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Raidionics: an open software 
for pre‑ and postoperative 
central nervous system tumor 
segmentation and standardized 
reporting
David Bouget 1, Demah Alsinan 1, Valeria Gaitan 1, Ragnhild Holden Helland 1,2, 
André Pedersen 1, Ole Solheim 3,4 & Ingerid Reinertsen 1,2*

For patients suffering from central nervous system tumors, prognosis estimation, treatment 
decisions, and postoperative assessments are made from the analysis of a set of magnetic resonance 
(MR) scans. Currently, the lack of open tools for standardized and automatic tumor segmentation 
and generation of clinical reports, incorporating relevant tumor characteristics, leads to potential 
risks from inherent decisions’ subjectivity. To tackle this problem, the proposed Raidionics open‑
source software has been developed, offering both a user‑friendly graphical user interface and stable 
processing backend. The software includes preoperative segmentation models for each of the most 
common tumor types (i.e., glioblastomas, lower grade gliomas, meningiomas, and metastases), 
together with one early postoperative glioblastoma segmentation model. Preoperative segmentation 
performances were quite homogeneous across the four different brain tumor types, with an average 
Dice around 85% and patient‑wise recall and precision around 95%. Postoperatively, performances 
were lower with an average Dice of 41%. Overall, the generation of a standardized clinical report, 
including the tumor segmentation and features computation, requires about ten minutes on a regular 
laptop. The proposed Raidionics software is the first open solution enabling an easy use of state‑
of‑the‑art segmentation models for all major tumor types, including preoperative and postsurgical 
standardized reports.

Central nervous system (CNS) tumors, further classified into taxonomic categories as per iterative editions from 
the World Health  Organization1, depict all possible tumors originating from the brain or spinal cord. Given more 
than 100 subtypes, the heterogeneity in a tumor expression (i.e., location, growth rate, or invasiveness) leads 
to a likewise heterogeneous prognosis. Most patients will experience neurological and cognitive deficits over 
 time2, with survival expectancy ranging from weeks to several years depending on the tumor type and grade. 
Primary tumors, emanating from the brain itself or its supporting tissues, represent the vast majority of CNS 
tumors. As opposed to secondary tumors, arising elsewhere in the body and then transferred to the brain (i.e., 
metastases). In the former, the most frequent subtypes arise either from the brain’s glial tissue (i.e., gliomas) 
or from the meninges (i.e., meningiomas). The most aggressive gliomas, further categorized as glioblastomas 
(noted GBM), remain among the most difficult cancers to treat with an extremely short overall  survival3. Less 
aggressive entities, categorized as diffuse lower-grade gliomas (noted LGG), are infiltrative neoplasms like other 
gliomas, highly invasive, and impossible to  resect4. Initial tumor discovery, treatment decisions, and preopera-
tive prognosis assessment are based on the analysis of a set of magnetic resonance (MR) scans. For maximizing 
patient outcome and facilitating optimal treatment decisions, the utmost accuracy during the diagnostics phase 
is imperative from the multidisciplinary team of surgeons, radiologists, and oncologists. The coupling of MR 
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scans to genetic and histopathological findings from tissue  analysis5 has shown benefits to narrow the tumor 
classification and presence of mutations, further assisting to refine clinical outcomes and guide clinical decision 
 making6,7. Currently, informative tumor characteristics are estimated from the MR scans either through crude 
measuring techniques (e.g., eyeballing or short-axis diameter estimation) or after manual tumor delineation. 
However, such procedures are either inherently time-consuming or often liable to intra and inter-rater variability. 
A lack of user-friendly software solutions for retrieving quantitative and standardized information for patients 
with intracranial tumors stands out as a major hurdle preventing widespread access in clinical practice, clinical 
research, or over tumor registries.

