net (Ronneberger et al., 2015), were 
implemented on a common platform (NVIDIA RTX A2000 GPU with 4 
GB of memory), trained using the CFP datasets and evaluated with 
respect to their ability to segment out the desired fish swimming pat
terns. The best segmentation results were obtained with a U-Net++

model (Zhou et al., 2020), trained with Adam optimisation with a 
learning rate of 0.0001 as the optimizer, binary cross entropy as the loss, 
batch size of 4, and early stopping patience of 10. 

U-Net++ is a symmetric U-shaped encoder-decoder neural network 
architecture with additional skip connections (Ronneberger et al., 2015; 
Zhou et al., 2018, 2020). The encoder part in the network acts as a 
feature extractor that extracts multiple feature maps of different scales 
from the input image. It consists of convolution blocks followed by a 
max-pooling down-sampling, where the convolution block used in our 

model has two convolutions with a kernel size 3 × 3, each followed by a 
Rectified Linear Unit (ReLU). The decoder part in the network is used to 
restore the spatial resolutions of the feature maps corresponding to the 
feature map resolutions from encoder, and it consists of up-sampling 
operations followed by a convolution block. The skip connections be
tween the encoder and decoder aim to concatenate the low-level fea
tures (extracted from the encoder) with the corresponding high-level 
features (obtained from the decoder) to recover the spatial information 
lost during the max-pooling operations. In U-Net++, a series of nested 
dense convolution blocks (Huang et al., 2017) are used on the skip 
pathways to better bridge the semantic gap between encoder and 
decoder feature maps prior to concatenation. Furthermore, this design of 
skip connections allows U-Net++ to generate multiple full-resolution 
feature maps at different semantic scales (i.e., X0, 1, X0, 2, X0, 3, and 
X0, 4), so that only one loss layer is needed to determine the optimal 
depth of the network. At the last layer of U-Net++, a 1 × 1 convolution 
followed by a pixelwise softmax activation is applied to the full- 
resolution feature map to create a mask with the same resolution as 
the input image for semantic segmentation. Fig. 4 presents the archi
tecture of U-Net++ we used for fish swimming pattern recognition. 

2.2.1.6. Fish avoidance distance estimation. The DL-based method was 
then applied to the >4200 valid CFP images obtained in the study, 
outputting a binary image for each input CFP image. These were similar 
to Fig. 2(b), where the white region corresponds to the area without fish 
based on their avoidance of the structure as identified by the U-Net++

model. By then tracing the one-pixel-wide contour of the white region 
(Gonzalez and Woods, 2006), a curve delimiting the fish swimming 
pattern was obtained. The avoidance distance of the fish towards the 
intrusive structure was then found by averaging the distance from each 
pixel on the fish swimming pattern curve to the structure/image centre 
(Fig. 5 illustrates this process). To determine the avoidance distances for 
each impact factor, we used the cases where the sonar data had least 
interfering signals, and was thus most likely to yield consistent results. 
The findings obtained were validated with the remaining sonar data for 
each case. All three accumulation intervals (i.e., 1-, 5- and 10-min) were 
included in the analyses, as short-term cumulative measurements will 
contain data from fewer fish and thus probably reveal more about in
dividual fish response, while long-term cumulative measurements are 
more likely to reflect group responses and were considered more robust 
than 1- and 5-min estimates. 

Fig. 3. Examples of invalid data. (a) The strong noise around the sonar overrides fish signal; (b) Fish swimming pattern is less than a semicircle; (c) Too few fish 
within range. 
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3. Results 

The DL-based method was applied to the datasets from all case 
studies, resulting in statistical distributions describing the fish avoid
ance distance determined for each of the cases. 

Collective information and fish avoidance distance estimation sta
tistics for each case can be found in Appendix A. Tables 2 and 3 sum
marise the results for structure appearance factors and fish weights, 
respectively. As expected, variability decreased with increased accu
mulation time when analysed for the impacts of size, shape and colour 
(Fig. 6). Since we were primarily interested in generic rather than 
individual-specific responses, the 10-min values were used in the ana
lyses presented in the following subsections. 

