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We study superconducting three-band systems within strong-coupling Eliashberg theory. In particular,
we search for phase-frustrated superconducting systems with spontaneous time-reversal symmetry breaking
(TRSB) states. The emergence of TRSB states in multiband systems has so far been studied using micro-
scopic weak-coupling BCS theory or more phenomenological effective field theories such as multi-component
Ginzburg-Landau theories. For systems with three disjoint Fermi surfaces whose electrons experience inter-
actions mediated by phonons, we present a microscopic analysis showing that TRSB states also exist within a
strong-coupling microscopic theory. The systems we consider have sizable electron-phonon couplings, putting
them into the strong-coupling regime. They are thus a fitting description for strong-coupling materials such as
some of the iron pnictides. Moreover, as the TRSB states are challenging to find numerically, we calculate the
free energy of multiband systems within strong-coupling theory and make explicit use of it to pin down the
TRSB states’ elusive nature. Since Eliashberg theory is well incorporated with first-principles calculations, our
strong-coupling approach might help facilitate a more efficient search for candidate materials that can exhibit
TRSB.

I. INTRODUCTION

Superconductors represent a remarkable quantum state of
matter where photons acquire a mass through the Higgs mech-
anism (the Meissner effect) when metals are cooled below
their critical temperature. When combined with spontaneous
time-reversal symmetry breaking (TRSB), this extraordinary
quantum state exhibits even more fascinating features due to
the interplay between multiple broken symmetries. TRSB
may occur in multiband superconductors where several bands
(more than two) cross the Fermi surface. Many multiband
superconductors exist [1–5], including several relatively high-
temperature superconductors [6–9], indicative of some strong
pairing glue between electrons being operative. So far, the-
oretical studies of TRSB in multiband superconductors have
been carried out using either Ginzburg-Landau theory [10–
16] or a more microscopic weak-coupling BCS theory [17–
19]. Given that many of the TRSB systems of interest are sus-
pected to be strong-coupling superconductors, this motivates
similar studies within the framework of a strong-coupling ap-
proach to superconductivity.

An elegant approach to strong-coupling Eliashberg theory
was recently realized [20]. It utilizes the imaginary-time
functional integral formalism [21, 22], typically employed to
derive effective field theories of interacting condensed mat-
ter systems. The original microscopic theory for supercon-
ductivity [23] is easily derived using these field-theory tech-
niques. Such a treatment sets the stage for systematic stud-
ies of higher-order corrections within the BCS paradigm and
has been extensively used. However, the retardation effects
required to obtain the physical picture of electrons with at-
tractive interactions mediated by lattice vibrations necessitate
a dynamical interaction which is absent in BCS theory. This
is remedied in Eliashberg theory [24–26], with the additional
benefit that the strong-coupling regimes [27] can be probed.

While Migdal’s theorem [28] may pose some limitations on
strong-coupling Eliashberg theory, recent studies have found

∗ Corresponding author: asle.sudbo@ntnu.no

ways of accounting for it by means of vertex corrections
[29, 30]. Moreover, there is also a case to be made that sur-
passing the Migdal limit is not necessarily a hindrance to cap-
turing the relevant physics at play [31, 32]. Regardless of
the precise nature of the breakdown of Eliashberg theory, the
practice of pushing it far into the strong-coupling regime is
widespread, and the results obtained often corroborate exper-
imental findings in materials with a sizable electron-phonon
coupling. So with the advantages of Eliashberg theory and
especially its applicability to strong-coupling systems, Ref.
[20] represents a significant step forward as it derives Eliash-
berg theory using a functional-integral approach, thus opening
the door to more sophisticated field-theoretic treatments pre-
viously reserved mainly for BCS theory.

The novel functional-integral approach to Eliashberg theory
has already been employed in several models, e.g. graphene
multilayers [33], quantum-critical models [34, 35], systems
that are superconducting despite experiencing instantaneous
repulsion [36] and systems of coexisting antiferromagnetism
and superconductivity [37]. In this approach, the Eliashberg
equations for the various systems are derived as stationary
point conditions in the action. At a stationary point, the action
can be used to determine the free energy of the system, so in
systems with more than one solution to the Eliashberg equa-
tions, the free-energy perspective provides a simple selection
criterion for such cases, namely that the stationary point with
the lowest free energy should be chosen. This selection crite-
rion is particularly useful in systems where several states may
solve the Eliashberg equations. Such an analysis has already
been put forth to understand the breakdown of Eliashberg the-
ory [38], but other avenues remain unexplored.

An uncharted area of interest in this regard is the field of
multiband superconductors. Since the discovery of supercon-
ductivity in MgB2 [1] with a pronounced multigap character
[39, 40], as well as the superconducting iron pnictides [2, 3],
multiband superconductors have been intensely researched
theoretically [5, 19, 41–47]. In many cases, the theoretical
treatments are based on the extension of BCS theory to multi-
band systems [48, 49]. Applying these to a two-band model
for LaFeAsO1−xFx [42], it was found that repulsive, rather
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than attractive, interactions may drive the system into a su-
perconducting s±-wave phase, where both gaps have s-wave
symmetry and are of opposite sign.

Despite its simplicity, the s±-phase explains quite well the
anomalous experimental findings in multiband systems [50].
However, in three-band systems, a novel superconducting
phase may emerge, where the phase differences of the vari-
ous order-parameter components are not necessarily multiples
of π [10, 17, 18]. These states break time-reversal symme-
try (TRS) and have been shown to exhibit a number of exotic
phenomena, including unconventional vortex physics [13, 51]
and anomalous metallic states above Tc [14, 52]. The latter
has been suggested as a possible explanation for the magnetic
memory observed in TaS2 above Tc [53]. One of the con-
sequences of breaking TRS is the emergence of local sponta-
neous magnetic fields [15, 54], which has been experimentally
measured using the muon spin relaxation technique [55].

As previously mentioned, in most studies, multiband states
with broken TRS are treated using BCS theory or by effective
field theories (e.g., Ginzburg-Landau theories) derived from
BCS theory following the original calculation of Gor’kov
[56, 57]. Monte Carlo simulations have been used to per-
form computations using such effective theories beyond the
mean-field level [12, 58]. However, as mentioned earlier,
these multiband systems have so far not been studied in the
strong-coupling regime even though the archetypical systems
one might expect TRSB in, namely the superconducting iron
pnictides, often involve strong coupling [59]. It is thus of in-
terest to examine the fate of TRSB states in strong coupling,
and we will do so using a strong-coupling functional-integral
approach, which has a saddle point equivalent to the Eliash-
berg theory of superconductivity. Moreover, the ease with
which first-principles calculations can be incorporated into
such a strong-coupling theory can help facilitate the search
for candidate materials that may host TRSB states.

The structure of the paper is as follows. In Sec. II, by us-
ing the functional-integral formalism, we derive the multiband
Eliashberg equations and the free energy of superconducting
multiband systems. In light of this, we discuss the prerequi-
sites for having spontaneous TRSB states in strong coupling in
Sec. III. While these two sections are general and may apply
to several models, we then consider a microscopic model in
IV and derive the Eliashberg equations specific to this model.
In Sec. V, we first demonstrate the spontaneous breaking of
TRS in strong coupling and subsequently elucidate its origin.
We discuss the experimental consequences of our results and
some of the advantages of employing a strong-coupling the-
ory. The conclusions are finally presented in Sec. VI.

II. THE FUNCTIONAL-INTEGRAL FORMALISM AND
MULTIBAND ELIASHBERG THEORY

The purpose of this section is to derive the free energy for
multiband systems with dynamic interactions as well as the as-
sociated Eliashberg equations. The latter has been carried out
in the single-band case Ref. [20, 37], and we will generalize
these results to multiband systems. Since the derivation (and

the notation) will be similar to that of Ref. [20], we mainly fo-
cus on the parts that are different in this paper and refer to the
original work for some of the more technical details. Further-
more, we stress that multiband systems have been studied us-
ing Eliashberg theory [60–63], so while our derivation of the
Eliashberg equations using the functional integral-formalism
is novel, the end result is not. With this approach, we also de-
rive the free energy, which will subsequently be used to dis-
cover TRSB states.

