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Abstract

In this thesis, we present a cost function based on net power as a way to make
attitude control maneuvers energy optimal for solar-powered spacecraft. Previous
work has defined energy optimality in terms of input norms or, in some cases,
actuator-based power models. The net power solution presented here is a cost
function defined by the difference between the solar power the spacecraft gains at
a given time minus the power it spends on actuation. Our solution is investigated
both when the attitude control system is isolated and for a case where the full
operations of a satellite are considered, displaying the benefits of this strategy in
holistic satellite operations. The primary benefit of this method is that the time the
satellite spends pointing towards the optimal solar attitude is maximized. This is
evident from the smaller, isolated simulation study, which is performed solely based
on the attitude control system, but the impact of this improvement becomes evident
when the full operations of an agile satellite are considered, as the extra energy
gained from the attitude control system could potentially increase the number of
observations the satellite can perform per orbit. This net power concept is also
investigated for a satellite actuated by magnetorquers, combined with a minimum
time objective.

The second part of this thesis looks into maximum hands-off control for attitude
control. Maximum hands-off control is a type of optimal control where the zeroth
norm of the input is minimized, making the control signal as sparse as possible.
Due to the zeroth norm being discontinuous, the L1- and L2-norm are common
approximations to solve the maximum hands-off control problem. Having nice dif-
ferentiation properties is particularly important due to the method we want to use
to solve the problem: a Newton-type solver named IPOPT. We choose a different
relaxation of the problem than the L1- and L2-norm to solve the maximum hands-
off problem. From the results, we demonstrate the feasibility of this control method
for attitude control, both for satellites actuated by reaction wheels and by on/off
thrusters producing pure torque and a method of moving the sparsity around to
where the operator desires.

The final part of this thesis is devoted to the slew maneuver that HYPSO-1
satellite, a 6U CubeSat from NTNU SmallSat lab used as the basis for several case
studies in this thesis, performs. The slew maneuver has constant angular velocity
in LVLH, a local frame that follows the satellite’s orbit. In the first chapter of this
part, we investigate whether a second-order sliding mode controller named general-
ized super-twisting algorithm improves the attitude control system’s performance
when the satellite points and performs the slewing maneuver in a simulation en-
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vironment. In the final chapter, we analyze the connection between the attitude
control telemetry from the satellite’s operations and its data products, looking at
how well the satellite performs with respect to its science requirements and other-
wise theorized performance.
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Sammendrag

I denne avhandlingen presenterer vi en kostfunksjon basert på nettoeffekt som en
måte å gjøre orienteringsreguleringsmanøver energioptimal for solcelledrevne rom-
fartøyer. Tidligere arbeid har definert energioptimalitet i form av normer for input
eller i noen tilfeller aktuatorbaserte kraftmodeller. Nettoeffektløsningen som pre-
senteres her er en kostfunksjon definert av forskjellen mellom solenergien romfar-
tøyet får på et gitt tidspunkt minus kraften det bruker på aktuering. Løsningen vår
blir undersøkt både når orienteringsreguleringssystemet er isolert og for et tilfelle
der full drift av en satellitt vurderes, og med det vises fordelene med denne strate-
gien i holistiske satellittoperasjoner. Hovedfordelen med denne metoden er at tiden
satellitten bruker på å peke mot den optimale solorienteringen maksimeres. Dette er
mulig å tyde fra den kortere, isolerte simuleringsstudien som er utført utelukkende
basert på orienteringsreguleringssystemet, men virkningen av denne forbedringen
blir tydelig når man tar de fulle operasjonene til en smidig satellitt i betraktning,
siden den ekstra energien som oppnås fra orienteringsreguleringssystemet kan po-
tensielt øke antallet observasjoner satellitten kan utføre. Dette nettoeffektkonseptet
er også undersøkt for en satellitt aktuert av magnetorquere, kombinert med et mål
om minimering av tid.

Den andre delen av avhandlingen ser på maksimal hands-off regulering for orien-
teringsregulering. Maksimal hands-off-regulering er en type optimalregulering hvor
den nulte normen til pådraget er minimert, noe som gjør pådragssignalet så spar-
somt som mulig. På grunn av at den nulte normen er diskontinuerlig, er L1- og
L2-normen vanlige tilnærminger for å løse det maksimale hands-off reguleringspro-
blemet. Å ha fine differensieringsegenskaper er spesielt viktig på grunn av metoden
vi ønsker å bruke for å løse problemet: en løser som baserer seg på informasjon fra
de deriverte av systemet, kalt IPOPT. Vi velger en annen løsning på problemet
enn L1- og L2-normen for å løse maksimale hands-off-problemet. Fra resultatene
demonstrerer vi gjennomførbarheten av denne reguleringsmetoden for orienterings-
regulering, både for satellitter aktuert av reaksjonshjul og av på/av thrustere som
produserer et rent dreiemoment, og en metode for å flytte sparsomheten i pådrags-
signalet dit operatøren ønsker.

Den siste delen av avhandlingen er viet svingmanøveren som HYPSO-1 satel-
litten, en 6U CubeSat fra NTNU SmallSat lab som er brukt som grunnlag for flere
casestudier i denne oppgaven, utfører. Selve svingmanøveren er en manøver med
konstant vinkelhastighet i LVLH, en lokal referanseramme som følger satellittens
bane. I det første kapittelet av denne delen undersøker vi om en andre-ordens regu-
lator av typen “sliding mode controller” kalt “generalized super-twisting algorithm”
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forbedrer orienteringsreguleringssystemets ytelse når satellitten peker og utfører
svingmanøveren i simulering. I det siste kapittelet analyserer vi sammenhengen
mellom telemetri fra orienteringsreguleringssystemet under operasjonene til satel-
litten og satellittens dataprodukter, og ser på hvor godt satellitten presterer med
hensyn til tidligere spesifiserte vitenskapelige krav og ellers teoretisert ytelse.
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Chapter 1

Introduction

1.1 Introduction

Attitude control is a common problem for spacecraft, particularly satellites [9], and
has been studied for decades. The motivation for attitude control in space vehicles
is simple: payloads and other spacecraft parts need to point toward given objects
for collecting data, transmitting data, or other purposes. For satellites orbiting the
Earth, examples of these purposes could be pointing an imaging payload to take an
image of the ground, an antenna to downlink an image, or solar panels toward the
Sun. An alternative solution to actively pointing would be for the spacecraft to be
made such that any instrument that is supposed to point out in any given direction
does in the default attitude configuration. Then, the satellite would just wait for the
interesting area to appear. However, this alternative solution significantly limits the
time a payload can be helpful in many missions. Therefore, having agile attitude
control could increase the frequency and quality of the data products the satellite
can create.

Changing a satellite’s orbit is expensive as it would require spending fuel. While
these same fuel-based actuators that can raise an orbit can be used for attitude
control, it is not strictly necessary: the attitude of a spacecraft can be controlled
by actuators that only require electricity to work, such as reaction wheels and
magnetorquers. Magnetorquers require the orbiting body to have a magnetic field
to control against, which the Earth does have. While electricity is not a perishable
resource for most spacecraft like fuel, it is still limited as the other onboard systems
of the spacecraft would draw power for various purposes. For this reason, it is
desirable to keep the attitude control maneuvers as efficient as possible with respect
to energy. As spacecraft missions commonly have a purpose beyond staying alive,
there may be other objectives critical to the mission operations that are at some
point valued as high as energy, such as minimizing time.

Attitude maneuvers have been studied for various purposes and with various
controllers, and optimal controllers have been investigated for the problem for
a while. For example, time optimal attitude control was investigated in [10–13].
When it comes to energy optimal attitude control, the cost function has typically
been constructed based on the first ([14]) or the second ([15]) norm of the input.

1



1. Introduction

Minimizing the first norm of the input has been referred to as fuel optimal, while
minimizing with respect to the second norm has been referred to as energy optimal.
The idea behind both these strategies is to use as little energy on actuation as
possible. There are some alternative approaches to using these norms to minimize
actuation. An example of this can be seen in [16], where the authors use a power
model of the actuators as the basis for the cost function rather than the previously
mentioned norm-based solution.

1.2 Research questions

Based on this brief introduction, the following research questions are formulated:

RQ-1: How can attitude control maneuvers be made more time and energy-
efficient?
The main idea behind this research question is to see if there are any potential
improvements to previous optimization strategies. As mentioned, previous re-
search has been done into cost functions based on norms of the control input
and some actuator-based power models, but the current objective is to look
for strategies that are more energy-efficient in some sense or another. Time
relates to energy efficiency in that maneuvers cannot simply be put off indefi-
nitely for the energy expenditure to be as small as possible, so there are bound
to be some trade-offs.

RQ-2: How can alternative approaches for attitude control be used for satellites
with payloads that are not continuously operated?
With payloads that are not continuously operated, such as a camera that only
takes pictures every thirty minutes, there is much room and time for the
satellite to perform attitude maneuvers. This freedom can be used to move
the payload into position for a new operation sequence or some other satellite
subsystem. Examples include communication with a ground station or con-
trolling the satellite towards an attitude that maximizes solar harvesting or
minimizes drag. The goal of this research question is to look into attitude
control approaches that can improve the performance of the attitude control
system, even in specialized cases.

RQ-3: How can the results in research questions 1 and 2 be taken advantage of in
agile and holistic satellite operations?
While the results from research questions 1 and 2 are interesting in and of
themselves, they make more sense in the context of the overall satellite op-
erations. As mentioned in the introduction, the agility that attitude control
brings to satellite operations is important for many missions. This research
question looks, therefore, to address the connection between the attitude con-
trol schemes and agile satellite operations, looking at the impact the results
from research question 1 and research question 2 have on the operations of
the satellite.
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Section A

Section B

Section C

Umbra

Penumbra

Penumbra

Figure 1.1: Thesis outline based on an orbiting satellite. The dimensions of the
figure have been exaggerated.

1.3 Outline and contributions

The results in this thesis are divided into three parts: Energy optimal attitude
control, maximum hands-off attitude control, and slewing maneuver results. Fig-
ure 1.1 shows the thesis outline on top of a satellite orbiting the Earth. The orbit
is divided into three sections to illustrate the content of each chapter, covering
different aspects of what the satellite does. In the context of Figure 1.1, the three
sections are

• Section A: Where the satellite takes images based on the imaging modes for
the HYPSO satellites. This phase is relatively short and contains the slew
maneuver the satellite requires to achieve its scientific objectives. Section A
is marked by the purple line, indicating that the satellite is taking images of
the Earth.

• Section B: A section between two pointing maneuvers close in time. The
pointing maneuvers can be either for imaging or contact with a ground sta-
tion. The green section of the orbit in the figure marks section B.

• Section C: Between two pointing maneuvers far apart in time. The duration
of the full maneuver spans the orbit’s eclipse, in the figure marked by the
penumbra (partially shaded region) and umbra (fully shaded region). Section
C is marked in the figure by the red part of the orbit.

Chapter 2 introduces the background material common to all the papers and
subsequent chapters, including the dynamical model of the satellite, shared as-
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1. Introduction

sumptions, and the HYPSO satellite mission. Each part also briefly introduces the
material common to the papers.

1.3.1 Part I: Energy Optimal Attitude Control

This part consists of three chapters made up of material from [2], [7], and [5]. The
shared background material, primarily based on the formulations first introduced
in the following publication,

[2] B. A. Kristiansen, J. T. Gravdahl, and T. A. Johansen, “Energy optimal
attitude control for a solar-powered spacecraft,” European Journal of Control,
2021 European Control Conference Special Issue, vol. 62, pp. 192–197, Nov.
2021,

is found in Chapter 3.

Energy Optimal Attitude Control for a Solar-Powered Spacecraft
(Chapter 4)

In this chapter, we aim to maximize the net energy a solar-powered spacecraft gains
when performing a maneuver. The net energy can be defined as the integral of the
power supplied by the solar panels minus the power used by the attitude control
system and is a key quality since energy is a scarce resource in space. Previous
research on optimal attitude control has focused on optimization with respect to
other costs, such as time-optimal control and optimal attitude control with respect
to the integral of the square of the input. The energy flow depends on both the
power spent on actuation and the power received from the solar panels. Thus, the
optimal attitude control problem should be formulated so that the spacecraft’s
attitude relative to the Sun during the maneuver is included in the calculations.
In this chapter, we propose a cost function based on net power to address this
problem. This new cost function incorporates the incoming energy from the solar
irradiance and the outgoing energy due to actuation. A simulation study comparing
an optimal control solution of the proposed net power cost function using IPOPT
in CasADi is presented for a 6U CubeSat equipped with solar cell arrays, where
the net power-based optimal control maneuver is shown to compare favorably to a
sun-pointing PD controller.

This chapter is based on the following publication:

[2] B. A. Kristiansen, J. T. Gravdahl, and T. A. Johansen, “Energy optimal
attitude control for a solar-powered spacecraft,” European Journal of Control,
2021 European Control Conference Special Issue, vol. 62, pp. 192–197, Nov.
2021.

Energy Optimal Attitude Control and Task Execution for a
Solar-Powered Spacecraft (Chapter 5)

In this chapter, we aim to maximize the net energy a solar-powered spacecraft
gains when performing a sequence of tasks leading to attitude maneuvers over the
spacecraft orbit, including eclipse. The net energy can be defined as the integral
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1.3. Outline and contributions

of the power supplied by the solar panels minus the power used by the payload
and satellite systems, including the attitude control system. The energy flow de-
pends on both the power spent on the satellite electronic systems and the power
received from the solar panels. Thus, the optimal attitude control problem should
be formulated to include the spacecraft’s attitude relative to the Sun during the
maneuver in the calculations and the actuation cost. In this chapter, we propose a
cost function based on net energy to address this problem. This function extends
the net power cost function we introduce in Chapter 4. Compared to Chapter 4,
this chapter introduces a function that differentiates between the fully and partially
shaded regions of the eclipse and is added to simulate the solar irradiance in the
eclipse. The formulation of the cost function is refined on several points. One of
these points is the solar power function, which is changed so that the formulation
works for satellites with deployable solar panels. Our approach is demonstrated
in a simulation study where the HYPSO-2 Earth observation satellite executes a
sequence of imaging, communication, and energy-harvesting tasks. HYPSO-2 is a
6U CubeSat equipped with deployable solar cell arrays, and the optimal control
problem is solved using IPOPT in CasADi.

This chapter is based on the following publication:

[7] B. A. Kristiansen, J. T. Gravdahl, S. Gros, and T. A. Johansen, “Energy
Optimal Attitude Control and Task Execution for a Solar-Powered Space-
craft”, IEEE Transactions on Control Systems Technology, 2023, condition-
ally accepted for publication.

Energy Optimal Attitude Control of a Satellite Actuated by
Magnetorquers in Minimum Time (Chapter 6)

In this chapter, we combine a previously introduced energy optimal cost function
based on net power with a time-based cost for attitude control of a spacecraft.
The benefit of such an approach over the previous optimization scheme, which
used a fixed control horizon, is that the control horizon does not have to be set
in advance, which can be desirable if it is challenging to know the final time of
the optimization. This time optimal objective is combined with a cost function
based on net energy, which is the integral of the difference between the power the
satellite gains from solar power and the power it spends performing the attitude
maneuvers. The weighting between these two objectives can be exploited to let
the optimal solver choose the final time in cases where the exact final time of
the maneuver is not critical. Magnetorquers produce a magnetic torque that can
be used to control the attitude of a spacecraft. However, due to their physical
limitation, it is not trivial to tell when the spacecraft will reach its reference value.
For this reason, an approach where the optimal solver sets the final time can be
beneficial. The difficulties related to using two terms in the cost function for the
distance from the reference attitude and angular velocity, together with the net
power cost function and time, are discussed.

This chapter is based on the following publication:

[5] B. A. Kristiansen, J. T. Gravdahl, S. Gros, and T. A. Johansen, “Energy
optimal attitude control of a satellite actuated by magnetorquers in minimum
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time”, in Proceedings of the 7th IEEE Conference on Control Technology and
Applications (CCTA), Bridgetown, Barbados, Aug. 2023.

1.3.2 Part II: Maximum Hands-Off Control

The part contains material from two publications, and the background chapter,
Chapter 7, contains the material used in both of the following publications to
produce the results:

[3] S. K. Schaanning, B. A. Kristiansen, and J. T. Gravdahl, “Maximum
Hands-Off Attitude Control,”, in 2022 American Control Conference (ACC),
pp. 4003–4010, Atlanta, Georgia, USA, Jun. 2022.

[4] B. A. Kristiansen and J. T. Gravdahl, “Maximum Hands-Off Attitude
Control of a Spacecraft Actuated by Thrusters,” in Proceedings of the 22nd
IFAC World Congress, July 2023, Yokohama, Japan.

Maximum Hands-Off Attitude Control with Reaction Wheels
(Chapter 8)

In this chapter, we explore the use of maximum hands-off control for attitude
control of a spacecraft actuated by reaction wheels. The maximum hands-off, or
L0-optimal, controller aims to find the sparsest control signal among all admissi-
ble control signals. L0-optimal problems are generally complex to solve as L0-cost
functions are discontinuous and non-convex. Previous research has investigated
methods to approximate the L0-norm in the cost function, for instance, using an
L1-norm. We propose an approach to the maximum hands-off control problem for
spacecraft attitude control involving an L0-cost function relaxed through comple-
mentarity constraints. The controller is applied to the spacecraft attitude control
problem, and the performance of the maximum hands-off controller is compared
to that of the L1-optimal controller. Simulations of a 6U CubeSat were conducted
using CasADi as the primary optimization tool, and the L1- and L0-optimal con-
trol problems were discretized using direct multiple-shooting and solved using the
IPOPT solver. In addition to these results, we propose a new control scheme, called
moving maximum hands-off control, which lets the user specify in which time in-
terval the control should occur and then aims to find the sparsest control among
all admissible controls based on this information. The moving maximum hands-off
controller is demonstrated to be as sparse as the maximum hands-off controller for
some spacecraft maneuvers.

This chapter is based on the following publication:

[3] S. K. Schaanning, B. A. Kristiansen, and J. T. Gravdahl, “Maximum
Hands-Off Attitude Control,”, in 2022 American Control Conference (ACC),
pp. 4003–4010, Atlanta, Georgia, USA, Jun. 2022.

Maximum Hands-Off Attitude Control of a Spacecraft Actuated by
Thrusters (Chapter 9)

In this chapter, we investigate the use of maximum hands-off control for spacecraft
attitude control of a spacecraft equipped with thrusters. Other than a more natural
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choice of actuators than in our previous paper, the definition of the L0-norm for
a vector of continuous-time signals most suited for this optimal control problem is
refined. An extra term is introduced to the cost function to handle the actuator
change. We introduce relative sparsity, a concept where sparsity is defined as a
function of the control horizon. With this definition, comparing the sparsity of any
given signal is easier. Finally, we show how the relative sparsity of an optimized
state trajectory changes with the resolution and constraints of the optimal control
problem.

This chapter is based on the following publication:

[4] B. A. Kristiansen and J. T. Gravdahl, “Maximum Hands-Off Attitude
Control of a Spacecraft Actuated by Thrusters,” in Proceedings of the 22nd
IFAC World Congress, July 2023, Yokohama, Japan.

1.3.3 Part III: Slewing Maneuver Results

Chapter 10 details the slewing maneuver used in this part.

Quaternion-Based Generalized Super-Twisting Algorithm for
Spacecraft Attitude Control (Chapter 11)

A second-order sliding mode control, the generalized super-twisting algorithm (GSTA),
is used for attitude control of a spacecraft actuated by reaction wheels for pointing
and a slewing maneuver. Magnetorquers are used for reaction wheel momentum
dumping. Simulation results are based on a typical CubeSat. The GSTA results
are compared to sliding mode control (SMC) and a proportional–derivative (PD)
controller. The simulation shows that the GSTA performs better than the SMC for
the pointing and slewing maneuvers when it comes to settling time and accuracy
due to reduced chattering. Compared to the PD controller, the GSTA performs
similarly under the chosen conditions, with a shorter settling time for pointing and
a longer settling time for slewing. The GSTA applies torque to the reaction wheels
with lower spikes and less chattering than the PD controller.

This chapter is based on the following publication:

[1] B. A. Kristiansen, M. E. Grøtte, and J. T. Gravdahl, “Quaternion-Based
Generalized Super-Twisting Algorithm for Spacecraft Attitude Control”, in
Proceedings of the 21st IFAC World Congress, Berlin (Virtual), Germany,
July 2020.

Accuracy of a Slew Maneuver for the HYPSO-1 Satellite – in-orbit
results (Chapter 12)

This chapter analyzes the accuracy of a slew maneuver performed by the HYPSO-1
satellite based on the data received during the satellite’s first months in orbit. The
slew maneuver, during which the satellite turns with a constant angular velocity
over a given target area, is meant to decrease the ground sampling distance of
pixels recorded by the push-broom hyperspectral imager. We compare the pointing
accuracy when pointing nadir with the accuracy the satellite achieves when the
satellite slews, and also the impact the slew maneuver has on the resulting data
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products, namely the decreased ground sampling distance and the increased signal
per area. The selected slew maneuver shows a root-mean-square accuracy of 0.675
mrad/s about the axis of rotation. Analysis of the images shows that the slew
maneuver provides 2.80 times as many samples per area and a decrease in ground
sampling distance of 63.6% along track.

This chapter is based on the following publication:

[6] B. A. Kristiansen, D. D. Langer, J. L. Garrett, S. Berg, J. T. Gravdahl,
and T. A. Johansen, “Accuracy of a slew maneuver for the HYPSO-1 satellite
— in-orbit results,” in 13th Workshop on Hyperspectral Image and Signal Pro-
cessing Evolution in Remote Sensing (IEEE-WHISPERS), Athens, Greece,
Oct. 2023.
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Chapter 2

Background

2.1 General attitude control information

Attitude control of a spacecraft, or more specifically, satellites, concerns various ma-
neuvers related to the spacecraft’s attitude. Common maneuvers include pointing,
meaning the movement from one attitude to another relative to a chosen coordinate
frame, and slewing, a maneuver where the attitude is time-varying.

The attitude control usually forms a subsystem with the estimation system.
What this system is called varies: attitude determination and control system (ADCS)
and attitude and orbit control system (AOCS) are common designations. This sys-
tem commonly estimates and controls the pose of the satellite, which includes both
attitude and position. The satellites associated with the HYPSO missions are ac-
tuated with reaction wheels and magnetorquers, meaning that no forces act on the
orbit beyond the external forces that push the satellite towards the Earth, such
as aerodynamic drag and solar radiation pressure. As the time horizons investi-
gated in this thesis are generally shorter than the horizon these forces would work
on, arguments based on the pure attitude maneuvers are preferred throughout the
thesis, although the formulations are often adapted so that other actuator choices
with orbit-changing capabilities can be used in the same framework.

2.2 Frames

In the articles in this thesis, we use four different reference frames: the Earth-
centered inertial frame (ECI), the Earth-centered Earth-fixed frame (ECEF), the
orbit frame or local vertical local horizontal (LVLH), and the body frame. The
following sections, Section 2.2 and Section 2.3, are primarily based on

[1] B. A. Kristiansen, M. E. Grøtte, and J. T. Gravdahl, “Quaternion-Based
Generalized Super-Twisting Algorithm for Spacecraft Attitude Control”, in
Proceedings of the 21st IFAC World Congress, Berlin (Virtual), Germany,
July 2020.
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2. Background

Earth-centered inertial (ECI)

The earth-centered inertial frame {i} has origin at the Earth’s center of mass, with
the z-axis pointing through the North Pole, the x-axis pointing towards vernal
equinox, and the y-axis completing the right-handed system. Vectors and deriva-
tives with respect to the ECI frame are denoted with a superscript i. The motiva-
tion for using an inertial reference frame is that Newton’s laws hold in such frames.
There are several types of inertial reference frames, or, more correctly stated, there
are frames that seem inertial for various tasks. If the accuracy requirements are
higher than the accuracy at which the Earth-centered inertial frame can be con-
sidered inertial, or if the time scale of the maneuvers significantly increases beyond
what is investigated here, it would be natural to choose a different inertial reference
frame. Regarding the tasks investigated here, the ECI frame is deemed sufficiently
inertial. Several inertial reference frames are placed in the center of the Earth,
such as J2000. Whenever possible, implementation details of the choice of inertial
reference frame have been omitted as the methods are not dependent on a given
implementation.

Orbit frame

The Local Horizontal, Local Vertical (LVLH) frame, or the orbit frame {o}, has
superscript o for vectors represented in the frame. The orbit frame is centered in
the center of mass of the spacecraft. The z-, x-, and y-axis point in the direction
of the Earth’s center of mass, the orbit velocity vector, and in a direction that
completes the right-handed coordinate system, respectively. The unit vectors of
the frame are given by

ẑo = − ri

∥ri∥2
, x̂o =

vi

∥vi∥2
, ŷo =

ẑo × x̂o

∥ẑo × x̂o∥2
, (2.1)

where ri is the distance between the spacecraft and the center of the Earth, and
vi is the spacecraft’s velocity, both represented in the inertial reference frame. The
purpose of this frame is primarily to control the satellite’s attitude relative to its
orbit. A common situation where this is useful would be pointing the satellite nadir,
which is simply controlling the satellite relative to the z-component of the attitude
in LVLH.

Body frame

The axes of the body frame {b} follow the spacecraft structure, and its origin is
centered in the spacecraft’s center of mass. Vectors represented in this frame have
superscript b. Commonly, the reference frame follows the HYPSO spacecraft, which
has the camera pointed towards the positive body frame z-axis.

Wheel frame

The wheel frame {w} specifies vectors directly related to the reaction wheels. The
two vectors that are represented in this frame are the wheel angular velocity, ωw

RW,
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2.3. Attitude representation

and the torque applied to each wheel, τw
RW. The dimension of these vectors equals

the number of reaction wheels, where each channel of the vectors specifies the
angular velocity or torque applied about each wheel’s axis of rotation. The mapping
of the wheel frames to the body frame is represented by the matrix A ∈ R3xnrw ,
as

τ b
RW = Aτw

RW, (2.2)

where nrw is the number of reaction wheels. Note that A is a constant mapping
between the wheel and body frames due to a fixed reaction wheel configuration.
This frame is only used when there are reaction wheels present. Note also that
the reaction wheels, when present on the satellite, store momentum, meaning that
they change the system’s dynamics. This is pointed out in the various chapters
depending on what type of satellite is in use.

2.3 Attitude representation

There are several ways to represent attitude. The attitude of a spacecraft can be
represented as a rotation from one frame to another. The four types of representa-
tion we will briefly look at here are the rotation matrix, Euler angles, angle-axis,
and unit quaternions.

In general terms, rotations evolve on SO(3), which is the special orthogonal
group in three dimensions. The rotation of a vector v from an arbitrary frame {a}
to another frame {b} can be written as

vb = Rb
av

a (2.3)

where Rb
a ∈ SO(3) is the rotation matrix between frames {a} and {b}. The benefit

of the rotation matrix representation is that it represents the attitude globally
and uniquely. The drawback is that you need nine parameters to represent the
attitude. The rotation matrix can be constructed directly from the basis of one
frame represented in another frame.

Euler angles is an alternative to rotation matrices. The idea with Euler angles
is that you can use three sequential rotations about different axes to represent (al-
most) any attitude. The drawback with Euler angles is that they have singularities
in the angle that gets rotated about the second axis in the sequence. For some
applications, this can be a non-issue due to design choices. Using boats or surface
vessels as an example, the singularity can be placed such that it occurs when the
bow is pointed straight up, which rarely occurs. Using the nature of the system in
this way to design around the Euler angle deficiencies is more difficult for vehicles
that are agile in all three attitude dimensions.

The concept behind the angle-axis is one of Euler’s: any rotation can be rep-
resented by an axis and a rotation around it. This representation also introduces
singularities, so it does not overcome the issues we can get with Euler angles.
Quaternions, or unit quaternions, are based on the angle-axis representation. Unit
quaternions are a global representation of SO(3) with its four parameters, unlike
Euler angles, which cannot represent the full SO(3) since they only use three param-
eters. Quaternions map SO(3) twice, which means that the quaternion q and −q
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2. Background

represent the same attitude, which potentially leads to some issues. Quaternions
are the primary choice for attitude representation in this thesis, although some
rotations are taken directly as rotation matrices due to their ease of construction.

For more on the differences between different attitude representations, see for
example [17].