3.1. Impact of structure shape and size 

The avoidance distance estimates show that, for white structures 
(Fig. 6(a)), the fish kept the shortest distance from the small cylinder 
(0.64 m), followed by the big cylinder (0.82 m) and the cube (0.89 m), 
indicating that avoidance distance increased from small to big cylinder 
(21%), and from big cylinder to cube (9%). The pattern was similar for 
yellow structures (Fig. 6(b)), with the fish keeping closer to the small 
cylinder (0.90 m) than both the cube (1.39 m) and the big cylinder (1.43 
m). In relative terms, this implied a larger increase (37%) from small to 
big cylinder, while the difference between big cylinder and cube was 
negligible (3%). In summary, the results (Fig. 6) show that the distance 
of fish from the object increased with the size of the objects, but was 
independent of the object's shape. 

3.2. Impact of structure colour 

Comparing the results from the white and yellow objects (Fig. 6) 
showed that the fish stayed generally closer to the white structures (max. 
distance <0.9 m) than the yellow ones (min. distance 0.9 m). This 
equaled a 50% larger distance to yellow shapes. 

3.3. Impact of fish weight 

To investigate if fish weight had an impact on the distance kept to a 
structure, we compared data from trials using the yellow cube structure 
conducted with fish of different sizes, including fish weighing 1 kg, 2.5 
kg and 5 kg (Table 3). The results show a linear relationship between 
avoidance distance and fish weight, with larger fish keeping a larger 
distance from the object (Fig. 7). 

Fig. 4. U-Net++ architecture.  

Fig. 5. Fish avoidance distance estimation process.  

Table 2 
Comparison of results of avoidance distance for structure appearance impact investigation based on accumulation times of 1 min, 5 mins and 10 mins collected from 
Cage 12 (P3) with a fish weight of 1.084 kg, population size of 172,563, and a structure depth of 8 m.  

Case Mean ± Standard deviation [m] Minimum [m] Maximum [m] 

1 min 5 mins 10 mins 1 min 5 mins 10 mins 1 min 5 mins 10 mins 

Big Cylinder White 0.93 ± 0.06 0.82 ± 0.02 0.82 ± 0.01 0.85 0.79 0.80 1.10 0.85 0.83 
Yellow 1.72 ± 0.21 1.47 ± 0.09 1.43 ± 0.06 1.34 1.37 1.37 2.14 1.69 1.53 

Cube White 0.99 ± 0.04 0.90 ± 0.01 0.89 ± 0.01 0.90 0.87 0.88 1.13 0.92 0.90 
Yellow 1.72 ± 0.26 1.44 ± 0.17 1.39 ± 0.13 1.12 1.13 1.20 2.43 1.68 1.58 

Small Cylinder White 0.77 ± 0.05 0.65 ± 0.03 0.64 ± 0.02 0.68 0.60 0.61 0.98 0.69 0.67 
Yellow 1.23 ± 0.25 0.92 ± 0.09 0.90 ± 0.07 0.831 0.79 0.80 1.90 1.150 1.01  
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3.4. Cage effects 

To explore whether fish in two different cages respond similar to the 
same object, we compared the results obtained in Cages 12 and 14 at 
Korsneset in 2022 (Table 1). The data from the two cages show similar 
trends in that both fish groups stayed further from large cylinders and 

cubes than from small cylinders, and in general kept greater distances 
from yellow than from white structures (Fig. 8). However, the fish in 
Cage 14 kept greater distances from all structures than the fish in Cage 
12 (cube: white 11% and yellow 43% greater in Cage 14, big cylinder: 
white 16% and yellow 28% greater, small cylinder: white 45% greater, 
no data in Cage 14 for yellow). Interestingly, the data on white 

Table 3 
Results of avoidance distance for fish weight impact investigation based on reactions to the yellow cube.  