The task of automatic brain tumor segmentation from preoperative MR scans is an actively researched  field8–10. 
Multiple previous studies did not disambiguate between CNS tumor  types11–15 and trained generic segmenta-
tion models, investigating at the same time other tasks such as classification or survival estimation. Most stud-
ies investigating brain tumor segmentation globally have used the public dataset from the BraTS  challenge16. 
A constant attention is upheld by the community thanks to the MICCAI challenge occuring every year since 
2012, promoting research on glioma sub-regions segmentation and classification to predict clinical biomarkers 
status. The dataset contains a patient cohort of up to 2040 patients and multiple MR sequences included for each 
patient: T1-weighted (T1w), gadolinium-enhanced T1-weighted (T1c), T2-weighted fluid attenuated inversion 
recovery (FLAIR), and T2-weighted (T2). As a result, the most studied CNS tumor in the literature is by far the 
glioma, including both GBM and LGG. The current state-of-the-art baseline method for tumor segmentation 
is the nnU-Net  framework17, which is a typical encoder decoder architecture coupled to a smart parameters 
optimization scheme for preprocessing and training, to cater to the input dataset. Average Dice scores about 
90% have been reached over contrast-enhancing tumor, necrosis, or edema sub-regions. For the meningioma 
subtype, a literature review has made an inventory of all studies performed between 2008 and  202018. At best, 
no more than 130 patients were included to train models using widespread 3D neural network architectures, 
achieving average Dice scores around 90%19,20. In our recent  study21, a much larger dataset with 700 patients 
was used, for similar overall performances. The validation was extended to show robustness across MR scan 
resolution and tumor volume. Finally, brain metastasis segmentation has been investigated over multicentric 
and multi-sequence datasets of up to 200  patients22–25, achieving on average up to 80% Dice score using either 
the  DeepLabV326 or the DeepMedic  architecture27.

To summarize, the task of CNS tumor segmentation has been well investigated on preoperative MR scans, 
favoring GBM and LGG subtypes through unrestricted access to an open and annotated dataset. Conversely, seg-
mentation in postoperative MR scans has been scarcely addressed as of yet due to its unparalleled difficulty and 
lack of public data. Recently, Lotan et al. proposed to fuse two of the top-ranked BraTS methods for performing 
both pre- and postoperative GBM  segmentation28. Over the 20 postoperative MR samples constituting the test set, 
an average Dice score of 74% was reached over the contrast-enhancing subregion. Having access to a dataset of 
a larger magnitude including 500 patients, an average Dice score of 69% was reported using all MR sequences as 
input and an ensemble of nnU-Net  models29. Finally, similar performances were reached on a dataset including 
up to 900 patients and multiple MR sequences, also leveraging the nnU-Net  architecture30. Being able to gener-
ate high-quality automatic segmentations is a mandatory initial step to provide reproducible and trustworthy 
standardized reports to characterise the tumor (RADS). The ultimate objective is to assist the clinical team in 
making the best assessment regarding treatment options and patient outcome. However, the segmentation quality 
has only very recently reached an acceptable threshold and as such the literature on RADSs for CNS tumors is 
scarce. For preoperative glioblastoma surgery, tumor features such as volume, multifocality, and location with 
respect to cortical and subcortical structures was  presented31. An excellent agreement between features collected 
from the automatic segmentation and the manual segmentation was reported. For post-treatment investigations, 
a structured set of rules was suggested, deprived of any automatic segmentation or image analysis  support32.

For use in routine clinical practice, the aforementioned segmentation models or RADS methods must be 
packaged into well-rounded solutions directly usable by most practitioners. A web imaging platform for radiol-
ogy is being developed, Open Health Imaging Foundation (OHIF)33, leaving the possibility to interface devel-
oped methods through custom plugins, and run processes on a server either locally to a hospital with access to 
PACS or remote. MONAI, a multipotent toolbox covering a wide range of use-cases including brain tumors, is 
being actively  developed34. While the MONAI Label component is meant as a development tool for creating or 
refining segmentation models through manual annotation, the MONAI Deploy component focuses on bring-
ing AI-driven applications into the healthcare imaging domain. Even though custom plugins can be developed 
in both solutions, no trained models for CNS tumor segmentation or standardized reporting are available. On 
the other hand, less advanced or refined solutions have been developed, focusing on the task at hand. A toolkit 
has been developed for running preoperative GBM segmentation models from the BraTS challenge, with a 
very minimalistic graphical user interface (GUI)35. Inside the 3D Slicer  software36, often used by clinicians for 
performing semi-manual tumor delineation, plugins have been developed to facilitate the deployment of cus-
tom models with  DeepInfer37 or with existing brain tumor segmentation models with  DeepSeg38. To conclude, 
some focus has recently been dedicated to the accessibility of developed methods, yet not many solutions are 
providing trained segmentation models for CNS tumors other than preoperative gliomas. In instances where 
trained segmentation models and inference scripts are publicly available, some extent of computer science and 
programming knowledge is required for running inference scripts locally on MR scans. However, this process 
is too overwhelming for most clinicians and hospital practitioners. Finally, no open solution exists offering the 
possibility to perform clinical reporting in a standardized fashion (i.e., RADS).