Within the imaginary time functional-integral formalism,
the dynamics of a multiband system of fermions is governed
by the action S. If the interactions in the system are density-
density interactions, one can perform Hubbard-Stratonovich
(HS) decoupling in three different channels - Cooper, density,
and exchange [20]. In the interest of studying superconduc-
tivity and renormalization effects, we will decompose the in-
teraction into the Cooper and density channels and neglect the
exchange channel. Thus, when we write down the action, we
write the interacting part in a suggestive form, preparing for
the HS decouplings to come. Assuming that the interactions
only depend on relative coordinates (and thus only on relative
momentum), the action is

S[ψ̄, ψ] =
∑
k

∑
σ,i

ψ̄σi(k)[−iωn + ξi(k)]ψσi(k)

+
1

2

∑
k,k′

∑
σ,i,j

ψ̄σi(k)ψσi(k)Vij(k − k′)ψ̄σj(k
′)ψσj(k

′)

−
∑
k,k′

∑
i,j

ψ̄↑i(k)ψ̄↓i(−k)Vij(k − k′)ψ↓j(−k′)ψ↑j(k
′),

(1)

where we introduced the shorthand notation k = (ωn,k) with
ωn being the fermionic Matsubara frequency ωn = π(2n +
1)/β and β = 1/T being inverse temperature, where we use
natural units ℏ = c = kB = 1. ψσi(k) (ψ̄σi(k)) is the Grass-
mann field representing the annihilation (creation) operator of
an electron with spin σ belonging to band i. ξi(k) is the dis-
persion relation εi(k) of band i, relative to the chemical po-
tential ξi(k) = εi(k)− µ. We have also assumed the Cooper
channel to only have pairings with opposite momentum.

For the interaction Vij(k − k′) to be separable in the band
indices as in Eq. (1), we implicitly assume that the Fermi sur-
faces are disjoint. Multiple disjoint Fermi surfaces may orig-
inate with having several bands crossing the Fermi energy or
having a band crossing it several times, creating disjoint Fermi
pockets. Several superconducting systems of current inter-
est fit this description, for example, the superconducting iron
pnictides and transition metal (di)chalcogenides [5, 59, 64–
66]. In all these cases, hybridization effects stemming from
the self-energy are absent, supposing that the Fermi surfaces
are sufficiently well separated.

With the path integral measure DψDψ̄, the grand canon-
ical partition function Z at fixed chemical potential is given
by Z =

∫
DψDψ̄e−S[ψ̄,ψ] = e−βF , where F is the free en-

ergy (or more precisely, F is the grand potential, which we
take to be equal to the free energy when fixing the chemical
potential) of the system. So, in keeping with conventional HS
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decoupling, we may write

1 =

∫
DΦ̄DΦDΣ↑DΣ↓

e−
∑

k,k′
∑

i,j V
−1
ij (k−k′)[Φ̄i(k)Φj(k

′)+ 1
2Σ

σ
i (k)Σ

σ
j (k

′)], (2)

where a summation over repeated spin indices is implied. The
inverse interaction V −1

il (k1−k) is a function which obeys the
relation∑

k

∑
l

V −1
il (k1 − k)Vlj(k − k2) = δk1k2δij . (3)

We discuss the inverse interaction in detail later. Φ̄, Φ and Σσ

are shifted to get rid of the quartic terms in Eq. (1), however

the shifts are slightly more complicated than those of Ref. [20]

Φi(k) → Φi(k)−
∑
k′,j

Vij(k − k′)ψj↓(−k′)ψj↑(k′) (4a)

Φ̄i(k) → Φ̄i(k)−
∑
k′,j

Vji(k
′ − k)ψ̄j↑(k

′)ψ̄j↓(−k′) (4b)

Σσi (k) → Σσi (k) + i
∑
k′,j

Vij(k − k′)ψ̄jσ(k
′)ψjσ(k

′). (4c)

The imaginary shift of Σσi (k) is due to the fact that in the den-
sity channel, the interaction is repulsive. Inserting Eq. (2) into
Eq. (1), and subsequently employing the linear shifts in Eq.
(4) while making repeated use of Eq. (3), straightforwardly
yields

S[ψ̄, ψ, Φ̄,Φ,Σ] =
∑
k

∑
σ,i

ψ̄σi(k)[−iωn + εi(k) + iΣσi (k)]ψσi(k)−
∑
k,i

[ψ̄↑i(k)ψ̄↓i(−k)Φi(k) + Φ̄i(k)ψ↓i(−k)ψ↑i(k)]

+
∑
k,k′

∑
i,j

V −1
ij (k − k′)[Φ̄i(k)Φj(k

′) +
1

2
Σσi (k)Σ

σ
j (k

′)]. (5)

The action in Eq. (5) is diagonal in the electron bands and bilinear in the fermionic fields, such that we can employ the Nambu
spinors Ψi(k) = (ψ↑i(k), ψ̄↓i(−k))T and Ψ̄i(k) = (ψ̄↑i(k), ψ↓i(−k)) to express S as

S[Ψ̄,Ψ, Φ̄,Φ,Σ] =
∑
k

∑
i

Ψ̄i(k)[−G−1
i (k)]Ψi(k) +

∑
k,k′

∑
i,j

V −1
ij (k − k′)[Φ̄i(k)Φj(k

′) +
1

2
Σσi (k)Σ

σ
j (k

′)], (6)

where the inverse Green’s function G−1
i is band dependent and

given by

G−1
i =

(
G−1
i,↑ (k) Φi(k)

Φ̄i(k) −G−1
i,↓ (−k)

)
(7)

withG−1
i,σ(k) = G−1

0,i (k)−iΣσi (k) andG−1
0,i (k) = iωn−ξi(k).

The first term in Eq. (6) is block-diagonal in the bands and can
thus be treated in the same manner as in Ref. [20]. The two
HS terms contain the coupling between the bands and are thus
responsible for the emergent multiband physics.

To proceed, we integrate out the fermionic sector such that
the effective action becomes

S[Φ̄,Φ,Σ] = −Tr ln(−βG−1)

+
∑
k,k′

∑
i,j

V −1
ij (k − k′)[Φ̄i(k)Φj(k

′) +
1

2
Σσi (k)Σ

σ
j (k

′)],

(8)

where the trace is over momentum, frequency and band in-
dices. To find the mean-field values of the HS fields, we im-
pose stationary point conditions on the action and make use
of the identity δ

δχTr ln(f(χ) = Tr[f−1(χ) δδχf(χ)] to obtain

(see Ref. [20] for more details)

0 =
δS[Φ̄,Φ,Σ]

δΦ̄i
=

∑
k′,j

V −1
ij (k − k′)Φj(k

′)

− Φi(k)

G−1
↑,i (k)G

−1
↓,i (−k) + Φ̄i(k)Φi(k)

, (9)

which can be inverted by summing over
∑
k

∑
i Vli(k

′ − k)
on both sides and using Eq. (3). After a suitable relabeling of
variables, the gap equation is given as

Φi(k) =
∑
k′,j

Vij(k−k′)
Φj(k

′)

G−1
↑,j(k

′)G−1
↓,j(−k′) + Φ̄j(k′)Φj(k′)

.

(10)
Since the system described by Eq. (1) has spin-rotational
symmetry, Σ↑

i (k) = Σ↓
i (k) = Σi(k). The spin index in

G−1
i,σ(k) = G−1

i (k) can then be omitted. This simplifies the

stationary point conditions 0 = δS[Φ̄,Φ,Σ]
δΣσ

i
, which are found

analogously to those of Φi(k)

iΣi(k) =
∑
k′,j

Vij(k−k′)
Gj(−k′)

G−1
j (k′)G−1

j (−k′) + Φ̄j(k′)Φj(k′)
.