Trials Cage Fish weight [kg] Fish population Mean ± Standard deviation [m] Minimum [m] Maximum [m] 

1 min 5 mins 10 mins 1 min 5 mins 10 mins 1 min 5 mins 10 mins 

P3 12 1.0 172,000 1.71 ± 0.26 1.44 ± 0.17 1.39 ± 0.13 1.12 1.12 1.20 2.43 1.68 1.58 
P3 14 1.0 175,000 2.45 ± 0.18 2.10 ± 0.18 2.03 ± 0.13 2.06 1.90 1.88 2.85 2.44 2.22 
P1 1 2.5 195,000 2.15 ± 0.27 1.97 ± 0.25 1.88 ± 0.12 1.71 1.68 1.69 3.27 2.93 2.07 
P1 8 2.6 180,000 2.17 ± 0.26 1.93 ± 0.15 1.89 ± 0.12 1.73 1.74 1.75 3.15 2.34 2.18 
P2 1 5.0 99,000 3.39 ± 0.25 2.99 ± 0.16 2.92 ± 0.14 2.87 2.71 2.73 3.92 3.15 3.12  

Fig. 6. Fish responses to structures of different shape, size, and colour collected from Cage 12 in P3, showing boxplots featuring the minimum, first quartile, mean 
(red dot), median (blue horizontal line), third quartile, maximum and outliers (yellow dot) for 1-, 5- and 10-min CFPs for (a) white structures and (b)yellow 
structures. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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structures from Cage 14 implies that the fish stayed further from the 
small cylinder than from the big cylinder and the cube, which is unlike 
the pattern seen in Cage 12. 

4. Discussion 

This study successfully measured differences in fish response around 
structures of variable shape, size, and colour using a novel Machine 
Learning method for fish avoidance distance studies adapting a Deep 
Learning (DL) semantic segmentation approach to automatically deter
mine fish swimming patterns around a structure. Such methods have 
been extensively investigated in other domains and it is the first time 
such an approach was adapted to systematic studies in aquaculture. By 
applying the DL-method upon sonar data, several fish responses towards 
structures in a sea-cage were identified and quantified as summarized 
and categorised in Table 4. The method can be extended to target fish 
responses to other impact factors than those explored here, and can be 
applied to the studies targeting the responses of different species and 
other segments than aquaculture (e.g., fisheries, conservation). 

Previous studies have indicated that the size and colour of an 
intrusive object are important factors in determining how fish respond 
to this object (Marras and Porfiri, 2012; Kruusmaa et al., 2020). While 

these pioneering studies described the holistic responses towards such 
objects, our study complements their findings by exploring the specific 
reactions are elicited by the various features of such objects. Our results 
thus both confirm these findings, and add more knowledge in demon
strating a clear/direct link between structure size and fish response, as 
the fish stayed closer to smaller structures than to bigger ones in all 
experimental setups. In addition, fish maintained shorter distances from 
white structures than from yellow structures of similar shape and size. 
Similar to the findings of (Kruusmaa et al., 2020) and (Marras and 
Porfiri, 2012), this implies that colour might affect how fish respond to a 
structure. There was, however, no clear evidence of preference towards 
cylindrical or cubic shapes, indicating that the shape of the structure 
might be not an important factor affecting the fish response. 

The comparison across fish weights concluded that fish weight had 
an impact on the avoidance distance, with bigger fish tending to stay 
farther from structures than smaller fish. Interestingly, there was a 
nearly linear relationship between avoidance distance and fish weight. 
To explore this further, we used weight-length data obtained from a 
commercial farming site (Fig. 11 in Appendix A) to derive estimated 
body lengths (BL, i.e., the length of the individual fish) for the three fish 
weights used in the present study (1.0 kg: 0.44 m; 2.5 kg: 0.55; 5.0 kg: 
0.73 m, Table 8 in Appendix A). This resulted in a average avoidance 
distance of 3.8 BL across fish weights (1 kg: 3.9 BL, 2.5 kg: 3.4 BL, 5 kg: 
4.0 BL). This narrow range of values implies that there might be a strong 
relationship between the length of an individual fish and the avoidance 
length it tends to keep to invasive objects. Based on this, it is possible 
that a scalar number (or narrow range of scalar numbers) can be used 
together with fish length to estimate the distance fish in a farming sit
uation would keep to invasive objects. This could in turn be useful when 
designing new vehicles or operations for use in aquaculture such that 
they have minimal impact upon the fish. However, as the fish in the 
three weight groups originated from three different genetic strains, it 
cannot be excluded that it is not fish size but genetic origin that is 
responsible for the variation in distance measured between the three 
groups. Ideally, future experiments should reassess the same fish group 
at different times during their growth phase to determine the true cause 
for the observed scalar relationship before it can be implemented as a 
design parameter for future vehicle and operation development. 