Unit quaternions, represented as q =
[
η ϵ

]⊺
=
[
η ϵ1 ϵ2 ϵ3

]⊺, are used to
describe the attitude of the spacecraft, where η is the scalar part of the quaternion,
ϵ is the vector part of the quaternion and satisfies the condition η2+ϵ⊺ϵ = 1. qo

b is
denoted as the attitude of the body frame relative to the orbit frame. The rotation
matrix between the two frames is given in terms of the quaternion as [18]

Ro
b = I3×3 + 2ηobS(ϵ

o
b) + 2S2(ϵob), (2.4)

where I3×3 is the three-dimensional identity matrix, and S(·) is a skew-symmetric
matrix that is equivalent to the cross product in three dimensions. In other words,
S(·) is given as

S(x) =




0 −x3 x2
x3 0 −x1
−x2 x1 0


 . (2.5)

The time derivative of a rotation matrix Rb
o is Ṙb

o = −S(ωb
ob)R

b
o, where ωb

ob

denotes the angular velocity of {b} relative to {o}.
The kinematic differential equation for qo

b is given by

q̇o
b =

[
η̇ob
ϵ̇ob

]
=

1

2

[
− (ϵob)

⊺

ηobI3x3 + S(ϵob)

]
ωb

ob =
1

2
T(qo

b)ω
b
ob, (2.6)

where T(·) is the angular velocity transformation matrix. Identically, the kinematic
equation for the attitude of the body frame relative to the inertial frame is given
by

q̇i
b =

[
η̇ib
ϵ̇ib

]
=

1

2

[
−
(
ϵib
)
⊺

ηibI3x3 + S(ϵib)

]
ωb

ib =
1

2
T(qi

b)ω
b
ib, (2.7)

where all the previously introduced variables are defined similarly for the body
frame relative to inertial frame attitude qi

b.

2.3.1 Angular velocity of LVLH relative to ECI

The angular velocity of the spacecraft’s body frame relative to the orbit frame is
given as

ωb
ob = ωb

ib − ωb
io = ωb

ib −Rb
oω

o
io, (2.8)

where ωb
io is the angular velocity of the {o} relative to the {i}, and ωb

ib is the
angular velocity of the {b} relative to the {i}.

The angular velocity of the {o} frame relative to {i}, denoted ωo
io, is defined in

[19] as

ωo
io = Ro

i

S(r
i
)v

i

(ri)⊺ri
. (2.9)
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2.4 Optimization

2.4.1 General formulation

A general optimal control problem can be formulated as

min
x

f(x) (2.10a)

s.t. h(x) = 0 (2.10b)
g(x) ≤ 0, (2.10c)

where h(x) and g(x) are equality and inequality constraints, respectively. f(x) is
the cost function or objective function that is to be minimized. Common choices for
f(x) for control of vehicles include the first and second norm of the input, |u| and
∥u∥, sometimes called L1 and L2 optimization, respectively. Both these input norm
minimization problems return optimal trajectories: For the L1 case, the problem
is often referred to as fuel minimization. With L2 minimization, the problems get
referred to as minimization of the energy, albeit this is energy in a different sense
than what is discussed further in this thesis.

The constraints can take several different forms. Commonly, there are some
upper and lower bounds on the input and potentially some state constraints. The
formulation normally includes a constraint on the initial variables as the starting
point of the optimization needs to be specified, sometimes referred to as an initial
value problem. For a dynamical system, as we will investigate in this thesis, the
system is also constrained by the dynamics of the system.

2.4.2 Direct optimization

There are two branches of methods to find solutions to optimal control problems:
direct and indirect methods, which are separated by at which point in the process
the system is discretized. With direct methods, the discretization occurs before
the optimization. With indirect methods, the optimal solution is found before dis-
cretization. Indirect methods are based on analytical solutions based on theories
such as Pontryagin’s maximum principle. The main benefit direct methods have
over indirect methods is that they always work numerically, whereas indirect meth-
ods require the existence of an analytical solution to work. In this thesis, the sole
focus will be on direct optimal control whenever optimal control is discussed. As
for the discretization method, all the problems are solved using direct multiple-
shooting, a discretization method where the control horizon is partitioned into
several smaller intervals.

Several types of solvers can be used for direct optimal control problems. Some
methods take advantage of the problem being defined in a way that is easier for the
computer to solve, primarily because the problem is convex. As the cost functions
considered in this thesis are not convex, these methods are not investigated here.
Instead, the optimal control problems here are solved as nonlinear programs. A
common issue with direct optimization is that the optimization is local, which
means that the optimizer might reach a local minimum. Newton-based methods
use the information about the function’s derivatives to find the optimal solution.
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IPOPT is in this thesis chosen as it is preferable to other alternatives when the
number of states becomes high, which it will when the time horizon increases [20].

For Newton-type methods, the cost function must be continuously two times
differentiable. In this thesis, there are two expressions that need to be part of the
objective function but are discontinuous. The function in question is a function that
is only supposed to return a positive value or zero and an absolute value function.
Such discontinuous functions can be expressed in terms of a max function. The
max function is then implemented as the smooth max function given in (2.11),

max (x1, x2) =
1

2

(
x1 + x2 +

√
(x1 − x2)2 + α

)
, (2.11)

where α is a small positive constant. x1 and x2 are the first and the second ar-
guments for the max function, so the max function returns approximately the
argument with the highest value. For the two behaviors this thesis calls for: If you
want the function to only return values of x if the argument is positive, it is possible
to use max(0, x). The absolute value of x, |x|, can be implemented using the max
function as max(−x, x).

2.4.3 Multi-objective optimization

The idea of multi-objective optimization is simple: the objective function can con-
tain several variables that must be minimized. Sometimes, this might not be pos-
sible, of course: minimizing one variable may come at the cost of another variable.
When one variable cannot improve without it coming at the cost of another vari-
able, the solution is Pareto optimal.

There are two ways to move the optimized variables to their desired values. One
way is to include the variables, for example, the final states, as constraints in the
optimal control problem formulation. This is referred to as hard constraints. In this
case, the solver must find a way to optimize the cost function while satisfying the
constraints to the accuracy set by the solver’s preferences. The alternative is what
is called soft constraints. With soft constraints, the desired constraints are moved
to the objective function. Using soft constraints, the solver does not have to fully
satisfy the constraints anymore. Instead, the weight of the cost function determines
how much the solver values get close to the constraints. This gives rise to a multi-
objective optimization. A potential motivation for including the variables in the
cost function instead of as constraints could be that the problem is hard for the
computer to solve otherwise.

2.5 HYPSO

HYPSO is a multi-satellite mission at the NTNU SmallSat Lab. The purpose of
the HYPSO mission is to monitor ocean color, particularly harmful algal blooms in
coastal areas. The satellites, at the time this thesis is written, include the satellites
HYPSO-1 and HYPSO-2. Both of the satellites are 6U CubeSats equipped with
hyperspectral imagers. The hyperspectral imagers are push-broom hyperspectral
imagers, which limits both the direction the imager needs to be when the images are
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to be taken and the velocity of the scan. An analysis was performed for the HYPSO-
1 satellite before launch [21], determining that a slew maneuver with a fixed angular
velocity was required to get the desired resolution from the hyperspectral images.

2.5.1 HYPSO-1

The HYPSO-1 satellite is a 6U CubeSat with a pushbroom hyperspectral imager.
The satellite bus was made by Kongsberg NanoAvionics, and the payload, meaning
the hyperspectral imager itself, was constructed at NTNU. HYPSO-1 communi-
cates with the ground through UHF and S-band. The satellite was launched in
January 2022. A picture of the satellite undergoing testing before launch is shown
in Figure 2.1.

Figure 2.1: The HYPSO-1 satellite before launch. Credit: Evelyn Honoré-
Livermore.

2.5.2 HYPSO-2

HYPSO-2 is a 6U CubeSat, like HYPSO-1, and is similar in that the payload is the
same. For the work in this thesis, there are two main differences between HYPSO-1
and HYPSO-2: HYPSO-2 will have deployable solar panels that will increase the
energy the satellite gains, and HYPSO-2 will feature an X-band antenna in addition
to the communication capabilities that HYPSO-1 already has. The X-band antenna
will increase the satellite’s communication capabilities and draw more power when
in use. The satellite will launch in 2024. A picture showing the satellite bus, with
the solar panels deployed, can be seen in Figure 2.2.
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2. Background

Figure 2.2: The HYPSO-2 satellite bus, image courtesy of Kongsberg NanoAvion-
ics. Reference frame as is used in [7].
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Energy Optimal Attitude Control
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Chapter 3

Introduction

In the articles this part is based on, we have redefined energy optimal attitude
control. In the literature, whatever is considered energy optimal has usually been
defined as the minimum of the first or the second norm of the control input, meaning
that previous authors generally have worked to minimize fuel or to minimize the
square of the input, which has often been considered the energy of the signal. Our
formulation is simple in that we aim to maximize the satellite’s net power through
actions taken by the attitude control system. What this means, in essence, is that
we maximize the difference between the power the satellite manages to gain from
exposure to the Sun and what it spends on actuation. Using this formulation, we
find the optimal attitude trajectory between two points with respect to energy. In
the context of a traditional satellite setup, this net power framework merges two
control modes, sun pointing and target pointing, into a single optimization-based
maneuver.

This part has three chapters: Chapter 4 is based on

[2] B. A. Kristiansen, J. T. Gravdahl, and T. A. Johansen, “Energy optimal
attitude control for a solar-powered spacecraft,” European Journal of Control,
2021 European Control Conference Special Issue, vol. 62, pp. 192–197, Nov.
2021,

which is the article where we first introduced the net power concept. The simulation
setup is based on the HYPSO-1 satellite, and the final time of the optimization is
set very short relative to a complete orbit. From Figure 3.1, the short time horizon
places the paper in section B, meaning the shorter maneuvers, such as maneuvers
between image captures or between image capture and downlink.

Chapter 5 is based on

[7] B. A. Kristiansen, J. T. Gravdahl, S. Gros, and T. A. Johansen, “Energy
Optimal Attitude Control and Task Execution for a Solar-Powered Space-
craft”, IEEE Transactions on Control Systems Technology, 2023, condition-
ally accepted for publication,

which is an extension to the work in Chapter 4. The final time is extended to cover
several longer maneuvers over a full orbit. The scenario itself is based on HYPSO-
2 and shows more of how the net power framework creates value by showing the
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Section A

Section B

Section C

Umbra

Penumbra

Penumbra

Figure 3.1: Thesis outline.

energy gain on the margins when the utilization of the satellite increases throughout
section C in Figure 3.1. The paper also shows how to include a second set of
actuators into the framework.

And finally, Chapter 6 is based on

[5] B. A. Kristiansen, J. T. Gravdahl, S. Gros, and T. A. Johansen, “Energy
optimal attitude control of a satellite actuated by magnetorquers in minimum
time”, in Proceedings of the 7th IEEE Conference on Control Technology and
Applications (CCTA), Bridgetown, Barbados, Aug. 2023,

which also includes minimization over time. In this paper, and subsequently, in
Chapter 6, we investigate using a satellite equipped with only magnetic actuators.
While many satellites have other actuators besides magnetorquers, magnetorquers
are still popular for tiny satellites due to their size and for all satellites owing to
their reliability, a property the other actuators do not share. Their functioning
principle and weak torque make them one of the more difficult actuators to use,
making them an interesting case study for combining the net power framework with
minimum time. This chapter is also in the section marked “Section C” in Figure 3.1.

Larger satellites often have a range of actuators, if not an assembly of all the
actuators. The framework presented here works for all types of solar-powered satel-
lites or spacecraft as the formulation only requires a general formulation based on
geometry for the function describing the solar power the spacecraft gains and some
models that represent the power lost from using a given actuator. A possible is-
sue arises when the spacecraft is equipped with thrusters, which are not solely
electricity-based actuators. Thrusters are usually included for specific maneuvers,
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3.1. Introduction

but as fuel is a perishable resource, their use does not translate well to the net power
framework. So far, the framework has not been extended to allow for thrusters.

The two sections, Section 3.1 and Section 3.2, contain the common themes
between the three articles on which this part is based. In Section 3.1, the shared
state of the art on the topic is presented in all the articles mentioned above. The
general version of the energy optimal control framework, as first shown in [2], is
given in Section 3.2. This general formulation is in use in all three chapters in this
part.

3.1 Introduction

Attitude control for spacecraft is a well-known problem [9]. Regarding optimal
attitude control, research has been conducted on various cost functions. Optimiza-
tion with respect to time is common; see for example [10–13]. Others have proposed
optimal attitude control schemes with generalized cost functions [22, 23]. Optimiza-
tion with respect to cost functions based on angular velocities has been studied in
[24]. The authors in [16] and [25] used power models for optimization. In [16], the
authors exploited a power model based on the energy lost due to the system’s
mechanics. In contrast, [25] uses a power model based on the power available in a
control moment gyroscope. Minimizing with respect to energy functions based on
the input, for example, by using a performance index [26] or an input-related norm
[27], is a popular approach. Another name for the minimization of the input is min-
imal effort [13]. Minimizing the norm of the input has often been considered energy
optimal. The authors in [15] define the optimal control problem of minimizing the
input square as the optimal energy approach. The contribution of this paper is to
show that solar power harvesting should be included in the optimization alongside
the power consumption term to achieve energy-optimal control. This influences how
the cost function is designed: in this part, we propose a physics-based cost function
based on net electric power that we then use to achieve the minimal-energy cost
control objective.

3.2 Energy optimal attitude control

The goal of the net energy optimization problem is to maximize the difference
between the energy generated by the solar panels and the energy used to control
the spacecraft’s attitude. The net power function this objective is based on will
have the general form

P (x,u) = s(x)−m(x,u), (3.1)

where the s(x) is a function describing the power produced by the solar panels,
and m(x,u) is the power consumed by the actuators. x is the state of the system,
whereas u is the input. The power produced by the solar panels, s(x), will, for
non-symmetrical spacecraft, depend on the spacecraft’s attitude and the position
of the Sun relative to the spacecraft. The function can be seen as the product of
three terms,

s(x) = ηinκ(R
i
b, rSun)δ(rSun, rEarth), (3.2)
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3. Introduction

where κ(·, ·) is the solar power the satellite would get with its current attitude rel-
ative to the position of the Sun, δ(·, ·) is a function which returns the one when the
satellite is irradiated by the Sun, zero when it is not. ηin is an efficiency parameter
that will be introduced in Chapter 5.

The net energy objective function follows from integrating the net power in
(4.1),

E =

∫ T

0

P (x,u) dt =

∫ T

0

(s(x)−m(x,u)) dt. (3.3)

When optimizing net energy, the goal will be to maximize (4.2), which is the
equivalent of minimizing its negative. In addition to the net energy terms, an extra
term JF is added to reflect the cost of any other objective that merits its own cost,
typically the final state. In total, the cost function that is to be minimized is

J = JF − E − Eother = JF −
∫ T

0

P (x,u) dt− Eother(x, t). (3.4)

where Eother is the energy used by other subsystems. This term is first introduced
in Chapter 5.

In the following chapters, the JF term is made up of a term for the angular
velocity and another for the attitude; in equation form, this becomes

JF = k2Jpath + k3Jvelocity

= k2 (1− |(q(T ))⊺ qref|) + k3

((
ωb

e

)⊺
ωb

e

)
,

(3.5)

where k2 and k3 are constants and ωb
e = ωb

ref − ωb
ib. |(q(T ))

⊺
qref| is implemented

using the smooth max function defined in (2.11) to ensure that the cost is differ-
entiable.

Choosing to put the final states of the attitude and the angular velocity in the
cost function as opposed to having them as hard constraints in the optimal control
problem formulation is a choice, which in this case, makes sense since the cost
function is difficult for the solver to solve, particularly the κ(·, ·) term in (4.3). The
differences between soft and hard constraints are discussed in Section 2.4.1.

3.2.1 PD Sun pointing controller

In the following chapters, a PD controller is used as a comparison to show the
usefulness of the energy optimal control formulation. It is also used to produce
initial guesses for the solver. The PD controller used for benchmarking is given by
[9]

τ b
u = Kpϵe −Kd

(
ωb

ib,ref − ωb
ib

)
, (3.6)

where Kd > 0, Kp > 0 are constant controller gain matrices, ωb
ib,ref is the reference

angular velocity, and ϵe is the error in the vector part of the quaternion, given as
the final three elements of qe, which in turn is given as

qe = q-1
d ⊗ q, (3.7)

where qd is the desired quaternion, and ⊗ is the Hamilton product.
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3.2. Energy optimal attitude control

The quaternion references for the PD controller are set to the attitude with
the maximal incoming solar energy at the beginning of the time horizon, then to
the final reference quaternion towards the end. The attitude with the maximal
incoming solar power is found by minimizing the solar power function κ (·) from
(3.2) with respect to the attitude, here represented by the attitude unit quaternion
q,

min
q
− κ(q, rSun)

2 + k1Jpath (3.8a)

s.t. q⊺q = 1, (3.8b)

where k1 is a positive constant, Jpath is a cost introduced to ensure that only one
attitude would be optimal. Jpath is defined as [28]

Jpath = 1− |q⊺qref|, (3.9)

where qref is the reference quaternion. The absolute value is implemented using
the smooth max function defined in (2.11), so that |q⊺qref| = max (q⊺qref, -q⊺qref).
Note that the metric used in Jpath does not differentiate between the positive and
negative inner product. Thus, the distance between the reference quaternion and
the positive and the negative quaternion will be the same. The Jpath term is only
meant to differentiate between attitudes if several attitudes would otherwise be
optimal, and for that reason, k1 should be small. The scenario of several optimal
attitudes is not unlikely: Using a CubeSat with only one solar panel on one side as
an example, it is trivial to see that it would be optimal to point the axis with the
solar panel towards the sun vector, but any rotation about this axis would result
in the same optimal solar power.
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Chapter 4

Energy optimal attitude control for a
solar-powered spacecraft

This chapter is based on

[2] B. A. Kristiansen, J. T. Gravdahl, and T. A. Johansen, “Energy optimal
attitude control for a solar-powered spacecraft,” European Journal of Control,
2021 European Control Conference Special Issue, vol. 62, pp. 192–197, Nov.
2021.

4.1 Introduction

This chapter is organized as follows: Section 4.2 introduces the novel cost func-
tion based on net power, defined as the sum of the incoming solar power and
the actuation power consumption of the system. In Section 4.3, the optimal atti-
tude control problem is stated, both in the general case and for a reaction wheel
actuated spacecraft with attitude represented with unit quaternions. Section 4.4
contains the formulation for the sun-pointing PD controller and the optimal control
problem defining its references. The setup for a numerical example using the de-
veloped control algorithm is shown in Section 4.5. The results from the simulation,
where the optimal energy cost function introduced in Section 4.2 is compared to
the sun-pointing PD controller introduced in Section 4.4, are shown in Section 4.6.
A discussion of the results is included in Section 4.7, while Section 4.8 concludes
the chapter.

4.2 Objective function design

The goal of the net energy optimization problem is to maximize the difference
between the energy generated by the solar panels and the energy used to control
the spacecraft’s attitude. The net power function this objective is based on will
have the general form

P (x,u) = s(x)−m(x,u), (4.1)
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4. Energy optimal attitude control for a solar-powered spacecraft

where the s(x) is a function describing the power produced by the solar panels,
and m(x,u) is the power consumed by the actuators. x is the state of the system,
whereas u is the input. The power produced from the solar panels will, for non-
symmetrical spacecraft, depend on the spacecraft’s attitude and the position of the
Sun relative to the spacecraft.

The net energy objective function follows from integrating the net power in
(4.1),

E =

∫ T

0

P (x,u) dt =

∫ T

0

(s(x)−m(x,u)) dt. (4.2)

The solar power s(x) can be described as

s(x) = κ(Ri
b, rSun)δ(rSun, rEarth), (4.3)

where the current solar power κ(·) is the sum of incoming power from all the
solar panels currently exposed to solar irradiance. rSun and rEarth are the vectors
from the center of the Sun to the spacecraft and from the center of the Earth
to the spacecraft, respectively. κ(·) is a function of the attitude rotation matrix
representation Ri

b, which represents the attitude of the body frame b with respect to
the inertial frame i. The δ(·) function is a function that returns the solar irradiance
that reaches the satellite: the function returns 0 when no part of the body is exposed
to the Sun, and 1 when there is no occluding body. This function would indicate
when the spacecraft is in eclipse for a spacecraft orbiting the Earth. For satellites
where the solar panels are flat and not occluded, κ(·) can be defined as

κ(Ri
b, rSun) =

ns∑

j=1

max
((

ŝb
)⊺

n̂b
j , 0
)((

ŝb
)⊺

n̂b
j

)
cs,jAj , (4.4)

where ns is the number of surfaces with solar panels, ŝb is the normalized solar
vector, and n̂b

j is the normal vector of the jth solar panel pointing out of the
surface. Both the aforementioned vectors are represented in the body frame, which
explains how s(x) depends on the spacecraft attitude, as the sun vector is originally
represented in an inertial reference frame. cs,j is a constant that is the product of
the solar irradiance and the efficiency of the jth solar panel with surface area Aj .

To ensure that the objective function (4.2) is differentiable, the max function
is implemented as the smooth max function given in (4.5),

max (x1, x2) =
1

2

(
x1 + x2 +

√
(x1 − x2)2 + α

)
, (4.5)

where α is a small positive constant.
This work is motivated by HYPSO-1 [21], a satellite mission at NTNU with

a 6U CubeSat actuated by reaction wheels. For a spacecraft actuated by reaction
wheels, the power consumed by the actuators m(x,u) is given by

m(x,u) = − 1

ηrw

(
τ b
u

)⊺
ωb

RW, (4.6)
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4.3. Optimal control problem statement

where ηrw is the energy conversion efficiency of the reaction wheels, τ b
u is the torque

from the reaction wheels, and ωb
RW is the angular velocity of the reaction wheels

in the body frame.
When optimizing net energy, the goal will be to maximize (4.2), which is the

equivalent to minimizing its negative. In addition to the net energy terms, an extra
term JF is added to reflect the cost of any other objective that merits its own cost,
typically the final state. In total, the cost function that is to be minimized is

J = JF − E = JF −
∫ T

0

P (x,u) dt. (4.7)

4.3 Optimal control problem statement

The optimal control problem can be stated the following way:

min
x,u

JF −
∫ T

0

P (x,u) dt (4.8a)

s.t. ẋ = f (x,u) (4.8b)
g(x) ≤ 0 (4.8c)
ulb ≤ u ≤ uub (4.8d)
x(0) = x0, (4.8e)

where the objective function defined in (4.7) in Section 4.2 is constrained by the
system dynamics f (x,u) in (4.8b) and the initial state x0. T is the length of the
control horizon. g(x) is a vector constraining the state vector to some bounds, such
as upper and lower bounds on reaction wheel angular velocities.

For the simulation example of this chapter, we will investigate the opti-
mal control problem for a solar-powered spacecraft actuated by reaction wheels
with attitude represented by unit quaternions. Defining the state variable x =[
q⊺

(
ωb

ib

)⊺ (
ωb

RW
)⊺]⊺ and the input u = τ b

u, the optimal control problem is de-
fined by

min
x,u

JF −
∫ T

0

P (x,u) dt (4.9a)

s.t. q̇ =
1

2
T(q)ωb

ib +
1

2
ρq
(
(q⊺q)

-1 − 1
)

(4.9b)

ω̇b
ib = J-1

s

(
−ωb

ib ×
(
Jωb

ib + Jwω
b
RW
)
− τ b

u

)
(4.9c)

ω̇b
RW = J-1

wτ b
u − ω̇b

ib (4.9d)

τ b
u,lb ≤ τ b

u ≤ τ b
u,ub (4.9e)

x(0) = x0, (4.9f)

where (4.9b) describe the kinematics of the system, while (4.9c) and (4.9e) describe
the dynamics for the spacecraft and for the reaction wheels, respectively [1]. q =
[η ϵ⊺]⊺ is the attitude unit quaternion, and ωb

ib is the angular velocity of the body
frame about the inertial reference frame represented in the body frame. For this
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4. Energy optimal attitude control for a solar-powered spacecraft

scenario, one reaction wheel exists on each body frame axis. The inertia matrices
Js, Jw, and J = Js+Jw represent the inertia of the spacecraft without the reaction
wheels about their rotational axes, the reaction wheels about their rotational axes,
and the total inertia of the spacecraft, respectively. τ b

u,lb and τ b
u,ub are the lower

and upper bound on the reaction wheel torques, respectively. The T(q) matrix is
given by [18]

T (q) =

[
−ϵ⊺

ηI3x3 + ϵ×

]
, (4.10)

where I3x3 is the three-dimensional identity matrix, and × denotes the vector cross
product. η is the scalar part and ϵ is the vector part of the quaternion.

The unit quaternion is not constrained by a normalization constraint other
than that the initial attitude should be a unit quaternion. The norm of the unit
quaternion is preserved through the accuracy of the numerical integrator and the
Baumgarte stabilization term 1

2ρq
(
(q⊺q)

-1 − 1
)

with a small positive constant ρ
[29].

4.4 PD controller

The PD controller used for benchmarking and creating initial guesses is defined in
Section 3.2.

4.5 Simulation setup

The optimal control action is calculated using the IPOPT solver [20] in CasADi
[30], where the optimal control problem in (4.9) is discretized as a multiple-shooting
problem. The dynamics are discretized and integrated using CasADi’s built-in
Runge-Kutta integrator.

The energy generated by the optimal attitude control strategy given by the
problem formulated in (4.9) is compared to a sun-pointing PD controller, which
uses a setpoint for sun-pointing given by the optimal attitude for the problem in
(3.8), which is also solved with IPOPT using CasADi. The energy-optimal control
trajectory, based on (4.9), is calculated only once and compared to the sun-pointing
PD in each time step. The simulation runs for 40 seconds, where the sun-pointing
PD controller is fed the optimal attitude from (3.8) as reference for the first 20
seconds, and then the PD controller points towards the final reference attitude.
The optimal net energy control strategy is only given the simulation’s desired start
and end states. This example takes place entirely in the part of the orbit that is in
the sun, so δ(·) as defined in (4.3) is set to 1. The torque from the PD controller
is constrained in the same way as it is for the optimal control problem in (4.9).
The step size used for the integrator was calculated by dividing the length of the
time horizon by the number of control intervals. With 80 control intervals for the
multiple-shooting method applied to (4.9), this gave a step size h of 0.5 s. The
constants used in the simulation can be seen in Table 4.1. Note that the constant
cs,j from (4.4), given by the solar irradiance times the given solar panel’s efficiency,
is equal to cs in this simulation as all the solar panels are identical.

28



4.5. Simulation setup

Table 4.1: Optimization constants

Variable Value Unit
Simulation time (T ) 40 s
Control intervals (N) 80 -
Step size (h) 0.5 s
Solar irradiance 1361 W/m2

Solar panel efficiency 20 %
cs 272.2 W/m2

ηrw 85 %
α 10-7 -
k1 1 W2

k2 3.75 · 104 W
k3 3.75 · 106 W · s2
ρ 10-2 -
τ b
u,lb -3.2 · 10-3 N·m

τ b
u,ub 3.2 · 10-3 N·m

The inertia matrices are given by [1]

J =




0.0775 0.0002 −0.0002
0.0002 0.1067 0.0005
−0.0002 0.0005 0.0389


 kg ·m2, Jw = IwI3x3, (4.11)

where Iw = 2.1 · 10-4 kg·m2, and Js is given by the relation Js = J − Jw. In this
simulation, all the sides of the 6U satellite are covered in solar panels. The areas
of the solar cell covered surfaces Aj are then entries in the vector A in (4.12),

A = [0.03, 0.06, 0.02, 0.03, 0.06, 0.02]m2. (4.12)

The sun vector is given in the inertial frame as ŝi = [0.2673, 0.5345, 0.8018]
⊺

and is constant throughout the simulation due to the simulation’s relatively
short duration. The initial conditions are x0 =

[
q(0);ωb

ib(0);ω
b
RW(0)

]
=

[0, 0, 1, 0, 0, 0, 0, 0, 0, 0]
⊺. Both control algorithms attempt to control the system

toward the same quaternion reference qref = [0, 1, 0, 0]
⊺, as well as the angular

velocity reference ωb
ib,ref = [0, 0, 0]

⊺. The final cost for (4.9), JF, is defined as

JF = k2Jpath + k3Jvelocity

= k2 (1− |(q(T ))⊺ qref|) + k3

((
ωb

e

)⊺
ωb

e

)
,

(4.13)

where k2 and k3 are constants with values given in Table 4.1 and ωb
e = ωb

ref −ωb
ib.

|(q(T ))⊺ qref| is implemented with the smooth max function the same way as it is
for (3.9) to ensure that the cost is differentiable. The torque from the sun-pointing
PD controller is constrained by the same bounds as the optimal control torque.
The PD controller gains Kp and Kd with the constant values 8 ·10-2 and 1.08 ·10-1,
respectively, are found through tuning.
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4. Energy optimal attitude control for a solar-powered spacecraft

4.6 Results

Figure 4.1 shows the optimal quaternion trajectory. The trajectory for the sun-
pointing PD controller is shown in Figure 4.2, where it is shown with the quaternion
references. The angular velocity trajectories of the two controllers are plotted in
Figure 4.3. In Figure 4.4, the input torques of both control schemes are plotted,
where it is clearly shown that all torques are bounded by ±3.2 · 10-3.
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Figure 4.1: Optimal quaternion trajectory.