Upon initial  publication39, a Raidionics prototype was introduced, first open-source solution, offering the 
possibility to segment the most frequent brain tumor types in preoperative MR scans (namely glioblastoma, dif-
fuse lower-grade glioma, meningioma, and metastasis). One RADS mode was also available for describing the 
segmented tumor in terms of overall location in the brain and respective location against cortical and subcortical 
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structures. In this paper, the first complete and stable Raidionics software version is presented, including the fol-
lowing novelties. First, (i) the GUI has been completely redesigned, requiring only a few clicks and no program-
ming skills to run segmentation and reporting tasks, either for single patients or entire cohorts. In the meantime, 
the processing backbone remains independently available to users with programming experience or for PACS 
integration. Second, (ii) the preoperative segmentation models have been improved, trained and validated using 
various datasets, reaching performances on-par or better than state-of-the-art reported performances. Third, 
(iii) an early postoperative glioblastoma residual tumor segmentation model has been included; the first open-
access model for the task. Finally, (iv) a standardized report for postsurgical assessment has been incorporated.

Data
In this work, four curated datasets were leveraged to train and develop the proposed methods, one for each 
considered CNS tumor type. For glioblastoma (GBM), 2125 T1c patient scans were gathered from 15 institu-
tions. For diffuse lower-grade glioma (LGG), 678 FLAIR patient scans were compiled from four institutions. 
For meningioma, 706 T1c patient scans were retrieved from two institutions, and finally 394 T1c patient scans 
were collected from two institutions for metastasis. More in-depth descriptions of the different datasets have 
been reported in a previous  study39.

All tumors were manually delineated by trained raters, under supervision of neuroradiologists and neuro-
surgeons. The tumor was defined as gadolinum-enhancing tissue, including non-enhancing enclosed necrosis 
or cysts in T1c scan and as the hyperintense region in FLAIR scan. Initial segmentations were performed using 
either a region growing  algorithm40 or a grow-cut  algorithm41, followed by manual correction.

Methods
To make the segmentation models and standardized generation of clinical reports easily available to a wider 
audience, the Raidionics software has been developed with a special care towards the user interface design. In 
the following sections, the different components of the software are described, the strategy for training the seg-
mentation models is presented, and both pipelines for pre- and postoperative clinical reporting are explained.

The institutional review board approval was obtained from the Norwegian regional ethics committee (REK 
ref. 2019/510). Written informed consent was obtained from patients included in this study as required for each 
participating hospital. All methods were carried out in accordance with relevant guidelines and regulations.

Modes. In Raidionics, two main modes are available: single patient mode (illustrated in Fig. 1) and batch/
study mode (illustrated in Fig. 2). In single patient mode, direct visualization and interaction with patient’s data 
and corresponding results is available. In this mode, the GUI is split into three main components, starting with 
the left side panel relating to patient import and browsing of standardized reports. Patients can be saved, closed, 
reloaded, and renamed for only one patient displayed at any given time. In the center panel, three 2D viewers 
are proposed for displaying the selected MR scan following standard axial, coronal, and sagittal slicing. All views 
are interconnected and aligned under the same 3D location, adjustable by mouse clicking, and represented by 
the two cross-hair green dotted lines. Finally, the panel on the right side of the interface lists all MR scans and 
corresponding annotations or structural atlases for each scan, for the given patient. While only one MR scan can 
be toggled visible at the time, multiple annotations or structural atlases can be freely overlaid. Each overlaid item 
can be customized in color and opacity, improving the display, and allowing the generation of illustrations. By 
selecting the Actions tab, automatic segmentation or standardized reporting processes can be launched for the 

Figure 1.  Illustration of the raidionics software GUI in single patient mode, after generating the standardized 
report over a glioblastoma case. The left side presents the tumor characteristics belonging to the report, the 
central part offers a set of 2D views, and the right panel shows loaded MR scans and corresponding annotations.
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current patient. In batch/study mode, cohorts of patients can be loaded and processed sequentially, without any 
direct visualization or possibility to interact with the results. The GUI is likewise split into three components in 
this mode with a left side panel relating to study creation and import. For each study, patients can be imported 
either by careful selection of a few patient folders, or by selection of a cohort folder (i.e., containing multiple 
folders, one per patient). The launching of a segmentation or reporting process over an entire cohort can also 
be performed from within each study. In the center panel, all included patients for the current study are listed, 
can be removed, and can be opened in single patient mode for viewing and interaction purposes. Finally, the 
right panel proposes different summary tables, starting with a content summary listing all files included for all 
patients. In addition, annotation and standardized reporting tables are included to provide an overview of all 
extracted parameters for the patients of a given cohort.