While fish reactions to object shape, size and colour were consistent 
between cages, the direct comparison between fish from two cages 
showed consistent differences in distance to the objects. However, a 
closer scrutiny of the CFP images used in the analyses revealed that 
much of the data from the cases with the yellow cube, and white and 
yellow small cylinder for Cage 14 were characterised by the fish being 
only on one side of sonars, and further away from the structures than 
usual when they exhibit annular distributions around the object. These 
cases were as such close to being labelled as invalid data according to the 
previously mentioned criteria (see example in Fig. 9), which probably 
renders the data less suitable for concluding with regards to the exis
tence of potential cage effects. This phenomenon may have arisen due to 
differences in the cage environment (e.g., current exposure, water 
quality) of Cages 12 and 14, which could influence the fish avoidance 
distance. To finally conclude on possible cage effects will require further 
experiments comparing more than two cages while keeping external 
factors as similar as possible. 

Colours attenuate in seawater with depth, with red colours being lost 

Fig. 7. Linear regression of the means of 10-min estimates for the distance kept 
by fish in different size classes from the yellow cube. R2 = 0.993, P = 0.004. 
(For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 8. Means of 10-min estimates for Cage 12 and Cage 14. The data were 
collected from the bottom sonar in Cage 12 and 14 in P3, respectively. 

Table 4 
Fish responses related to different structures.  

Impact factor Reaction 

Shape Unclear 
Size Greater distance to larger objects 
Colour Greater distance to yellow than to white objects 
Fish weight 

(kg) 
Average distance of 3.8 body length (resulting in larger fish keeping 
a larger actual distance)  
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first, followed by orange and yellow (Pope and Fry, 1997)(for visual
isation see e.g., (Carothers, NOAA-OE, n.d.)). The intensity of attenua
tion depends strongly on available light, as well as the presence of 
disturbing factors such as scattering particles or waves. As light intensity 
in the experimental depth was not measured, the amount of attenuation 
during the trials is unknown. The observed difference in reaction be
tween the yellow and white structure imply that it was still visible. 
However, for a potential extension of the current study to investigate the 
effects of depth and light conditions on how fish perceive colour, in
clusion of light penetration measurements is recommended. As colour 
vision in anadromous fish has capacity for change (e.g., connected to life 
cycle stages to allow adaptation to changing water properties in rivers 
vs. sea water) (Carleton et al., 2020); it cannot be excluded that fish of 
different age or originating from different genetic strains may display 
variation in their preference towards coloured objects. While it is 
possible that also the reaction towards shape or size is age or genetic 
strain related, the observed correlation of preferred distance to body 
length indicates a consistency with age. Differences between genetic 
populations could be the topic of further studies. 

An initial study suggested strong currents and powerful waves can 
impact the swimming capabilities of fish (Hvas et al., 2021). Circular 
swimming of the fish in the cage will be abolished when current con
ditions exceed fish's preferred swimming speed. But shorter periods 
(hours) with current conditions above the preferred swimming speed 
would likely have negligible effects on fish (Hvas et al., 2021). Since 
health and safety concerns prevent conduction of experiments during 
adverse weather, including too strong currents, data collection was 
limited to days where fish are expected to have experienced benign 
conditions. Moreover, since we focused on local fish distribution around 
the intrusive object in this study and only observed the radial distance 
fish kept from the intrusive object, currents and waves are unlikely to 
have a significant impact on our outcomes. 

Due to practicalities, it was not possible to conduct our studies using 
real more replicate cages for each trial. Having proper more replicates 
on cage level would strengthen our findings and the likelihood that they 
reflect the real dynamics between fish and intrusive objects in sea-cages. 
However, >170,000 fish per cage allowed the assumption that a given 
group of fish encountered the object only once during the up to six 

replicate measurements in a cage, providing a robust measurement for 
each cage. Moreover, the data collected and analysed in this work was 
found sufficient to demonstrate the efficacy of the developed model and 
the drawing of initial conclusions. In the future, a similar setup and 
methods can be utilized for a more extensive study in more cages. 