(11)
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Equations. (10) and (11) are the Eliashberg equations for
the HS fields Φ and Σ. They can be rewritten to elucidate their
connection with the original Eliashberg fields, namely the in-
verse quasiparticle residue Z, the shift of the energy spectrum
χ, and the superconducting gap appearing in the electron spec-
trum ∆. To do so, we use that Φ̄i(k) = Φ∗

i (k) such that the
denominator in Eqs. (10) and (11) is even. Hence we can ob-
tain distinct equations for the odd and even part of Σi(k). In-
troducing the aforementioned Eliashberg fields by

iΣi(k) = −iωn + iωnZi(k) + χi(k) (12)

∆i(k) =
Φi(k)

Zi(k)
, (13)

it follows that

Θi(k) ≡G−1
↑,i (k)G

−1
↓,i (−k) + |Φi(k)|2

=(ωnZi(k))
2 + (ξi(k) + χi(k))

2 + |Zi(k)∆i(k)|2.
(14)

Inserting Eq. (12) into Eq. (11) and taking the even (odd) part,
we get the Eliashberg equation for χi(k) (Zi(k))

χi(k) = −
∑
k′,j

Vij(k − k′)
ξj(k

′) + χj(k
′)

Θj(k′)
(15)

Zi(k) = 1 +
1

ωn

∑
k′,j

Vij(k − k′)
ωn′Zj(k

′)

Θj(k′)
, (16)

whereas the gap equation becomes

∆i(k) =
1

Zi(k)

∑
k′,j

Vij(k − k′)
Zj(k)∆j(k

′)

Θj(k′)
. (17)

In the case of only one band, Eqs. (15), (16), and (17) reduce
to the conventional Eliashberg equations [26]. We note that
we will continue to make use of the HS fields (Φ and Σσ) in
the analytical calculations as needed, but when stating results
we will use the Eliashberg fields as they relate to quantities
that are experimentally measurable.

After integrating out the fermions, the free energy of the
system is most easily expressed using the HS fields

e−βF =

∫
DΦ̄DΦDΣe−S[Φ̄,Φ,Σ]. (18)

By expanding S around its saddle point and neglecting higher-
order contributions, one obtains

βF = −
∑
k

∑
i

ln(β2Θi(k))

+
∑
k,k′

∑
i,j

V −1
ij (k − k′)[Φ̄i(k)Φj(k

′) +
1

2
Σσi (k)Σ

σ
j (k

′)],

(19)

where we used that Tr ln(G−1) = ln det(G−1).
To make use of the free energy in Eq. (19) we need to calcu-

late the inverse interaction V −1
ij (k − k′). This is not required

when deriving the mean-field equations, since one can elimi-
nate V −1

ij (k − k′), as was done in going from Eq. (9) to Eq.
(10). The inverse interaction has only been calculated and
used in the free energy for a limited class of systems. One
such interaction is the multiband BCS interaction, where the
inverse interaction enters as the matrix inverse of the matrix
containing the couplings between different bands [67]. Only
recently, starting with Ref. [20] and subsequently used in, e.g.,
Refs. [34, 38], has a feasible way of calculating V −1 for k-
dependent potentials emerged. The method is conceptually
simple and it is instructive to consider a one-band system.
Denoting the operation of taking both the spatial and tem-
poral Fourier transform as F , the inverse interaction can be
expressed as

V −1(k) = F
(

1

F−1(V (k))

)
. (20)

In writing down Eq. (20), we have glossed over some finer
details relating to the differences in the temporal and spatial
Fourier transforms, but we show in detail in Sec. IV that this
definition of V −1(k) satisfies Eq. (3). For systems with more
than one band, one must also take the matrix inverse, as we
will see in Sec. IV.

III. SUPERCONDUCTING GAPS WITH GLOBAL PHASES
AND SPONTANEOUSLY BROKEN TIME-REVERSAL

SYMMETRY

The complex phases of Φi(k) in the free energy in Eq.
(19) are only present in the second term. Determining these
phases can be carried out directly by solving the gap equa-
tion in Eq. (10), but since this generally requires numerics,
some insight is lost. In one-band systems, however, we may
do some simple analytical considerations. For example, it
follows immediately that if Φ(k) has only a global phase
Φ(k) = |Φ(k)|eiθ ∀ k, the phases cancel, and one is left with
solving the gap equation for the amplitudes |Φ(k)|, where the
existence of a nontrivial solution is decided by V (k − k′).
This globalU(1) symmetry is spontaneously broken at the on-
set of superconductivity. One might also consider states with
a k-dependent phase that solve the complex gap equations.
However, as proved in Ref. [68] by using a spin chain repre-
sentation, for systems with phonon-mediated interactions, the
global minimum of the free energy does indeed only have a
global phase. This property for single-band systems motivates
the global phase ansatz (GPA) for multiband systems, namely
that at the global energy minimum, the gaps belonging to each
band only have a global phase

Φi(k) = |Φi(k)|eiθi ∀ k (21)

Note that the global phase of each gap need not be the same,
θi ̸= θj . We will often employ the shorthand notation θij ≡
θi − θj .

The GPA is further supported by the fact that in systems
with phonon-mediated interactions we have considered, we
have not observed any numerical solutions to the multiband
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Eliashberg equations that do not obey this symmetry. Using
the GPA allows us to make significant headway analytically.
Although we cannot ascertain that the states we find are the
only states satisfying the Eliashberg equations, the states we
do find using the GPA clearly do.

Another property of the gap presented in Ref. [68] is that
|Φ(ωn)| is even in frequency. This is supported by the fact
that renormalization effects seem to preclude odd-frequency
superconductivity mediated by phonons [69, 70], except in the
presence of a magnetic field [71, 72]. Hence, assuming sin-
glet pairing, the spatial symmetry of the gap must be even to
satisfy the overall symmetry restrictions posed on the Cooper
pairs [70]. The only spatial symmetry satisfying Eq. (21) is
s-wave symmetry, thus also satisfying the overall symmetry
of the Cooper pairs. s-wave symmetry is the appropriate spa-
tial symmetry in many systems, especially when phonons are
mediating the interactions. If neither the phonon energies nor
the electron-phonon coupling depends on momentum, it fol-
lows directly (also for multiband systems) from Eq. (10) that
Φi(k) = Φi(ωn), since the right-hand side does not depend
on k, showing the s-wave symmetry of Φi. Φ(k) = Φ(ωn)
also holds when dispersive phonons are mediating the inter-
actions as long as the Fermi energy is the dominant energy in
the system [24, 68].

The symmetry considerations above leave Φi(ωn) with al-
most the same characteristics as the gaps used in multiband
BCS theory; spin-singlet s-wave gaps with global phases, but
with an additional frequency dependence accounting for re-
tardation effects. The similarity allows us to study multiband
phenomena previously found in BCS theory, only now in the
strong-coupling regime. One of these phenomena is the TRSB
states arising in systems where the coupling between the gaps
causes phase frustration that, in some cases, spontaneously
breaks TRS. In BCS theory, the microscopic conditions under
which TRSB occur have been outlined in detail [17, 19, 73].
We will now spend the remainder of this section outlining the
equivalent conditions in Eliashberg theory, and in the follow-
ing two sections, we consider a specific model where they are
satisfied.

