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NOTES ON THE SHORT C
k’S

JOHN ERIK FORNÆSS AND RATNA PAL

Abstract. Domains that are increasing union of balls (up to biholomorphism) and on which
the Kobayashi metric vanishes identically arise inexorably in complex analysis. In this article
we show that in higher dimensions these domains have infinite volume and the Bergman spaces
of these domains are trivial. As a consequence they fail to be strictly pseudo-convex at each of
their boundary points although these domains are pseudo-convex by definition. These domains
can be of different types and one of them is Short C

k’s. In pursuit of identifying the Runge
Short C

k’s (up to biholomorphism), we introduce a special class of Short C
k’s, called Loewner

Short C
k’s. These are those Short C

k’s which can be exhausted in a continuous manner by a
strictly increasing parametrized family of open sets, each of which is biholomrphically equivalent
to the unit ball and therefore, they are Runge up to biholomorphism. Although, the question of
whether all Short Ck’s are Runge (up to biholomorphism), or whether all Short Ck’s are Loewner
remains unsettled, we show that the typical Short C

k’s are Loewner. In the final section, we
construct a bunch of non-autonomous basins of attraction, which serve as interesting examples
of Short C

2’s.

1. Introduction

For k ≥ 2, let Ω ⊆ C
k be an increasing union of unit balls, i.e.,

Ω1 ⊆ Ω2 ⊆ · · · ⊆ Ωk ⊆ Ωk+1 ⊆ · · · ⊆ Ω =

∞
⋃

i=1

Ωi,

where each Ωi is biholomorphic to the unit ball in C
k.

Definition 1.1. An increasing union of unit balls Ω ⊆ C
k, for k ≥ 2, is called Short C

k if
the Kobayashi metric vanishes identically on Ω but there exists a non-constant bounded above
plurisubharmonic function (psh) defined on Ω.

Genesis of these Short Ck’s lies in the union problem: Is an increasing union of Stein manifolds
always Stein? In [6], the first author settled this question by showing that in dimension three
onwards, there exist increasing sequences of balls whose final unions are not Stein (also see
[17]). Another related theme is to look for the model domains for increasing unions of balls.
The possible model domains for increasing unions of balls when the Kobayashi metric does not
vanish identically therein, was discussed in [8] (also see [9]). In particular, it follows (from [8])
that in dimension two, up to biholomorphism any such domain Ω is either the unit ball or the
product domain ∆ × C, where ∆ is the unit disc. On the other hand, when the Kobayashi
metric on an increasing union of balls Ω vanishes identically, one can immediately see that Ω
could be all of Ck or a biholomorphic copy of Ck, the so called Fatou-Bieberbach (FB) domain.
Further, in [7], another possible model domain for Ω was found when the Kobayashi metric
vanishes identically on Ω: It was shown that Ω could be a Short C

k which is evidently never
biholomorphic to any FB domain (or Ck). These domains appear naturally in complex dynamics
as non-autonomous basins of attraction of automorphisms of Ck.
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Although, recently many interesting examples of Short Ck’s are found ([2], [4], [5]), mainly on
par with its sibling FB domains, the general theory of Short Ck’s is not yet well-developed. The
present article started off with an aim to recognize the fundamental properties of Short C

k’s.
Of our particular interest is to compare the properties of Short Ck’s and C

k (or FB domains).
Being a biholomorphic copy of Ck, any FB domain has infinite volume. So a natural question
is whether all Short Ck’s have infinite volume or not. During the course of seeking the answer,
we ended up proving a more general result which answers the before-mentioned question in the
affirmative.

Theorem 1.2. For k ≥ 2, let {Ωi}i≥1 be a sequence of domains in C
k, each of which is bi-

holomorphic to the unit ball, such that Ωi ⊆ Ωi+1 for i ≥ 1 and the Kobayashi metric vanishes
identically on Ω. Then the volume of Ω is infinite and the Bergman space

A2(Ω) =

{

f : Ω → C :

∫

Ω
|f |2 <∞

}

consists only of the function f ≡ 0.

As an immediate corollary we get the following.

Corollary 1.3. Short Ck’s have infinite volume. Further the Bergman space of any Short Ck

is trivial.

Next we discuss some other intriguing by-products of Theorem 1.2.

A remark on Bedford conjecture: We address Problem 24 in [1]. Let {Fj}j≥1 be a sequence

of automorphisms of Ck such that Fj(0) = 0, for all j ≥ 1. Further, assume that Fj ’s satisfy
uniform bound condition, i.e., there exist 0 < c < d < 1 such that

c‖z‖ ≤ ‖Fj(z)‖ ≤ d‖z‖,

for all z ∈ B(0, 1), the unit ball in C
k. Then the Bedford conjecture (see [1]) states that the

non-autonomous basin of attraction

Ω{Fj} = {z ∈ C
k : Fn ◦ · · · ◦ F1(z) → 0 as n→ ∞}

is biholomorphic to C
k. While the conjecture still remains open, it is well-known that Ω{Fj} is

an increasing union of balls and the Kobayashi metric vanishes identically on Ω{Fj}. Therefore
by Theorem 1.2, Ω{Fj} has infinite volume and has trivial Bergman space.