Data import. Data can be imported in Raidionics in different formats, either as raw DICOM folders origi-
nating from PACS or as converted volumes in popular formats such as NIfTI (.nii, .nii.gz), MetaImage (.mhd), or 
NRRD (.nrrd). More generally, all formats accepted in  SimpleITK42, underlying Python library used for reading 
converted volumes, are likewise approved. Upon import, all MR scans are internally converted to NIfTI format 
for subsequent processing. Annotation files can also be imported manually, requiring matching volume param-
eters (i.e., shape, spacing, and orientation) to the corresponding MR scan. Upon loading, if multiple MR scans 
were imported for the current patient, the annotation must be linked to the proper MR scan using the drop-
down selector (named Parent MRI, in the right side panel).

Within Raidionics, all MR scans are expected to be associated to data timestamps organized in ascending 
order, allowing the disambiguation between preoperative and postoperative content loaded simultaneously for 
a patient. Timestamps can be manually edited in the right side panel of the single patient mode interface.

Overall, four approaches are available for loading patient data into the software. First, a DICOM folder can 
be selected, and a pop-up window will allow for selecting specific MR acquisitions or importing all available 
acquisitions in a bulk. Second, converted MR scans can be individually selected, automatically linked to the 
current data timestamp. Third, an entire folder can be selected, either containing multiple converted MR scan 
files or multiple sub-folders. In the latter, the data is assumed to be split into data timestamps, and loaded data 
will be organized as such. Finally, reopening a patient folder, previously saved through Raidionics, can be done 
by selecting the corresponding custom scene file (.raidionics).

Storing results. For each patient, all results are stored inside the corresponding folder, including a cus-
tom .raidionics file for fast reloading. This concept is similar to scene files from 3D Slicer stored as .mrml on 
disk. All volume files are stored as NIfTI (i.e., MR scan, segmentations, and atlases), statistics are stored as 

Figure 2.  Illustration of the raidionics software GUI in batch/study mode, after processing a cohort of 
glioblastoma patients. The left side gathers the study options, the central part lists the patients currently included 
in the study, and the right panel offers a summary of the processing results.
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comma-separated values files (.csv), and standardized reports are stored as text files (.txt), json files (.json), and 
csv files (.csv).

Tumor segmentation. All preoperative CNS tumor segmentation models included in the software have 
been trained with the AGU-Net  architecture21 using five levels with {16, 32, 128, 256, 256} as filter sizes, deep 
supervision, multiscale input, and single attention modules. Unlike the originally published architecture, all 
batch normalization layers have been removed and a patch-wise approach for training and inference was fol-
lowed, with 1603 voxels as patch dimension. The preprocessing was limited to a 0.75mm3 isotropic resampling, 
skull-stripping (except for the meningioma subtype), intensity clipping to remove the 0.05% highest values, and 
finally intensity normalization and scaling to [0, 1]. While more advanced normalization algorithms exist in the 
 literature43, increased computational costs would be expected. Training has been performed with batch size four 
and using the Adam optimizer with an initial learning rate of 5 · 10−4 . In addition, a gradient accumulation of 8 
steps was performed, resulting in a virtual batch size of 32 samples, using the open TensorFlow model wrapper 
 implementation44. The number of updates per epoch has been limited to 512, and an early stopping scheme was 
setup to stop training after 15 consecutive epochs without validation loss improvement.

For early postoperative segmentation of glioblastomas, the model available in Raidionics has been introduced 
in a recent  study30.