An alternative way of understanding the criteria for TRSB
to occur in multiband BCS theory is to consider the free
energy. This approach is used in Ref. [74]. Denoting
the matrix containing the k-independent interactions between
bands i and j as V BCS

ij (where we will continuously add
the superscript when needed to distinguish from the strong-
coupling case), the phases of the gaps only appear in one
term in the free energy, namely

∑
i,j ∆̄

BCS
i [V BCS]−1

ij ∆BCS
j

[67, 74, 75]. Splitting the BCS gaps into their amplitude and
phase, this term becomes

∑
i,j a

BCS
ij cos θBCS

ij with aBCS
ij =

[V BCS]−1
ij |∆BCS

i ||∆BCS
j |. Note that aBCS

ij is symmetric, so
the distinct off-diagonal elements are aBCS

12 , aBCS
13 , and aBCS

23 .
Now, to have phase frustration in the three-band case, either
one or all three of the off-diagonal elements in aBCS

ij must be
positive, akin to how a spin system on a triangular lattice is
frustrated if all couplings are antiferromagnetic or if two are
ferromagnetic and one is antiferromagnetic. The signs of the
couplings are decided by [V BCS]−1

ij .
For the phase frustration to give TRSB, the amplitude of

the couplings must be such that the phases that minimize
the free energy are not multiples of π. If this is the case,
the ground state is twofold degenerate and related by time-
reversal symmetry (complex conjugation). As the system en-
ters one of these two distinct states, it breaks a Z2 symme-
try, which, in this case, corresponds to spontaneously break-
ing time-reversal symmetry.

By inserting Eq. (21) into the cross terms in the second term
in Eq. (19) and assuming s-wave spatial symmetry, one ob-
tains∑
k,k′

∑
i,j

V −1
ij (k − k′)Φ̄i(k)Φj(k

′) =
∑
i,j

aij cos θij , (22)

with

aij =
∑
k,k′

Zi(ωn)Zj(ωm)|∆i(ωn)||∆j(ωm)|V −1
ij (k − k′),

(23)

where we used that Zi(ωn) is positive for all ωn [34]. In Eq.
(23), we employed the Eliashberg fields, rather than the orig-
inal HS fields, to elucidate the connection between aij and
aBCS
ij . The most apparent differences between the two are the

double sum over k, k′ in aij and the frequency dependency
of the fields. Moreover, renormalization effects are accounted
for in Zi(ωn) and Zj(ωm). However, the pivotal role in de-
ciding the fate of TRSB is, akin to BCS theory, played by
the inverse interaction. It determines the sign of aij and, as
mentioned previously, either one or all three aij must be pos-
itive for TRSB to occur. Additionally, the mean-field values
of the fields enter in aij . These are decided by the Eliash-
berg equations and thus by the interaction Vij(k − k′). This
creates a complex interplay between the interaction and its in-
verse, where both are needed to calculate aij . A numerical
scheme for solving the Eliashberg equations that exploits this
interplay is explained in Appendix A, and we will return to it
later.

IV. THE MICROSCOPIC MODEL AND ITS INVERSE
INTERACTION

Having kept the discussion rather general until now, we will
in this section introduce the microscopic model that adheres
to the action in Eq. (1). Moreover, we will calculate the in-
verse interaction of the model we employ and substantiate the
claim we made in Eq. (20). As mentioned in relation to Eq.
(1), we assume that the system has three disjoint Fermi sur-
faces and enumerate the electrons belonging to each Fermi
surface i = 1, 2, 3. These Fermi surfaces may result from
a band crossing the Fermi energy several times, resulting in
multiple Fermi pockets, or from multiple bands, each cross-
ing the Fermi energy once. Both cases are well-described by
the multi-patch method [76], and in the following, we will use
the terms band and pocket interchangeably.

We consider interactions between the electrons that are me-
diated by phonons. A complete derivation of the effective
interaction in such systems using functional-integral formal-
ism can be found in Ref. [20]. Referring to this for details,



6

−300 −200 −100 0 100 200 300
$n (meV)

−2

−1

0

1

2
p(
$
n
)

×107

FIG. 1. The frequency-dependent part of the inverse interaction
p(ϖn) as a function of the bosonic Matsubara frequencies ϖn. The
Einstein frequency is ωE = 40 meV and the temperature is T = 1
meV.

we state the result, as the potential for one-band systems is
V (k) = −β−1|gk|2D0(k), where gk is the electron-phonon
coupling, depending, in general, on momentum, and D0(k) is
the phonon propagator, defined as

D0(k) =
2ωk

(iϖn)2 − ω2
k

, (24)

where ϖn is a bosonic Matsubara frequency and ωk is the
phonon frequency at momentum k. We also inserted β−1 in
the interaction to ensure that it carries units of energy squared
in real and momentum space with our Fourier transform con-
ventions.

To obtain a multiband interaction, we will make some
changes to the interaction above. Firstly, to account for the
different geometries of the Fermi pockets and how the elec-
trons belonging to a pocket couple to phonons, we take the
electron-phonon coupling to depend on which bands are in-
volved in the scattering. For example, one can imagine that
pockets i = 1 and i = 2 are spherical but the radius of
the i = 1 Fermi pocket is larger. The average momentum
transferred is then larger in scattering processes for electrons
belonging to pocket i = 1. So when we approximate the
electron-coupling to be momentum independent, we account
for this by including band indices in |gk|2 → |gij |2. Note that
|gij | is symmetric.

We make a second simplification in assuming that all
phonons have frequency ωE, similar to an Einstein solid. As
we will see later, this is not an essential simplification, but
we note that it has been used in similar works on strong cou-
pling [34, 36, 68]. With it, ωE replaces ωq in Eq. (24) and the
multiband interaction becomes

Vij(ωn − ωm) =
1

β
|gij |2

2ωE

(ωn − ωm)2 + ω2
E

, (25)

which is the interaction we will use in the following.
It is convenient to split the interaction into a band part and

a frequency part. To denote the former, we introduce the

symmetric matrix Bij = |gij |2, such that all elements in B
are nonnegative. The frequency dependence comes from the
phonon propagator D0(ωn − ωm = ϖn), always evaluated at
the difference between two fermionic Matsubara frequencies
which is itself a bosonic one. We now carry out the steps re-
quired to calculate the inverse interaction, as outlined in Eq.
(20). The temporal Fourier transform of Vij(ϖn) is straight-
forward to calculate, see e.g. [22]

Vij(τ) =
Bij
β

∑
ϖn

2ωEe
−iϖnτ

ϖ2
n + ω2

E

= Bij
eωE(β−τ) + eωEτ

eβωE − 1
.

(26)
The matrix inverse of Eq. (26) is simply

V −1
ij (τ) = B−1

ij

eβωE − 1

eωE(β−τ) + eωEτ
. (27)

To complete the derivation of the inverse interaction, we re-
turn to Fourier space

V −1
ij (ϖn) = B−1

ij

eβωE − 1

β

∫ β

0

dτ
e(iϖn+ωE)τ

eβωE + e2ωEτ

= B−1
ij p(ϖn), (28)

with

p(ϖn) =
eβωE − 1

β

[
F (1, iϖn+ωE

2ωE
; iϖn+3ωE

2ωE
;−e−βωE)

iϖn + ωE

−
F (1, iϖn+ωE

2ωE
; iϖn+3ωE

2ωE
;−e−βωE)

eβωE(iϖn + ωE)

]
. (29)

F (a, b; c; z) is the hypergeometric function [77]. In Fig. 1,
p(ϖn) is plotted as a function of ϖn with T = 1 meV and
ωE = 40 meV. p(ϖn) is real, even in ϖn, and changes sign
between every adjacent ϖn. For the expression in Eq. (28) to
be the inverse interaction it has to satisfy the relation in Eq.
(3). This is straightforward to demonstrate when expressing
Vij(ϖn) and V −1

ij (ϖn) in their imaginary time representation
v(τ) = (eβωE−1)(eωE(β−τ)+eωEτ )−1 and 1

v(τ) , respectively,∑
ωn

∑
l

V −1
il (ωn1 − ωn)Vlj(ωn − ωn2)

=
∑
l

B−1
il Blj

1

β

∫ β

0

dτ1dτ2
v(τ1)

v(τ2)
e−iωn1

τ1eiωn2
τ2

× 1

β

∑
ωn

eiωn(τ1−τ2)

= δij
1

β

∫ β

0

dτ1dτ2
v(τ1)

v(τ2)
e−iωn1τ1eiωn2τ2δ(τ1 − τ2)

= δijδωn1
ωn2

. (30)

Now, with the inverse interaction at hand, we reiterate one
of the main messages from Sec. III: While it is the interac-
tion that determines the solutions to the Eliashberg equations
(requiring numerics), the conditions under which TRSB may
occur can be gleaned directly from the inverse interaction. In
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particular, the signs of aij are the same as B−1
ij in all the sys-

tems we have considered, meaning that the double frequency
sum in aij ,

aij =

B−1
ij

∑
ωn,ωm

Zi(ωn)Zj(ωm)|∆i(ωn)||∆j(ωm)|p(ωn − ωm)

(31)

converges to a positive number. We again note that aij is sym-
metric. Thus, a necessary condition for spontaneously break-
ing TRS is that one or all three of the off-diagonal elements
in B−1

ij are positive. If not, there is no phase frustration and
consequently no TRSB.