In [15], it was shown that the dimension of the Bergman space of any domain in C is either 0 or
∞. He also showed that the result is not true in higher dimensions by finding explicit examples
of domains with finite dimensional Bergman space. However, the domains he constructed are
(Reinhardt but) not pseudoconvex. This triggered the question whether there exists a pseudo-
convex domain in higher dimension with finite dimensional Bergman space. This question is still
unsettled. However, it was addressed in some recent works (see [11], [12], [14]). In particular,
in [12] Gallagher–Harz–Herbort gave a sufficient condition for pseudo-convex domains to have
infinite dimensional Bergman spaces in terms of their cores. Further they found three differ-
ent classes of pseudo-convex domains which satisfy the “core” condition and thus have infinite
dimensional Bergman spaces. We discuss these domains briefly here:

• Let Ω be a domain and let p ∈ ∂Ω be such that there exists a continuous psh function ϕp

defined on a one-sided open neighbourhood Np such that ϕ∗
p(z) < 0 for all z ∈ N p \ {p}

and ϕ∗
p(p) = 0 where ϕ∗

p(z) = lim supz′→z ϕp(z
′). Thus p is a local peak point for the

class of continuous psh functions. In this case, dimA2(Ω) = ∞;
• If there exists a point on the boundary of Ω near which ∂Ω is C∞ smooth and of finite
type in the sense of D’Angelo, then dimA2(Ω) = ∞;
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• If there exists a point on the boundary of Ω near which the domain is strictly pseudo-
convex, then dimA2(Ω) = ∞.

In light of the above discussion, we get:

Corollary 1.4. For k ≥ 2, let Ω ⊆ C
k be an increasing union of balls on which the Kobayashi

metric vanishes identically (in particular, if Ω is a Short Ck), then it has neither a local peak
point nor any point of finite type on its boundary. Further, ∂Ω fails to be strictly pseudo-convex
at each of its point and Ω cannot have any strictly pseudo-convex neighbourhood.

For k ≥ 2, the primary source of examples of Short C
k’s are the non-autonomous basins of

attraction of sequence of automorphisms Fj ’s of C
k which are of the form:

(1.1) Fj(z1, · · · , zk) :=
(

zd1 + P1,j(z1, . . . , zk), P2,j(z1, . . . , zk), . . . , Pk,j(z1, . . . , zk)
)

,

where d ≥ 2 and the degree of Pi,j’s are at most (d− 1). Further, the moduli of the coefficients

of Pi,j ’s are at most ηj = ad
j

j with 0 ≤ aj+1 ≤ aj < 1, for j ≥ 1. These Short Ck’s turn out to
be the 0-sublevel sets of global psh functions, i.e.,

Ω{Fj} = {z ∈ C
k : ϕ(z) < 0},

for some psh function ϕ on C
k which can be obtained by modifying the Green’s functions of the

sequences of automorphisms {Fj}’s. In dimension 2, another source of these domains are the
sublevel sets of Green functions of Hénon maps which are the most important class of polynomial
automorphisms of C2. They are of the form (z, w) 7→ (p(z) + δw, z) where p is a polynomial in
z of degree d ≥ 2 and δ 6= 0 (see [7] for details). Further the Green’s function for a Hénon map
H is

G+
H(z, w) =

1

dn
log+ ‖Hn(z, w)‖ ,

for (z, w) ∈ C
2, where log+(x) = max{log x, 0}. Now both of these classes of examples are Runge,

i.e., holomorphic functions on these domains can be approximated uniformly on compact sets
by polynomials, simply because they are sublevel sets of global psh functions. However, there
exist examples of Short C

k’s which are not Runge. In [16], Wold gave an example of a Fatou
Bieberbach domain U ⊆ C

2 which is not Runge. He showed that there exists a compact set
K ⊆ U whose polynomial convex hull contains points outside the domain U . Now let F be a
biholomorphism between U and C

2. There are plenty of Short C2’s, belonging to the large class
of before-mentioned examples, each of which contains F (K). Now carrying back these Short
C
2’s via F−1 we get Short C2’s in U containing K. Clearly these Short C2’s are non-Runge but

biholomorphic to Runge domains. In fact, to best of our knowledge, all known examples of Short
C
k’s are either Runge or biholomorphic to Runge domains. Rather a bit more can be said: If