The individual parts of the net energy cost function can be plotted as functions
of the quaternion and torque histories. The power function P (x,u), as defined in
(4.1), is plotted in Figure 4.5. Its components s(x) and m(x,u) are plotted in
Figure 4.6 and Figure 4.7, respectively.

Figure 4.8 shows how the optimal control derived from (4.9) compares to the
sun-pointing PD controller for the net energy objective described in (4.2) over the
simulated time horizon. The difference between the net energy score of the optimal
response and the PD controller is divided by the PD controller’s net energy score
to give Figure 4.9, which shows the increase in energy gained up until a point in
time t, given as a percentage, calculated as 100% · Et,opt−Et,PD

Et,PD
, where Et is given

by (4.2) with T = t.
The net energy results for both the optimal solution and the sun-pointing PD

controller are showcased in Table 4.2, which shows that the optimal solution im-
proves on the score from the sun-pointing PD controller by about 13% for the given
example.

The computation time of the given control scenario is shown in Table 4.3. The
optimization was performed with a 2.4 GHz 8-core processor.
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Figure 4.2: Sun-pointing trajectory with PD control, and references.
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ib for the optimal plan and for the sun-pointing PD controller.
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u for the optimal plan and for the sun-pointing PD controller.

0 5 10 15 20 25 30 35 40

t [s]

6

8

10

12

14

16

18

P
 [

W
]

Optimal plan

Sun-pointing

Figure 4.5: Power, P (x,u), over time for the optimal plan and sun-pointing.

32



4.6. Results

0 5 10 15 20 25 30 35 40

t [s]

7

8

9

10

11

12

13

14

15

16

17

s
 [

W
]

Optimal plan, s(x)

Sun-pointing, s(x)

Figure 4.6: Solar power, s(x), over time.
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Figure 4.7: Actuation power, m(x,u), over time.
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Figure 4.8: Net energy, E, evolution over time.

Table 4.2: Net energy

Control scheme Energy score
Optimal net energy 566.4 J
Sun-pointing PD controller 501.2 J

Table 4.3: IPOPT output

Output Value
Number of iterations 48
Total CPU secs in IPOPT (w/o function evaluations) 0.463
Total CPU secs in NLP function evaluations 12.025

4.7 Discussion

From Table 4.2 it is clear that the optimal control problem in (4.9) produces a better
net energy score compared to the sun-pointing PD controller. This is illustrated in
Figure 4.8, where the net energy of the optimal solution, the blue line, is slightly
above the orange sun-pointing line throughout the simulation. The lines diverge
after 25 seconds, where the sun-pointing PD has started moving away from the
optimal sun-pointing attitude towards the reference quaternion. This divergence is
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Figure 4.9: Difference in net energy, optimal minus sun-pointing over sun-
pointing.

shown better in the plot of the power function (4.1) in Figure 4.5, where it is clear
that a large share of the advantage the optimal solution has over the sun-pointing
PD comes from the point the PD controller starts moving towards the reference
attitude. The PD controller needs this time to control the states sufficiently close
to the references. This shows another advantage of the optimal control strategy:
the point where the spacecraft turns back does not need to be set explicitly but
can instead be specified using the weighting of the costs on the references in (4.13).
Note in the same figure that the optimal solution also gains by reaching the top
level of the graph faster than the sun-pointing PD controller.

From Figure 4.1 and Figure 4.2, it can be seen that the optimal control solution
ends on the negative of the quaternion the PD controller ends on, which is the
reference quaternion. This is acceptable behavior due to the positive and negative
quaternion representing the same attitude.

The net power function in Figure 4.5, defined in (4.1) as the difference between
the solar power and the actuation power, is very similar in both shape and ampli-
tude to the solar power plot in Figure 4.6. Comparing the values of the curves at
the various times for solar power in Figure 4.6, which range from just below 6 W
to just above 16 W, to the values for actuation power in Figure 4.7, which all fit
within ±0.8 W, it is evident why the total power curve resembles the solar power
curve more than the actuation power curve. Note that the actuation power profile
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4. Energy optimal attitude control for a solar-powered spacecraft

of the optimal controller has more spikes towards the end of the simulation. This
is due to the optimal solution’s need to stay at the highest value in Figure 4.5 for
as long as possible, then making the optimal approach to the reference attitude in
a way that returns more energy to the spacecraft than the PD controller, as can
be seen from the power curves in Figure 4.5.

The initial difference in net energy, shown in Figure 4.9, is due to the optimal
plan reaching the highest values in Figure 4.5 quicker than the PD controller. If
the PD controller had been held at the optimal sun-pointing attitude for longer,
such as the case would have been for a longer time horizon, the difference between
the optimal solution and the PD controller would be smaller percentage-wise, but
in absolute terms, it would likely have stayed the same.

4.8 Conclusion

The advantage of the optimal net energy solution is that it finds the optimal tra-
jectory from the initial to the reference attitude. The optimal solution keeps the
optimal solar attitude for as long as possible and thus yields more energy to the
system than the sun-pointing PD controller it is compared with.
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Chapter 5

Energy Optimal Attitude Control
and Task Execution for a
Solar-Powered Spacecraft

This chapter is based on

[7] B. A. Kristiansen, J. T. Gravdahl, S. Gros, and T. A. Johansen, “Energy
Optimal Attitude Control and Task Execution for a Solar-Powered Space-
craft”, IEEE Transactions on Control Systems Technology, 2023, condition-
ally accepted for publication.

5.1 Introduction

The optimal control problem in [31] has similarities to the work in [2] and this
chapter. The authors of [31] optimize with respect to what here is referred to as
the solar power of the spacecraft only and not the entire net power cost introduced
in [2], which this chapter is based on. In addition to this difference, we make
efforts to formulate our optimal control problem in a way that makes it possible to
solve the problem as a nonlinear program (NLP) through direct multiple shooting,
whereas [31] solves their problem as a mixed-integer program.

In [2], the basis for Chapter 4, the net power cost function is introduced and
tested through simulations over a short period of time using three orthogonal re-
action wheels. The simulations were performed entirely in the sun, and thus the
eclipse was not considered. In the present chapter, we expand on the formulation of
the optimal control problem in Chapter 4: In addition to the introduction of some
known disturbances, or perturbations, we refine the definition of the net power cost
function by including a definition of a function labeled δ(·, ·), which returns the
amount of solar irradiance the spacecraft experiences based on its position relative
to a potentially occluding body. In this chapter, it will be the Earth. The function
is defined here so that it describes both the penumbra and umbra regions of the
eclipse, thus introducing a physics-based transition between the periods where the
spacecraft is exposed to sunlight and when it is in eclipse. Note that [31] also in-
troduces a function where the Earth shadow is defined, but this shadow is defined
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as a constant value for the entire eclipse and does, therefore, not include different
values for the penumbra and the umbra regions, as we have done in this chapter.
The argument for including the penumbra is, among others, made in [32], where
the author emphasizes the significance the region has in determining the amount
of power available to the spacecraft.

In this chapter, we perform simulations based on a scenario where the space-
craft moves in and out of eclipse during the scenario, an extension of the work
presented in Chapter 4. The spacecraft for the studied mission, which has four
reaction wheels, has an extra set of actuators in the form of magnetorquers, which
are also included in the actuation cost. The magnetorquers are primarily meant
to manage momentum, but their power consumption is included in the optimal
control problem. Using this expanded model, we explore using the net power cost
function for a scenario from the upcoming HYPSO-2 mission.

HYPSO-2 is an Earth observation mission that uses a push-broom hyper-
spectral imager to achieve its objectives, primarily observing ocean color, water
quality, and algal blooms. HYPSO-2 is similar to the HYPSO-1 mission, see [21],
but will, due to increased downlink capacity, be more constrained primarily by its
solar energy harvesting capacity rather than the amount of data the satellite could
downlink as is the case with HYPSO-1. To improve the resolution of the images, the
spacecraft, a 6U CubeSat can perform a slewing maneuver at a constant angular
rate over the target area. Besides the time spent on image acquisition (slew ma-
neuver), the satellite will spend most of its time harvesting solar energy. While the
slewing maneuver can be interesting from a control perspective [1, 33], this chap-
ter focuses on what happens between the slewing (imaging) and communication
pointing maneuvers, where the primary objective of the attitude control system is
to gather as much energy as possible while executing data processing and commu-
nication tasks. HYPSO-2 will be equipped with deployable solar panels, another
aspect considered when formulating the optimal control problem.

The contributions of this chapter are the following: we extend the net electric
energy cost function introduced in [2] to account for a deployable solar panel. We
include a mathematical formulation for the amount of solar irradiance the satellite’s
solar panels receive and extend the cost function to allow for magnetorquers. The
cost function and model are refined to allow more than three reaction wheels. Based
on the extended attitude control scenario where a sequence of maneuvers results
from a typical sequence of imaging and communication tasks, we argue for the
increased benefit of using the proposed method for satellites as the frequency of
attitude maneuvers increases.

The remaining sections of this chapter are organized as follows: The novel cost
function, defined as the sum of the incoming solar power and the actuation power
consumption of the system in [2], is defined and expanded upon in Section 5.2.
The optimal control problem itself is stated in Section 5.3, both in a general form
and using the frames introduced in Section Section 5.2, using unit quaternions to
represent the spacecraft’s attitude. Section 5.5 defines the PD controller used for
the initial guesses to the optimal solver and as a baseline. It also contains the opti-
mal control problem that defines the references for the sun-pointing PD controller
as previously introduced in [2]. Section 5.7 describes the setup for the numerical
example using the net energy cost function based on the HYPSO-2 mission. The
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results in Section 5.8 show how the optimal net energy solution performs for the
given control scenario. The results are discussed in Section 5.9, while the chapter
is concluded in Section 5.10.

5.2 Objective function

The cost function based on net power, where the objective is to maximize the net
power as proposed in [2], is given as

J = JF − E − Eother = JF −
∫ T

0

P (x,u) dt− Eother(x, t). (5.1)

where E is the net energy of the system, P (x,u) is the system net power as a
function of the system states x and inputs u, and JF is a cost imposed on the
system final state. Note that (5.1) is formulated to fit into a minimization problem,
meaning that the objective function is the negative of the desired maximization
objective. Eother(x, t) is the energy used by subsystems other than the control
actuators. The purpose of including Eother(x, t) in the cost function, possibly a
function of the state and the time t, is to give the output of the optimization
meaning when it comes to the total amount of power flowing in and out of the
system. The net power function P (x,u), in its most general form, is given as

P (x,u) = s(x)−m(x,u), (5.2)

where s(x) represents the solar power harvested by the system at the given state,
while m(x,u) is the power used for actuation. The solar power function s(x),
defined as the sum of the power supplied by the solar panels, is given as

s(x) = ηinκ(R
i
b, rSun)δ(rSun, rEarth), (5.3)

where δ(·, ·) quantifies the fraction of solar radiation that reaches the spacecraft,
i.e., δ(·, ·) = 1 when the spacecraft is fully exposed to the Sun, and δ(·, ·) = 0 when
the spacecraft is in the umbra region of the eclipse. Intermediate values correspond
to the penumbra region. ηin represents the input efficiency of the batteries. The
net power objective includes efficiency coefficients to model the cost of storing and
using power and assumes that the power continuously cycles through the batter-
ies. This assumption may cause the optimization to miss opportunities for direct
consumption, making the results slightly pessimistic. The rotation matrix repre-
sentation Ri

b represents the spacecraft’s attitude. The indices i and b represent the
Earth-centered inertial frame, referred to as the inertial frame, and the body frame,
which is a body-fixed frame centered at the center of the spacecraft. rSun and rEarth
are vectors between the spacecraft and the Sun and the Earth, respectively. For
spacecraft where the solar panels are flat, the amount of power the solar panels
supply at a given attitude can be calculated as
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κ(Ri
b, rSun) =

(
1−max

((
ŝb
)⊺

n̂b
k, 0
))
·

ns∑

j=1,j ̸=k

max
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ŝb
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n̂b
j , 0
)((

ŝb
)⊺

n̂b
j

)
cs,jAj

+max
((

ŝb
)⊺

n̂b
k, 0
)((

ŝb
)⊺

n̂b
k

)
cs,kAk,

(5.4)

where ns is the number of faces with solar panels, ŝb is the unit solar vector rep-
resented in the body frame, and n̂b

j is the normal vector of the jth solar panel
pointing out of the body. cs,j is a constant that is the product of the solar ir-
radiance and the solar panel efficiency, and Aj is the solar panel surface area of
the jth face. This equation shows the particular case we are investigating in this
chapter, where one of the faces, denoted by index k, is assumed to entirely obscure
the spacecraft’s other faces when exposed to solar irradiance. The implementation
is handled by introducing a term that goes to zero whenever the obscuring face is
exposed to solar irradiance, which is accomplished by the

(
1−max

((
ŝb
)⊺

n̂b
k, 0
))

factor. The face in question in this chapter is the large face with deployable solar
panels that perfectly align with the rest of the satellite body, i.e., they form or-
thogonal angles with the other faces of the satellite frame. While this formulation
is a simplification that only holds when the size of the solar panels goes to infinity
or the size of the obscured faces goes to zero, it is assumed to be sufficient for our
purposes, given that the deployable solar panels are relatively large compared to
the faces they obscure. An example satellite where this is valid is the HYPSO-2
6U CubeSat illustrated in Figure 5.1.

We use an approximation of the max(·) function, as in Chapter 4, implemented
using the function defined in (2.11). Since (2.11) is differentiable, it is possible to
take advantage of the automatic differentiation features of CasADi [30], and, more
importantly, permits the use of a Newton-type solver like IPOPT.

The δ(·, ·) function, a measure of how much sunlight reaches the spacecraft, can
be defined by Algorithm 1. In defining the δ(·, ·) function this way, we assume that
the Sun and the Earth are spherical objects. In Algorithm 1, rSun is the vector from
the spacecraft to the center of the Sun, rEarth is the vector from the spacecraft to
the center of the Earth, Re is the radius of the Earth, and Rs is the radius of
the Sun. As is shown in Figure 5.2, the two spherical bodies’ external and internal
tangents intersect at two different points in space. These points are called external
and internal homothetic centers, and their positions are defined by the position
of the two spheres and their radii. These intersection points, denoted using the
symbol for intersection, ∩, in the algorithm, create conic sections together with the
Earth, where the αext,cone and αint,cone give the angle between the axes and the
generatrix of the cones. These cones, where the internal cone is the cone defined
by the intersection that lies between the Earth and the Sun and the Earth itself,
and the outer cone, defined by the intersection on the far side of the Earth and the
Earth, define the areas of space where the Earth cast a shadow. More precisely, if
the spacecraft is inside the internal cone, meaning that the angle defined by αint
is smaller than αint,cone, then the spacecraft is in eclipse, but it might be in either
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Figure 5.1: Axes over a satellite of the same shape as HYPSO-2, showing the
face with the deployable solar panels. The hyperspectral imager is mounted facing
down in this image. Image credit: [34].

Figure 5.2: Illustration showing the Earth and Sun with the umbra and penumbra
regions. The penumbra are the areas in light gray to the left of the Earth (the
blue circle), while the umbra region is the darker gray region enclosed by the two
penumbra areas and the Earth. The dark gray triangle furthest left in the figure is
the antumbra, which is not of interest for this application. Note that the distances
in the figure are not to scale.
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Algorithm 1 δ(rSun, rEarth)

ES← rSun − rEarth
ÊS← ES

∥ES∥
∩int ← Re

Re+Rs
ES

∩ext ← Re

Re−Rs
ES

posx ← r⊺EarthÊS ▷ Condition 1
αint,cone ← arcsin

(
Re

∥∩int∥

)

adjint ←
r⊺Earth∩int

∩⊺
int∩int

∩int

hypint ← ∩int + rEarth

αint ← arcsin
(

∥hypint×adjint∥
∥hypint∥∥adjint∥

)

inint,cone ← |αint,cone| − |αint| ▷ Condition 2
αext,cone ← arcsin

(
Re

∥∩ext∥

)

adjext ←
r⊺Earth∩ext

∩⊺
ext∩ext

∩ext

hypext ← ∩ext + rEarth

αext ← arcsin
(

∥hypext×adjext∥
∥hypext∥∥adjext∥

)

inext,cone ← |αext,cone| − |αext| ▷ Condition 3
if posx > 0 then

if inint,cone > 0 then
if inext,cone > 0 then

δ ← δumbra ▷ Umbra
else if inext,cone ≤ 0 then

δ ← δpenumbra ▷ Penumbra
end if

else if inint,cone ≤ 0 then
δ ← δlight ▷ Light

end if
else if posx ≤ 0 then

δ ← δlight ▷ Light
end if
return δ
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the penumbra or the umbra regions. Similarly, the spacecraft is inside the external
cone if αext is smaller than αext,cone. If the spacecraft is in both the outer cone and
the internal cone, it is in the umbra region. If it is in only the internal cone but not
the outer cone, it is in one of the penumbra regions. These conditions are defined as
condition 2 and condition 3 in Algorithm 1, respectively. The position argument,
condition 1, is included so that only regions on the far side of the Earth, as seen
from the Sun are considered. This is needed since it is possible to be inside both
the internal and the external cone while being between the Earth and the Sun, a
region of space that obviously will be in the light. The algorithm serves the same
purpose as the "Shadow" algorithm in [32].

As no external forces dependent on attitude are included in the orbit calculation,
the values for the δ(·, ·) can be calculated beforehand.

The shaded regions of the orbit eclipse, i.e., the penumbra, as seen in Figure 5.2,
do not all produce a complete shade. For a satellite orbiting the Earth in low-
Earth orbit, there are three regions: the penumbra region, i.e., the semi-dark region
enclosing the fully dark region, the umbra, and the sunlit region of the orbit.
Figure 5.2 shows the various regions. The scale of some of the elements in the
illustration has been exaggerated to show the difference between the penumbra
and the umbra regions. Due to the distance between the Sun and the Earth and
the relatively short distance between the LEO (Low-Earth Orbit) spacecraft and
the Earth, the spacecraft time in the penumbra region is short. Naturally, the time
spent in the penumbra regions increases with the orbit’s altitude, as can be seen
from Figure 5.2. While the penumbra region is distinctly separate from the sunlit
and umbra regions [35], the amount of sunlight is not constant in the penumbra
region. This could be modeled in Algorithm 1, under condition 2, as a gradual
decrease as the spacecraft moves closer to the umbra region. For simplicity, the
amount of sunlight in the penumbra region is defined as a fixed number between
zero and one.

rSun

rEarth

Figure 5.3: Illustration showing a spacecraft in orbit with the umbra and (exag-
gerated) penumbra regions.

We assume an array of reaction wheels and magnetorquers, where only the
reaction wheels are applied for attitude control of the spacecraft, while the mag-
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netorquers are used to manage the momentum of the reaction wheels. For a space-
craft actuated by reaction wheels and magnetorquers, the actuation power m(x,u),
where x is the state and u is the input, is the sum of the power usage for the reaction
wheels PRW(x,u) and the magnetorquers Pmtq(u), or

m(x,u) = PRW(x,u) + Pmtq(u)

=
1

ηrw
|(Aτw

RW)
⊺
Aωw

RW|+
1

ηout

(
Ibmtq

)⊺
Vb

mtq,
(5.5)

where ηrw is the efficiency of the reaction wheels, and τw
RW is the input torque

represented in the wheel frame. ηout is the output efficiency of the batteries. ωw
RW

is the angular velocity of the reaction wheels in the wheel frame, and A is the
torque distribution matrix. The absolute value is included since energy only flows
in one direction, from the batteries to the reaction wheels. In other words, it is
assumed that the kinetic energy in the reaction wheels cannot be transformed into
electrical energy in the batteries on board the spacecraft. Vb

mtq and Ibmtq are vectors
denoting the voltage over and current through the magnetorquers for each axis in
the body frame. The power of the magnetorquers is included as they are part of
the control system, even though they are not directly used for attitude control in
this chapter. For simplicity, the formula for the power used by magnetorquers is
calculated by scaling the magnetic moment by its maximum value and multiplying
it by the maximum power drawn by the magnetorquers:

Pmtq(u) =

∞∑
n=1

∣∣mb
mtq,i

∣∣

3mmtq, ub
Pmtq, max,

(5.6)

where mb
mtq,i is the i-th channel of the mmtq vector, and the divisor the upper

bound on the magnetic moment of the magnetorquers, mmtq, ub, multiplied by
three as the magnetorquers cover all three body frame axes. mmtq is the magnetic
moment of the magnetorquer, which is what is calculated by the control algorithm.
Pmtq, max is the maximum value for the power drawn by the magnetorquers. Thus,
(5.5) in this chapter takes the form

m(x,u) = PRW(x,u) + Pmtq(u)

=
1

ηrw
|(Aτw

RW)
⊺
Aωw

RW|+

∞∑
n=1

∣∣mb
mtq,i

∣∣

3mmtq, ub
Pmtq, max.

(5.7)

The output efficiency of the batteries is included in the value given to Pmtq, max.
The cost imposed on the problem relating to the final states of the system, JF,

can be chosen to be

JF = k1Jpath,ref + k2Jvelocity

= k1

(
1−

∣∣∣
(
qi
b

)⊺
qref

∣∣∣
)

+ k2
(
ωb

ref − ωb
ib

)⊺ (
ωb

ref − ωb
ib

)
,

(5.8)
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where Jpath,ref is a metric on SO(3) [28] that denotes the cost of not reaching
the desired attitude, Jvelocity is the cost of not reaching the desired final angular
velocity, and k1 and k2 are weights. qref and ωb

ref are the reference values for the
attitude quaternion and the angular velocity, respectively. Jpath,ref is implemented
using the smooth max function (4.5),

|
(
qi
b

)⊺
qref| = max

((
qi
b

)⊺
qref, -

(
qi
b

)⊺
qref

)
. (5.9)

With JF defined this way, the problem becomes multi-objective because the cost
function weights energy usage against reference tracking.

5.3 Optimal control problem

The general optimal control problem, based on (5.1), is defined as

min
x,u

JF −
∫ T

0

P (x,u) dt− Eother(x, t) (5.10a)

s.t. ẋ = f (x,u) (5.10b)
g(x) ≤ 0 (5.10c)
ulb ≤ u ≤ uub (5.10d)
x(0) = x0, (5.10e)

where the net energy objective function is constrained by the system dynamics
in (5.10b). T is the length of the control horizon. The g(x) vector constrains the
state vector x to some bounds, such as upper and lower bounds on reaction wheel
angular velocities. The control input u is bounded by both lower bounds, ulb, and
upper bounds, uub. We use the JF term to drive the state variables to the desired
final states. Note that the problem appears to be singular.

Defining the state x =
[(
qi
b

)⊺
,
(
ωb

ib

)⊺
, (ωw

RW)
⊺]⊺ and the input u =[

(τw
RW)

⊺
,
(
τ b
mtq
)⊺]⊺, the optimal control problem is defined by [1]
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min
x,u

JF −
∫ T

0

P (x,u) dt− Eother(x, t) (5.11a)

s.t. q̇i
b =

1

2
T(qi

b)ω
b
ib +

1

2
ρqi

b

(((
qi
b

)⊺
qi
b

)-1
− 1

)
(5.11b)

bd

dt
ωb

ib = J-1
s

(
− S

(
ωb

ib

) (
Jωb

ib +AJwω
w
RW
)
−Aτw

RW + τ b
mtq + τ b

ext
)

(5.11c)
wd

dt
ωw

RW = J-1
wτw

RW −A⊺
bd

dt
ωb

ib (5.11d)
id

dt
ri = vi (5.11e)

id

dt
vi = − µri

∥ri∥3
(5.11f)

τw
RW,lb ≤ τw

RW ≤ τw
RW,ub (5.11g)

x(0) = x0, (5.11h)

where (5.11b) describes the kinematics of the system, and (5.11c) and (5.11d)
describe the dynamics of the spacecraft and the reaction wheels, respectively [1].
The model assumes that the spacecraft is a rigid body, where the translational
motion is described in (5.11e) and (5.11f). qi

b = [ηib,
(
ϵib
)⊺
]⊺ is the attitude unit

quaternion, where ηib is the scalar and ϵib is the vector part of the quaternion. Note
that the quaternion qi

b defines the rotation matrix in (5.3) and (5.4). In the case
study, one reaction wheel exists for each of the body frame axes, in addition to a
fourth reaction wheel with equal capacity along each body frame axis. This leads to
the torque distribution matrix A that gives the mapping between the wheel frame
and the body frame:

A =
1

3



1 0 0

√
3

0 1 0
√
3

0 0 1
√
3


 . (5.12)

The inertia matrices Js, Jw, and J = Js + AJwA
⊺ represent the inertia of the

spacecraft only, the reaction wheels, and the total inertia of the complete spacecraft,
respectively. µ is the standard gravitational parameter of the Earth, and m is the
spacecraft’s mass. The external torques that act on the spacecraft are represented
by τ b

ext, and τ b
RW,lb and τ b

RW,ub are the lower and upper bound on the reaction
wheel torques, respectively. The environmental torques are defined in Section 5.11.
The limits are defined similarly for the torque from the magnetorquers, τ b

mtq, but
the magnetorquer limits are not included in the optimal control problem since the
optimal solver does not determine the magnetic torque. The angular velocity of
the reaction wheels is given by ωw

RW. Note that the angular velocity of the reaction
wheels has superscript w. This denotes a wheel frame, which has a channel for each
reaction wheel, and thus the vectors in this frame have the same dimension as the
number of reaction wheels. Since the reaction wheels only rotate about one axis,
the wheel frame does not rotate relative to the body frame. The T(q) matrix is
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given by [18]

T (q) =

[
−ϵ⊺

ηI3x3 + S(ϵ)

]
, (5.13)

where I3x3 is the three-dimensional identity matrix and S(·) is a skew-symmetric
matrix corresponding to the vector cross product in three dimensions.

The position of the satellite in Earth-centered inertial frame is given as ri. This
vector is denoted vi in Figure 5.3. The corresponding velocity is given by vi, and
µ is the standard gravitational parameter of the Earth.

The unit quaternion is not constrained by a normalization constraint other
than that the initial attitude should be a unit quaternion. The norm of the unit
quaternion is preserved through the accuracy of the numerical integrator and the
Baumgarte stabilization term 1

2ρq
(
(q⊺q)

-1 − 1
)
, where ρ is a small positive con-

stant [29].

5.4 Magnetorquers control

The magnetorquers are only used for momentum management of the reaction
wheels, with the control algorithm given as [36]

τmtq = S(mb)Bb = S

(
km
∥Bb∥2

(
S
(
hb
e

)
Bb
))

Bb, (5.14)

where mb is the magnetic moment produced by the magnetorquers. km is a positive
constant, and hb

e is the error in angular momentum for the reaction wheels, given
as

hb
e = AJw(ω

w
RW,ref − ωw

RW), (5.15)

where reference angular velocity of the reaction wheels is denoted as ωw
RW,ref. The

commanded torque to the magnetorquers is to produce is calculated directly in this
chapter using (5.14) and (5.15).

5.5 Optimization and initial guesses

The optimal control problem is solved using the IPOPT solver [20] in CasADi,
where the optimal control problem in (5.11) is discretized as a multiple-shooting
problem. The dynamics are discretized and integrated using the CasADi built-in
implementation of the Runge-Kutta 4 integrator.