Sensors, robots/UUVs and other technological tools dedicated to 
aquaculture applications should strive to minimise the disturbance they 
induce upon the fish, while still being effective at their intended pur
pose. Our results provide new knowledge and insight into how farmed 
salmon respond towards obtrusive structures in the cage volume, 
covering a range of parameters related to the size and appearance of the 
structure. As such, our results are valuable inputs for the future design 
and development of such systems. However, it is important to note that 
we only addressed the impact of static parameters (i.e., shape, size, 
colour, fish weight). Therefore, to design systems fully suited for aqua
culture purposes, similar studies should be aimed at the effects of dy
namic parameters such as sound, lights and movements as these are 
other key factors during operations, particularly for robots/UUVs. This 
is work that could be achieved using the same instruments and ML-based 
approach as the method used in the present study. 

Since our results quantify responses towards specific factors, they 
can also be used to derive mathematical representations of how salmon 
relate to objectives. These could then be used to expand existing models 
of salmon behaviour (Føre et al., 2009, 2014; Føre et al., 2016) to yield a 
more complete representation of the behavioural dynamics in salmon 
sea-cages. This could be beneficial both for providing an arena for 
virtually testing and refining vehicle designs in silico before physical 
protoyping, and for the future realisation of full digital twin technolo
gies (Rasheed et al., 2020) for aquaculture. 

Our method and results can thus through several different avenues, 
provide the insight and tools needed to develop solutions that help 
minimise the impact of adapted technologies on living fish in complex 
and dynamically changing environments, and thus contribute to 
improving the ethical sustainability, efficiency, and profitability of the 
aquaculture industry. 

While our ML-method proved efficient at providing concrete mea
sures of the fishes' avoidance distance to the objects, it has some 
shortcomings that could potentially render the use of the method 

Fig. 9. The swimming patterns of the fish in Cage 14 for (a) the yellow cube and (b) the small white cylinder. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 

Q. Zhang et al.                                                                                                                                                                                                                                  



Aquaculture 581 (2024) 740429

10

challenging. One such challenge is the use of solid black masks to mark 
the invalid datasets for the training of the DL-network. While this gave 
good results in terms of the method's ability to identify two of the invalid 
datatypes (Fig. 3(a) and (b)), it proved less effective at training for 
identifying the third type of invalid data (Fig. 3(c)). This might be 
because there are few fish in these images, which is diametrically 
opposite to the case implied to the network when using solid black 
masks (i.e., that fish cover the entire image). One method of improving 
upon this could be to alter the data used to train for detecting such cases 
to a solid white disk covering the area scanned by the sonar, as this is 
more similar to the real situation, which is that there are few fish within 
sonar range. 

Another potential source of inaccuracy is the assumption that the fish 
always form circular swimming patterns around the structures. This was 
true in almost all the CFD-images considered valid in our study, and 
might be true for most static cases where the object is not placed close to 
a second structure, such as the cage wall. However, when a structure (or 
vehicle) is in an operational state or otherwise exhibits dynamics such as 
sound and light, the distribution could become more asymmetric as the 
impact factors (e.g., movement, light) can then have a specific direc
tivity. This implies that further development of the method should take 
more CFD-shapes into account during training to ensure robustness to
wards more dynamic conditions. One way of doing this would be to 
include images displaying other swimming patterns in the training 
process. A challenge there could be to identify such datasets, but it is 
likely that more such data would appear in experiments where the object 
or structure disturbing the fish exhibits dynamics. 

5. Conclusions and future work 

In this paper, we have developed a DL-based sonar data processing 
method to identify and quantify responses of fish under different impact 
factors during fish farm operations. The method has been successfully 
applied to relevant sonar data collected from the field trials to study fish 
avoidance distance in reaction to structures with varying shape, size, 
and colour. The results from our fish avoidance distance studies show 
that: fish responded to structure size, but did not distinguish between 
shapes; the larger the object, the greater the distance the fish kept from 
it, implying that larger objects have a greater impact on fish than small 
objects. Moreover, fish stayed further away from yellow than from white 
structures, regardless of shape or size, implying that yellow is a more 
visible and/or threatening colour than white. Finally, independent of 
fish weight, fish kept a distance of an average 3.8 body lengths to ob
jects, while the actual avoidance distance is increasing with increasing 
fish weight. 