Features extraction and standardized reporting (RADS). The overall process for segmentation and 
standardized report generation with relevant tumor characteristics is depicted in Fig. 3. For the generation of 
standardized preoperative clinical reports in a reproducible fashion, the computation of tumor characteristics 
was performed after alignment to a standard reference space, the symmetric Montreal Neurological Institute 
(MNI) ICBM2009a  atlas45,46. The patient’s input MR scan was registered to the corresponding atlas file using 
the SyN method from the Advanced Normalization Tools (ANTs)47. The collection of computed tumor features 
includes: volume, laterality, multifocality, cortical structure location profile, and subcortical structure location 
profile. Specifically tailored for glioblastomas, resectability features are therefore not available for the other CNS 
tumor types. A more in-depth description of the computed parameters is available in our previous  study48.

For postsurgical assessment, both preoperative and postoperative volumes, extent of resection (EOR), and 
EOR patient classification are automatically extracted, following the latest  guidelines49.

Deployment. Installation executables have been created for cross-platform use of Raidionics, compatible 
with Windows ( ≥ 10), Ubuntu Linux ( ≥ 18.04), and macOS ( ≥ Catalina 10.15) including ARM-based Apple M1. 
The selected inference engine to run the segmentation models is ONNX Runtime, supporting models from vari-
ous deep learning frameworks and widely compatible across hardware, drivers, and operating systems.

Figure 3.  Overall segmentation and standardized report generation pipeline. The AGU-Net architecture was 
used for the segmentation task whereas the image registration task was performed using the SyN method from 
ANTs.
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The core computational backend (i.e., without any GUI) is also available for experienced users, allowing for 
direct use either through the command-line interface, as a Python library, or as a Docker container. In addition, 
a Raidionics 3D Slicer plugin is available, directly leveraging the backend Docker container.

Results
Experiments were carried out on multiple machines with the following specifications: Intel Xeon W-2135 CPU 
@3.70 GHz x 12, 64 GB of RAM, NVIDIA Tesla V100S (32GB), and a regular hard-drive. The implementation 
was done in Python 3.7, using PySide6 v6.2.4 for the GUI, TensorFlow v2.8 for training the segmentation models, 
and ONNX Runtime v1.12.1 for running model inference.

Segmentation performance. All preoperative CNS segmentation models were trained from scratch 
under the same k-fold cross-validation paradigm whereby one fold was used as validation set, one fold as test 
set, and all remaining folds constituted the training set. For the glioblastoma subtype, a leave-one-hospital-out 
cross-validation paradigm was followed, equivalent to a 15-fold cross-validation. Pooled estimates, computed 
from each fold’s results, are reported for each  measurement50. Overall, measurements are reported as mean and 
standard deviation (indicated by ±) in the tables.

A summary of the segmentation performances for the models packaged in Raidionics is provided in Table 1. 
For all preoperative models, an average Dice score of 85% and patient-wise F1-score of 95% are achieved, high-
lighting a high segmentation quality. The lowest Dice score of 78% is obtained for the LGG subtype, which can 
be explained by the diffuse nature of such tumors, more difficult to fully delineate in FLAIR MR scans. Overall, 
segmentation performances are largely stable across the different CNS tumor subtypes, with extremely accurate 
sensitivity and specificity of the different models. The models are quite conservative with few false positives, and 
simultaneously efficient with few tumors missed. For multifocal tumors, often with satellite foci clearly smaller 
than the main focus, an average object-wise recall of 80% is achieved, indicating a struggle to properly segment 
tiny structures. A similar decrease in object-wise precision can be acknowledged, around 87% on average, symp-
tomatic of a segmentation excess over false positive areas, locally resembling contrast-enhancing tumor tissue.

To further investigate segmentation performances from a tumor volume standpoint, an empirical categoriza-
tion was made to single out small tumors. The volume cut-off was set to 2 ml for all CNS tumor subtypes, except 
for the LGG subtype where it was set to 5 ml . With a volume cut-off set at one-tenth of the average tumor for 
each subtype, enough cases are featured in the small tumor category for providing relevant results. The catego-
rized segmentation performances based on tumor volume are reported in Table 2. Unsurprisingly, segmentation 
performances obtained over non-small tumors are excellent with 99% patient-wise recall and up to 90% Dice-
TP for the metastasis subtype. In comparison, the average Dice score for the small tumors category lies closer 
to 60%, achieving barely 75% patient-wise recall globally. Such performances are less enticing as they highlight 

Table 1.  Overall segmentation performance summary for each CNS tumor type. The bottom line reports 
performances obtained with the published postoperative GBM segmentation  model30.