In this chapter, we use a PD controller to produce the initial guesses for the
optimal control problem in (5.11) by pointing the spacecraft toward an optimal
solar power reference. The details of this scheme can be found in Section 3.2.1.

5.6 Control scenario

The case study is based on the HYPSO satellites’ concept of operations, [21, Table
VII], where the satellite makes a slewing maneuver during imaging, see Figure 5.4.
This is a maneuver with a constant angular velocity, about the satellite’s y-axis
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Figure 5.4: Concept of operations (CONOPS) for the HYPSO satellites, from
[21].

during image acquisition. The control task will include a sequence of image captures
within a single pass. The allocated time for the various parts of the tasks is shown
in Table 5.1. In particular, we will study the HYPSO-2 satellite which differs from
HYPSO-1 by having deployable solar panels and an X-band radio communication
downlink with significantly increased link capacity when compared to HYPSO-1’s
S-band radio downlink. A typical image taken by the hyperspectral camera is 85
MB, and the X-band is assumed to give a data rate of 10 Mbps, which means that
a full hyperspectral image can be downlinked in 68 seconds. The full scenario is
modeled as a series of smaller optimizations for each of the tasks as opposed to
one large optimization, which it should be noted is not necessarily optimal in a
mathematically rigorous sense.

The optimizations described in this chapter occur between image acquisitions or
downlinks. The maneuver during image acquisition is not the subject matter of this
chapter and is thus omitted. The image acquisition is accomplished in simulation
by integrating the translational variables over the stated duration while keeping
the other attitude constant. The difference between image capture maneuvers and
downlink maneuvers is that the optimization leading up to the image acquisitions
should go towards a non-zero angular velocity reference, whereas zero is given as the
angular velocity reference for the downlink maneuvers. Additionally, the satellite
is rotated differently for the downlink maneuvers, as the antenna and the camera
are not placed on the same face. The longest idle phase spans the eclipse from
Nigeria to Svalbard (optimization task 7). There are no image acquisitions during
the eclipse since the HYPSO-2 imager payload, the hyperspectral camera, requires
the target to be lit to produce good data.

The reference quaternions are chosen to coincide with the various targets in
Figure 5.5, while the angular velocity references depend on whether their target is
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Table 5.1: Optimization scenario for HYPSO-2

Task Start time
(UTC)

End time
(UTC)

Duration (s)

Solar energy harvesting,
Optimization task 1

09:31:11 09:32:51 100

Communication,
Svalbard, Norway

09:32:51 09:34:51 120

Solar energy harvesting,
Optimization task 2

09:34:51 09:35:31 40

Image acquisition,
Finnmark, Norway

09:35:31 09:36:31 60

Solar energy harvesting,
Optimization task 3

09:36:31 09:37:31 60

Image acquisition,
Frohavet, Norway

09:37:31 09:38:31 60

Solar energy harvesting,
Optimization task 4

09:38:31 09:38:51 20

Image acquisition, Mjøsa,
Norway

09:38:51 09:39:51 60

Solar energy harvesting,
Optimization task 5

09:39:51 09:45:01 310

Communication, KSAT
Spain, Spain

09:45:01 09:46:33 92

Solar energy harvesting,
Optimization task 6

09:46:33 09:53:01 388

Image acquisition of
coastline, Nigeria

09:53:01 09:54:01 60

Solar energy harvesting,
Optimization task 7

09:54:01 11:07:01 4 380

Communication,
Svalbard, Norway

11:07:01 11:10:01 180

Solar energy harvesting,
Optimization task 8

11:10:01 11:10:41 40

Image acquisition,
Finnmark, Norway

11:10:41 11:11:41 60

Solar energy harvesting,
Optimization task 9

11:11:41 11:12:41 60

Image acquisition,
Trondheim, Norway

11:12:41 11:13:41 60

Solar energy harvesting,
Optimization task 10

11:13:41 11:18:45 304

Communication, KSAT
Spain, Spain

11:18:45 11:20:47 122
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Table 5.2: Control references for the tasks in Table 5.1

Target qref ωb
ib,ref(

◦/s)
Svalbard, Norway (1) [0.853, 0.372, -0.019, -0.366]⊺ [0, 0, 0]⊺

Finnmark, Norway (2) [0.084, 0.918, -.329, -0.205]⊺ [0, -0.754, 0]⊺

Frohavet, Norway (3) [0.297, -0.858, 0.407, 0.102]⊺ [0, -0.754, 0]⊺

Mjøsa, Norway (4) [0.275, 0.860, -0.262, -0.343]⊺ [0, -0.754, 0]⊺

KSAT Spain, Spain (5) [0.827, 0.123, 0.333, -0.435]⊺ [0, 0, 0]⊺

Coastline, Nigeria (6) [0.034, 0.710, 0.474, 0.519]⊺ [0, -0.754, 0]⊺

Svalbard, Norway (7) [0.677, 0.642, -0.151, -0.327]⊺ [0, 0, 0]⊺

Finnmark, Norway (8) [0.405, -0.835, 0.372, -0.018]⊺ [0, -0.754, 0]⊺

Trondheim, Norway (9) [0.389, -0.828, 0.402, 0.036]⊺ [0, -0.754, 0]⊺

KSAT Spain, Spain (10) [0.223, 0.906, -0.304, -0.195]⊺ [0, 0, 0]⊺

for imaging or downlinking data. For downlinking data, the angular velocity refer-
ence is set to zero since the radio antennas have a relatively wide beam. In contrast,
it is set to a fixed angular velocity about the body frame y-axis for optimizations
that transition into an image acquisition: this way, the slewing maneuver the satel-
lite performs during imaging can be prepared directly from the optimization. The
targets/tasks coincide with current areas of interest for the HYPSO mission. The
map also shows the position and ground track of the HYPSO-1 satellite on the day
that is used for this chapter. The references are inferred from the outputs from an
internally developed software suite for satellite operations at NTNU. The attitude
and angular velocity references are given in Table 5.2.

5.7 Simulation setup

The optimal trajectories are calculated once. The output from the sun-pointing PD
controller from Section 5.5 is used as the initial values for the optimization. The
PD controller makes the satellite point towards what it perceives as the optimal
sun-pointing attitude, given by (3.8), until 20 seconds before the satellite’s new
target reference is used for the attitude and angular rate. The PD controller is
constrained similarly to the optimal control problem in (5.11). The PD controller
that provides the initial values and the optimal control problem has a discretization
step size h of 2 seconds. The total length of the maneuvers, from start to finish,
is 5580 seconds or 93 minutes. During this time, the satellite goes through more
than a complete orbit, meaning that the satellite spends some time in the light and
some in the shade, and thus δ(·, ·) varies between 0 and 1.

The parameters used in the simulation can be seen in Table 5.3. Note that the
constant cs,j from (5.4), given by the solar irradiance multiplied by the given solar
panel’s efficiency, is equal to cs in this simulation as all the solar panels are assumed
to be identical.
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Figure 5.5: Map showing the position and ground track of HYPSO-1 as of March
14, 2023. The satellite is marked by a dark yellow circle, the satellite ground track
is marked in red. The initial target, Svalbard, and the final target, KSAT Spain,
are marked by dark red crosses. The other targets are marked with yellow crosses
following the path of the satellite, going from North to South. Note that the
satellite is at the 6th target, the Nigerian coastline, in the figure.
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Table 5.3: Optimization constants

Variable Value Unit
Step size (h) 2 s
Solar irradiance 1366 W/m2

Solar panel efficiency 20 %
cs 272.2 W/m2

ηrw 0.85 -
α 10-5 -
kmax 1 W2

k1 T · 1.75 · 102 W
k2 T · 104 W · s2
ρ 1.1 · 10-2 -
τ b
RW,lb -3.2 · 10-3 N·m

τ b
RW,ub 3.2 · 10-3 N·m

The inertia matrices are given by

J =



0.0950 0.0000 0.0010
0.0000 0.1370 0.0000
0.0010 0.0000 0.0570


 kg ·m2, Jw = IwI4x4, (5.16)

where Iw = 2.1 · 10-4 kg·m2. Note that not all the sides of the 6U satellite are
covered in solar panels. The areas of the solar cell covered surfaces Aj are then the
entries in the vector A in (5.17),

A = [0.024, 0.144, 0, 0.024, 0.048, 0] m2. (5.17)

The deployable solar panels are on the positive y-face of the body frame, indicated
by the largest entry in the A vector in (5.17).

The position of the Sun relative to the Earth is given in the Earth-centered
inertial frame as riSun-Earth = 1.49599870 · 1011 [0.8944, 0, 0.4472]⊺ m and is con-
stant throughout the simulation. This is assumed to be sufficient due to the sim-
ulation’s relatively short duration relative to the rotation of the Earth-centered
inertial frame around the Sun. ŝb, which is used for (5.4), is found by transforming
riSun = riSun-Earth + ri to the body frame after normalizing the vector.

The initial conditions for the satellite before the first optimization are x0 =[
qi
b(0);ω

b
ib(0);ω

b
RW(0)

]
= [0, 0, 1, 0, -0.01, 0.02, 0.01, 209.4, 209.4, 209.4,−362.8]⊺,

and for optimization 2 through 9, the initial values are taken from the satellite
maneuver that leads up to the optimization. The initial values for ωb

ib are given
in rad/s. The reference for the angular velocity of the reaction wheels is the same
as the initial value, which means [209.4, 209.4, 209.4,−362.8]⊺, all in rad/s. The
quaternion and angular velocity references are given in Table 5.2.

The torque from the sun-pointing PD controller that is used to find the initial
values for the optimization is constrained by the same bounds as the optimal control
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torque. The PD controller gains Kp and Kd with the constant values 1 · 10-2 and
3.56 · 10-2, respectively, are found through tuning.

The magnetic field is modeled using the IGRF model, defined by the potential
function [37]. An adaptation of the implementation presented in [38] is used.

The value for the other loads in the cost function, Eother(x, t), are estimated
based on a preliminary mission analysis. When harvesting solar power, the term
is set to -13.5 W. The cost during imaging is -29.5 W, and during communication
with a ground station it is -40 W.

The external torques, τ b
ext, that are included are detailed in Section 5.11. Any

other effects in the actuators that have not previously been mentioned here, such as
handling dead zones in reaction wheels or other nonlinear effects, are not included
in the simulations and are then, in effect, assumed to be handled by a lower-level
control layer. Depth-of-discharge is not considered in this chapter, so the capacity
of the batteries is not modeled.

Table 5.4 gives the initial orbital elements. The other parameters used for the
simulation are shown in Table 5.5.

Table 5.4: Orbital elements

Variable Value Unit
Semimajor axis 6905.1 km
Eccentricity 0.0007757 -
Inclination 97.439 ◦

Right ascension of the ascending node 139.3136 ◦

Argument of perigree 213.7547 ◦

True anomaly 54 ◦

5.8 Results

Figure 5.6 shows the optimal attitude quaternion trajectory qi
b resulting from

IPOPT solving the optimal control problem in (5.11) for all references detailed
in Table 5.1 and Table 5.2. All the figures have vertical lines, marking each op-
timization task’s start. The gray-shaded region indicates that the satellite is in
eclipse, for a few seconds in the penumbra and then in the umbra. The satellite
rotates from in the shadow, a rotation which is owing to the torques from the
environment, see Figure 5.16, and a few features of the solution produced by the
optimal solver are detailed in the discussion section. Figure 5.7 shows how the net
power cost function, (5.1), evolves over the control horizon. The figure shows that
the net power is reduced to around zero when entering the umbra. The penumbra
region, where the net power supplied to the spacecraft is significantly reduced, but
not to zero, is not visible in the figure as the penumbra only spans some seconds
with the low altitude orbit of HYPSO-2. This is expected behavior, as only a per-
centage of the light from the Sun reaches the satellite in the penumbra region, and
nothing does while it is in the umbra region. The amount of sunlight that reaches
the satellite during the simulation, defined by the δ(·, ·) function, can be seen in
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Table 5.5: Simulation parameters

Variable Value Unit
δlight 1 -
δpenumbra 0.2 -
δumbra 0 -
Mass, satellite (m) 7 kg
µ 3.986 · 1014 -
Radius, Earth 6.371 · 106 m
Radius, Sun 6.96340 · 108 m
mb

mtq,lb -0.34 A·m2

mb
mtq,ub 0.34 A·m2

Residual magnetic dipole (mb
res) 12[1, 1, 1]⊺ mA·m2

keddy 0.01 -
ηin 0.92 -
Pmtq, max 2.52 W

Figure 5.8. The satellite spends about 20 seconds in the penumbra region in this
scenario. The solar power function, (5.4), over time is shown in Figure 5.9. This
figure clearly illustrates the need for a δ(·, ·) part in the net power cost function,
as there will be no solar power into the satellite while it is in the umbra region.
Following this argument, it is intuitive that close to zero net power is optimal dur-
ing the umbra region, as the optimal control problem reduces to minimizing the
actuation power in (5.5). In Figure 5.10, this is accomplished during the umbra
region for this control scenario. Figure 5.10 has two peaks for each optimization:
one at the beginning and one at the end. These peaks coincide with the net energy
cost function Figure 5.7, going from the initial sub-optimal solar power attitude
to an optimal one at first and from the optimal attitude to the final attitude. A
direct result of these peaks, the angular velocity of the satellite, is shown in Fig-
ure 5.12. The cumulative net power over time, giving the total energy accumulated
by the system over the control horizon, is given in Figure 5.11. The figure also in-
cludes the performance of the PD controller. Figure 5.13 displays the torques from
the reaction wheels. This figure is closely related to Figure 5.10, but it is possible
to see that some smaller torque is applied to the reaction wheels also inside the
umbra region. This behavior is also displayed in the figure showing the satellite’s
angular velocity, Figure 5.12. The reaction wheels’ angular velocity can be seen in
Figure 5.14. The torque from the magnetorquers is shown in Figure 5.15, while the
perturbing torques are shown in Figure 5.16. The small breaks where the different
plots flatline, such as the torque from the reaction wheels in Figure 5.13, often
coincide with different imaging slewing maneuvers, and downlink communication
pointing maneuvers.

The computation time of the given control scenario is shown in Table 5.6. The
optimization was performed with a 2.4 GHz 8-core processor. The power gained over
time, or the energy gained, by the different control schemes, evaluated by using the
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Figure 5.6: The optimal attitude quaternion trajectory, qi
b.

Figure 5.7: Net power, including the loads from the other subsystems, over time.
In the lower part of the figure, a zoomed-in area highlights the net power as the
satellite exits the umbra and penumbra regions.
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Figure 5.8: Solar magnitude, δ(·, ·), over time.

Figure 5.9: Solar power factor κ(·, ·) of the cost function over time.
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Figure 5.10: Actuation power part of the cost function over time.

Figure 5.11: Cumulative values for the power terms in the cost function.
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Figure 5.12: Angular velocity, satellite.

Figure 5.13: Torques from reaction wheels.
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Figure 5.14: Angular velocity, reaction wheels.

Figure 5.15: Torque from magnetorquers.
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Figure 5.16: Perturbing torques.

cost function in (5.2), is shown in Table 5.7. The optimal solver finds a solution that
returns 3229 J more than the PD controller alternative, giving an increase of 11.3%.
The table also shows the increase provided by the optimal solution compared to
the PD controller when the scenario is reduced, such as without including imaging
and communication, without including the energy spent on the other subsystems,
and an example where there longest optimization is omitted. The difference that
appears in the table between the energy increase which should be identical, such as
the total energy compared to the total energy without imaging and communication,
is due to rounding errors.

The values for other objectives, the regulation towards the quaternion
and angular velocity references, are shown in Table 5.8. The error values
are given by the equation shown in (5.8), meaning that the quaternion er-
ror is given by

(
1−

∣∣(qi
b

)⊺
qref
∣∣), and the angular velocity error is given by(

ωb
ref − ωb

ib

)⊺ (
ωb

ref − ωb
ib

)
. Two of the quaternion error values are negative only

due to the change in approximated absolute value function that is used. The table
shows that the optimal solver drives values significantly closer to the references
than the PD controller.

5.9 Discussion

The attitude quaternion trajectory in Figure 5.6 shows that the satellite manages
to reach the reference attitude for each optimization task and with the desired
angular velocity required to begin the slew maneuver or downlink, depending on
the set reference. An essential property of the eclipse function δ(·, ·) is that it gives
the optimal control problem a formulation that defines where the spacecraft can
and cannot harvest solar power. More specifically, with the eclipse definition, the
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Table 5.6: IPOPT output

Optimization
task number

Number of
iterations

Total CPU
secs in

IPOPT (w/o
function

evaluations)

Total CPU
secs in NLP

function
evaluations

1 106 2.093 38.429
2 81 0.535 12.023
3 119 0.997 26.306
4 27 0.141 2.014
5 402 13.459 457.596
6 198 8.195 289.489
7 253 130.876 4323.100
8 177 1.432 27.125
9 89 0.879 20.079

10 1064 39.577 1226.046

optimal control problem defines an area, the umbra region, where the spacecraft
should only consider the actuation cost. Note again that the actuation power in
Figure 5.11 is never negative due to the reaction wheels being unable to return
electrical energy to the spacecraft. This is a significant change from [2], due to the
refined formulation of the actuation power in (5.7).

The main results in Table 5.7 show the amount of energy gained from the
optimal control solver and the PD controller for a combination of the smaller
control scenarios. There is no difference in energy with and without the imaging and
communication tasks since these tasks are set identically for the optimal solution
and the PD controller’s solution. Removing them decreases the energy gained as a
percentage, from 11.3% to 6.51%. Interestingly, the longest optimization, denoted
as task 7, only gives a net energy increase of 1.12%. By excluding the longest
optimization from the calculations, the increase in energy becomes 39.7%. The
reason for this is that the primary benefit of the proposed method comes in the
transient phases, in particular, the opportunity to let the optimal solver choose
when to let go of the optimal solar attitude. The energy difference values, excluding
the shortest optimization, range from about 230 J to about 600 J, no matter how
long the optimization becomes. This indicates that the proposed method would be
more beneficial the more frequently the imaging and communication tasks happen,
or in other words, as the utilization of the satellite is increased.

Note that the one maneuver where the PD controller yields negative energy, task
4, is the shortest task. Given that the task is just 20 seconds, the PD controller
does not move to a solar optimal attitude before going towards the reference.

The current scenario shows that the utilization of the satellite could be higher
than what is shown in this scenario: The plot in Figure 5.11, which shows the
cumulative energy of the satellite, only dips below zero once during the scenario,
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Table 5.7: Energy, comparison

Optimization task
number

Energy,
optimal (J)

Energy, PD
(J)

Energy
increase

(J)

Energy
increase

(%)
1 2 080.3 1 849.0 +231.3 +12.5
2 726.6 365.0 +361.6 +99.1
3 931.8 567.4 +364.4 +64.2
4 81.3 -18.8 +100.1 -
5 6 788.5 6 507.5 +280.9 +4.32
6 8 490.7 8 241.7 +249.0 +3.02
7 25 825.9 25 539.8 +286.0 +1.12
8 498.5 131.8 +366.7 +278
9 893.2 469.3 +423.9 +90.3

10 6 503.5 5 938.8 +564.7 +9.51

Total energy 31 892 28 663 +3 229 +11.3
Total energy without
imaging and comms

52 844 49 615 +3 229 +6.51

Net energy without
imaging and comms

129 794 126 565 +3 229 +2.55

Total energy,
excluding task 7

10 350 7 407 +2 943 +39.7

Total energy without
imaging and comms,

excluding task 7

27 019 24 076 +2 943 +12.3

Net energy without
imaging and comms,

excluding task 7

44 839 41 895 +2 943 +7.02

when the maneuvers are short at the beginning of the scenario. For the rest of the
scenario, there is a surplus of energy. Because of this, it can be concluded that the
satellite can be utilized more for imaging and downlink than what is presented in
this scenario.

The rotations that appear in the umbra region have two causes: they are both
due to the existence of external torques and due to the nature of the numerical op-
timization. With the way the cost function is constructed, owing to the gyroscopic
term in the system’s dynamics, i.e., (5.11c), finding a solution where the control
torque is held at precisely zero, is difficult for the solver, even without other torques
affecting the satellite. Efforts can be made to mitigate this effect, such as choos-
ing a set of body frame axes that align with the principal axes of inertia, but the
external torques will remain.

A possible limitation of the approach presented in this chapter is the time spent
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Table 5.8: Reference comparison

Task
num-

ber

Quaternion
error,

optimal

Quaternion
error, PD

Angular
velocity

error,
optimal

Angular
velocity

error, PD

1 4.2744 · 10-6 4.8769 · 10-4 8.7045 · 10-10 1.3583 · 10-3

2 8.1493 · 10-5 5.0495 · 10-5 5.3019 · 10-8 2.6908 · 10-4

3 1.1256 · 10-5 3.5457 · 10-3 1.2866 · 10-8 1.5230 · 10-3

4 7.2804 · 10-4 1.2148 · 10-1 3.8977 · 10-7 3.9212 · 10-2

5 1.3382 · 10-6 2.8139 · 10-5 5.9935 · 10-10 2.9088 · 10-6

6 4.8979 · 10-7 8.6700 · 10-3 1.2434 · 10-9 6.6274 · 10-3

7 -1.0255 · 10-6 8.5661 · 10-2 7.8557 · 10-13 3.1783 · 10-2

8 1.8394 · 10-5 2.6905 · 10-3 1.5302 · 10-8 9.6976 · 10-4

9 6.6048 · 10-6 4.3345 · 10-3 6.5721 · 10-9 1.5785 · 10-3

10 9.3724 · 10-7 1.2350 · 10-3 1.0088 · 10-9 2.3129 · 10-4

computing the optimal trajectory, as can be seen in Table 5.6. A spacecraft like
HYPSO-2, with the parameters for the orbit presented in Table 5.4, orbits the Earth
about once every 90 minutes, and would go into these energy harvesting phases
twice during an orbit. In the time it now takes to calculate one single trajectory, the
satellite would require several passes if the time needed to construct the problem
in CasADi before solving it is included. For this reason, efforts should be made
to reduce the time required for calculating the optimal attitude trajectories. A
possible avenue towards this goal includes precomputing the position and velocity
of the satellite. This is expected to work well, except in a few special cases: Suppose
so high accuracy is required that the perturbations in orbital positions dependent
on satellite attitude, which were not included in this chapter, must be taken into
account. Precomputing the position and velocity will not be an option in that case.
Similarly, precomputing the position and velocity of the satellite would not work
if the satellite is equipped with thrusters and performs a maneuver during the
optimization.

The torque produced by the magnetorquers is calculated by the control algo-
rithm in (5.14). The optimal solver could also calculate this torque. It is possible to
include the magnetorquer torque formulation into the optimal control problem and
let the solver figure out how much torque the magnetroquers should produce. In
this chapter, the formulation given in (5.14) is preferred to limit the computation
time for the optimal control trajectory.

5.10 Conclusion

The net power function introduced in [2] has been extended to include the envi-
ronmental effects the spacecraft experiences in space, a second actuator, and the
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δ(·, ·) function that describes the magnitude of the solar irradiance as a function
of where the spacecraft is in its orbit. In particular, the net energy optimization
performs as desired when the control horizon approaches a complete orbit when
the spacecraft traverses both the umbra and penumbra regions of the orbit. The
results show that the optimized solution is increasingly beneficial when the time
between each maneuver decreases.

5.11 Perturbations

Three types of perturbations are included in the simulations in this chapter to make
the simulated environment more realistic: Gravity gradient, magnetic torque, and
eddy current torque.

The gravity gradient torque comes from the change in the pull due to different
parts of the spacecraft body being in different places in the gravity field and is
defined as [39]

τ b
grav = 3

µ

∥ri∥3S
(

ri

∥ri∥

)
J

ri

∥ri∥ . (5.18)

The magnetic torque is due to the spacecraft carrying electronic equipment that
sets up a magnetic field that interacts with Earth’s magnetic dipole. The torque is
defined as

τ b
mag = S(mb

res)B
b, (5.19)

where Bb is the magnetic field of the Earth represented in body frame coordinates,
and mb

res is the residual magnetic dipole vector. Note that while the physical prin-
ciple used here is the same as is used to control the spacecraft with magnetorquers,
the residual magnetic dipole mb

res is separate from the dipole set up from the
magnetorquers.

The eddy current torque is given as [39]

τ b
eddy = −keddyS(B

b)S(ωb
ib)B

b, (5.20)

where keddy is a positive constant.
We assume the torque from atmospheric drag and solar radiation pressure can

be omitted, which is typical e.g., for a CubeSat where the center of mass needs to
be in the geometric center of the satellite.
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Chapter 6

Energy optimal attitude control of a
satellite actuated by magnetorquers
in minimum time

This chapter is based on

[5] B. A. Kristiansen, J. T. Gravdahl, S. Gros, and T. A. Johansen, “Energy
optimal attitude control of a satellite actuated by magnetorquers in minimum
time”, in Proceedings of the 7th IEEE Conference on Control Technology and
Applications (CCTA), Bridgetown, Barbados, Aug. 2023.

6.1 Introduction

Magnetorquers are actuators that use the Earth’s magnetic field to control the
spacecraft’s attitude through magnetic actuation. They commonly produce a very
small torque, and thus are primarily used for small satellites. Owing to the physical
law the control action of the magnetorquers is bound by, namely that the torque
is equal to the vector cross product of the magnetic dipole moment set up by
the magnetorquers and the geomagnetic field vector, the system can reach a state
where the magnetorquers are unable to supply the desired torque that is required
for the system to reach the desired attitude. This occurs when the required magnetic
moment parallels the local geomagnetic field vector. This problem, combined with
the small torque, makes maneuvers endure for a fraction of an orbit to several
orbits, in contrast to maneuvers performed with reaction wheels, which could last
from seconds to minutes. While reaction wheels come in sizes that fit into CubeSats,
a common structure used for small satellites, magnetorquers as a means of attitude
control remain a popular solution, particularly for very small satellites such as 1U
and 2U CubeSats.

The concept of using magnetic torque for attitude control has a long history;
see for example [40], [41], [42], [43], and [44]. The full control strategy presented in
[40] included both a detumbling term, meaning one that uses the magnetic field to
dampen the angular velocity, and one that provides attitude feedback. Some of the
articles ([40], [41], [42]) discuss global, as opposed to local, attitude stabilization
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based on two mathematically different equilibrium points representing the same
physical attitude, a concept which is no longer commonly discussed in attitude
control literature as global attitude stabilization is not possible with continuous
time-invariant feedback [17]. In [43], the authors avoid this problem by looking
for almost-global attitude stability. The authors in [45] used hybrid control to
show some global stability properties. The survey paper [44] highlights the use of
periodic control for magnetic control of satellites, a concept also utilized in [40].
The assumption behind periodic control for magnetic control of satellites is that
the magnetic field is periodic, meaning that the magnetic field’s values repeat as
the satellite makes a full orbit. As the Earth rotates under the satellite as it orbits,
in particular for satellites in low-Earth orbit, this does not exactly hold, motivating
the stability analysis in [42]. Others have also looked into optimal control strategies:
[46], [47], and [48] all studied optimal attitude control with magnetorquers. [46]
looked into the linearized model for LQR onboard a satellite. In [47] the authors use
a periodic Riccati equation, while [48] uses periodic optimal feedback in discrete-
time, both using linearized models.

Time-optimal attitude control has been studied in [10], although the authors
did not consider magnetic torque in their problem. In [49], the authors investigated
a time-optimal magnetic attitude maneuver using an analytic method for optimiza-
tion. In this chapter, the optimal control problem is solved using multiple-shooting,
a direct numerical optimization method.

The energy optimal aspect of the optimization in this chapter refers to the net
power cost function introduced in [50] and extended upon in [7]. The cost function
the authors used in [31] is similar to the one used here since the authors optimize
based on solar energy, but the net power cost function used here also includes the
power spent on actuation.

The contribution of this chapter is demonstrating how an energy optimal nu-
merical control framework can be used to optimize the net energy of a satellite
actuated with magnetic torquers, or magnetorquers. The net energy, based on the
net power cost function, is the integral of the difference in power that the satellite
harvests through its solar cell arrays and the power it spends on actuation. The
optimal control problem in this chapter combines the aforementioned cost function
with the minimization of maneuvering time. This multi-objective optimization,
which is a combination of the four objectives i) maximize net power, ii) reach the
desired attitude, iii) reach the desired angular velocity, and iv) minimize time, is
formulated to reach objective i)-iii) without having to specify the final time of the
optimization.