For future work, in addition to avoidance distance, which is an 
important fish behaviour indicator that can be observed by sonar, more 
fish behaviours that cannot be observed by sonars, such as change of 
swimming direction and distance between fish, etc., will be explored by 
analysing the video data using computer vision methods (Saad et al., 
2023). The quantified parameters of fish behaviour will be used to 
extend the existing mathematical models of Atlantic salmon behaviour 
in sea-cages (Føre et al., 2009) to mimic the observed responses of 
farmed fish. This will critically improve autonomous operations in fish 
farms, reduce potential negative impacts on fish during complex oper
ations, as well as improve fish welfare by moderately adding extra 
stimuli that may have positive impacts on fish. In addition, more studies 
will be conducted to identify and quantify fish responses to more dy
namic stimuli such as depth, light, sound and movements. 
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Fig. 10. Time-series curves of fish avoidance distances estimated from bottom and top sonar data, where x-axis presents the start times of CFP images and y-axis 
presents the estimated fish avoidance distances. 

Fig. 11. Linear regression for weight to length ratio based on measurements taken from 630 fish from 3 cages during the growth season 2021/2022 at an ACE farm 
site (Pascal Klebert, unpublished data).  

Table 5 
Fish avoidance distance estimates from 1-min CFPs.    

Trials   Case   Date   Cage  
Fish weight 
[kg]  

Fish 
population   Depth  

Sonar 
range  

Mean ± Standard 
deviation [m]  

Minimum [m]  Maximum [m]  

Bottom  Top  Bottom  Top  Bottom  Top 

(continued on next page) 
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Table 5 (continued )   

Trials   Case   Date   Cage  
Fish weight 
[kg]  

Fish 
population   Depth  

Sonar 
range  

Mean ± Standard 
deviation [m]  

Minimum [m]  Maximum [m]  