An intriguing way of generalizing the interaction consid-
ered here is outlined in Appendix B in Ref. [68]. For disper-
sive phonons where the frequency ωq is only dependent on
the magnitude of q, denoted q, one finds spatially isotropic
solutions to the Eliashberg equations by exploiting the sym-
metries of the Fermi surface, which in Ref. [68] is taken to be
spherical. The momentum dependence then renormalizes the
interaction in the form

Ṽ (ϖn) =
|g|2
2kFβ

∫ 2kF

0

dq
f(q)ωq
ϖ2
n + ω2

q

, (32)

where kF is the Fermi momentum, Ṽ (ϖn) is the renormalized
potential, and f(q) is a dimensionless function determined by
the dimensionality of the system. To generalize Eq. (32) to a
multiband system, one must consider the different geometries
of the Fermi surfaces, which would affect both f(q) and the
integration limits. |g|2 would be replaced by Bij . The steps
of calculating Ṽ −1

ij (ϖn) are then the same as the ones lead-
ing up to Eq. (28). While Vij(ϖn) has the advantage of only
having a few free parameters in ωE and gij , Ṽij(ϖn) would
be able to utilize first-principles calculations for the electron
band structure and associated Fermi surface, the full phonon
spectrum, and the electron-phonon coupling [78], thus facil-
itating a more effective search for candidate materials where
TRSB might arise. We leave this for future work, and keep to
the simpler interaction in Eq. (25) going forward.

To close this section, we simplify the Eliashberg equations
and the free energy in Sec. II. The momentum sums can be
carried out analytically since the Eliashberg fields only de-
pend on frequency. As the momentum dependence is only in
ξi(k), the sums can be transformed into energy integrals in
standard fashion [26]. Approximating the density of states of
each band by its value at the Fermi surface, denoted NF,i, the
energy integrals may be carried out. In the case of χi(ωn)
in Eq. (15), the energy integral, and thus also χi(ωn) itself,
is zero. This simplifies the expression for Θi(k) in Eq. (14),
which contains the only energy dependence in the remaining
two Eliashberg equations. After integrating over energy, these

become

Zi(ωn) = 1 +
π

ωn

∑
ωm,j

Vij(ωn − ωm)NF,jωm√
ω2
m + |∆j(ωm)|2

(33)

∆i(ωn) =
π

Zi(ωn)

∑
ωm,j

Vij(ωn − ωm)NF,j∆j(ωm)√
ω2
m + |∆j(ωm)|2

. (34)

Similarly, following the procedure of Ref. [68], by sending
the Fermi energy to infinity and discarding constant terms,
we integrate the logarithm in the free energy in Eq. (19) and
obtain

βf = −2π
∑
ωn

∑
i

NF,iZi(ωn)
√
ω2
n + |∆i(ωn)|2

+
∑
ωn,ωm

∑
i,j

V −1
ij (ωn − ωm)

× [Φ̄i(ωn)Φj(ωm) + Σi(ωn)Σj(ωm)]. (35)

Here, we introduced the free energy density f ≡ F/N , where
N is the number of unit cells.

The Eliashberg equations above coincide with the multi-
band Eliashberg equations used in previous works [61, 62].
However, equipped with the global phase ansatz and the ex-
pression for aij in Eq. (31), we are in a position to investigate
possible TRSB states not seen before in strong-coupling mod-
els.

V. RESULTS

In this section, we will showcase a system that sponta-
neously breaks TRS in strong coupling, manifesting in non-
analytical behavior in both the phases and amplitudes of the
gaps due to a Z2-breaking Ising phase transition at T = T ∗.
We will discuss other systems that might exhibit TRSB later.

The system under consideration here consists of three cou-
pled bands. Two of the bands have strong intraband inter-
actions of different magnitudes. The remaining interactions
are weaker, g11 ≈ g22 ≫ gij . In units of g = 85 meV,
the electron-phonon couplings between the different bands are
g22 = 1.4g, g33 = 0.005g, g12 = 0.0001g, g13 = g23 =
0.003g, while the intraband coupling in the first band g11 can
vary but is, in general, of the same order as g. For simplic-
ity, we set the density of states at the Fermi level equal for
all three bands NF,i = 0.5 · 10−2 meV−1, and the Einstein
frequency and temperature are 20 meV and 1 meV, respec-
tively. With these values for gij , one obtainsB−1

12 ≈ 2 ·10−10,
B−1

13 ≈ −5 · 10−5 and, B−1
23 ≈ −3 · 10−5, all in units of

meV−2.
Before showing results from this system, it is worth con-

sidering the type of physical systems where TRSB may be re-
alized. Firstly, we consider two intraband couplings approx-
imately equal to g = 85 meV, putting the system into the
strong-coupling regime. The system is also one where the
interband electron-phonon coupling is severely suppressed.
This is the case in iron pnictides [44, 62, 79], some of which
are believed to be strong-coupling superconductors [80, 81].
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Lastly, a possible realization of the small intraband interaction
in the third band is the following: As explained in Sec. IV, the
electron-phonon coupling depends on the momentum trans-
ferred in the scattering. Moreover, for the case of Einstein
phonons, gk ∝ |k| [82]. Therefore, if bands 1 and 2 (band
3) have large (small) Fermi surfaces, the average momentum
transfer, and thus also the electron-phonon coupling, will be
bigger (smaller). This can be finetuned by tuning the chemi-
cal potential such that both the Fermi surface and the electron-
phonon coupling of the third band become small. We discuss
our specific choice of parameters in more detail in Appendix
B.

It is instructive to see how and why this causes TRSB,
which follows directly from the expression for aij in Eq. (31).
Since the signs of aij are determined by B−1

ij , the system
will experience some phase frustration, as discussed in Sec.
IV. Moreover, because g11 ≈ g22 ≫ g33, it follows that
∆1 ≈ ∆2 ≫ ∆3 below Tc. Therefore, again from Eq. (31),
we expect similar magnitudes of a12, a13, and a23, thus pos-
sibly setting the stage for the phase frustration to result in
TRSB.

Following the numerical scheme in Appendix A, we solve
the multiband Eliashberg equations in Eqs. (33) and (34) with
the parameters above. The results are illustrated in Fig. 2,
where we have studied two similar systems with different g11.
Because g33 ≪ g11, g22, the fields of the third bands are sig-
nificantly smaller than their counterparts in bands 1 and 2.
For this reason, we have included insets to show the behavior
of Z3(ωn) and ∆3(ωn) more clearly. All fields are even in
ωn. Zi(ωn) decays as a function of |ωn| in all bands, both
in the case of g11 = 0.8g and g11 = g, as shown in Figs. 2
(a) and (c), respectively. As g11 grows from Fig. 2 (a) to (c),
so does Z1(ωn), which is explained by stronger renormaliza-
tion effects, induced by the increase of the intraband electron-
phonon coupling. Z2(ωn) and Z3(ωn) remain largely unaf-
fected by changing g11. Moreover, we observe that Zi(ωn)
have larger values in the normal state, which is explained by
the factor

√
ω2
m + |∆j(ωn)|2 in the denominator in Eq. (33).