The remaining sections of the chapter are as follows: in Section 6.2 the optimal
control problem for the satellite actuated by magnetorquers is introduced. In ad-
dition to this, a brief introduction to the net power cost function and the changes
to the optimal control problem that has been made to facilitate the use of magne-
torquers for attitude control is included in this section. Section 6.3 introduces the
simulation setup. In Section 6.4, the results from the optimization are presented,
including the Pareto front, which is commonly used to analyze multi-objective op-
timization strategies. The penultimate section, Section 6.5, contains the discussion,
while the last section, Section 6.6, contains a brief conclusion.
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6.2 Problem formulation

6.2.1 Reference frames

Three frames are used in this chapter: the inertial frame is an Earth-centered
inertial reference frame with vectors denoted by a superscript i. The satellite itself
has a frame attached to it, the body frame, denoted by superscript b. The third
frame is a local vertical, local horizontal (LVLH) frame, the orbit frame, is denoted
by superscript o. The axes of the orbit frame are defined in (6.1)

ẑo = − ri

∥ri∥ , x̂
o =

vi

∥vi∥ , ŷ
o =

ẑo × x̂o

∥ẑo × x̂o∥ , (6.1)

where ri is the position of the satellite in the inertial reference, or ECI, frame, and
vi is its velocity. ∥·∥ is the norm of a vector, and × is the vector cross product.
The ·̂ symbol indicates that it is a unit vector.

6.2.2 Optimal control problem

The optimal control problem we solve in this chapter is given in (6.2),

min
x,u,T

JF −
1

T

∫ T

0

P (x,u) dt+ k3T (6.2a)

s.t. q̇o
b =

1

2
T(qo

b)ω
b
ob +

1

2
ρqo

b

(
((qo

b)
⊺
qo
b)

-1 − 1
)

(6.2b)
bd

dt
ωb

ib = J-1(− S
(
ωb

ib

) (
Jωb

ib

)
+ S

(
mb
)
Bb + τ b

ext
)

(6.2c)

bd

dt
ωb

ob =
bd

dt
ωb

ib +
(
S(ωb

ob)R
b
o +Rb

oS(R
o
bω

b
ob)
)
Ro

i

S
(
ri
)
ri

(ri)
⊺
ri

(6.2d)

id

dt
ri = vi (6.2e)

id

dt
vi = − µri

∥ri∥3
(6.2f)

mb
lb ≤mb ≤mb

ub (6.2g)
T > 0 (6.2h)
x(0) = x0. (6.2i)

For details on the dynamical modelling, see Chapter 5, Chapter 11, and [19].
The changes from the optimal control problem in [7] (and [50]) is that the

reaction wheels and their dynamics have been removed, and magnetorquers are
now used as the main actuator for attitude control. The torque applied to the
spacecraft by the magnetorquers is determined by

τ b
mtq =

(
mb
)
×Bb = S

(
mb
)
Bb, (6.3)

which can be seen in (6.2c), where S(·) is a skew-symmetric matrix representing the
vector cross product, Bb is the vector representing the local geomagnetic field in
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the body frame, and mb is the magnetic moment the magnetorquers can produce,
which is what we can control. Because of the cross product in (6.3), the torque has
to be perpendicular to the magnetic field vector, which constrains the actuation
compared to other actuators. In addition to these changes, an additional term is
introduced to the cost function (6.2a), namely k3T , where k3 is a weight and T
is the final time of the optimization. This term is added to the cost function to
minimize this time. The variable T > 0 is a free parameter in the optimization.

The rest of the variables in (6.2) describe the attitude control problem: qo
b is

the unit quaternion representing the attitude of the spacecraft body frame b with
respect to the inertial reference frame i. The T(·) matrix in (6.2b) is given by [18]

T (q) =

[
−ϵ⊺

ηI3x3 + S(ϵ)

]
, (6.4)

where η and ϵ are the scalar and vector parts of the unit quaternion, respec-
tively, and I3x3 is the three-dimensional identity matrix. Rb

o is the rotation matrix
representation of the quaternion. Ri

o can be constructed using the vectors in the
definition of the orbit frame in (6.1). The angular velocity between the body and
inertial frame is given by ωb

ib, while the angular velocity between the body frame
and the orbit frame is given by ωb

ob. The term 1
2ρq

o
b(((q

o
b)

⊺
qo
b)

-1 − 1), where ρ is
a small positive constant, is the Baumgarte stabilization term [29]. J is the space-
craft inertia matrix, and mb

lb and mb
ub are the lower and upper bounds on the

magnetorquers magnetic moment, respectively. The external torques, τext, are in
this chapter given by the sum of two torques that commonly affect satellites in low
Earth orbit [39]:

τext = S(mb
res)B

b − keddyS(B
b)S(ωb

ib)B
b, (6.5)

where the first term is the magnetic disturbance torque, and the second is the
eddy current torque. µ is the standard gravitational parameter of the Earth. The
constraint in (6.2i) is included to ensure that the problem starts at the correct
state. The state vector is denoted by x =

[
qo
b ,ω

b
ib,ω

b
ob, r

i,vi
]⊺, the initial values

are denoted by x0. u is used as a general symbol for the input to the system.

6.2.3 Cost function

The cost function is given by (6.2a). The first part of the cost function, JF, is

JF = k1Jpath,ref + k2Jvelocity

= k1 (1− |(qo
b)

⊺
qref|) + k2

(
ωb

e
)⊺ (

ωb
e
)
,

(6.6)

where qref is the reference for the attitude.The angular velocity error, ωb
e, is defined

as ωb
e =

(
ωb

ref − ωb
ob

)
, where ωb

ref is the angular velocity reference.
(
1−

∣∣(qi
b

)⊺
qref
∣∣)

is a metric on SO(3) [28]. JF is a terminal cost that applies only at the final state.
Including these terms in the cost function is an alternative to including them as
hard constraints in the solver.

The middle term of JF, − 1
T

∫ T

0
P (x,u) dt, is the integral of the net power

term P (x,u) [50]. The net power is calculated by subtracting the power spent
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on actuation from the incoming power, which is the power the solar cell arrays
supply to the system, according to

P (x,u) = κ(Ri
b, rSun)δ(rSun, rEarth)−

(
Ibmtq ◦ Ibmtq

)⊺
Rmtq, (6.7)

Here κ(·), as a function of the attitude, Ri
b, and the vector from the satellite to

the Sun, rSun, is the solar power function which is given as

κ(Ri
b, rSun) =

ns∑

j=1

max
((

ŝb
)⊺

n̂b
j , 0
)((

ŝb
)⊺

n̂b
j

)
cs,jAj . (6.8)

where ŝb is the normalized sun vector, n̂b
j , j = 1 . . . ns is the normal vector of each

solar panel, which have area Aj . cs,j is the product between solar irradiance and
the efficiency of the specific solar panel. The max-function is included so that only
the solar power of faces exposed to solar irradiance gets counted. To make the cost
function smooth, we use the approximation as defined in Equation (2.11).

The δ-function in (6.7), which is a function of the positions rSun and rEarth
of the satellite relative to the Sun and to the Earth, respectively, represents the
amount of solar irradiance that reaches the satellite. It can be calculated offline
when the orbit is set beforehand, such as in the model presented in (6.2e) and
(6.2f). In this chapter, the formulation for the δ(·) function presented in [7] is used.
Other representations, such as the ones presented in [32], can also be used.

Ibmtq is the vector flow of current through the magnetorquers with resistance
Rb

mtq. The operator ◦ is the Hadamard, or element-wise, product. The mapping
between mb and Ibmtq is given by

mb =
(
nb

mtq
)
◦
(
Ab

mtq
)
◦ Ibmtq, (6.9)

where nb
mtq is the vector with the number of wire turns of the magnetorquer per

each axis in the body frame. Ab
mtq is the vector the cross-sectional areas of the

coils.
The weights k1 and k2, along with k3 associated with the minimum time objec-

tive, are used to tune the response of the multi-objective optimization. Including
the time objective in the cost function this way lets the optimal solver choose the
final time based on the chosen weights.

6.3 Simulation setup

The simulation study in this chapter is based on a 6U CubeSat, meaning that the
dimensions of the satellite are 10× 20× 30 cm3. The areas covered by solar panels
are given by

Asca = [0.03, 0.06, 0, 0.03, 0.06, 0]⊺ m2, (6.10)

where each value Asca,i corresponds to face number i, i = 1 . . . 6, and a value of zero
means that no solar panel is present on that face of the spacecraft. The magnetic
field is simulated using the IGRF model [37].

The PD controller from [9], which is not constrained by producing a torque
perpendicular to the magnetic field, is used to produce the initial guesses for the
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solver where the reference for most of the control horizon is held at the energy
optimal attitude, as detailed in [50]. The PD controller sampling rate is set to 1
Hz, and the state history and control input are both used as initial guesses for the
optimal control problem for each control step N . The initial guess for the time
variable T is set to 3000 s.

In this chapter, we want to apply the proposed controller to a point-to-point,
sometimes called a rest-to-rest maneuver. The initial values for the states are set to
be qi

b(0) = [0, 0, 1, 0]
⊺ and ωb

ib(0) = [0, 0, 0]
⊺, assuming that the satellite is already

detumbled, which is a common strategy with magnetorquers, see for example [40].
For ri and vi the initial values are set by sending the values in Table 6.1 through
the RANDV function from [32]. ωb

ib is uniquely set when the orbit and the orbit
frame angular velocity is defined. The references are set to qref = [0, 1√

2
, 0, 1√

2
] and

ωb
ob = [0, 0, 0].

The optimal control problem is discretized using multiple shooting, integrated
using a Runge-Kutta 4 integrater, and is solved with IPOPT [20] using CasADi [30].
The constraint keeping the time variable positive, (6.2h), is implemented with the
lower bound on T set to 100 s instead of zero to promote a physically meaningful
solution in the solver. Note that while the time is constrained to be positive, it
might be necessary to additionally constrain the final time from above to avoid
numerical problems.

Table 6.1: Orbital elements

Variable Value Unit
Semimajor axis 6898 km
Eccentricity 0.000713 -
Inclination 97.427 deg (◦)
Right ascension of the ascending node 215.365 deg (◦)
Argument of perigree 83.564 deg (◦)
True anomaly 34.004 deg (◦)

The inertia matrix J is given in (6.11) [1], which is for a 6U CubeSat.

J =




0.0775 0.0002 −0.0002
0.0002 0.1067 0.0005
−0.0002 0.0005 0.0389


 kg ·m2, (6.11)

Table 6.2 shows the various constants used in the optimal control problem. cs
written only once, as cs,j from (6.8) is identical for all j. The three-dimensional
column vector of ones is denoted by 1.

Different values of k3 are tried. The results for k3 = 1 · 10-8 are displayed in the
results section. The simulations were performed on a computer with a 2.40 GHz
8-core processor.
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Table 6.2: Various constants

Variable Value Unit
Control intervals (N) 100 -
Solar irradiance 1366 W/m2

Solar panel efficiency 20 %
cs 272.2 W/m2

ηrw 85 %
α 10-7 -
k1 2 · 103 W2

k2 2 · 105 J
k3 1 · 10-8 W
ρ 10-2 -
µ 3.986 · 1014 -
mb

des 12[1, 1, 1]⊺ mA·m2

keddy 0.01 -
nb

mtq
(
1.1 · 105

)
[1, 1, 1]⊺ -

Ab
mtq

(
5 · 10-3

)2
π[1, 1, 1]⊺ m2

mb
lb -0.34 [1, 1, 1]⊺ A·m2

mb
ub 0.34 [1, 1, 1]⊺ A·m2

6.4 Results

Figure 6.1 shows the attitude trajectory that comes as a result of the optimization
when k3 = 1 · 10-8. The shaded area represents the time the satellite is in eclipse.
Here, we can see that the attitude optimization reaches the reference value. The
accompanying angular velocity, ωb

ob, and magnetic moment, mb, are shown in Fig-
ure 6.2 and Figure 6.3, respectively. The angular velocity is not exactly zero for
this optimization, but the state ends relatively close to the reference. Figure 6.1
and Figure 6.2 show that the optimal solution comes close to achieving two of the
objectives, namely that the attitude and angular velocity should be close to their
references, by the end of the control scenario.

The evolution of the net power part of the cost function over time is shown in
Figure 6.4. The maximum power the satellite can receive at any given time with the
specified solar panels is 16-17 W, where Figure 6.4 maxes out. The section between
2800 s and 4800 s where the cost function seems zero is where the satellite is in
an eclipse, meaning that no solar irradiance reaches the satellite. This coincides
with the shaded areas of the plots. The amount of solar irradiance that reaches the
satellite, or δ(·), is shown over time in Figure 6.5.

Table 6.3 shows the time it took for the solver, IPOPT, to find the optimal
solution.

Figure 6.6 shows the values of time T plotted against the net energy gained
for a range of values of k3. The values for k3 are shown in the first column in
Table 6.4. Table 6.4 also shows the change in values for the other objectives the
optimization tries to accomplish. The points in Figure 6.6 are denoted by the value
of the exponent in the value the weight k3 takes at that point. All the simulations
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Figure 6.1: Quaternion trajectory.

Figure 6.2: Angular velocity, body frame relative to orbit frame.
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Figure 6.3: Magnetic moment, magnetorquers.

Figure 6.4: Net power evolution over time.
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Figure 6.5: Delta function value over time.

Table 6.3: IPOPT output

Output Value
Number of iterations 524
Total CPU secs in IPOPT (w/o function evaluations) 8.8
Total CPU secs in NLP function evaluations 237.6

for the different values of k3 are initialized from the same state with the same initial
guesses.

6.5 Discussion

The simulation results in Table 6.4 show how well the solver does for a range of
values for the weight k3. In the case where k3 = 10-8 is used, as it is in most figures,
a quaternion close to the reference, i.e., the quaternion error in the table close to
1, and a low angular velocity error is obtained. This value for the k3 weight is the
only one of the nine values tried, which results in a large enough final time to gain
solar power after the eclipse.

In multi-objective optimization, there is generally a trade-off between the dif-
ferent objectives. All values of k3 below 10-2 yield reasonable terminal error for the
quaternion and angular velocity, but when k3 is set higher (10-1 or 100), the angular
velocity at final time is close to its maximum extent, prioritizing the final time over
a lower angular velocity error. When k3 is 100 the terminal quaternion error is also
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Table 6.4: Results for range of k3

Value,
k3

Net
en-
ergy
(J)

Time
(T ,
s)

Quaternion
error 1 −
|(qo

b)
⊺
qref|

Angular ve-
locity error(
ωb

e
)⊺ (

ωb
e
)

10-8 40068 5086 4.1068·10-5 1.7212·10-7

10-7 37109 3346 4.2665·10-6 5.0955·10-8

10-6 27136 2109 2.0705·10-6 1.6178·10-7

10-5 32514 2882 1.5036·10-6 4.9318·10-8

10-4 33909 2660 2.7902·10-6 4.2877·10-7

10-3 21509 1690 1.6428·10-6 1.3471·10-7

10-2 7487 758 8.4568·10-6 4.3484·10-6

10-1 5934 645 1.9182·10-4 1.9497·10-5

100 5100 525 2.2845·10-3 7.5625·10-5
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Figure 6.6: Time against net energy for several values of k3. The number that
denotes the point in the figure is connected to the exponent used for k3, meaning
that -3 corresponds to k3 = 10-3.
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high. A plausible explanation for this can be suggested from the magnetic moment
plot in Figure 6.3. Even with a final time of T = 5086 s, the magnetic moment of
the magnetorquers saturates for long periods, suggesting that the magnetorquers
would struggle to actuate that moment during a shorter period. Thus, the terminal
error would naturally degrade. This is without considering the cross-product with
the Earth’s magnetic field the magnetic moment uses to produce torque, which is
a further limiting factor. Also, note that the magnetic moment is not saturated
during the eclipse: this comes from the definition of the net power cost, where the
objective in the shade becomes an actuation minimization problem.

The values for k3 from k3 = 100 through k3 = 10-7 in Figure 6.6 go through
more or less a straight line. This is expected owing to the solar energy, the dominant
part of the net energy function when the satellite is not in eclipse, being a linear
function of time if the optimal sun-pointing attitude is held, which it will be for
the optimal trajectory [50]. The curve in the figure is a second-order polynomial.
This can be explained by the eclipse: no energy is gained in the eclipse, only the
energy spent is minimized. Thus, the point for k3 = 10-8 is moved further right
than it would be if all sections of the orbit were lit.

The order of k3 = 10-4, k3 = 10-5, and k3 = 10-6 are not very intuitive: as
minimizing time gets more weight when k3 = 10-4 it is natural to assume that
its point would be further left than the point for k3 = 10-4. The weight indicates
the importance of minimizing the final time, where a higher number makes time
minimization more important to the solver. Reducing the importance of the time
minimization objective does not necessarily reduce the time spent on the maneuver
in this interval. The behavior displayed in Figure 6.6 may be owing to the solver
looking for local optima. Another possibility is that it is an artifact owing to the
non-convexity of the problem. Note that the initial guess for time (3000 s) and the
beginning of the shadow (around 2800 s) are around the same time as the solution
for k3 = 10-4 and k3 = 10-5.

6.6 Conclusion

The optimal control strategy works and gives a set of non-trivial solutions that
the user can select based on preferences, weighting time against net energy. Future
work will be to reformulate the problem to better account for the artifacts the non-
convexity of the problem brings out in the solver to produce optimal trajectories
over multiple orbits.
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Chapter 7

Introduction

Maximum hands-off control is a form of control where the control signal is as
sparse as possible. Where some optimal control problems minimize the first or
second norm of the input, meaning the L1- or the L2-norms, the objective of
maximum hands-off control is to minimize the L0-norm of the signal. The L0-
norm is the time the control signal takes on a non-negative value. Of course, as
the L0-norm minimization problem is NP-hard, the maximum hands-off control
problem is challenging for a computer to solve. It is common to use the L1 norm
as an approximation for the L0-norm, which in many cases is sufficient. In the
publications in this part, we use a different formulation, a relaxation of the L0-
norm, which makes it possible to solve the maximum hands-off control problem
with a Newton-type solver.

Chapter 8 is based on

[3] S. K. Schaanning, B. A. Kristiansen, and J. T. Gravdahl, “Maximum
Hands-Off Attitude Control,”, in 2022 American Control Conference (ACC),
pp. 4003–4010, Atlanta, Georgia, USA, Jun. 2022.

This chapter solves the attitude control problem using a direct multiple-shooting
method in the maximum hands-off control formulation. The article the chapter
is based on shows that the maximum hands-off control scheme is feasible for the
problem we are trying to solve. The simulations are based on the HYPSO-1 satellite,
so the actuators in use are reaction wheels.

Chapter 9 is based on

[4] B. A. Kristiansen and J. T. Gravdahl, “Maximum Hands-Off Attitude
Control of a Spacecraft Actuated by Thrusters,” in Proceedings of the 22nd
IFAC World Congress, July 2023, Yokohama, Japan,

which extends the results from [3] to a satellite with thrusters. Thrusters, by nature,
are a more natural choice for maximum hands-off due to their on-off nature. As
on-off is not in the Newton-type solver’s nature, the formulation of the control
problem is extended to facilitate this actuator change. In addition, relative sparsity
is introduced as a metric to compare how sparse different controllers are when
competing on the same terms.
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Section A

Section B

Section C

Umbra

Penumbra

Penumbra

Figure 7.1: Thesis outline.

In the context of Figure 7.1, both articles are maneuvers between two pointing
events, placing them in section B of the figure.

The concept of maximum hands-off control, as shown in [51], is an optimal
control scheme that aims to minimize the time spent on actuation. The control
scheme has a range of applications, including in the control of spacecraft, as was
shown for a single-axis attitude control maneuver in [52]. A maximum hands-off
controller is an optimal controller with control values which are often zero, i.e.,
the control values are sparse, but still manage to achieve the control objectives
[53]. A hands-off controller holds the control values at zero over a time interval,
and the maximum hands-off controller maximizes the time interval over which the
control input is exactly zero [51]. This property is desirable in systems with limited
resources, such as in spacecraft (attitude) control. In [54], which is the basis for
Chapter 8, we take this concept further by demonstrating how maximum hands-
off control would work for a fully nonlinear model for attitude control, using unit
quaternions to represent the attitude of a CubeSat actuated by reaction wheels,
a case inspired by the HYPSO-1 mission at NTNU [21]. Moreover, in the same
chapter, we introduce the concept of moving maximum hands-off control, where
the designer can design the cost function such that the control signal can be sparse
at specific points during the control horizon.

Maximum hands-off control is a control scheme where the resulting torque is
highly discontinuous. While we show in Chapter 8 that reaction wheels, a type of
actuator that works well with continuous controllers, can be used with maximum
hands-off control to control the attitude of a spacecraft, a more natural choice of
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actuators to couple with maximum hands-off control is reaction thrusters. Reac-
tion thrusters, or simply thrusters, are actuators that are either completely on or
completely off, giving a discontinuous input to the system. Rather than reaction
wheels, thrusters can be used for orbital maneuvers in addition to just attitude
control. See for example [55, 56].

There exists thrusters that are not off or on at their maximum magnitude,
namely electric thrusters (see for example [57]), which have been suggested for use
for the attitude control of a spacecraft [58, 59]. The focus of chapter Chapter 9
is on/off thrusters. However, a brief discussion on generalizing the results in this
paper for use with continuous thrust is included.
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Chapter 8

Maximum Hands-Off Attitude
Control

8.1 Introduction

The main contribution of this chapter is the design of a maximum hands-off con-
troller solving the attitude control problem for a spacecraft actuated by reaction
wheels. The maximum hands-off controller is tested through simulations of a 6U
CubeSat, which resembles the configuration of HYPSO-1 [21]. HYPSO-1 is a small-
sat actuated by reaction wheels and developed at NTNU [21]. We furthermore
design and implement the moving maximum hands-off controller as an extension
to the maximum hands-off controller. The moving maximum hands-off controller
allows the user to specify in which time interval the control inputs should occur
and is, to the authors’ best knowledge, a novel concept within control. Finally, this
chapter compares the responses of the maximum hands-off controller, the mov-
ing maximum hands-off controller, and the L1-optimal controller when solving the
spacecraft attitude control problem.

The rest of this chapter is organized as follows: Section 8.2 describes the coordi-
nate frames and presents the spacecraft dynamics. Section 8.3 introduces the theory
behind the maximum hands-off controller. Section 8.4 introduces the controller de-
signs, including the design of the novel moving maximum hands-off controller, and
Section 8.5 presents the simulation setup. The simulation results are presented in
Section 8.6, whereas the findings are discussed in Section 8.7. Section 8.8 provides
the conclusion.

8.2 Spacecraft model

In this section, we present the model of a spacecraft orbiting the Earth, actuated
by reaction wheels.
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8. Maximum Hands-Off Attitude Control

8.2.1 Angular velocity

When analyzing the attitude of a spacecraft orbiting the Earth, three different
angular velocities are of interest, namely the angular velocities of the body frame
{b} relative to the orbit frame LVLH {o}, ωb

ob, the angular velocities of {o} relative
to {i}, ωb

io, and the angular velocities of {b} relative to {i}, ωb
ib. The angular

velocities relate to one another as follows:

ωb
ob = ωb

ib − ωb
io = ωb

ib −Rb
oω

o
io, (8.1)

where ωo
io is defined as [19]

ωo
io = Ro

i

S(ri)vi

(ri)⊺ri
. (8.2)

Moreover, the inertial acceleration of the spacecraft is defined as

v̇i = − GM

∥ri∥32
ri, (8.3)

where G is the gravitational constant, M is the total mass of the Earth, and ∥ri∥2
denotes the 2-norm of ri. The rate of change for ri is given as

ṙi = vi. (8.4)

8.2.2 Total system dynamics

The total spacecraft dynamics for a spacecraft orbiting the Earth are given as [1,
19, 55, 60]

q̇o
b =

1

2
T(qo

b)ω
b
ob (8.5a)

bd

dt
ωb

ib = Js
-1(−Aτw

u − S(ωb
ib)Jω

b
ib +AJwω

w
bw) (8.5b)

bd

dt
ωb

ob =
bd

dt
ωb

ib + S(ωb
ob)R

b
oω

o
io +Rb

oS(R
o
bω

b
ob)ω

o
io (8.5c)

wd

dt
ωw

bw = Jw
-1τw

u −A⊺ω̇b
ib, (8.5d)

where J ∈ R3×3 is the total system inertia of the spacecraft rigid body, defined
as J = Js +AJwA

⊺, where Js ∈ R3×3 denotes the inertia of the spacecraft rigid
body excluding the inertia about the spinning axes of the reaction wheels, and
Jw ∈ Rn×n denotes the inertia matrix of the reaction wheels about the spinning
axes.

8.3 Maximum hands-off control

8.3.1 Mathematical preliminaries

The content presented in this section is based on [51], which provides a detailed
review of the mathematics behind maximum hands-off control.
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8.3. Maximum hands-off control

The L1-norm of a vector x ∈ Rnx is defined as

∥x∥1 ≜
nx∑

i=1

|xi|. (8.6)

The Lp-norm, with p ∈ [1,∞), of a vector of continuous-time signals u(t) over the
time interval [0, T ) is defined as

∥u∥p ≜

(∫ T

0

∥u(t)∥pdt
) 1

p

. (8.7)

The norm ∥·∥ inside the integral in Equation (8.7) can be any p-norm for p ∈ [1,∞)
[61]. If p ∈ (0, 1), in Equation (8.7), then ∥ · ∥p is not a norm as it fails to satisfy
the triangle inequality [51].

The support of a function is the set of points where the function takes on
nonzero values [62], and the support set of a function u(t), supp(u(t)), is defined
by the closure of the set [51]

{t ∈ [0, T ] : u(t) ̸= 0}, (8.8)

and by using Equation (8.8), the L0-norm of a continuous-time signal u(t) can be
defined by the length of the support of u(t) accordingly:

∥u∥0 ≜ µ(supp(u(t))), (8.9)

where µ(·) is the Lebesgue measure on R.

8.3.2 Maximum Hands-off Control Problem Formulation

The maximum hands-off control is the control that maximizes the time interval
over which the control input is exactly zero. To put it more precisely, the controller
minimizes the Lebesgue measure of the support, i.e., the L0-norm, to find the
sparsest of the admissible controls [51]. The L0-cost function is given as [51]

J0(u) ≜
m∑

i=1

λi∥ui∥0, (8.10)

where m is the number of control inputs, u is the control input vector, λi are
positive weights, and ui denotes each element i in u. The control that minimizes
Equation (8.10) is called the maximum hands-off control, or the L0-optimal control,
and it is the sparsest control among all admissible controls [51].

The L0-cost function in Equation (8.10) is discontinuous and non-convex [51].
Solving discontinuous and non-convex optimization problems is generally hard [51],
and solving the L0-optimal control problem is NP-hard [63]. Several relaxation
methods and reformulations have been suggested to Equation (8.10), for instance,
replacing the L0-norm by the L1-norm [51].

By defining the L0-optimal control problem as [63]
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8. Maximum Hands-Off Attitude Control

minimize
x

f(x) + γ∥x∥0 (8.11a)

subject to ci(x) = 0, i ∈ E (8.11b)
ci(x) ≤ 0, i ∈ I, (8.11c)

the L0-optimal control problem can be reformulated using a set of complementarity
constraints [63] accordingly,

minimize
x

f(x) + γ⊺(1N − ξ) (8.12a)

subject to ci(x) = 0, i ∈ E (8.12b)
ci(x) ≤ 0, i ∈ I (8.12c)
ξ ≤ 1N (8.12d)
±ξ ◦ x ≤ ϵ1N (8.12e)
ξ ≥ 0, (8.12f)

where 1N is the N -vector of ones, N is the number of control intervals, and 1N −ξ
is the support vector of x. The support 1− ξj of the state xj essentially plays the
same role as the support, supp(·), in Equation (8.8). The notation a◦b denotes the
componentwise product between the vectors a and b. E and I are two finite index
sets, γ > 0 is a positive vector with components γj > 0, f(·) is the continuously
differentiable objective function, and ci the continuously differentiable constraint
functions. ϵ > 0 is a relaxation scalar. It is desirable to investigate the properties
of the relaxed problem when ϵ approaches zero because then the complementarity
constraints would equal zero.