Bottom  Top  Bottom  Top  Bottom  Top   

P1*   Cube   Yellow  
16- 
Jun   

17- 
Jun  

1   

8  

2.469   

2.638  

195,832   

180,037  

8   

8  

5   

5  

2.15 
±0.27   

2.17 
±0.26  

2.23 
±0.19   

2.18 
±0.19  

1.71   

1.73  

1.90   

1.61  

3.27   

3.15  

3.00   

2.97  

P2*  Cube  Yellow  18- 
Oct  

1  4.989  99,243  8  5  3.39 
±0.25  

3.09 
±0.16  

2.87  2.74  3.92  3.32     

5-Sep  12  1.084  172,563  8  5  0.93 
±0.06  

1.01 
±0.10**  

0.85  0.91**  1.10  1.58**  

Big 
Cylinder 

White                

5-Sep 14 1.004 175,034 8 5 0.97 
±0.12 

1.05 
±0.09** 

0.84 0.98** 1.64 1.57**     

6-Sep  12  1.084  172,563  8  5  1.72 
±0.21  

1.21 
±0.07**  

1.34  1.10**  2.14  1.43**  

Big 
Cylinder 

Yellow                

6-Sep 14 1.004 175,034 8 5 1.96 
±0.16 

1.18 
±0.06** 

1.63 1.13** 2.27 1.56**     

6-Sep  14  1.004  175,034  8  5  1.54 
±0.25  

1.81 
±0.30**  

1.10  1.24**  1.96  2.45**  

Cube White                
7-Sep 12 1.084 172,563 8 5 0.99 

±0.04 
1.10 

±0.05** 
0.90 0.99** 1.13 1.24** 

P3                                

7-Sep 12 1.084 172,563 8 5 1.71 
±0.26 

1.78 
±0.29 

1.12 1.15 2.43 2.50  

Cube Yellow                
7-Sep 14 1.004 175,034 8 5 2.45 

±0.18 
2.72 
±0.22 

2.06 2.24 2.85 3.17     

7-Sep  14  1.004  175,034  8  5  2.05 
±0.26  

2.12 
±0.22  

1.72  1.67  2.60  2.46  

Small 
Cylinder 

White                

8-Sep 12 1.084 172,563 8 5 0.773 
±0.051 

0.85 
±0.06 

0.68 0.76 0.98 1.10     

8-Sep  12  1.084  172,563  8  5  1.23 
±0.25  

1.44 
±0.27  

0.83  1.02  1.90  2.30  

Small 
Cylinder 

Yellow                

8-Sep 14 1.004 175,034 8 5 *** 2.03 
±0.11 

*** 1.80 *** 2.29  

* The data for P1 and P2 were taken from the intervals between sound tests, from which the statistics on fish avoidance distances were derived. 
** The raw data have strong noise around the sonar, an additional noise reducing step was performed when generating the CFP sonar images. 
*** The bottom sonar encountered a timing issue that makes it impossible to extract data corresponding to the time of the tests.  

Table 6 
Fish avoidance distance estimates from 5-min CFPs.    

Trials   Case   Date   Cage  
Fish weight 
[kg]  

Fish 
population   Depth  

Sonar 
range  

Mean ± Standard 
deviation [m]  

Minimum [m]  Maximum [m]  

Bottom  Top  Bottom  Top  Bottom  Top   

P1*   Cube   Yellow  
16- 
Jun    

1   

8  

2.469   

2.638  

195,832   

180,037  

8   

8  

5   

5  

1.97 
±2.25    

2.10±0.13   

2.07±0.15  

1.67   

1.74  

1.90   

1.87  

2.93   

2.34  

2.43   

2.58 

(continued on next page) 
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Table 6 (continued )   

Trials   Case   Date   Cage  
Fish weight 
[kg]  

Fish 
population   Depth  

Sonar 
range  

Mean ± Standard 
deviation [m]  

Minimum [m]  Maximum [m]  

Bottom  Top  Bottom  Top  Bottom  Top 

17- 
Jun 

1.93 
±0.15  

P2*  Cube  Yellow  18- 
Oct  

1  4.989  99,243  8  5  2.99 
±0.16  

2.96±0.19  2.71  2.66  3.15  3.26     

5-Sep  12  1.084  172,563  8  5  0.82 
±0.02  

0.93 
±0.02**  

0.79  0.89**  0.85  0.95**  

Big 
Cylinder 

White                

5-Sep 14 1.004 175,034 8 5 0.84 
±0.03 

0.99 
±0.03** 

0.77 0.95** 0.88 1.03**     

6-Sep  12  1.084  172,563  8  5  1.47 
±0.09  

1.10 
±0.06**  

1.37  1.03**  1.69  1.20**  

Big 
Cylinder 

Yellow                

6-Sep 14 1.004 175,034 8 5 1.69 
±0.12 

1.05 
±0.04** 

1.51 1.01** 1.89 1.13**     

6-Sep  14  1.004  175,034  8  5  1.16 
±0.12  

1.66 
±0.31**  

0.99  1.29**  1.35  2.06**  

Cube White                
7-Sep 12 1.084 172,563 8 5 0.90 

±0.01 
1.06 
±0.03** 

0.87 1.02** 0.92 1.12** 

P3                                

7-Sep 12 1.084 172,563 8 5 1.44 
±0.17 

1.58±0.12 1.13 1.41 1.68 1.77  

Cube Yellow                
7-Sep 14 1.004 175,034 8 5 2.10 

±0.18 
2.37±0.24 1.90 2.09 2.44 2.72     

7-Sep  14  1.004  175,034  8  5  1.50 
±0.19  

1.83±0.16  1.35  1.60  1.77  2.00  

Small 
Cylinder 

White                

8-Sep 12 1.084 172,563 8 5 0.65 
±0.03 

0.73±0.06 0.60 0.67 0.69 0.82     

8-Sep  12  1.084  172,563  8  5  0.92 
±0.09  

1.17±0.11  0.79  1.03  1.15  1.39  

Small 
Cylinder 

Yellow                

8-Sep 14 1.004 175,034 8 5 *** 1.66±0.06 *** 1.59 *** 1.71  
* The data for P1 and P2 were taken from the intervals between sound tests, from which the statistics on fish avoidance distances were derived. 
** The raw data have strong noise around the sonar, an additional noise reducing step was performed when generating the CFP sonar images. 
*** The bottom sonar encountered a timing issue that makes it impossible to extract data corresponding to the time of the tests.  