Tumor type

Voxel-wise Patient-wise Object-wise

Dice Dice-TP F1-score Recall Precision F1-score Recall Precision

Meningioma 82.18± 23.67 86.62± 14.54 93.51± 02.83 94.90± 03.29 92.32± 04.32 86.04± 04.50 88.36± 03.33 84.32± 07.99

Metastasis 86.55± 19.10 88.58± 14.08 96.60± 01.66 97.73± 02.09 95.61± 03.46 87.47± 04.88 82.94± 05.13 92.67± 05.58

LGG 78.71± 21.40 81.61± 15.54 94.60± 01.37 96.46± 02.29 92.88± 02.26 82.41± 06.33 80.93± 09.96 84.77± 05.59

GBM preop. 85.17± 16.58 86.63± 12.41 96.79± 01.27 98.31± 01.10 95.35± 02.13 88.25± 05.09 85.06± 07.87 91.96± 03.33

GBM postop. 41.02± 28.08 52.45± 20.14 83.73± 03.17 82.80± 05.27 85.16± 05.24 — — —

Table 2.  Preoperative segmentation performances summary for each CNS tumor subtype based on two tumor 
volume categories. The number of patients inside each category is indicated in parenthesis.

Type Volume

Voxel-wise Patient-wise Object-wise

Dice Dice-TP F1-score Recall Precision F1-score Recall Precision

Meningioma
<2 ml (139) 63.23± 33.65 77.86± 17.91 85.55± 08.96 81.29± 12.86 91.52± 08.27 81.29± 08.34 77.45± 11.07 87.06± 11.21

≥2 ml (567) 86.82± 17.26 88.38± 12.94 95.21± 02.53 98.23± 01.53 92.46± 04.20 86.94± 04.96 90.70± 03.61 83.96± 08.45

Metastasis
<2 ml (50) 70.07± 30.89 76.69± 24.93 93.92± 06.35 92.00± 09.58 96.71± 07.73 80.30± 13.37 72.65± 21.54 95.38± 10.40

≥2 ml (344) 89.46± 13.20 90.26± 10.30 97.20± 01.76 99.12± 1.26 95.46± 03.71 88.73± 05.08 85.35± 05.31 92.55± 06.07

LGG
<5 ml (74) 50.58± 32.95 64.40± 23.84 82.78± 17.35 77.02± 21.82 94.11± 12.20 79.16± 17.81 73.24± 21.02 91.50± 16.18

≥5 ml (604) 82.15± 16.24 83.11± 13.72 95.66± 01.34 98.84± 01.07 92.72± 02.32 82.70± 07.66 82.05± 12.18 84.38± 05.78

GBM
<2 ml (79) 50.75± 32.75 65.28± 23.17 80.42± 17.11 75.63± 23.05 90.08± 06.75 70.80± 16.30 62.71± 23.34 86.41± 09.03

≥2 ml (2046) 86.57± 13.74 87.29± 11.28 97.34± 01.32 99.17± 00.95 95.60± 02.02 88.96± 05.04 86.07± 07.81 92.30± 03.14
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limitations for using the packaged models to perform early-stage tumor detection. However, larger performance 
discrepancies for the small tumors category across the different CNS subtypes can be observed. The lowest Dice 
and patient-wise recall values are repeatedly obtained for the LGG subtype, whereas a 92% patient-wise recall 
is obtained for the metastasis subtype. Compared to previous publications using the AGU-Net architecture in 
a full volume fashion over the same  task21,39, using a patch-wise strategy improved segmentation performances 
overall, especially over small tumors.

Runtime experiments. A comparison in runtime processing speed using Raidionics for generating the 
segmentation masks and standardized reports is provided in Table 3. For each CNS tumor subtype, a representa-
tive MR scan, with dimension in voxels indicated in parenthesis in the table, was processed five times in a row 
and speed results were averaged. Two different machines were used: a high-end desktop computer with an Intel 
Xeon W-2135 CPU (@3.7GHz) and 64GB of RAM (noted Desktop), and a mid-end laptop computer with an 
Intel Core Processor (i7@1.9GHz) and 16GB of RAM (noted Laptop).