8.4 Control design

8.4.1 Control objectives

The control objective of the maximum hands-off controller is to find the sparsest
control among all admissible control sequences. Note that for the remaining parts
of this study, the term sparsity is defined in the following way:

Definition 8.4.1 (Sparsity). A control signal’s sparsity refers to the total time the
control signal takes on nonzero values.

Minimizing the number of time intervals in which the control signal takes on
nonzero values, a related concept, is called minimum switching control. Minimum
switching control has been studied for attitude control in [64].

Although the maximum hands-off controller yields the sparsest control, the
control might not occur at the most favorable instants of time, which motivates
the design of the moving maximum hands-off controller. The term moving refers
to the characteristic of the controller, which lets the user move the sparse control
according to a desired set of preferences, for instance, environmental conditions.
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8.4. Control design

In some situations, it may be ideal not to have any control input on a satellite,
e.g., when a scientific measurement occurs. Using the moving maximum hands-off
controller could ensure that no control is applied during the measurement interval.

8.4.2 Maximum hands-off controller

The maximum hands-off controller, or the L0-optimal controller, aims to mini-
mize the L0-norm of the control input. The design of the maximum hands-off
controller implemented in this chapter is inspired by the relaxed formulation in
Equation (8.12) with γ = 1N , and is formulated as

minimize
τ b
u,ξ

k1f(ω
b
ob) + k2g(q

o
b) + k3(1N − ξ)1⊺

N (8.13a)

subject to ẋ = f(x, τ b
u) (8.13b)

±τw
u ≤ τlimit (8.13c)

x(0) = x0 (8.13d)
ξ ≤ 1N (8.13e)

±ξ ◦ τ b
u,1 ≤ ϵ1N (8.13f)

±ξ ◦ τ b
u,2 ≤ ϵ1N (8.13g)

±ξ ◦ τ b
u,3 ≤ ϵ1N (8.13h)

ξ ≥ 0, (8.13i)

where k1, k2 and k3 are positive constants, ξ is the complementarity vector to the
control input τ b

u, and 1N−ξ is the support vector of τ b
u. τ b

u,1, τ b
u,2, and τ b

u,3 denotes
the components of τ b

u about the x, y and z-axis in {b}, respectively. The state vec-
tor x is defined by [qo⊺

b ,ω
b⊺
ib ,ω

b⊺
ob ,ω

w⊺
bw ,v

i⊺, ri⊺]⊺, x0 denotes the initial state values,
and f(x, τ b

u) is defined by (8.5a), (8.5b), (8.5c), (8.5d), (8.3), and (8.4). The func-
tions f(·) and g(·) are designed to steer ωb

ob and qo
b , respectively, to their desired

final states. More specifically,

f(ωb
ob) =

nω∑

i=1

(ωb
ob,i(T )− ωb

ob,ref,i)
2

g(qo
b) = 1−

∣∣(qo
b(T ))

⊺qo
b,ref
∣∣ ,

(8.14)

where T denotes the final time, ωb
ob,ref and qo

b,ref are the reference angular ve-
locities and reference quaternion, nω denotes the number of entries in ωb

ob(T )
and ωb

ob,ref, and ωb
ob,i(T ) and ωb

ob,ref,i denotes the ith component of ωb
ob(T ) and

ωb
ob,ref, respectively. The function g(·) is a pseudometric on the unit quaternion

but a metric on SO(3) [28]. The absolute value, |(qo
b(T ))

⊺qo
b,ref|, is approximated

as max
(
(qo

b(T ))
⊺qo

b,ref,−(qo
b(T ))

⊺qo
b,ref

)
[2].

8.4.3 Moving maximum hands-off controller

The design of the moving maximum hands-off controller is similar to that of the
maximum hands-off controller in Equation (8.13). The moving maximum hands-off
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optimal control problem is formulated as

minimize
τ b
u,ξ

k1f(ω
b
ob) + k2g(q

o
b) + k3(1N − ξ ◦ hN )1⊺

N , (8.15)

where the constraints on Equation (8.15) are identical to Equations (8.13b)
to (8.13i). The vector hN specifies where the control torques should occur. By
default, the vector hN is an N -dimensional vector of all ones. The user might
change the values of hN to values between 0 and 1, to indicate for which time
intervals the control input should occur. For instance, if the value of hN is set to
0.1 for N = 10, . . . , 20, it would yield a more optimal solution if the control occurs
between these control intervals as sparsity comes at a lower cost in this interval
than the rest.

8.4.4 L1-optimal controller

The design of the L1-optimal control problem is formulated as

minimize
s,τ b

u

k1f(ω
b
ob) + k2g(q

o
b) + k3

N∑

i=0

sk (8.16)

where Equation (8.16) is constrained by Equations (8.13b) to (8.13d), in addition to
−sN ≤ τ b

u ≤ sN .
∑N

i=0 sk denotes the L1-norm of τ b
u, i.e., ∥τ b

u∥1 =
∑n

i=0 si = 1⊺s,
where s ∈ Rn is a set of slack variables [65].

8.4.5 PD-controller

A standard PD controller is given as [9]

τ b
u = Kdω

b
e +Kpϵe. (8.17)

Here, ωb
e is the angular velocity error, defined as ωb

e = ωb
ob − ωb

d, where ωb
d is

the desired angular velocity. ϵe is the vector part of the error quaternion, defined
as qe = q−1

d ⊗ qo
b , where qd = [ηd, ϵ

⊺
b ]

⊺ is the desired attitude. Kd and Kp are
constant and positive definite controller gain matrices. The numerical values of the
gain matrices were chosen while tuning the PD controller.

8.5 Simulation setup

The experiments were conducted using CasADi as the optimization tool [30]. The
NLP-solver IPOPT was used to solve the optimization problems using the solver’s
default options. The optimal control problems in Equations (8.13), (8.15) and (8.16)
were discretized using direct multiple-shooting, whereas the dynamics of the space-
craft were discretized using Runge-Kutta 4 integration. The output from the PD
controller was used as the initial guesses for the L1-optimal controller, and the
output from the L1-optimal controller was given as initial guesses for the maxi-
mum hands-off controller and the moving maximum hands-off controller. The initial
guesses were applied to the states qo

b , ω
b
ib, and ωw

bw. No initial guesses were applied
to the control torque τ b

u, i.e., the default initial guess of zero used by CasADi was
applied.
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8.6. Results

Some tests were conducted with different initial guesses to see how the con-
trollers responded. The tests revealed that the initial guesses for IPOPT are of
significant importance when trying to find the optimal solutions. Different initial
guesses cause the optimization to iterate fast or slow towards an optimal solution
and affect the quality of the solution [66].

The experiments reported in this chapter were conducted using a 2 GHz Intel
Core i7-9700T CPU computer running Windows. The simulation of the experiments
was conducted using the parameters for a 6U CubeSat as the spacecraft’s rigid
body, and it is assumed to orbit in Low-Earth-Orbit (LEO). Four reaction wheels
are used to control the attitude of the CubeSat. This is part of the setup used for
the HYPSO-1 mission, which motivates the work in this chapter [21]. Three of the
reaction wheels are placed orthogonally along the three axes of the body frame.
The fourth reaction wheel is placed such that its torque yields equal components
in each body frame axis. The torque distribution matrix A is given as [1]

A =



1 0 0 1√

3

0 1 0 1√
3

0 0 1 1√
3


 . (8.18)

The total inertia matrix for the spacecraft rigid body and the inertia matrix of
the reaction wheels are given as [1]

J =




0.0775 0.0002 −0.0002
0.0002 0.1067 0.0005
−0.0002 0.0005 0.0389


 kg ·m2, Jw = JwI4×4, (8.19)

where Jw = 2.1 · 10-4 kg·m2 is the inertia of a single reaction wheel. The controller
gains and the parameters required for the optimization are shown in Table 8.1.

After the final optimization procedure finishes, the system is propagated for
an additional number of control intervals, denoted Nprop, to visualize the post-
optimization response of the system. The final state from the optimization serves as
the initial state for the propagation, and the control input is set to zero for the whole
propagation. The spacecraft’s orbit is initialized using the orbital parameters in
Table 8.1, which are transformed into ECI coordinates using the RANDV-function
from [32]. Two types of simulations were conducted: a single-axis maneuver where
the satellite rotates 45◦ about the x-axis and a multiple-axis maneuver where the
satellite rotates about all three axes of the chosen frames.

8.6 Results

Figure 8.1 shows the change in the spacecraft’s attitude over time using the Euler
angle representation and reveals that all three controllers can steer the spacecraft
to the desired orientation of (ϕ, θ, ψ) = (45◦, 0◦, 0◦) and keep the spacecraft at this
attitude. The dotted lines ϕd, θd, and ψd denote the angles of the desired attitude,
whereas the solid lines ϕ, θ, and ψ correspond to the actual states. The orange
area in the moving L0-section of the figures shows the interval placement where
hN takes lower values. hN is set to 1 for the rest of the interval. The torque vector
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8. Maximum Hands-Off Attitude Control

Table 8.1: Controller gains, optimization constants, and orbital parameters.

Parameter Value Unit
k1 1 · 106 s2

k2 1 · 102 -
k3 1 · 101 -
Kp 3Js N·m
Kd 2.7Js N·m·s
Simulation time (T ) 70 s
Control intervals (N) 50 -
Step size (h) 1.4 s
Control intervals for propagation (Nprop) 20 -
ϵ 1 · 10-8 -
τlimit ±3 · 10-3 N·m
Semi-major axis 6852.2 km
Eccentricity 0.002 -
Inclination 97 ◦

Right ascension of the ascending node 280 ◦

Argument of periapsis 0 ◦

True anomaly 0 ◦

Standard grav. parameter, Earth (GM) 3.986 · 1014 m3/s2

τ b
u can be seen in Figure 8.2. The torque vector τw

u can be seen in Figure 8.3.
The angular velocities ωb

ob are shown in Figure 8.4 and reveal that the spacecraft
stops rotating, i.e., {b} stops rotating relative to {o}, when the desired orientation
is reached. The angular velocities ωw

bw can be seen in Figure 8.5 and illustrate the
dynamical response of the reaction wheels. The computation times, the sparsity,
and the number of iterations used to find the optimal solution for each of the three
controllers are shown in Table 8.2.

Table 8.2: Computation time, sparsity and number of iterations single-axis ma-
neuver.

Controller CPU time
NLP, [s]

CPU time
IPOPT, [s] Sparsity, [s] Iterations

L0 3.235 0.253 2.8 25
Moving L0 46.914 3.828 2.8 371

L1 2.479 0.204 2.8 19

Figure 8.6 shows the change in the spacecraft’s attitude over time from a
multiple-axis maneuver from (ϕ, θ, ψ) = (0◦, 0◦, 0◦) to (90◦, 45◦, 15◦). The optimal
control torques τ b

u and τw
u are shown in Figure 8.7 and Figure 8.8, respectively.

The angular velocities ωb
ob are shown in Figure 8.9. The angular velocities ωw

bw

are shown in Figure 8.10. The computation times, the sparsity, and the number
of iterations used to find the optimal solution for each of the three controllers are
shown in Table 8.3.
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8.7. Discussion

Figure 8.1: Euler angles, single-axis maneuver.

Table 8.3: Computation time, sparsity and number of iterations multiple-axis
maneuver.

Controller CPU time
NLP, [s]

CPU time
IPOPT, [s] Sparsity, [s] Iterations

L0 66.216 6.106 2.8 497
Moving L0 90.175 7.706 2.8 699

L1 5.131 0.360 2.8 39

8.7 Discussion

In this section, the maximum hands-off controller will be referred to as the L0-
optimal controller or the L0-controller, whereas the moving maximum hands-off
controller will be referred to as the moving L0-optimal controller or the moving
L0-controller. A control signal’s sparsity is defined in Definition 8.4.1.

8.7.1 Single-axis

Figures 8.1 to 8.4 show that the spacecraft’s state space trajectories and the con-
trol signals are identical for the L0-controller and the L1-controller. These results
agree with the findings in [51], and suggest that the L1-norm may be used as an
approximation to the L0-norm.

As Figures 8.1 to 8.4 show, the spacecraft’s state space trajectories and the
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Figure 8.2: Control input in {b}, single-axis maneuver.

control signals resulting from the moving L0-controller differ from the two other
controllers. The differences can be explained by comparing the cost functions of
the three controllers in Equation (8.13a), Equation (8.15), and Equation (8.16).
For the moving L0-controller, the vector hN was chosen such that it would cost
less for the control inputs to occur between t = 28 s and t = 42 s. For the two other
controllers, it is equally expensive for the control inputs to occur over the whole
time interval. Figure 8.2 and Figure 8.3 show that the control inputs produced
by the moving L0-controller occur at t = 28 s and t = 42 s, and Figure 8.1 and
Figure 8.4 show that the spacecraft’s states change within this interval.

As can be seen in Figure 8.2 and Figure 8.3, the optimal control signal com-
puted by the moving L0-controller has a larger amplitude than the control signals
produced by the two other controllers. A possible explanation for this is that since
the moving L0-control torques occur closer in time, the torque applied at each of
the two time instants has to be larger in order to steer the spacecraft to the de-
sired orientation within a smaller time interval. If the time interval was larger, the
control inputs could be smaller as the spacecraft would have more time to rotate
towards the desired orientation after the initial control input has been applied.

Figure 8.2 and Figure 8.3 show that the control inputs produced by the moving
L0-controller occur at t = 28 s and t = 42 s, which means that they occur exactly
at the boundaries of the time interval specified by hN . The saturation limits for
the control torque are τlimit = ±3 ·10-3 N·m, and Figure 8.3 shows that the control
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Figure 8.3: Control input in {w}, single-axis maneuver.

torques produced by the moving L0-controller are close to the saturation limits. If
the control torques had occurred at other time instants in the interval specified by
hN , they would occur closer in time, and the torques would therefore have larger
values. The control torques are already close to the saturation limits when they
occur at t = 28 s and t = 42 s, and if the torque values were to increase, the reaction
wheels may saturate. If the reaction wheels saturate, an additional control torque
may be required to perform the spacecraft maneuver, and an additional control
torque would yield a less sparse control signal. It is cheaper for the control input to
occur between t = 28 s and t = 42 s, but if the control torques are too close in time,
they may saturate. Then, the controller would have to apply an additional control
torque, which would result in a less sparse control signal. Therefore, it makes sense
that the control torques occur at the borders of the time interval specified by hN ,
i.e., at t = 28 s and t = 42 s.

Table 8.2 shows that all three controllers yield optimal control signals that have
the same sparsity. This finding confirms that all three controllers are able to find
the sparsest solution. For this type of spacecraft single-axis maneuver, it is not
possible to find a control signal sparser than two time steps, which means a total
signal length of 2.8 s, as one control torque has to push the spacecraft towards the
desired attitude and one control input has to stop the spacecraft rotation. For the
conditions in this chapter, a control signal in which torques occur at two different
time instants provides the sparsest optimal control signal for the spacecraft’s single-
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Figure 8.4: Angular velocities, ωb
ob, single-axis maneuver.

axis maneuver.
When maneuvering the spacecraft an angle ϕ = 45◦ about the x-axis, one might

expect an optimal controller to yield control torque simply about the body-frame
x-axis. Figure 8.2 shows that control torques are applied about all three axes,
although the control torque about the x-axis is the most prominent. The optimal
control algorithms yield torque about all three axes because the spacecraft rotates
relative to its orbit at the same time as it orbits the Earth. A spacecraft in orbit,
such as the one used in this work, would rotate relative to its orbit, which results
in the angular velocity dynamics in Equation (8.5c). Because of the spacecraft’s
rotation around the Earth, there will be rotation about the y- and z-axis throughout
the optimization horizon, in addition to the control effort made about the x-axis.
Therefore, the reaction wheels’ torque must be applied to compensate for the drift
about the y- and z-axis.

The total inertia matrix for the spacecraft rigid body, J, in Equation (8.19)
also contributes to rotation about multiple axes. Due to the nonlinearity of the
spacecraft dynamics, the terms are coupled, which results in a torque about all
three axes, even though motion is only needed about one axis. The total system
inertia matrix given in Equation (8.19) is not diagonal. If a diagonal J-matrix were
used instead of the one in Equation (8.19), the states would be less coupled, which
is clear from Equation (8.5b). Less coupling of the dynamics would yield less torque
about the y- and z-axis, when a maneuver is performed about the x-axis.
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Figure 8.5: Angular velocities, ωw
bw, single-axis maneuver.

8.7.2 Multiple-axis maneuver

Figure 8.7 and Figure 8.8 show that the first control torque from the moving L0-
controller occurs after about t = 5 s, and the second control torque occurs close to
t = 40 s. The second control torque occurs within the interval specified by hN . The
vector hN was chosen such that it would cost less for the control inputs to occur
between t = 28 s and t = 42 s. One might have expected all control inputs to occur
within this time interval. However, one control input occurs outside this interval.
This is because there are no constraints on where the control input should not
occur; it only costs less between t = 28 s and t = 42 s. The optimization procedure
aims to satisfy the constraints and to minimize the cost function, which is also a
function of the final state values. If it is impossible to reach this goal by applying
control input within the cheap interval specified by hN , some or all control input
will occur outside this interval. Therefore, control inputs may occur outside the
interval defined by hN . Should it be desirable to force control inputs at any point
to zero, adding a constraint on the input would be a possible solution.

The L1-optimal control signal and L0-optimal control signal are not identical,
which can be seen in Figure 8.7 and Figure 8.8. The first control input produced by
the L1-controller occurs before the first control input produced by the L0-controller,
whereas the two last control inputs coincide. The amplitude of the control torques
from the L1 controller are smaller than those from the L0 controller. A possible
explanation for the difference in amplitudes is that since there is more time between
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Figure 8.6: Euler angles, multiple-axis maneuver.

the two L1-control inputs, the spacecraft will have more time to rotate to the
desired orientation, and thus, less torque would need to be applied. Therefore, it
makes sense that the control torque produced by the L1 controller is smaller than
the control torque produced by the L0 controller. These results suggest that the
L1-optimal solution does not always equal the L0-optimal solution. On the other
hand, they suggest that the L1-optimal control problem could be an acceptable
approximation to the L0-optimal control problem.

8.8 Conclusion

The main goal of this chapter has been to explore the use of maximum hands-off
control, also called L0-optimal control, for the spacecraft attitude control prob-
lem. Our work has shown that the maximum hands-off controller can steer the
spacecraft to the desired attitude and final state. Thus, our work confirms that the
maximum hands-off controller works for the spacecraft attitude control problem.
The moving maximum hands-off controller has also been explored for the space-
craft attitude control problem. Our findings suggest that the controller works as
intended, producing a control signal that can be moved to a predefined interval
specified by the vector hN . While the cost in certain intervals might be lowered
with the choice of hN , control torque may still occur outside this interval as the
optimization procedure aims to satisfy the constraints while minimizing the cost
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Figure 8.7: Control input in {b}, multiple-axis maneuver.

function.
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Figure 8.8: Control input in {w}, multiple-axis maneuver.
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8.8. Conclusion

Figure 8.9: Angular velocities, ωb
ob, multiple-axis maneuver.
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Figure 8.10: Angular velocities, ωw
bw, multiple-axis maneuver.
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Chapter 9

Maximum Hands-Off Attitude
Control of a Spacecraft Actuated by
Thrusters

9.1 Introduction

Maximum hands-off control is a control scheme where the resulting torque is highly
discontinuous. While [54] showed that reaction wheels, a type of actuator that works
well with continuous controllers, can be used with maximum hands-off control to
control the attitude of a spacecraft, a more natural choice of actuators to couple
with maximum hands-off control is reaction thrusters. Reaction thrusters, or simply
thrusters, are actuators that are either completely on or completely off, giving a
discontinuous input to the system. As opposed to reaction wheels, thrusters can
be used for orbital maneuvers in addition to for attitude control. See for example
[55, 56].

There exists thrusters that are not off or on at their maximum magnitude,
namely electric thrusters (see for example [57]), which have been suggested for
use for the attitude control of a spacecraft [58, 59]. The focus of this chapter will
be on/off thrusters. However, a brief discussion on generalizing the results in this
chapter for use with continuous thrust is included.

The contributions in this chapter are the following: we show that the maximum
hands-off control formulation demonstrated for a satellite with reaction wheels also
works with attitude maneuvers for a satellite actuated with reaction thrusters. The
formulation used in this chapter differs from the previous one, as the cost function is
extended with an additional term. Furthermore, we justify using the union operator
for optimizing based on the L0-norm for a problem with multiple inputs. Finally,
we defined the term relative sparsity as a way to compare the sparsity of different
control strategies. The impact of the sampling rate and saturation limits on the
inputs on the relative sparsity is discussed in some detail.

The remaining part of the chapter is structured as follows: the max hands-off
control is defined in Section 9.2, both in general terms and with the relaxed for-
mulation used for direct optimization in [54]. In the same section, we introduce the
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9. Maximum Hands-Off Attitude Control of a Spacecraft Actuated by Thrusters

union operator and define relative sparsity. The optimal control problem, including
the cost function based on the maximum hands-off formulation from Section 9.2, is
presented in Section 9.3. The simulation setup is described in Section 9.4, which is
made up of three scenarios: a simple maneuver showing that the control strategy
can accomplish the desired objectives and two different scenarios designed to show
how the system parameters impact relative sparsity. The results are presented in
Section 9.5 and discussed in Section 9.6, while the chapter is concluded in Sec-
tion 9.7.

9.2 Max hands-off control

This section will introduce the theory behind the maximum hands-off formulation,
as defined by [51]. The support of a function of time u(t), a continuous-time signal,
is defined by the closure of the set

{t ∈ [0, T ] : u(t) ̸= 0}, (9.1)

which is the set of points where the function takes on non-zero values.
The authors of [51] use (9.1) to define the L0-norm of u(t) as the length of the

support using the Lebesgue measure on R, This yields the definition of the L0-norm

∥u∥0 ≜ µ(supp(u(t))). (9.2)

where µ(·) is the mentioned Lebesque measure. In defining their optimal control
problem, [51] define a cost function based on the continuous time-signal u(t) as

J0(u(t)) ≜
m∑

i=1

λi∥ui∥0, (9.3)

where m is the number of control inputs in the time domain, λi are positive weights
for each control signal, and the L0-norm is the one that was defined in (9.2).

As the formulation in (9.3) is only for a single continuous-time signal, the cost
function should be changed to facilitate several continuous-time signals in a vector.
With the maximum hands-off control scheme, we want to minimize the total time
any input is applied to the system. In other words, if one of the channels of the
vector has support at a given time step, it should not cost anything for the other
channels to have a non-zero signal at that time step. To achieve this, we reformulate
the L0 cost function in (9.3) as,

J0(u(t)) ≜
m∑

i=1

n⋃

j=1

λj,i∥uj,i∥0, (9.4)

where n is the number of channels in the input vectors, which in this chapter will
be the number of thrusters.

A longer discussion on different implementations of the maximum hands-off
control and how the choices affect the amount of input signals the system receives
can be found in [66].
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9.3. Optimal Control Problem

The relative sparsity of a discrete signal can be defined as

Relative sparsity =
Time steps with actuation

Total time steps
· 100%. (9.5)

The relative sparsity, defined this way, makes sense as a comparison measure be-
tween different control signals regarding how sparse the signal is as it measures how
much of the available control horizon the control signal uses for actuation. This
measure could give a better view of how sparse the actuation is compared to the
view provided directly by the values from the L0-norm, which will directly result
from the simulation’s point resolution or the experiment.

The maximum hands-off control problem is discontinuous, so to use IPOPT
we need to relax the problem. In this chapter, we use the same relaxation for the
maximum hands-off control problem as in [54]. Formally, by defining the L0-optimal
control problem as

min
x

f(x) + γ∥x∥0 (9.6a)

s.t. ci(x) = 0, j ∈ E (9.6b)
cj(x) ≤ 0, j ∈ I, (9.6c)

where ci(x) and cj(x) are constraints in the set of equality constraints, E , and
inequality constraints, I, respectively. γ is an arbitrary, positive constant. the L0-
optimal control problem can be relaxed using a set of complementarity constraints
[63]

min
x

f(x) + γ⊤(1N − ξ) (9.7a)

s.t. ci(x) = 0, i ∈ E (9.7b)
ci(x) ≤ 0, i ∈ I (9.7c)
− ϵ1 ≤ ξ ◦ x ≤ ϵ1 (9.7d)
0 ≤ ξ ≤ 1, (9.7e)

where the vector ξ is a vector of the same size as the number of control intervals
that indicates whether or not any control signal is spent at a given time step. The
operator ◦ is the Hadamard product, which is the element-wise product of the two
factors. ϵ is a small, positive number multiplied by a vector of ones, 1, of the same
size as ξ. The vector 0 is a vector of zeros of the same size as ξ, similar to 1.

9.3 Optimal Control Problem

The optimal control problem, using a relaxed formulation of the maximum hands-
off control problem using the cost as it is defined in (9.4) for the attitude of a
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satellite actuated by thrusters, is given by

min k1f(ω
b
ib) + k2g(q

i
b) + k3(1− ξ)1⊤ (9.8a)

s.t. q̇i
b =

1

2
T(qi

b)ω
b
ib (9.8b)

ω̇b
ib = J-1(−S(ωb

ib)Jω
b
ib +Bτu) (9.8c)

0 ≤ τu ≤ τlimit (9.8d)
x(0) = x0 (9.8e)
−ϵ1 ≤ ξ ◦ τu,j(t) ≤ ϵ1 (9.8f)

0 ≤ ξ ≤ 1, (9.8g)

where f(·) and g(·) are costs imposed on the error in the angular velocity, ωb
ib, and

the quaternion, qi
b, with respect to the reference quaternion, respectively, given as

f(ωb
ib) = (ωb

e)
⊺ωb

e, ωb
e = ωb

ib,ref − ωb
ib(T ),

g(qi
b) = 1−

∣∣(qi
b(T ))

⊤qi
b,ref
∣∣ ,

(9.9)

where T is the length of the control horizon, making an arbitrary vector x take
the value x(T ) at the final time. The function g(·) in (9.9) is chosen due to it
being a metric on SO(3) [28]. The sub- and superscripts i and b denote the inertial
and body frame, respectively. Note that the rigid body model is assumed to be
sufficient for the studied problem, i.e., the change in the inertia matrix is assumed
to be either symmetric or small enough to be disregarded. T(·) is given as [18]

T (q) =

[
−ϵ⊺

ηI3x3 + S(ϵ)

]
, (9.10)

where η is the scalar part, and ϵ is the vector part of the quaternion. The S(·)
matrix is a matrix that works like the three-dimensional cross product. k1, k2,
and k3 are positive constants that determine how much weight the optimization
should put into getting closer to the reference in attitude or angular velocity or
to keep the L0-norm small, respectively. J is the satellite inertia matrix. B is the
torque distribution matrix, mapping the torques from the thrusters, τu, into the
body frame. τu is a vector with one element for each thruster, showing only the
sign and the magnitude of the torque the thruster provides. The torque from each
separate thruster is accessed separately through τu,j(t). The state, given by x, is
defined by x = [qi

b;ω
b
ib]. The initial state variable, x(0), is given by x0. Note that

the term τu,i(t) in (9.8f) indicates that each element of the torque vector should be
multiplied with the torque vector for a given time step, which satisfies the definition
of the L0-cost we want to use in this chapter, as defined in (9.4).

We assume that the thrusters are either on at maximum thrust or completely
shut off. For such discontinuous thrust, an extra term must be appended to the
cost function (9.8a), yielding

min k1f(ω
b
ib) + k2g(q

i
b) + k3(1− ξ)1⊺ + k4

N∑

i=1

ξ(i)

nu∑

j=1

τu,(j,i)(τlimit − τu,(j,i)),

(9.11)
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9.4. Simulation setup

where N is the number of control intervals, nu is the number of thrusters, k4 is a
positive constant, and τu,(j,i) is the element of the torque vector τu specified for
thruster j at time step i. The added term provides the on/off behavior from the
optimization: as ξ is a measurement for when a control signal is applied, this term
should be close to zero when there is no control action at a given time step and one
when control is applied. Thus, using ξ will only be an extra cost based on control
signals where at least one of the channels in the control vector, signifying that one
of the thrusters is active. The difference term (τlimit − τu,(j,i)) is included to force
the torque from each thruster to its maximum value, τlimit. As we do not want to
force all thrusters to fire when one of the thrusters is active, the maximizing terms
need to be multiplied by the torque value from the given thruster, τu,(j,i). This
term is necessary due to ξ having only one element shared between all torques, an
artifact of the L0-formulation as shown in (9.4).