In Fig. 2 (b), ∆i(ωn) is plotted as a function of frequency
with g11 = 0.8g. All gaps are purely real, where the phase
differences θ12 and θ13 are π. We note that the realvaluedness
of all gaps is not guaranteed in general since the global U(1)
symmetry can only be chosen such that one of the gaps is real
and positive. We take this gap to be ∆1(ωn) in the following.
Moreover, because g22 > g11, it follows that |∆2| > |∆1|.
Both gaps display the same monotonic decreasing behav-
ior with |ωn|. This is not the case for the smallest gap, as
|∆3(ωn)| increases slightly with |ωn|, quickly reaching its
peak before it becomes monotonically decaying as well. To
elucidate the behavior of the third gap, it is useful to consider
the mechanisms sustaining the different gaps. The bands with
strong electron-phonon coupling are superconducting in their
own right; both ∆1(ωn) and ∆2(ωn) survive if the interband
couplings vanish. Their amplitude would barely change. For
∆3(ωn), however, g33 is far too weak to drive the supercon-
ductivity by itself. Instead, ∆3(ωn) is sustained by the other
two gaps, from j = 1 and j = 2 on the right-hand side in
Eq. (34). The mechanism of a weak gap being supported by

larger ones has long been recognized in multiband supercon-
ductors [48]. Since |∆2(ωn)| > |∆1(ωn)| and g13 = g23, the
j = 2 term is larger in magnitude than the j = 1 term, causing
∆3(ωn) to have the same sign as ∆2(ωn).

The gaps, unlike Zi(ωn), exhibit a more abrupt change
when g11 increases in Fig. 2 (d). The most apparent effect is
that θij are no longer multiples of π, as ∆2(ωn) and ∆3(ωn)
both have real and imaginary parts, while ∆1(ωn) is still
purely real. Therefore the system in Fig. 2 (d) spontaneously
breaks TRS since the state is not invariant under complex con-
jugation. The slight increase in g11 also affects the magni-
tudes of the lowest-frequency gaps |∆i(ωn=0)| ≡ |∆i(0)|.
As expected, increasing g11 causes |∆1(0)| to be larger, while
|∆2(0)| remains the same. It is more surprising that the small
change in g11 also increases |∆3(0)| by a factor of 4. This
can be understood from the fact that ∆1(ωn) and ∆2(ωn) are
now less antagonistic in their support of ∆3(ωn). In Fig. 2
(b), θ12 was π, and thus the contributions to ∆3(ωn) in Eq.
(34) from j = 1 and j = 2 had opposite sign, as discussed
previously. This is not the case in the system in Fig. 2 (d),
where ∆1(ωn) (∆2(ωn)) can boost the real (imaginary) part
of ∆3(ωn) without being counteracted to the same degree as
before.

The antagonistic mechanism can also explain the small
bump in ∆3(ωn) in Fig. 2 (b), as ∆1(ωn) decreases faster
than ∆2(ωn), resulting in a small increase in ∆3(ωn) at low
frequencies even though both ∆1(ωn) and ∆2(ωn) decay with
|ωn|. Conversely, in the system in Fig. 2 (d), the magnitude
of |∆3(ωn)| decays with |ωn| such that all three gaps decay
monotonically with |ωn|.

To elucidate the transition between the TRS and TRSB
states, we have solved the Eliashberg equations as a function
of g11, where the results are shown in Fig. 3. With the ex-
ception of g11, we employ the same system parameters as in
Fig. 2. In Fig. 3 (b), |∆i(0)| is plotted as a function of g11/g.
For |∆1(0)| (|∆2(0)|), we observe what we expect, namely
that it increases (remains the same) with g11. |∆3(0)|, how-
ever, exhibit nonanalytical behavior at g11 = 0.87g ≡ gc. It is
instructive to view these results in light of Fig. 3 (a), which
showcases θij for the same values of g11. For g11 ≤ gc,
θ12 = π and thus, due to the antagonistic mechanisms sus-
taining ∆3(ωn) mentioned previously, |∆3| decreases when
|∆1(0)| increases. This changes when TRS is broken at
g11 = gc such that θ12 falls off when g11 > gc, allowing
∆1(ωn) and ∆2(ωn) to boost the real and imaginary parts of
∆3(ωn), respectively. The maximum of ∆3(0) thus coincides
with the minimum of θ12 at g11 ≈ 0.98g, where ∆1(ωn) and
∆2(ωn) are at their most cooperative in sustaining ∆3(ωn).

We emphasize that while ∆3(ωn) is orders of magnitudes
smaller than ∆1(ωn) and ∆2(ωn), it still plays a pivotal role
in breaking TRS. If ∆3(ωn) = 0, it follows immediately from
Eq. (31) that a12 is the only surviving term, such that θ12 is
always zero or π. In the case of the latter, the resulting state is
s±. To obtain the s+ is state, all three aij must be nonzero, in
turn requiring all gaps to be nonzero. In this sense, the TRSB
will be robust, as θij obtains values far away from zero or π
even though the third gap is small. Moreover we expect the
phenomena associated with TRSB to persist even if the third
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FIG. 2. The solutions to the three-band Eliashberg equations for the inverse quasiparticle residue Zi(ωn) and the superconducting gap ∆i(ωn)
with band index i. In the two left panels, the intraband electron-phonon coupling in the first band is g11 = 0.8g with g = 85 meV, and it
is g11 = g in the right panels. Otherwise, the system parameters are the same, where the interaction parameters are constant and equal to
g22 = 1.4g, g33 = 0.005g, g12 = 0.0001g, g13 = g23 = 0.003g and the other system parameters are T = 1 meV, ωE = 20 meV, and
NF,i = 0.5 · 10−2 meV−1. In panels (a) and (c), the solutions are found in both the normal (solid lines) and superconducting (dashed lines)
state, while in panels (b) and (d), the real (imaginary) part of the gaps is plotted with solid (dashed) lines. The insets in all panels show the
fields associated with band index i = 3.

gap is small for the following reasons: In three-band micro-
scopic models with TRSB, one can map such models to an ef-
fective Ginzburg-Landau functional with only two gaps where
the TRSB is explicitly imposed [15, 16]. The mapping does
not affect the emergent physics such as spontaneous supercur-
rents near defects [15] and topological invariants [16]. For the
system considered here, the natural choice would then be to
include the two large gaps into such an effective TRSB two-
band model, but keeping in mind that the imposed TRSB is a
consequence of the smaller gap. We leave this effective model
for future consideration and keep exploring the properties of
the ground state in the microscopic model going forward.

While Figs. 2 and 3 explain many of the mechanisms at play
in causing TRSB, it is also instructive to consider the effects of
externally controllable parameters. In Figs. 4 (a) and (b), we
plot |∆i(0)| as a function of T at two different energy scales
to capture the behavior of both the large and small gaps. In the
same temperature regime, we plot θij in Fig. 4 (c). The critical
temperature of the system is Tc ≈ 9.2 meV, where all gaps are
zero for larger temperatures. |∆1(0)| onsets to larger values
at T1 ≈ 6.2 meV, but as shown in Fig. 4 (b), it retains nonzero
values for larger values of T as well. This is, again, a result
of a stronger gap sustaining smaller ones through interband
coupling [48]. Another onset is shown in Fig. 4 (c), namely
that of θij at T = T ∗ = 4.85 meV. T ∗ is thus the temperature
at which TRS is spontaneously broken. T ∗ and T1 are the two
temperatures lower than Tc where |∆3(0)| is nonanalytic. In

the case of the latter, the sudden decrease in |∆3(0)| is due to
the drop of ∆1(ωn) at T1, meaning that ∆3(ωn) loses one of
the sources maintaining it.