For preoperative tasks, an average of one minute is necessary for generating the tumor segmentation mask, 
and around six minutes in total for computing the standardized report, using the desktop machine. When using 
a computer with less computational power, the processing speed is halved on average as indicated by the laptop 
runtime results. A large runtime variation can also be noticed from the MR scan dimensions. The image registra-
tion to MNI space takes three times longer over the highest resolution images, whereas the computation of the 
standardized report in itself remains around two minutes overall. Considerable speed improvement would be 
obtained by downsampling the high resolution MR scans before computing the standardized report, especially 
when processing a patient cohort. Regarding the postoperative task, a combination of MR scans is required, 
including T1-weighted and contrast-enhanced T1-weighted sequences. As such, the brain must be segmented 
independently in four MR scans, increasing the runtime to 40 seconds on average. Similarly, the tumor must 
be segmented in both pre- and postoperative contrast-enhanced T1-weighted scans. Hence, the generation of 
a postoperative standardized report requires from five minutes on the desktop machine to ten minutes on the 
laptop. In general, brain segmentation is three to four times faster to perform than tumor segmentation due to a 
design choice. On one hand, the brain segmentation model is run in single-shot inference over a downsampled 
version of the whole input MR scan. On the other hand, iterative inference is performed over patches from 
the input MR scan with tumor segmentation models. As a result, the segmentation runtime increases with the 
number of patches to process.

Discussion
In this study, the Raidionics software has been presented for enabling the use of CNS tumor segmentation mod-
els and standardized reporting methods, through a carefully designed GUI. The software is the first to provide 
access to competitive preoperative segmentation models for the most common CNS tumor types (i.e., GBM, 
LGG, meningioma, metastasis) in addition to an early postoperative GBM segmentation model. Standardized 
reports can be generated to automatically and reproducibly characterize a preoperative tumor or provide a 
postsurgical assessment through volume and extent of resection computation. Furthermore, new preoperative 
CNS tumor segmentation models were trained using the AGU-Net architecture, and thoroughly validated. The 
use of a patch-wise approach, conversely to the full volume approach, allows for a more efficient segmentation 
of smaller tumors, with a drop in performances noticed below a 2 ml volume cut-off. For reference, the average 
glioblastoma, meningioma, and metastasis volumes in our datasets are 34 ml, 19 ml, and 17 ml, respectively. In 
that regard, the reported performances only start decreasing for tumors more than ten times smaller than average.

Previously, the preoperative CNS segmentation models included in the Raidionics prototype were all trained 
following a full volume  approach39, with a well-identified drawback in the inability to segment accurately the 
smallest structures. The use of patch-wise techniques leads to improved recall performances, but sometimes 
at the expense of precision due to the generation of more false positive predictions. By training our AGU-Net 

Table 3.  Segmentation and standardized reporting (RADS) runtime for an average MR scan of each tumor 
subtype, on two different machines noted Desktop and Laptop. The runtime unit used is indicated in brackets, 
and MR scan dimensions (voxels) are reported in parenthesis.

CNS type Machine

Segmentation [s] RADS [min]

Total [min]Brain Tumor Registration Computation

Meningioma
(256× 256× 170)

Desktop 09.16± 0.21 44.80± 0.51 02.49± 0.019 2.15± 0.019 05.55± 0.015

Laptop 15.93± 0.22 112.3± 5.51 04.92± 0.127 4.02± 0.070 11.09± 0.025

Metastasis
(512× 512× 513)

Desktop 39.99± 0.63 83.38± 0.82 10.56± 0.059 1.89± 0.051 14.61± 0.042

Laptop 62.51± 4.21 210.7± 20.6 21.69± 0.089 3.52± 0.124 29.94± 0.822

LGG
(394× 394× 80)

Desktop 08.06± 0.12 45.29± 0.35 02.44± 0.015 1.32± 0.032 04.65± 0.049

Laptop 16.96± 3.55 131.7± 14.3 04.74± 0.063 2.31± 0.022 09.53± 0.316

GBM Preop.
(320× 320× 220)

Desktop 15.81± 0.06 53.59± 0.69 03.31± 0.018 1.66± 0.020 06.17± 0.054

Laptop 23.10± 3.69 138.8± 16.0 06.44± 0.077 3.11± 0.111 12.27± 0.554

GBM Postop.
(256× 256× 176)