For continuous thrust actuators, it seems reasonable to assume that the formu-
lation in (9.8) is sufficient, making the extra term introduced in (9.11) redundant
when the actuation can take a continuous range of values.

9.4 Simulation setup

The simulations in this chapter are based on the ESEO satellite, [55]. The inertia
of the satellite is given by

J =



4.350 0 0
0 4.3370 0
0 0 3.6640


 kg ·m2. (9.12)

The optimal control problem (9.8) is solved using IPOPT in CasADi. Runge-Kutta
4 is used as the numerical solver. Six thrusters actuate the satellite, each set to only
give torque along one body frame axis. This gives the torque distribution matrix
B,

B =



1 0 0 -1 0 0
0 1 0 0 -1 0
0 0 1 0 0 -1


 , (9.13)

with the negative signs signifying that all elements in τu contain positive torque
values.

Three simulation scenarios are run: one to show that the attitude control system
can provide satisfactory results with maximum hands-off control with thrusters,
and two scenarios where the relative sparsity metric’s properties are explained. In
the attitude control example, the satellite is given the initial conditions x(0) =
[qi

b;ω
b
ib](0) = [0, 1, 0, 0, 0, 0, 0]⊺, where the first four elements are the quaternion

and the latter three are the angular velocity. The references, qi
b,ref and ωb

ib,ref,
are given as [0.5774, 0,−0.5774,−0.5774]⊺ and [0, 0, 0]⊺. The control horizon T is
set to be 30, and the number of steps is set as N = 90, yielding a time step of
h = T

N = 30
90 s = 1

3 s. The limit on the torques from the thrusters is set to be
τlimit = 0.195 N ·m, consistent with the thrusters in [55], where τlimit = τlimit1nux1.
The torque limit, as well as the torque from the trusters themselves, take the
distance between the place the force from the truster is applied, as well as the
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magnitude of the force from the trusters into account, and thus, the torque is
expressed directly in this chapter for simplicity. As discussed in [54], the maximum
hands-off attitude control problem is very sensitive to the choice of initial values.
In this chapter, the initial values are chosen to be the trajectory resulting from a
PD controller modulated with a simple Schmitt trigger.

For the scenarios showcasing the properties of the relative sparsity metric, the
initial conditions and references are identical to those for the attitude demonstra-
tion example. In both of the scenarios, the thrusters are made less effective by
reducing the torque limit by 50%, essentially weakening the actuators or moving
them further from the center of rotation. At the same time, the number of control
intervals has been decreased by 50% in the latter scenario.

The values for k1, k2, k3, and k4 for the different scenarios, enumerated 1, 2,
and 3, as introduced in this chapter, can be found in Table 9.1.

Table 9.1: Cost function constants

ki Scenario 1 Scenario 2 Scenario 3

k1 18.4 18.4 18.4

k2 3.92 · 103 3.92 · 103 3.92 · 103

k3 (N)-1 · 4.5 · 104 (N)-1 · 4.5 · 104 (N)-1 · 1.35 · 105

k4
2.295·105
N ·nu

2.295·105
N ·nu

6.885·105
N ·nu

9.5 Results

9.5.1 Attitude control maneuver

Figure 9.1 shows the attitude response of the system with the trajectory based
on the maximum hands-off control formulation solved using IPOPT. As can be
seen from the figure, at the end of the simulation, the optimal trajectory reaches
the reference attitude, as the quaternion covers SO(3) twice, making q and −q
represent the same attitude. The corresponding angular velocities are shown in
Figure 9.3. The torques from the thrusters are plotted in Figure 9.2. Note that
thruster one is fixed in the opposite direction of thruster four, thruster two in the
opposite direction of thruster five, and thruster three in the opposite direction of
thruster six, as indicated by the distribution matrix in (9.13). The output from
the optimal solver IPOPT, showing the time it takes to solve the problem and the
number of iterations, is shown in Table 9.2. The relative sparsity for this scenario,
calculated using the definition in (9.5), is 11.11% for this scenario.

9.5.2 Relative sparsity simulations

Figure 9.6 shows the torque with stricter torque limits than in Section 9.5.1. As seen
from the quaternion trajectory in Figure 9.4 and the angular velocity trajectories
in Figure 9.5, the satellite still manages to reach the reference values.
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Figure 9.1: Quaternion response with maximum hands-off control.

Table 9.2: IPOPT output

Output Value
Number of iterations 5635
Total CPU secs in IPOPT (w/o function evaluations) 58.893
Total CPU secs in NLP function evaluations 929.226

Keeping the torque limit low and reducing the time step gives the quaternion
and angular velocity trajectories, as shown in Figure 9.7 and Figure 9.8, respec-
tively. The torques this scenario requires are shown in Figure 9.9. The relative
sparsity of the two simulations are shown in Table 9.3.

Table 9.3: Relative sparsity comparison

Controller Relative sparsity (%)
With stricter torque limit 16.6667
With lower N 20.000
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Figure 9.2: Torque from the trusters with maximum hands-off control.

9.6 Discussion

9.6.1 Attitude control maneuver

The results in Section 9.5.1 show that the maximum hands-off control algorithm,
as described in this chapter, works for controlling the attitude of a satellite towards
a desired attitude and angular velocity.

The main issue with the direct optimization approach to the maximum hands-
off control problem using a solver based on derivatives like IPOPT is that the
problem is discontinuous. This would be an issue for the maximum hands-off control
problem even if the reaction thrusters with their on/off actuation were not in use,
as the L0-norm is not differentiable and motivates the approximation given in
(9.7). With the relaxation parameter ϵ set above zero, some of the values in the
optimized trajectory will be slightly above zero, which is where they would be if the
solver managed to find the "true" optimal solution without the relaxed formulation.
Furthermore, there are four different objectives the optimization should accomplish:
the attitude quaternion and the angular velocity should reach their references, the
torque should be applied for as little time as possible, and the torque should always
be on/off. The first three are not opposing criteria for optimization: by defining
a region around the references, there will be a minimum number of (discrete)
torque signals required to reach this region. Most control signals will be as high
as possible, probably reaching the saturation limits for all or all but one control
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Figure 9.3: Angular velocity response with maximum hands-off control.

signal to minimize the control signals in the optimal scenario. The problem with
the fourth criterion arises if the control horizon is too coarse relative to the desired
region around the references, i.e., N is large relative to T , so it might be hard for
the solver to find a good trajectory without careful tuning. This explains why even
the optimal solution here has some non-maximized values, as the solver prioritizes
reaching the end attitude and angular velocities. Saturating the values from this
optimization based on a threshold would give the true on/off behavior the actuators
require, but the values for the other objectives, particularly the quaternion and the
angular velocity, will naturally end up further from the references than they are in
Figure 9.1 and Figure 9.3.

A point was made in Section 9.4 about the importance of initial guesses for
the maximum hands-off control problem. The last term in the cost function, which
was introduced in (9.11), k4

∑N
i=1 ξ(i)

∑nu

j=1 τu,(j,i)(τlimit − τu,(j,i)), is introduced
to penalize the solver if the control signal is not on or off, as required by the
actuators. Optimizing without this term, using a trajectory generated by a regular
PD controller, does not yield satisfactory results as the resulting control signal is
significantly less sparse than what is shown in Section 9.5.1. This suggests that
the term would help create the maximum hands-off control in situations where the
torque does not have to reach its maximum magnitude each time the actuators are
used, as it seems to improve the solver’s resilience against poor initial guesses. The
term could, however, if the maximum control torque is not called for at any point,
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Figure 9.4: Quaternion response with maximum hands-off control with lower
torque saturation limits.

lead to a less sparse solution than the maximum hands-off control scheme calls
for, as it will force the control signal at a given point toward the maximum value,
requiring more torque to counteract the motion when moving towards the reference
value. Additionally, the added term and the maximum hands-off term work in the
opposite direction: the maximum hands-off term drags the values toward zero, while
the added term drags the terms toward the maximum value. This could introduce
an extra error into the system since the vector ξ cannot be exactly zero, meaning
that the added term will often be in effect when it should not be.

9.6.2 Relative sparsity simulations

The relative sparsity metric for the two scenarios with stricter torque limits and
longer time steps, given in Table 9.3, shows a significant increase compared to the
11.11% relative sparsity in the nominal case in Section 9.5.1. For the stricter torque
limit case, this consequence is always to be expected when lowering the torque limit
as long as the maximum hands-off torque naturally reaches the saturation limit
before it is lowered, which is what is shown in the figures here. For the decrease
in control intervals, i.e., the decrease in N , the case is the opposite: if the control
signal is naturally saturated before N is decreased, the relative sparsity will not
necessarily increase. An example that illustrates this is a control signal with four
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Figure 9.5: Angular velocity response with maximum hands-off control with
lower torque saturation limits.

saturated control signal points before the decrease in N . If N is divided by four,
there will be one saturated control signal point, thus preserving the relative sparsity.
If N , for some reason, is divided by three, two new signal points will be required
to represent the same control signal, which in turn will span a more extended area
on R, thus increasing the relative sparsity. Due to these concerns, it is important
only to compare two different control schemes with respect to relative sparsity if
the underlying conditions, such as the control limits, the control horizon, and the
number of control signals, differ between the schemes.

9.7 Conclusion

Maximum hands-off control, as formulated in [54], also works with thrusters, al-
though the on/off nature of the actuators makes the problem harder to solve.
Using the union operator is reasonable for the L0 norm, and relative sparsity can
be used to distinguish between sparse control signals, provided the sampling rate,
saturation limits, and control horizon stay identical.
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Figure 9.6: Torque from the trusters with maximum hands-off control with lower
torque saturation limits.
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Figure 9.7: Quaternion response with maximum hands-off control with fewer
control intervals.
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Figure 9.8: Angular velocity response with maximum hands-off control with
fewer control intervals.
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Figure 9.9: Torque from the thrusters with maximum hands-off control with
fewer control intervals.
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Slewing Maneuver Results
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Chapter 10

Introduction

This part of the thesis concerns the control maneuver the HYPSO-1 satellite per-
forms during its science, which is a slew maneuver. In the context of Figure 10.1,
this part is in section C, the short period where the satellite takes images.

Section A

Section B

Section C

Umbra

Penumbra

Penumbra

Figure 10.1: Thesis outline.

Figure 10.2 illustrates the slew maneuver with the various frames used in the
two chapters.

Chapter 9 is based on

[1] B. A. Kristiansen, M. E. Grøtte, and J. T. Gravdahl, “Quaternion-Based
Generalized Super-Twisting Algorithm for Spacecraft Attitude Control”, in
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10. Introduction

Figure 10.2: The HYPSO-1 slew maneuver. Three coordinate frames are de-
picted: the body frame, the orbital frame (the LVLH frame), and the inertial
(ECI) frame. The satellite moves from right to left in the figure as it images the
area of interest. The image is from [6], which is part of this thesis.

Proceedings of the 21st IFAC World Congress, Berlin (Virtual), Germany,
July 2020,

where the authors demonstrate through simulations that a second-order sliding
mode controller named generalized super-twisting algorithm could be a feasible
choice for pointing and the HYPSO-1 slew maneuver.

Chapter 12 is based on

[6] B. A. Kristiansen, D. D. Langer, J. L. Garrett, S. Berg, J. T. Gravdahl,
and T. A. Johansen, “Accuracy of a slew maneuver for the HYPSO-1 satellite
— in-orbit results,” in 13th Workshop on Hyperspectral Image and Signal Pro-
cessing Evolution in Remote Sensing (IEEE-WHISPERS), Athens, Greece,
Oct. 2023,

which is a paper evaluating the performance of the slew maneuver for the HYPSO-
1 satellite on experimental results, investigating if the slew maneuver increases the
data quality as the mission analysis originally assumed.
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Chapter 11

Quaternion-Based Generalized
Super-Twisting Algorithm for
Spacecraft Attitude Control

11.1 Introduction

The spacecraft attitude control problem is a well-studied topic ([9], [67], [55]). Var-
ious control laws for attitude control have been proposed such as the sliding mode
control (SMC) [68], [69], which has robustness towards modeling uncertainties and
disturbances. However, an issue with SMC is chattering, which is an effect due
to the signum term of the control algorithm, causing a zig-zag effect in the con-
trolled channels. A method for attenuating this effect is to hide the discontinuous
signum function behind an integrator [70]. An example is the super-twisting algo-
rithm [71], a second-order sliding mode algorithm. The super-twisting algorithm
was studied for attitude control of a spacecraft actuated by magnetorquers in [72].
This algorithm was further developed into the generalized super-twisting algorithm
(GSTA), which is robust to bounded time-varying disturbances [73]. In practice,
the GSTA has successfully been applied for attitude control of other vehicles, such
as articulated intervention AUVs [74].

In this chapter we present a nonlinear spacecraft model with a control law based
on GSTA. Simulation results are shown for two attitude maneuvers, pointing and
slewing, of a spacecraft actuated by reaction wheels using the GSTA. These extend
to the case studies presented in [33]. While [33] investigates time-varying attitude
control strategies using an augmented proportional-derivative controller with feed-
forward terms and requirements for magnetorquer control law, the contributions of
this chapter are to compare SMC and PD with GSTA for a slewing and pointing
spacecraft using state feedback.

This chapter is organized as follows: In Section 11.2 describes the model of
the dynamics used for the simulations. The model includes attitude parameterized
by unit quaternions, a dynamical model for the reaction wheels, and a model of
perturbations. Section 11.3 introduces the momentum dumping control law used
on the magnetorquers, the GSTA and the SMC we use for attitude control with
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the reaction wheels. We present the simulation results using parameters for a 6U
CubeSat in Section 11.4, while conclusions are provided in Section 11.5.

11.2 Spacecraft Model

In this section, we present the model of an internally actuated spacecraft.

11.2.1 Coordinate frames

Earth-centered inertial (ECI)

The earth-centered inertial frame {i} has origin at the Earth’s center of mass, with
the z-axis pointing through the North Pole, the x-axis pointing towards vernal
equinox, and the y-axis completing the right-handed system. Vectors and deriva-
tives with respect to the ECI frame are denoted with superscript i.

Orbit frame

The Local Vertical, Local Horizontal (LVLH) frame, or the orbit frame {o}, has
superscript o for vectors represented in the frame. The orbit frame is centered in
the center of mass of the spacecraft. The z-, x-, and y-axis point in the direction
of the Earth’s center of mass, the orbit velocity vector, and in a direction that
completes the right-handed coordinate system, respectively. The unit vectors of
the frame are given by

ẑo = − ri

∥ri∥2
, x̂o =

vi

∥vi∥2
, ŷo =

ẑo × x̂o

∥ẑo × x̂o∥2
, (11.1)

where ri is the distance between the spacecraft and the center of the Earth, and
vi is the spacecraft’s inertial velocity.

Body frame

The axes of the body frame {b} follow the spacecraft structure, and its origin is
centered in the spacecraft’s center of mass. Vectors represented in this frame have
superscript b.

Wheel frame

The wheel frame {w} specifies vectors directly related to the reaction wheels. The
two vectors represented in this frame are the wheel angular velocity, ωw

bw, and
the torque applied to each wheel, τw

u . The dimension of these vectors equals the
number of reaction wheels, where each channel of the vectors specifies the angular
velocity or torque applied about each wheel’s axis of rotation. The mapping of the
wheel frames to the body frame is represented by the matrix A ∈ R3xn, as

τ b
u = Aτw

u ⇒ τw
u = A+τ b

u, (11.2)

where A+ is the pseudo-inverse of A. Note that A is a constant mapping between
the wheel and body frames due to a fixed reaction wheel configuration.
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11.2.2 Attitude representation

Unit quaternions, represented as q =
[
η ϵ

]⊺
=
[
η ϵ1 ϵ2 ϵ3

]⊺, are used to
describe the attitude of the spacecraft, where η is the scalar part of the quaternion,
ϵ is the vector part of the quaternion and satisfies the condition η2 + ϵ⊺ϵ = 1. qob

is denoted as the attitude of the body frame relative to the orbit frame. Similarly,
the rotation matrix between the two frames is given as [18]

Ro
b = I3×3 + 2ηobS(ϵob) + 2S2(ϵob), (11.3)

where I3×3 is the three-dimensional identity matrix, and S(·) is a skew-symmetric
matrix. The time derivative of a rotation matrix Rb

o is Ṙb
o = −S(ωb

ob)R
b
o, where

ωb
ob denotes the angular velocity of {b} relative to {o}.

The kinematic differential equation for qob is given by

q̇ob =

[
η̇ob
ϵ̇ob

]
=

1

2

[
−ϵ⊺ob

ηobI3x3 + S(ϵob)

]
ωb

ob =
1

2
T(qob)ω

b
ob. (11.4)

where T(·) is the angular velocity transformation matrix.

11.2.3 Angular velocity

The angular velocity of the spacecraft’s body frame relative to the orbit frame is
given as

ωb
ob = ωb

ib − ωb
io = ωb

ib −Rb
oω

o
io, (11.5)

where ωb
io is the angular velocity of the {o} relative to the {i}, and ωb

ib is the
angular velocity of the {b} relative to the {i}.

The angular velocity of the {o} frame relative to {i}, denoted ωo
io, is defined in

[19] as

ωo
io = Ro

i

S(r
i
)v

i

(ri)⊺ri
. (11.6)

11.2.4 Attitude dynamics

The total system inertia of the spacecraft’s rigid body is given by J ∈ R3x3, such
that

J = Js +AJwA
⊺, (11.7)

where the inertia of the rigid body excluding the inertia about the spinning axis
of the reaction wheels is Js ∈ R3x3, and the inertia matrix of the reaction wheels
about the spinning axes is Jw ∈ Rnxn.

The total angular momentum of the spacecraft is given as [60]

Hb
s = Jωb

ib +AJwω
w
bw. (11.8)

Using Euler’s second axiom, the rigid body dynamics is

J
bd

dt
ωb

ib +AJw

wd

dt
ωw

bw + S(ωb
ib)H

b
s = τ b

mtq + τ b
ext, (11.9)

where τ b
mtq is the torque produced by the magnetorquers and τext is the external

perturbation torque acting on the spacecraft.
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11.2.5 Perturbations

The total perturbing torque is given by

τ b
ext = τ b

drag + τ b
srp + τ b

grav + τ b
mag, (11.10)

where τ b
drag is the torque due to aerodynamic drag, τ b

srp is the torque due to solar
radiation pressure, τ b

grav is the torque due to the gravity gradient, and τ b
mag is

the torque due to the interaction between internal spacecraft electronics and the
Earth’s magnetic field.

Aerodynamic drag

Aerodynamic drag is given by

Fb
drag = −1

2
ρAdrag∥vb∥2CD

vb

∥vb∥ , (11.11)

where ρ is the atmosphere’s density at a given altitude, CD is the drag coefficient,
and Adrag is the surface area the contact force affects. For simplicity, the surface
area of the largest face of the spacecraft is chosen.

We use a simplified version of the torque produced by the aerodynamic drag

τ b
drag = (xb

CP − xb
CG)× Fb

drag, (11.12)

where xb
CP is the center of pressure and xb

CG is the center of gravity. The vectors
are chosen such that the distance between the centers is as large as possible but
limited by the spacecraft structure size.

Gravity gradient

The gravity gradient torque is due to the spacecraft not being a point mass when
modeling the rigid body dynamics. It is given in [39] as

τ b
grav = 3

µ

∥ri∥3S(c3)Jc3, (11.13)

where c3 is the third column vector of Rb
o.

Solar radiation pressure

We use a simplified model for the solar radiation pressure, where the sun’s position
is constant in the inertial frame, and the surface area affected by the sunlight is
assumed to be the largest face of the spacecraft. Another simplification made is
that the solar radiation pressure is constantly applied. Together, these eliminate
the need to model the sun’s actual position. These simplifications do not represent
an accurate model of the sun’s effect on the system. Still, they are sufficient to
simulate the worst-case impact of solar radiation with respect to attitude control
in a relatively brief time. The force is given by [42]

Fb
srp = Rb

i

Fsrp

c
Asrp(1 + l)cos(α)

[
0 1 0

]⊺
, (11.14)
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where Fsrp is the solar constant, c is the speed of light in vacuum, Asrp represents
the maximum exposed surface area, l is the reflectance, and α is the incidence angle
of the incoming light. The values for Asrp, α, and the direction vector are chosen
to maximize the absolute value of the force.

The corresponding torque is given as

τ b
srp = (xb

CP − xb
CG)× Fb

srp. (11.15)

The center of pressure and the center of gravity are chosen in the same manner as
they were for the aerodynamic drag torque.

Magnetic torque

The magnetic torque is created due to the spacecraft’s electronics setting up a
dipole that interacts with the Earth’s magnetic field. The magnetic torque is given
by

τ b
mag =

(
D

√
1

3
· [1, 1, 1]⊺

)
×Bb, (11.16)

where D is a constant representing the size of the residual magnetic dipole, and Bb

is the body frame vector of the Earth’s magnetic field. The IGRF (International
Geomagnetic Reference Field) model in the simulations represents the latter.

11.2.6 Reaction wheel dynamics

The angular momentum of the reaction wheels is given as [60]

Hb
w = AJwA

⊺(ωb
ib +Aωw

bw) = AJwω
w
iw = AJwA

⊺ωb
iw. (11.17)

We find the reaction wheel dynamics by applying Euler’s second axiom,

id

dt
Hb

w =
bd

dt
(AJwA

⊺ωb
iw) + S(ωb

iw)H
b
w

= AJwA
⊺
bd

dt
ωb

iw + S(Aωw
iw)(AJwω

w
iw) = AJwA

⊺
bd

dt
ωb

iw

= AJwA
⊺(

bd

dt
ωb

ib +A
wd

dt
ωw

bw) = τ b
u = Aτw

u ,

(11.18)

where we have used that

S(Aωw
iw)(AJwω

w
iw) = 0 (11.19)

when the inertia of the reaction wheels are equal.

11.2.7 Attitude error dynamics

The attitude error variables are defined as

qe = q−1
d ⊗ qob =

[
ηd ϵ⊺d
−ϵd ηdI3x3 − S(ϵd)

]
qob (11.20)
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where ηd and ϵd are the scalar and vector part of the desired quaternion qd, re-
spectively, and

ωb
e = ωb

ob − ωb
d = ωb

ib −Rb
oω

o
io − ωb

d, (11.21)

where ωb
d represents the desired angular velocity. We find the angular velocity error

dynamics by differentiating Equation (11.21) with respect to time. Specifically,

bd

dt
(Rb

oω
o
ib) =

bd

dt
(Rb

o)ω
o
io +Rb

o

bd

dt
(ωo

io)

= −S(ωb
ob)R

b
oω

o
io −Rb

oS(R
o
bω

b
ob)ω

o
io,

(11.22)

where we have used that the orbit is constant over time. Equation (11.18) can be
used to rewrite (11.9) by taking advantage of (11.7),

Js

bd

dt
ωb

ob = −(AJsA
⊺
bd

dt
ωb

ib +AJw

wd

dt
ωw

bw)− S(ωb
ib)H

b
s

+τ b
mtq + τ b

ext = −Aτw
u − S(ωb

ib)H
b
s + τ b

mtq + τ b
ext

(11.23)

From (11.20), (11.21), (11.22), and (11.23), the error dynamics become

q̇e =
1

2
T(qe)ω

b
e, (11.24)

Js

bd

dt
ωb

e = −S(ωb
ib)H

b
s −Aτw

u + τ b
mtq + τ b

ext

+JsS(ω
b
ob)R

b
oω

o
io + JsR

b
oS(R

b
oω

o
ob)ω

o
io − Js

bd

dt
ωb

d.

(11.25)

11.3 Control design

This section presents the control algorithms we use on the spacecraft’s actuators.
The primary actuator for attitude control will, in this chapter, be the reaction
wheels. A momentum dumping controller counteracts momentum building up in
the reaction wheels. We use the magnetorquers to provide the external torque
required for the momentum dumping.

11.3.1 Momentum dumping controller

The momentum dumping control law is given as [36]

τmtq = mb ×Bb =

(
km
∥Bb∥2

(
hb
e ×Bb

))
×Bb, (11.26)

where mb is the magnetic moment, km is a positive constant, and hb
e is the error

in angular momentum for the reaction wheels, given as

hb
e = AJw(ω

w
bw − ωw

bw,ref), (11.27)

where ωw
bw,ref is the reference speed of the reaction wheels.
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11.3.2 Generalized super-twisting algorithm (GSTA)

The generalized super-twisting algorithm is proposed here to control the attitude
with the reaction wheels. The GSTA is a second-order sliding mode control al-
gorithm robust to bounded time-varying disturbances, such as the environmental
torques τ b

ext. The GSTA is given as

τ b
u = (−1) · (−k1ϕ(σ)1 + z),

ż = −k2ϕ(σ)2,

ϕ1(σ) = ⌊σ⌉
1
2 + βσ,

ϕ2(σ) =
1

2
⌊σ⌉0 + 3

2
β⌊σ⌉ 1

2 + β2σ,

(11.28)

where k1,k2, and β are positive and constant positive controller gain vectors that
are applied element-wise, σ is the sliding surface, and the function ⌊·⌉x is defined
as ⌊a⌉b = |a|bsign(a), which is used element-wise when the argument a is a vector.

Surface for pointing

For pointing, we propose the sliding surface

σp = ϵ̇be +Kϵbe,K > 0, (11.29)

where ϵbe is the vector part of the error quaternion. On the sliding surface, σp = 0,
such that ϵ̇be = −Kϵbe, and thus the origin ϵbe = 0 is asymptotically stable. As the
unit quaternion is defined to have a length equal to one, the surface will have two
asymptotically stable equilibrium points in ϵe = 0, ηe = ±1.

Surface for slewing

We use a sliding surface based on [75] for slewing, given as

σs = ωb
e − 2c1

∂W

∂ηe
ϵe, (11.30)

where c1 is a positive constant, and W is a Lyapunov function candidate (LFC)
chosen to be W = 1− |ηe|. From this choice, the surface becomes

σs = ωb
e + 2c1 sgn(ηe)ϵe. (11.31)

Note that the signum function is defined to be positive when evaluated at zero.
Based on the proof in [75], a sketch of the proof showing asymptotic stability for
the chosen sliding surface is as follows:

Differentiating the general LFC W(ηe) yields

d

dt
W (ηe) =

∂W

∂ηe

∂ηe
∂t

=
∂W

∂ηe
(−1

2
ϵ⊺eω

b
e) = −c1(

∂W

∂ηe
)2ϵ⊺eϵe, (11.32)

where Equation (11.30) set to zero has been used to define ωb
e. The time derivative

of the LFC is negative definite for all ϵe ̸= 0 as long as W(ηe) is chosen such that
∂W
∂ηe

is always non-zero. The LFC

W (ηe) = 1− |ηe|, (11.33)
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satisfies this constraint since ∂W
∂ηe

= −sgn(ηe). The LFC is positive definite, and
the time derivative

d

dt
W (ηe) = −c1(

∂W

∂ηe
)2ϵ⊺eϵe = −c1ϵ⊺eϵe, (11.34)

is negative definite, and from this, we can use Lyapunov’s second method to con-
clude that the two equilibrium points of the quaternion representation (ηe =
±1, ϵe = 0) are asymptotically stable. This conclusion only holds when the signum
function is defined as non-zero.

11.3.3 Sliding mode control (SMC)

Sliding mode control (SMC) is given as

τ b
u = k sgn(σ), (11.35)

where σ is the sliding surface, defined as for the GSTA, and k is a constant (posi-
tive) controller gain vector that is applied element-wise.

11.3.4 Proportional–derivative controller (PD)

The PD controller is given as [9]

τ b
u = Kdω

b
e +Kpϵe (11.36)

where Kd and Kp are constant (positive definite) controller gain matrices, with
numerical values to be chosen when tuning the controller.

11.4 Simulation

This section presents the numerical simulations based on spacecraft attitude control
scenarios with two maneuvers: pointing and slewing. We compare the response of
the controlled variables with the GSTA, SMC, and PD controller.