To understand the phase transition at T ∗, we repeat that
there are two criteria for TRSB to occur: aij must have the ap-
propriate sign combinations, and aij must be of similar mag-
nitudes. The first criterion is satisfied since the B−1

ij decide
the sign of aij . B−1

13 and B−1
23 are negative while B−1

12 is posi-
tive, and thus aij has a sign combination that allow for TRSB.
We explain the second criterion in more detail in Appendix
A, but from the fact that θ13 and θ23 are zero above T ∗ in
Fig. 4, we can infer the relative magnitudes of aij . Above
T ∗, a23 and a13 are larger than a12 since it is energetically
favorable to have θ13 = θ23 = 0, leaving the a12 cos θ12-term
frustrated. As we approach T ∗ from above, both ∆1(ωn) and
∆2(ωn) increase, in turn boosting a12, as can be seen from
Eq. (31). Importantly, a12 then grows relative to a13 and a23
since ∆3(ωn) does not change much below T1. So at T ∗, a12
becomes large enough for the phase frustration to manifest in
TRSB, as all three phase differences start deviating from zero.
This can be observed in detail in Fig. 5, where |aij | is plotted
as a function of temperature for the same system as in Fig. 4.
Moreover, in Appendix A, we derive that for a system with
equal a13 = a23 = a, TRSB occurs at a12 > a/2. From
Fig. 5 we find that a similar relation holds also for a13 ̸= a23,
namely that TRSB occurs at a12 ≈ (a13 + a23)/4.
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FIG. 3. Results from solving the Eliashberg equations as a function
of the intraband strength in the first band g11 divided by g = 85 meV.
In panel (a), the global phase differences θij are plotted as a function
of g11/g. In panel (b), the lowest frequency gap in each band ∆i(0)
is plotted as a function of g11/g. Note the different energy scales for
∆1 and ∆2 (left axis) and ∆3 (right axis). The other parameters are
the same as in Fig. 2.

All three phase differences onsets similarly at T ∗ with crit-
ical exponents β ≈ 0.5, with different prefactors. This is a
manifestation of the nature of the phase transition, namely that
a Z2 symmetry is spontaneously broken along with TRS, re-
sulting in an Ising transition. Any of the three θij can be taken
to be the associated order parameter. The Ising critical expo-
nents are well-known in mean-field theory. Relevant to our
system is β = 1/2, thus corroborating the critical exponents
we have found.

In superconductors with an additional phase transition be-
low Tc, one of its signatures is a jump in the heat capacity,
which is most often associated with spontaneous TRSB [83].
For multiband systems, the jump results from a kink in the
derivative of the gaps at T ∗ [19]. ∆3(0) in Fig. 4 (b) clearly
features such a kink, and with the mean-field Ising transition
at T ∗, we expect a logarithmic anomaly in the specific heat.
However, for the system considered here, the amplitude of
the anomaly is minuscule due to the different magnitudes in
the diagonal and off-diagonal elements in aij . a11 and a22
are five orders of magnitude larger than the remaining matrix
elements, so although the off-diagonal elements in aij deter-
mine θij and thus play consequential roles in the emergent
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|∆i(0)| in each band i is plotted as a function of temperature T ,
where the panels have different scales on the y-axis to capture both
the low and high-energy behavior. The phase differences between
the bands θij are plotted in panel (c). The system parameters are the
same as in Fig. 2 with g11 = g = 85 meV. TRS is broken at T <
T ∗ = 4.85 meV, and black vertical lines at T = T ∗ are included to
help guide the eye.
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FIG. 5. The quantities aij defined in Eq. (31) as a function of tem-
perature T . The system parameters and quantities are the same as in
Fig. 4. The black lines at T = T ∗, T = T1 and T = Tc are included
to help guide the eye.

physics, their contribution to the free energy is insignificant.
The dominant contributions from the gaps to the free energy
are from a11, a22, and the tracelog contributions. None of
these terms contain θij , so when calculating the specific heat
c = Td2f/d2T , the onset of θij at T ∗ does not contribute to
any of the larger terms.

The absence of a kink at T = T ∗ can be observed in
Fig. 6, where we have plotted d∆f/dT as a function of T
with the same system parameters as in Fig. 4. We calculate
the difference between the superconducting and normal state
∆f = fSC − fN from Eq. (35). Kinks in d∆f/dT corre-
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FIG. 6. The derivative of the free energy density difference between
the superconducting and normal state ∆f = fSC − fN with respect
to temperature. The parameters and quantities are the same as in Fig.
4. The black lines at T = T ∗, T = T1 and T = Tc are included to
help guide the eye.

spond to jumps in the heat capacity. In Fig. 6, we observe
that d∆f/dT , and thus also c, is mainly influenced by the
temperature dependence of |∆1(ωn)| and |∆2(ωn)|, resulting
in two jumps in c at T1 and Tc, associated with the onsets of
|∆1(ωn)| and |∆2(ωn)|, respectively. To obtain a noticeable
kink at T ∗, the off-diagonal elements in aij , and thus also the
interband interactions, need to play a more prominent role.
We consider such systems in the next paragraphs.

TRSB states are well understood in weak coupling. Hence,
some comparisons to our results are in order. The conven-
tional starting point for obtaining such states in BCS theory is
systems with attractive intraband and repulsive interband in-
teractions [17, 18]. It then follows straightforwardly from the
expression for aBCS

ij that they are all positive, see Appendix
B, setting the stage for TRSB. However, from the interaction
in Eq. (25), it is obvious that the interaction we have em-
ployed is exclusively attractive, so such a sign change in the
interband interactions must come from some other mechanism
than electron-phonon coupling.

Two potential candidates in this regard are the Coulomb in-
teractions between the electrons or interactions mediated by
spin fluctuations, where the latter are believed to be relevant
in the superconducting iron pnictides [42, 44]. These two can
be incorporated into Eliashberg theory [62]. Their relative
magnitudes, and thus also the overall sign in each interaction
channel, are a matter of microscopic details. However, in the
iron pnictides, the electron-phonon coupling is typically small
in the interband channels [44], such that the other two inter-
actions dominate the interband channels. With the interband
interactions playing a more prominent role, we also expect
the anomaly in the specific heat at T = T ∗ to be more no-
table, as discussed previously. Moreover, when only includ-
ing phonon-mediated interactions, the restrictions posed on
the electron-phonon couplings leave some room for variations
in gij (See Appendix B for details), but with additional scatter-
ing mechanisms, the parameter space resulting in TRSB will
grow. Therefore, studying unconventional superconductors

where mechanisms other than electron-phonon coupling may
induce superconductivity constitutes another path that might
lead to TRSB in strong coupling. We leave this for future in-
vestigations.

We lastly note that the different interactions considered in
the previous paragraph are all easily integrated into Eliashberg
theory using modern first-principles calculations [84]. Such
a strong-coupling treatment, grounded in first-principles cal-
culations, would be interesting to apply to doped BaFe2As2
as it might shed some more light on the mechanisms causing
the TRSB observed experimentally [55] or to search for other
candidate materials.

VI. CONCLUSIONS

In this paper, we have studied multiband superconduct-
ing states that spontaneously break time-reversal symmetry.
These states have been intensely researched in the previous
decade following their initial theoretical discovery [10, 17,
18], but also in the last few years with experimental realiza-
tions [52, 55] of TRSB states. So far, most theoretical de-
scriptions have employed either weak-coupling BCS theory
or effective Ginzburg-Landau theories derived thereof. In this
work, on the other hand, we have presented a strong-coupling
analysis of such systems.

Our most important finding is that the TRSB states may
indeed emerge in strong-coupling models. They are more
elusive than in weak coupling, as the time-reversal symmet-
ric states also satisfy the Eliashberg equations that fixed-point
schemes tend to favor. To compensate for this, we have de-
rived the free energy of the system and used it to guide the
numerical solver towards TRSB states when they were more
energetically favorable than their TRS counterparts. In partic-
ular, we have considered a system where two large gaps are
weakly coupled to each other and a significantly smaller third
gap. Although the third gap is small, the phase frustration in
the system still drives the spontaneous breaking of TRS ei-
ther at a critical electron-phonon coupling or at T = T ∗. We
have discussed how one expects the emergent physics to be
similar to that of TRSB three-band systems with equal gap
amplitudes, namely spontaneous currents and magnetization
arising near defects [15, 16].