Desktop 41.27± 0.18 96.44± 0.70 02.10± 0.072 0.01± 00.00 04.42± 0.077

Laptop 71.23± 4.06 170.2± 16.1 06.46± 0.334 0.08± 0.006 10.53± 0.423
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architecture with a patch-wise approach, higher recall performances were obtained whereas satisfactory precision 
performances were retained. For preoperative glioblastoma segmentation, an average F1-score of almost 97% 
is being reported in this study, higher than the 94% reported over the same patient cohort using the nnU-Net 
 architecture48. Models trained with both architectures reached 98% recall, but the AGU-Net discriminate bet-
ter with up to 95% precision. Whereas overall segmentation performances are satisfying, the performances for 
the smallest tumors with a < 2 ml volume still needs to be improved, especially for early-stage tumor detection 
during screening or incidental finding. Postoperatively, only the segmentation of glioblastoma is supported in 
the software as it represents the only CNS tumor subtype currently investigated in the literature. While metrics 
performances seem substandard, they were shown to be comparable to human rater performance on real world 
MRI  scans30.

Currently, the standardized preoperative reports provide a CNS tumor analysis focusing heavily on overall 
location in the brain and respective location in relation to cortical and subcortical structures. As it stands, the set 
of extracted characteristics may not be sufficiently exhaustive to be used as part of preoperative surgical assess-
ment meetings. Similarly, the postoperative standardized report limits itself to the most important parameter 
to assess, the extent of resection. Nevertheless, the robust, reproducible, and standardized computation of such 
reports is the first of its kind to be freely available and the list of computed characteristics can be extended in the 
future. As a side note, Raidionics allows the user to provide already acquired tumor segmentation masks (i.e., 
manually or semi-automatically) for computing the standardized report. Bypassing the automatic segmentation 
process can be extremely valuable as segmentation models are not perfect and might fail to segment, either fully 
or partially.

Compared to the initial prototype, Raidionics is now a well-rounded and stable software solution, working 
across all major operating systems, with a welcoming GUI. Clinical end-users can generate the needed segmenta-
tions or reports in a few clicks, over single cases or patient cohorts, and directly visualize the results within the 
software. Users with programming knowledge have the possibility to circumvent the use of the GUI altogether. 
A stand-alone backend library, used for running the segmentation and standardized reporting tasks, has also 
been made available both as a Python package and as a Docker image. Furthermore, the possibility is given to 
integrate the Raidionics backend into other frameworks with relative ease. For example, a plugin for 3D Slicer has 
been developed, using the Docker image for running all computation. In a similar fashion, a direct integration 
towards PACS or inside OHIF can be established in the near future. To include a larger assortment of segmenta-
tion models in the future, the decision was made to use an open standard for machine learning interoperability 
(i.e., ONNX). Models trained using the most common deep learning frameworks (i.e., TensorFlow, PyTorch) 
can be easily converted to ONNX and deployed inside Raidionics. In addition, the ONNX runtime libraries have 
been designed to maximize performance across hardware and should provide a better user experience.

The Raidionics environment is under active development with the intent to release more segmentation models 
and expand the list of characteristics constituting the standardized reports. Better postoperative segmentation 
models will be investigated, not only for remnant tumor detection but also postoperative complications like 
hemorrhages or infarctions. For research and benchmarking purposes, a metrics computation module and 
heatmap location generator module are prospective components to be included. Finally, open-source and state-
of-the-art models could be included to extend the record of brain structures to segment. As additional future 
work, the proposed software could be extended to other clinical areas whereby the segmentation of organs such 
as the liver and kidneys remains  challenging51. Methods used for their automated segmentation generally needs 
improvements due to unclear boundaries, inhomogeneous intensities, and the presence of adjacent organs. For 
instance, capsule networks could be favored for classification or segmentation as they better model features’ 
spatial  relationships52. All users are invited to provide feedback for improvement or contribute code directly to 
the Raidionics environment at https:// github. com/ raidi onics. In addition, project collaborations for testing the 
software in clinical practice or data-sharing for the training of better models are more than welcome.

Data availability
The data analyzed in this study is subject to the following licenses/restrictions: patient data are protected under 
GDPR and cannot be publicly distributed. Requests to access these datasets should be directed to David Bouget 
(david.bouget@sintef.no) for consideration.

Accession codes
The Raidionics environment with all related information is available at https:// github. com/ raidi onics. More spe-
cifically, all trained models can be accessed at https:// github. com/ raidi onics/ Raidi onics- models/ relea ses/ tag/1. 
2.0, the Raidionics software can be found at https:// github. com/ raidi onics/ Raidi onics, and the corresponding 
3D Slicer plugin at https:// github. com/ raidi onics/ Raidi onics- Slicer.
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