11.4.1 Setup

A 6U CubeSat model is chosen as the spacecraft’s rigid body in this simulation. It
has magnetorquers on all three body axes and four reaction wheels. Three reaction
wheels are fixed separately on each of the three body axes, and a fourth is tilted
such that the resulting torque has equal components in each axis in the body frame.
The torque distribution matrix is given as

A =
1

3



3 0 0

√
3

0 3 0
√
3

0 0 3
√
3


 . (11.37)

The total inertia matrix and the reaction wheel inertia matrix are given as

J =




0.0775 0.0002 −0.0002
0.0002 0.1067 0.0005
−0.0002 0.0005 0.0389


 kg ·m2, Jw = IwI4x4, (11.38)
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where Iw = 2.1 · 10−4 kg m2 is the inertia of a single reaction wheel, which are all
set to be identical. Js is found by combining (11.37) and (11.38) with (11.7).

Parameters used in simulations are shown in Tables 11.1-11.5.

Table 11.1: Orbital elements of initial orbit

Orbital element Value
Semimajor axis 6852.2 km
Eccentricity 0.002
Inclination 97◦

Right ascension of the ascending node 280◦

Argument of perigree 0◦

True anomaly 90◦

Table 11.2: Physical parameters

Physical parameter Value
CubeSat mass 7 kg
CubeSat surface area (Asrp, Adrag) 0.06 m2

Earth Radius 6.371 · 106 m
Standard grav. parameter, Earth (µ) 3.986 · 1014 m3/s2

Atmospheric density (ρ) 1.7741 · 10−12 kg/m3

Drag coefficient (CD) 2.1
Solar constant (Fsrp) 1367 W/m2

Speed of light in vacuum (c) 3·108 m/s
Reflectance, satellite (l) 0.2
Angle of sunlight on the satellite (α) 0◦

Residual magnetic dipole (D) 1·10−2

Table 11.3: Saturation bounds

Saturation bounds Value
Reaction wheel angular velocity ± 5000 RPM
Reaction wheel angular velocity, rate ± 4.5 · 103 rad/s2

Reaction wheel input torque ± 3 · 10−3 N·m
Magnetorquer magnetic moment ± 5 · 10−1 A·m2

The orbit represented by the parameters in Table 11.1 is a commonly chosen
Low-Earth-Orbit (LEO) for remote sensing. In Table 11.4, the reaction wheel jitter-
ing is modeled based on friction and speed resolution in the reaction wheels, while
the ωb

ib noise is due to unwanted thermal and structural effects. Perfect attitude
knowledge is assumed.
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Table 11.4: Noise

Noise Value
Reaction wheel jittering 3 RPM
ωb

ib noise 6.9813·10−8 rad/s

Table 11.5: Controller gains

Controller gain Value

km (mtq) 1.5·10−2

K (surface) 0.15 · I3x3
k1 (GSTA) 2.5

1000Js · 13x1

k2 (GSTA) (2 · 10−8)13x1

β (GSTA) 15 · 13x1

Kp (PD, point) Js

Kp (PD, slew) 0.01Js

Kd (PD) 2.7Js

k (SMC, point) 0.01Js · 13x1

k (SMC, slew) 2
1250Js · 13x1

c1 (GSTA, slew) 2

c1 (SMC, slew) 2 · 10−3

For the momentum dumping controller, the reference reaction wheel speed
ωw

bw,ref is set to 2000 ·
[
1 1 1 −

√
3
]⊺

RPM. At this point, the angular mo-
mentum the reaction wheels creates will be net zero about the axes in {b}.

11.4.2 Performance measures

The performance is measured using stationary signals’ root-mean-square error
(RMSE). We define the signal as stationary when it has settled, meaning it stays
inside a given error band around the target value. The error band is defined to
be ±0.5◦ for pointing, and ±4 · 10−4 rad/s for slewing. The settling time is the
time it takes from applying the desired reference value to the error band being
reached, provided that it stays within the error band. Each channel’s steady-state
error (SSE) is measured at the end of each simulation.
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Figure 11.1: Pointing: Plot of the vector part of q and qd.

11.4.3 Pointing

Pointing is a fixed-vector orientation towards a desired attitude. Both the GSTA
and the SMC use the surface defined in Equation (11.29).

Table 11.6: Pointing performance

Settling time RMSE SSE
GSTA [15.9, 15.7, 15.2]s [4.80, 3.14, 2.43]* [0.5, 0.0, 0.0]*
PD [21, 20, 18.4]s [4.24, 4.22, 4.24]* [0.5, 0.0, 0.1]*
SMC [29.1, 27.2, 25.8]s [4.93, 4.91, 4.88]* [0.6, 0.0, 0.1]*

The star (*) in Table 11.6 denotes 10−2 angular degrees (◦). Figures 11.1, 11.2,
and 11.3 are centered around the transient period of the control. Figures 11.4,
11.5, and 11.6 are plotted over a longer time to show the effects of attitude control
and momentum dumping controller on the reaction wheel speed. For pointing, the
objective is illustrated in Figure 11.1, where a slight overshoot can be seen in the
GSTA response. In the error variables shown in Figure 11.2, it can be seen that
this overshoot does not result in the signal escaping the error band, indicating that
the performance of GSTA is better than that of PD controller and SMC. It is also
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Figure 11.2: Pointing: Plot of the vector part of qe.

performing better with respect to settling time across all channels: between four
and five seconds for the PD controller and over 10 seconds for the SMC.

As seen in Figure 11.2, the PD controller converges fastest initially, but the
GSTA tracks the desired attitude better when the signals approach the desired
state. The RMSE values are slightly better for GSTA than PD and SMC along the
second and third channels, while the PD is the best along the first. The SSE values
are similar for all three controllers.

The angular velocity response shown in Figure 11.3 also highlights the perfor-
mance difference between the PD controller and GSTA, where the curve of the
latter follows a gentler slope. The angular velocity of the reaction wheels, as shown
in Figure 11.4, are returned to their initial values after the reference changes at
30 seconds, except when using the PD controller. The magnetorquer response is
similar for all three control laws, as seen in figure 11.6. The torque applied by the
GSTA has a sharper slope than the SMC, as seen in Figure 11.5, causing a lot
more torque to be applied to the reaction wheels after the system has settled. The
PD controller has a higher peak and varies more than GSTA before and after the
transient period.
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Figure 11.3: Pointing: Plot of ωb
ob.

11.4.4 Slewing

When the spacecraft performs a slew maneuver, the angular velocity of the {b}
relative to {o} is non-zero and constant. We choose a desired angular velocity about
the y-axis in this simulation. The GSTA and the SMC use the surface defined in
Equation (11.31) for slewing.

Table 11.7: Slewing performance

Settling time RMSE SSE
GSTA [-1, 3.63, -1]s [3.91, 4.93, 4.95]* [5.05, 0.30, 4.40]*
PD [-1, 1.3, -1]s [4.78, 5.32, 5.33]* [3.73, 0.66, 5.08]*
SMC [-1, 7.28, -1]s [7.88, 11.1, 8.21]* [5.99, 5.30, 11.7]*

The star (*) in Table 11.7 denotes 10−5 rad/s, and -1 indicates channels that
start inside the error band and never leave and therefore are permanently settled.

Figure 11.7 shows the slew maneuver objective. In general, the GSTA outper-
forms the SMC when considering settling time. However, the PD controller per-
forms better, as shown clearly in Figure 11.7 and Table 11.7. The GSTA uses 3.63
seconds, while the SMC uses 7.28 seconds to settle about the y-axis. For compari-
son, the PD controller uses just 1.3 seconds. Note that the inclination of the sliding
surface used for slewing, the positive definite constant c1 from Equation (11.31),
is different for the GSTA and the SMC algorithm, as specified in Table 11.5. This
is due to the SMC algorithm overshooting the reference if the chosen value is too
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Figure 11.4: Pointing: Plot of ωw
bw − ωw

bw,ref.

high. By decreasing c1 from the value set for GSTA, the SMC manages to control
the system. Furthermore, the GSTA performs well with the given c1 values.

It is possible to increase the SMC gain to lower the settling time, but this would
increase the RMSE values, and the SMC might be unable to settle within the error
band in a chosen period. Even with the current values, the SMC has a significantly
higher RMSE than the GSTA and PD controller for slewing.

Increasing the gain for the GSTA to lower the settling time would also increase
the RMSE value, which is slightly better than the values of the PD controller with
the current parameters.

For reaction wheel speed, it can be seen in Figure 11.8 that the momentum
dumping controller uses a longer time to reach the initial speed values compared to
pointing, as seen in Figure 11.4. To improve this, the reference angular momentum
must be updated in a slew maneuver, as shown in [33]. Figure 11.10 shows that
the magnetorquers produce high-frequency signals as in pointing, but of a different
shape than those in Figure 11.6 as it counteracts a distinct change in the wheel
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Figure 11.5: Pointing: Plot of τw
u .

speed. The torque plot for the attitude control algorithms, Figure 11.9, shows that
the GSTA has a spike around the change in reference at 60 seconds, while the
amplitude of the SMC signal has a fixed maximum value. Note that the peak value
of the PD controller is significantly higher than the peak of the GSTA, and the
signal is more contaminated by noise for the PD controller, as shown in Figure
11.5.

11.5 Conclusion

In this chapter, we have studied the performance of three different control algo-
rithms applied to the attitude control of a spacecraft actuated with reaction wheels:
the GSTA, SMC, and PD controller. The simulation results show that the GSTA
control chatter is significantly reduced compared to SMC. Overall attitude con-
trol performance is improved when comparing GSTA to SMC in a slew maneuver.
GSTA displays similar accuracy as the PD controller under the given conditions
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Figure 11.6: Pointing: Plot of τ b
mtq.

but with lower spikes and less chatter in the torque applied to the reaction wheels.
The settling time for the GSTA is shorter for pointing but longer for slewing when
compared to a well-tuned PD controller.
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Figure 11.7: Slewing: Plot of ωb
ob.
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Figure 11.8: Slewing: Plot of ωw
bw − ωw

bw,ref.
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Figure 11.9: Slewing: Plot of τw
u .
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Figure 11.10: Slewing: Plot of τ b
mtq.
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Chapter 12

Accuracy of a slew maneuver for the
HYPSO-1 satellite – in-orbit results

12.1 Introduction

During a slew maneuver, the body, in this chapter a satellite, rotates with a con-
stant angular velocity relative to some frame. This is in contrast to point-to-point
maneuvers, otherwise called pointing maneuvers or set-point regulation. Various
papers discuss the slew maneuver in theory, see for example [33], [13], [76], [77],
and Chapter 11. Possible benefits of using a slew maneuver have been discussed for
imaging satellites; see for example [78]. Slew maneuvers for satellites are usually
deployed for a specific reason, such as the need for a particular sensor, often a cam-
era, to track an area of interest. The method can also compensate for the Earth’s
rotation, essentially pointing the satellite towards a fixed point on the ground. The
latter control scheme is also known as “spotlight mode" [79].

The mission design for the HYPSO-1 [21] stipulates a single-axis slew maneuver
to improve the data gathered by its payload. The HYPSO-1 CubeSat carries a push-
broom hyperspectral imager as its main payload, which produces hyperspectral
data cubes. The slew maneuver is intended to let subsets of the resulting image,
henceforth called scan-lines, overlap with each other along track, so that techniques
such as super-resolution can increase the utility of the downlinked data [80, 81].

This chapter contributes to the analysis of data collected during a slew ma-
neuver performed by the HYPSO-1 satellite. The accuracy of the selected slew
maneuver is evaluated in the context of images taken by the satellite in the first
months of operation. The performance is measured by looking at raw data from
the hyperspectral camera for two different images of the same location, showing
how the HYPSO-1 slew maneuver can be used to decrease the ground sampling
distance (GSD) and, consequently, increase the number of samples per area within
the target region.

Section 12.2 describes the theory and methods used: the slew maneuver, includ-
ing the coordinate frames, and the performance metrics are defined. Section 12.3
describes the hyperspectral imager of the HYPSO-1 mission and the observation
campaign conducted to obtain the data used in this chapter. Section 12.4 presents
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Figure 12.1: The HYPSO-1 slew maneuver. Three coordinate frames are de-
picted: the body frame, the orbital frame (the LVLH frame), and the inertial
(ECI) frame. The satellite moves from right to left in the figure as it images the
area of interest.

the data from the campaign, with accompanying calculations and the evaluation
based on the methods introduced in Section 12.2. The results are discussed in
Section 12.5, and Section 12.6 concludes the chapter.

12.2 Theory

Three coordinate frames are relevant to the slew maneuver: the inertial reference
frame, i, the orbital reference frame, o, and the satellite body frame, b, see Fig-
ure 12.1. For the satellite body frame, the axes coincide with the main axes of
inertia of the satellite, with, most notably, the z-axis pointing out through the side
where the hyperspectral imager is pointing. The orbital reference frame is a local
vertical, local horizontal (LVLH) reference frame with the z-axis pointed towards
nadir. The x-axis of the orbital reference frame points in the velocity direction,
and the y-axis completes the right-handed coordinate system. The LVLH frame
can then be expressed as

x̂i
o =

vi

||vi|| , ẑio = − ri

||ri|| , ŷi
o =

ẑio × x̂i
o

||ẑio × x̂i
o||
, (12.1)

where x̂i
o, ŷi

o, and ẑio denote the orthogonal unit vectors for the LVLH reference
frame, ri and vi are the position and velocity vectors represented in the inertial
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frame, respectively, and × is the vector cross product, required for completing the
right-handed coordinate system.

During the slew maneuver, the satellite’s angular velocity relative to the orbit
frame is controlled. This angular velocity can be calculated as [18]

ωb
ob = ωb

ib − ωb
io = ωb

ib −Rb
iω

i
io, (12.2)

where ωb
io is the angular velocity of the orbit frame relative to the inertial frame,

ωb
ib is the angular velocity of the body frame relative to the inertial frame, both

represented in body frame and Rb
i is the rotation matrix from orbit frame to

body frame. The angular velocity of the orbit frame relative to the inertial frame,
represented in the intertial frame, ωi

io, is defined in [19] as

ωi
io =

ri × vi

(ri)⊺ri
. (12.3)

Equation (12.3) is changed slightly compared to [19] because the quaternion be-
tween the inertial and the body frame is available in the telemetry, making it
possible to compute Rb

i directly.
Note that (12.2) is necessary since ωb

ob is not directly measured, as the IMU will
measure ωb

ib. Using the estimated position and velocity, ri and vi, in addition to
the estimated values for ωb

ib based on sensor measurements, we can find an estimate
for ωb

ob through the relationships in (12.2) and (12.3). Maneuvers on the HYPSO-1
satellite are implemented using PD controllers, see e.g., [9].

For the accuracy measurements, we use a root-mean-square deviation (RMSD)
measure, for convenience, given here as

RMSD =

√√√√ 1

T

T∑

t=1

(xref,t − xt)2, (12.4)

where T is the number of time steps, xt is the reference value at the given time
step and xref,t is the corresponding reference value. For attitude accuracy, the "root
square deviation" part of (12.4) is replaced, resulting in

Accuracyquaternion =
1

T

T∑

t=1

arccos
(
|q⊺

t qref,t|
)
, (12.5)

where arccos
(
|q⊺

t qref,t|
)

is a distance metric on SO(3) [28], and qt and qref,t are
the quaternion and quaternion reference for a given time step, respectively.

There exist several spatial resolution metrics to characterize imagery [82].
Among them is the ground sampling distance (GSD), which is expected to be
decreased by the slewing maneuver. [82] describes GSD as pixel pitch projected
onto ground plane. Pixel pitch is the distance from the pixel center to the pixel
center of two consecutive pixels in an image. For a push broom scanning system,
GSD can be drastically different in the two dimensions of an image, along-track
and across-track. This chapter focuses on along-track GSD.
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12.3 Experimental setup

The the attitude control system of the HYPSO-1 satellite, based on the NanoAvion-
ics M6P satellite bus, is equipped with reaction wheels and magnetorquers.
HYPSO-1 is a 6U CubeSat (10× 20× 30 cm) with about 7 kg mass. The reaction
wheels are the main actuators used for attitude control, meaning they produce
the torque required to perform the pointing of the hyper-spectral imager towards
targets on the ground, and to perform the slewing maneuver. The magnetorquers
are used to de-saturate the reaction wheels. For more info on the imager itself, see
[83].

There are several ways to change the GSD, for example, by changing the fram-
erate. Here, the framerate is kept constant to inspect the impact of the slewing
maneuver itself.

Two images targeting the same location are taken. Both images are captured
when HYPSO-1 passes over the location of interest close to zenith. One image is
captured using a nadir pointing maneuver, and the other using a slewing maneu-
ver. For the nadir pointing maneuver, the reference was given in terms of a unit
quaternion as qo

b = [0.99871,−0.036528, 0.035297, 0]⊺, specifying body frame ori-
entation relative to the orbit frame. Note that the unit quaternion is denoted with
the scalar part first, followed by the three components that make up the vector
part. Also note that the pointing is not precisely nadir, but offset by about 5.8◦.
For brevity, the maneuver will still be referred to as the nadir pointing maneuver
for the remainder of this chapter.

The angular velocity about the orbit frame y-axis, the reference for the slew
maneuver, is given in terms of initial and final nadir angle of 10◦ and −10◦. A
slew duration of 43.45 seconds yields an angular velocity reference of ωb

ob,ref =
[0,−0.0080329, 0]⊺rad/s. Note that the reference differs from the nominal slew ma-
neuver [21]. The start and end attitude of the slewing maneuver minimally affect
the slew as the current implementation moves the transient periods of the angular
velocity response outside the specified slew duration.

The nadir pointing image was taken on Saturday July 16 at 08:29:00 UTC, and
the slewing maneuver image was taken on Sunday July 24 at 08:30:33 UTC. The
target area for both of the maneuvers on the ground was a part of the coastal area
where Romania meets the Black Sea. The full hyperspectral cubes are downlinked
together with the Attitude Determination and Control System (ADCS) telemetry,
containing the pose information of the satellite.

12.4 Results

Figure 12.2 shows the two RGB representations of the hyperspectral data cubes
manually georeferenced over a topographic map, with the image taken by the nadir
pointing maneuver to the left and the image taken during slew maneuver to the
right. Note the difference in the area covered by the two maneuvers. A zoom-
in of a common section of both images is shown in Figure 12.3, again with the
nadir image on the left and the slewing maneuver on the right. The images have
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been bilinearly resampled to the same scale. The contrast has been enhanced to
differentiate between the details in each picture.

Figure 12.2: Nadir pointing (left) and slew (right) RGB images overlayed on
topographical map (OpenStreetMap).

  2 km

Figure 12.3: Nadir pointing (left) and slew (right) RGB images over the port of
Constant,a, Romania. Zoom-in on the images in Figure 12.2, bilinearly resampled
to the same scale with the contrast enhanced.

Figure 12.4 shows the ADCS telemetry derived satellite pose in 3D space. The
figure also shows a latitude-longitude grid representing the Earth with coordinates
labels, the satellite orbital and ground track, the footprint of the images captured
during the maneuver, and lines indicating the pointing direction during image
capture. Note the difference in pointing direction between the two captures.

The telemetry includes the attitude represented as a unit quaternion qi
b, the

angular velocity ωb
ib, the position ri, and the velocity vi, all estimated onboard.

For the nadir pointing capture, they are shown in Figure 12.5. The accuracy for
the nadir pointing maneuver, using (12.5) is taken during the maneuver itself, as
marked with the shaded area starting at time zero in the figures. The accuracy of
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(a) Pointing geometry of nadir capture.

(b) Pointing geometry of slew capture.

Figure 12.4: Capture pointing geometry inferred from ADCS telemetry. Orange:
Satellite track in ECI. Green: Satellite ground track. Blue rectangle: Image ground
footprint. Black lines: z-axis direction at six uniformly spaced points in time during
image capture. Light red: lines of constant longitude. Light blue: Lines of constant
latitude.
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Figure 12.5: Telemetry from the spacecraft when pointing nadir. From top to
bottom: ωb

ib, q
i
b, r

i and vi. Gray area indicates the time period when HYPSO-1
was recording data.

the nadir pointing maneuver is 0.00114 rad = 0.0653◦, computed using (12.5), see
Table 12.1.

Figure 12.6 shows the LVLH quaternion qo
b during the image capture. To con-

struct qo
b , q

i
o is inferred from the attitude information for qi

b, shown in Figure 12.5,
and the definition of the LVLH coordinate system in (12.1).

The telemetry is displayed in Figure 12.7 for the slew maneuver. Note that
the satellite prepares the slew maneuver by spinning up to a constant angular
rate ahead of the defined start, thus moving the transient outside of the image
capture period. ωb

ob, the angular velocity of the body relative to the orbit frame, is
computed based on the telemetry calculated by (12.2) and shown in Figure 12.8.
Figure 12.8 also displays ωb

io, albeit given in a different frame than in (12.3) for
easier comparison to the other measurements in the figure. Note that ωb

ib and ωb
ob
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Figure 12.6: Attitude information from the nadir pointing maneuver during im-
age capture. Quaternion representing the attitude of the axes of the LVLH frame
relative to the inertial frame qi

o, the attitude of the body axes relative to the LVLH
frame qo

b , and the distance from the reference quaternion used in (12.5), given in
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Table 12.1: Accuracy measurements for the two maneuvers.

Capture Accuracy
Pointing 1.14 mrad

Slew [0.6347, 0.6752, 0.4551]⊺ mrad/s

are very similar in Figure 12.8 due to the magnitude of ωb
ib being larger than that

of ωb
io. The last part of the figure shows the control error during the image capture

period. The accuracy of the slew maneuver in terms of RMSD between the signal
and the reference for the angular velocity during capture is shown in Table 12.1. It
has three components, one for each component of the ωb

ob vector. The y-component
is the axis around which the slew rotation takes place. That all three components
are approximately the same magnitude signifies that the satellite manages to hold
the reference in all three axes equally well.

Figure 12.9 shows the GSD along track in the center of the swath for the
pointing and slewing captures. Noise in the telemetry translates into noise of the
GSD estimation. Table 12.2 shows that the area covered by the image taken during
the nadir pointing maneuver covers over twice as large an area as the image taken
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Figure 12.9: Ground-sampling-distance along the scanning direction for nadir
pointing and slew maneuver.

Table 12.2: Figures of interest for the two captures.

Capture mean GSD ca. Area [km2] Pixels in region
Pointing 321.6 m 13726 1825

Slew 117.0 m 4959 5117

during the slewing maneuver. Table 12.2 also shows the mean GSD over all scan
lines. The decrease from 321.6 m to 117.0 m signifies a 63.6% reduction. The fourth
column in Table 12.2 shows how many pixel samples are contained in the region
bounded by the orange rectangle shown in Figure 12.2, containing an area of 192
km2. The region contains 64.3% less samples for the image taken during pointing
compared to slewing. The increased density of pixels correlates with an increase in
the signal, or the amount of light collected, per unit area.

12.5 Discussion

Several steps are used to acquire the data presented in this chapter, giving us four
possible error sources. The four stages are 1) generating a reference, 2) estimating
the attitude, 3) controlling the attitude towards the reference, and 4) possible error
sources related to the hyperspectral imager. The first error source, generating a
reference, might be slightly offset compared to our desired reference if the model
we use to calculate where we want to point is not accurate enough. In addition,
the time where the maneuver starts has to be specified: while a small error here
might give a significant deviation in the image, it would not change the accuracy
results we got using the performance metrics introduced in Section 12.2, as they
are indifferent to what the imager captures. The control system will not be able
to control the satellite towards the reference attitude exactly but with an error
required to within a small bound, see [21]. The same can be said for the estimated
variables. There is a possibility that error source 4), errors with the imager, also
influence the final images. However, these errors should be static, meaning they
should be identical between the various images. Error source 1) can possibly vary
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depending on location.
Using the results from the telemetry, we can see from the accuracy of the

pointing and slewing maneuver that the ADCS manages to control the satellite
towards its references, making error source three small. As the images show what we
expect to see, we may conclude that the compound errors from the four mentioned
sources are small.

The basic idea behind the concept of operations for the HYPSO-1 satellite is
that it performs a slew maneuver, such as the one performed in this chapter, to
acquire push-broom hyperspectral images. From the results in this chapter, we
can see that the attitude control objectives are met with some accuracy during
the duration of the image captures. The distance from the reference attitude for
nadir pointing is, as shown in Figure 12.6, very low, making it a good comparison
for the slew maneuver when looking at the science results. As Table 12.2 shows,
the mean GSD of the slew maneuver is decreased by 2/3 relative to the image
taken during the pointing maneuver. This measure sets a limit for how much post-
processing algorithms can improve the image, and thus it can be argued that using
this slewing maneuver helps increase the limit for how much information can be
gathered.

12.6 Conclusion

The slew maneuver of the HYPSO-1 satellite performs well according to the ac-
curacy measures used in this chapter. Moreover, the slew maneuver increases the
number of photons detected per area of the hyperspectral image by decreasing the
GSD. This suggests that the slew maneuver produces images that can be exploited
through image restoration, deconvolution, and super-resolution image processing
algorithms (e.g., [84]) to increase the utility of the HYPSO-1 data products.
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Chapter 13

Conclusion

This section contains the conclusion of the full thesis, a short discussion on the
limitations of the results, and how the previously discussed results relate to the
research questions presented in Section 1.2. This thesis presents three parts: an
energy optimal attitude control part, a maximum hands-off attitude control part,
and a part focusing on the slew maneuver used by the HYPSO-1 satellite.

Part I primarily concerns research question 1: “How can attitude control ma-
neuvers be more time and energy-efficient?”. Through the three papers on which
this part is based, we redefined what it means to be energy optimal when it comes
to attitude control, presented a framework for formulating such problems as opti-
mal control problems, and showed how the framework improves upon the current
method. The part also answers research question 3, “How can the results in research
questions 1 and 2 be taken advantage of in agile and holistic satellite operations?”
when the formulation for the attitude control system is expanded to take other
parts of the system into account. Through this extension and the case study of
HYPSO-2, it is possible to see the benefit the energy optimal control formulation
would have on the operations of a satellite system over time. In the final part of
part I, the formulation is investigated in relation to a minimum-time objective when
the satellite is actuated by magnetorquers, which leads back to the time-efficiency
aspect in research question 1.

Research question 2, “How can alternative approaches for attitude control be
used for satellites with payloads that are not continuously operated?” is answered
in parts II and III. In part II, the focus is on maximum hands-off control, which is
a less-used norm formulation. The idea with maximum hands-off control is to make
the control signal as sparse as possible, which can be an asset for the operations
of a satellite where the control signals have to be at specific points in time to be
observable by the operator, for example. In Chapter 11, we looked into the possi-
bility of increasing the performance of the slew maneuver, which we analyzed in
Chapter 12. The latter example is, of course, another case where research question
three is answered, as the final part of part III looks into the impact of the attitude
control system of HYPSO-1 on its operations.

Implementing the energy optimal attitude control methods in part I on an
actual satellite could potentially result in some issues. The primary issue would
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be the computation time required for the optimizer to find an optimal trajectory,
even on a standard computer. Owing to this heavy computational load, using the
optimal control problem formulations introduced in part I directly as part of a
nonlinear model predictive control (NMPC) scheme onboard the satellite would
not be feasible. However, the trajectory can easily be found through optimization
on the ground and then sent to the satellite, where it would be fed to a trajectory
tracking controller.

The maximum hands-off concept in part II is essentially an open loop con-
cept: the assumption that everything is known about the system is required for
the satellite to move as desired. This is not necessarily the case, and the satellite
would potentially miss slightly if this control strategy were used. Recalculating the
required torque towards the end of the maneuver could solve this problem: it would
reduce the uncertainty and, potentially, let the system compensate for any model-
ing errors. However, the issue with this procedure is that the maximum hands-off
optimization requires long computations like the energy optimal optimizations in
part I, making such a computation during the maneuver infeasible with the current
setup. Furthermore, there are some extra aspects to consider about the maximum
hands-off concept for a satellite actuated by thrusters in Chapter 9. The assump-
tion that was made about the on-off behavior of the thrusters, meaning that they
work perfectly as a discontinuous on-off actuator, needs to be taken into considera-
tion before implementation on an actual system as thrusters commonly need some
time to warm up. This, together with the aforementioned issue that the method
cannot produce perfectly on-off signals due to the structure of the problem, is left
as future work.
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