The strong-coupling approach we have used is a general-
ization of the recent work of Ref. [20] to multiband systems.
Here, the Eliashberg equations emerge as stationary point con-
ditions on the action in the imaginary-time functional-integral
formalism. Moreover, this approach admitted a calculation of
the free energy of the system in strong coupling,which is a
quantity that plays a pivotal role in several aspects. As men-
tioned, we have used it to evaluate whether the TRSB and
TRS states had the lowest free energy, as they both satisfy the
stationary point conditions. Thus, the free energy provides a
necessary selection criterion for choosing between the states.
Furthermore, from the free energy, we have found that the en-
ergy associated with the phase frustration was small. Hence
we neither expect nor observe an anomaly in the specific heat
at T = T ∗. We have also discussed other systems and scat-
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tering mechanisms that we expect to amplify the amplitude of
the logarithmic anomaly in the specific heat. In particular, we
have suggested that unconventional multiband superconduc-
tors may constitute a class of systems where TRSB states may
emerge.

Finally, we have compared our results for TRSB in strong
coupling with BCS theory. Although the gap equation is more
numerically demanding in the former, the resulting TRSB
states are still similar; the spatial symmetries of the gaps are
the same (s-wave), and there is no frequency dependence in
their phases, only in their magnitude. However, there are sev-
eral benefits of employing strong coupling. The renormal-
ization effects of the electrons are accounted for, and materi-
als with large electron-phonon couplings can be investigated.
Moreover, Eliashberg theory has the advantage of being well
incorporated with first-principles calculations. So, the frame-
work for studying TRSB in strong coupling presented here
may apply these directly, thus facilitating a more effective
search for candidate materials.
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Appendix A: Numerical details on solving the Eliashberg
equations

In this appendix, we will briefly cover how we solve the
three-band Eliashberg equations in Eqs. (33) and (34). They
consist of a set of coupled equations with 3NM complex vari-
ables (or, equivalently, 6NM real variables) for ∆i(ωn), and
3NM real variables for Zi(ωn), where NM is the number
of Matsubara frequencies we include. In producing our re-
sults, we employed a Matsubara cutoff M = 1100 meV large
enough to capture the physics at play. We checked that the
results did not change when increasing M further. NM is
given by the number of Matsubara frequencies that satisfy
|ωn| ≤M .

With the global phase ansatz, the number of variables in
∆i(ωn) is reduced to 3NM + 3. Moreover, since only the
phase differences θij are present in Eq. (34), we can reduce the
number of variables to 3NM + 2 since θ23 = θ13 − θ12. We
will now demonstrate how the remaining phase differences
θ12 and θ13 are determined. To accomplish this, as alluded to
in the main text, we use the insight offered by the free energy.
Specifically, the only term in the free energy dependent on θ12
and θ13 is given by

a12 cos θ12 + a13 cos θ13 + a23 cos(θ13 − θ12), (A1)

where the expression for aij is in Eq. (31). Because the solu-
tions to the Eliashberg equations must satisfy stationary point
conditions in the free energy, only values for θ12 and θ13 that

extremize the free energy are admissible solutions. This is
equivalent to extremizing Eq. (A1) above.

There are, at maximum, six solutions to extremizing Eq.
(A1) for θij ∈ [0, 2π). Four are TRS, namely
(θ12, θ13) = {(0, 0), (0, π), (π, 0), (π, π)}. The remaining
two break TRS, and are time-reversal counterparts. Denoting
one as θTRSB

ij , the other is equal to 2π − θTRSB
ij . For θTRSB

ij

to exist, the quantity

b ≡ −a412a413 − a412a
4
23 − a413a

4
23

+ 2a212a
2
13a

2
23(a

2
12 + a213 + a223) (A2)

must be larger than zero. As a simple example, if a12 = a13 ≡
a (which is physically realized if g11 = g22 and g13 = g23),
b > 0 corresponds to a23 > a/2.

If b > 0, θTRSB
ij can be written in the form

θTRSB
12 = atan2

[ √
b

2a212a13a23
,
a213a

2
23 − a212a

2
13 + a212a

2
23

2a212a13a23

]
(A3)

θTRSB
13 = atan2

[ √
b

2a12a213a23
,
a212a

2
23 − a212a

2
13 − a213a

2
23

2a12a213a23

]
,

(A4)

where atan2(x, y) is the two-argument inverse tangent. With
the six solutions for θ12 and θ13, we can insert them into Eq.
(A1) to determine which of them yields the lowest energy,
thus offering an unambiguous method of determining the en-
ergetically favored phase configuration.

Now, we can use the procedure above to solve the Eliash-
berg equations for the remaining 3NM variables in both
Zi(ωn) variables and |∆i(ωn)|. Since we have in total 6NM

variables to solve for, it suffices to consider Eq. (33) and the
real part of Eq. (34). Collecting the 6NM variables in the vec-
tor x, solving these equations is equivalent to fixed-point iter-
ation in the form

xm+1 = g(xm), (A5)

where the function g(xm) constitutes the right-hand sides of
Eqs. (33) and (34). However, before g(xn) is computed,
based on the values for Zi(ωn) and |∆i(ωn)| in xm, we cal-
culate aij and subsequently determine the values of θ12 and
θ13 in accordance with the procedure above. In this way, we
ensure that we use the most energetically favorable θij each
time we evaluate the real part of Eq. (34) during the fixed-
point scheme. Finally, we terminate the iteration in Eq. (A5)
once convergence (i.e. a prescribed tolerance level) has been
reached.

Appendix B: Electron-phonon parameters

The purpose of this appendix is to elucidate some of the re-
strictions posed by the simple interaction we employ in Eq.
(25) for the system to have TRSB and to motivate our choice
of parameters in light of this. As stated in the main text, a
necessary condition for TRSB is that either one or all of a12,
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a13, and a23 must be positive. Since the sign of aij is deter-
mined by B−1

ij , it suffices to look at the general expression for
off-diagonal elements for a 3× 3 matrix A

A−1
ij =

1

detA
(AilAjl −AijAll), (B1)

where l ̸= i ̸= j. Since Bij = |gij |2, all its elements are non-
negative, causing severe restrictions on the possible choices of
B−1
ij that can cause phase frustration, as we will now see.
As discussed in Sec. V, in BCS theory, the conventional

choice is to have attractive intraband and repulsive inter-
band interactions, which straightforwardly yields all positive
[V BCS]−1

ij from Eq. (B1), supposing that the determinant of
V BCS is positive. In the model we employ, there is no way of
having negative coupling constants in Bij unless one includes
additional scattering mechanisms such as Coulomb repulsion
and interactions mediated by spin fluctuations, as discussed
in the main text. However, positive values in Bij may still
result in emergent TRSB, as demonstrated in e.g., Fig. 2 (d).
Since g11, g22 are much larger than the other gij , the same

holds for B11 and B22. It then follows immediately from Eq.
(B1) that B−1

13 and B−1
23 are negative. To obtain a positive

B−1
12 = (detB)−1(B13B23 − B12B33) while keeping detB

positive, one possible choice is to have a minuscule value for
B12, which is the choice made in the main text. If it is zero,
we checked that the results did not change qualitatively.

Interband electron-phonon couplings are small in iron pnic-
tides [44], motivating our choice of using small values for
gij , i ̸= j. Moreover, with our main interest lying in the
strong-coupling regime, we choose large values for g11 and
g22. However, while there is a physical mechanism for the
third intraband coupling g33 to be small (see main text), the
motivation for this is not immediately obvious. It is a choice
made to satisfy b > 0, where b is given in Eq. (A2). If b < 0,
TRS cannot be spontaneously broken. To understand why
b > 0 requires a small g33, one must consult the expression
for aij in Eq. (31): SinceB−1

12 is orders of magnitudes smaller
than B−1

13 and B−1
23 , |∆1(ωn)| and |∆2(ωn)| must be approx-

imately the same number of orders of magnitudes larger than
|∆3(ωn)| for the amplitudes of a12, a13, and a23 to satisfy
b > 0. Since the gaps grow with their respective intraband
couplings, this is accomplished by having g33 ≪ g11, g22.
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