Table 7 
Fish avoidance distance estimates from 10-min CFPs.    

Trials   Case   Date   Cage  
Fish weight 
[kg]  

Fish 
population   Depth  

Sonar 
range  

Mean ± Standard 
deviation [m]  

Minimum [m]  Maximum [m]  

Bottom  Top  Bottom  Top  Bottom  Top     

16- 
Jun  

1  2.469  195,832  8  5  1.88 
±0.12  

2.07±0.11  1.69  1.92  2.07  2.26 

P1* Cube Yellow                
17- 
Jun 

8 2.638 180,037 8 5 1.89 
±0.12 

2.03±0.10 1.75 1.93 2.18 2.32 

P2*  
Cube  Yellow  18- 

Oct  
1  4.989  99,243  8  5  2.92 

±0.14  
2.92±0.21  2.73  2.67  3.12  3.25 

(continued on next page) 
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Table 7 (continued )   

Trials   Case   Date   Cage  
Fish weight 
[kg]  

Fish 
population   Depth  

Sonar 
range  

Mean ± Standard 
deviation [m]  

Minimum [m]  Maximum [m]  

Bottom  Top  Bottom  Top  Bottom  Top     

5-Sep  12  1.084  172,563  8  5  0.82 
±0.01  

0.92 
±0.02**  

0.80  0.89**  0.83  0.94**  

Big 
Cylinder 

White                

5-Sep 14 1.004 175,034 8 5 0.84 
±0.03 

0.98 
±0.03** 

0.80 0.93** 0.87 1.02**     

6-Sep  12  1.084  172,563  8  5  1.43 
±0.06  

1.10 
±0.06**  

1.37  1.02**  1.53  1.18**  

Big 
Cylinder 

Yellow                

6-Sep 14 1.004 175,034 8 5 1.64 
±0.12 

1.04 
±0.04** 

1.46 1.00** 1.77 1.11**     

6-Sep  14  1.004  175,034  8  5  1.13 
±0.12  

1.58 
±0.40**  

0.99  1.34**  1.30  2.04**  

Cube White                
7-Sep 12 1.084 172,563 8 5 0.89 

±0.01 
1.06 
±0.02** 

0.88 1.04** 0.90 1.09** 

P3                                

7-Sep 12 1.084 172,563 8 5 1.39 
±0.13 

1.49±0.13 1.20 1.31 1.58 1.65  

Cube Yellow                
7-Sep 14 1.004 175,034 8 5 2.03 

±0.13 
2.28±0.21 1.88 2.07 2.22 2.56     

7-Sep  14  1.004  175,034  8  5  1.37 
±0.17  

1.80±0.14  1.25  1.61  1.48  1.93  

Small 
Cylinder 

White                

8-Sep 12 1.084 172,563 8 5 0.64 
±0.02 

0.72±0.03 0.61 0.70 0.67 0.76     

8-Sep  12  1.084  172,563  8  5  0.90 
±0.07  

1.15±0.08  0.80  1.04  1.01  1.13  

Small 
Cylinder 

Yellow                

8-Sep 14 1.004 175,034 8 5 *** 1.60±0.02 *** 1.58 *** 1.61  
* The data for P1 and P2 were taken from the intervals between sound tests, from which the statistics on fish avoidance distances were derived. 
** The raw data have strong noise around the sonar, an additional noise reducing step was performed when generating the CFP sonar images. 
*** The bottom sonar encountered a timing issue that makes it impossible to extract data corresponding to the time of the tests.  

Table 8 
Body length equivalents for the distances calculated based on the linear regression results.  

Weight (kg) Body length (m) Average distance (m) Distance in body lengths 

1.0 0.44 1.71 3.9 
2.5 0.55 1.89 3.4 
5.0 0.73 2.92 4.0   

Average 3.8  
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