Ω ⊆ C
k is an increasing union of Ωi’s, for i ≥ 1 and if each Ωi is biholomorphic to the unit ball

via a global automorphism of Ck, then by Prop. 1.2 in [10], Ω is Runge (this criterion holds for all
known examples of Short Ck’s). These observations prompts the question: If not Runge, whether
a Short Ck always biholomorphic to a Runge one? In an attempt to answer this question, we
introduce a sub-class of Short Ck’s called Loewner Short Ck’s. They are those Short Ck’s which
can be parametrized on the positive real axis by strictly monotonically increasing domains each
of which is biholomorphically equivalent either to the unit ball or to the unit polydisc. Being a
biholomorphic copy of Ck, any FB domain enjoys this kind of holomorphic exhaustion by balls.
So while comparing FB domains and Short C

k’s it is natural to be inquisitive about whether
Short Ck’s can also be exhausted by a holomorphically varying parametrized family of strictly
increasing balls. This serves as another motivation to define Loewner Short Ck’s.

Definition 1.5. A Short Ck Ω is Loewner if the following holds:
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(1) Ω = ∪t≥0Ωt, where either the domain Ωt is biholomorphic to the unit ball in C
k, for

each t ≥ 0 or for each t ≥ 0, the domain Ωt is biholomorphic to the unit polydisc in C
k.

(2) for any 0 ≤ t < s, Ωt ⊂⊂ Ωs.
(3) For all t > 0, Ωt = ∪t′<tΩt′ .
(4) For all t′ < t, Ωt′ = ∩t>t′Ωt.

Proposition 1.6. Any Loewner Short Ck is biholomorphic to a Runge domain.

Using Thm. 4.2 in [3] we get that for each n ≥ 0, the pair (Ωn,Ωn+1) is a Runge pair and then
Prop. 1.6 follows using Thm. 3.4 in [3], Thus our previously posed question on Runge embedding
of Short Ck’s can be modified as follows:

Question: Is any Short Ck Loewner?

Although we could not settle the question, we identify a large class of Loewner Short Ck’s.

Theorem 1.7. Let 0 < an+1 ≤ an < 1 for all n ≥ 1. Let Fn(z, w) = (zd + qn(z) + δnw, δnz)
with 1 ≤ deg(qn) ≤ (d− 1) such that the moduli of the coefficients of qn and δn are bounded by
ad

n

n . Then the basin of attraction

Ω = {(z, w) : Fn ◦ · · · ◦ F1(z, w) → 0}

is a Loewner Short C2.

From [7, Thm. 1.4] it follows that Ω is a Short C
k. Further it follows (from the proof of

[7, Thm. 1.4]) that for r > 0 sufficiently small, Ω =
⋃∞

n=1 F (n)
−1 (∆(0; r, r)), where F (n) =

Fn ◦ · · · ◦ F1 and ∆(0; r, r) = {(z, w) : |z|, |w| < r}. Moreover, Ωn = F (n)−1 (∆(0; r, r)) ⊆
F (n+ 1)−1 (∆(0; r, r)) = Ωn+1, for all n sufficiently large. To prove Ω to be Loewner it is
sufficient to show that Ωn can be stretched to Ωn+1 via a holomorphic family of strictly increasing
open sets, each of which biholomorphic to polydisc. In fact, for all n ≥ 1, that Fn(∆(0; r, r)) can
be expanded to ∆(0; r, r) in the above-mentioned way suffices the purpose. It is straightforward
to see that for all n ≥ 1, ∆(0; r, r) can be shrunk holomorphically to Fn(∆(0; r, r)), but a priori
it is not clear whether this can be performed in a monotonic manner too. The key step in the
proof of Thm. 1.7 is to construct a parametrized family of automorphisms Fn,t for each n ≥ 1
and for all 0 ≤ t ≤ 1 such that Fn,0 ≡ Fn, Fn,1 ≡ Id and Fn,t(∆(0; r, r)) ⊂⊂ Fn,s(∆(0; r, r)),
whenever s > t. If one looks carefully at the proof of Thm. 1.7, then it becomes apparent
that the particular form of Fn’s plays the most crucial role in constructing Fn,t’s with desired
properties. Nevertheless, we can stretch the family of Fn’s a bit to higher dimensions.

Let an’s be as before and let for k ≥ 3, Fn(z1, z2, . . . , zk) = (zd1 + qn(z1)+ ηnzk, ηnz1, . . . , ηnzk−1)
with 1 ≤ deg(qn) ≤ (d− 1) such that the moduli of the coefficients of qn and ηn are bounded by
ad

n

n . Then the basin of attraction

Ω = {(z, w) : Fn ◦ · · · ◦ F1(z, w) → 0}

is a Loewner Short Ck.

If we consider any non-autonomous basin of attraction Ω of polynomial automorphisms of the
form (1.1) (which is known to be Short Ck from [7, Thm. 1.4]), it is not clear how to construct
the intermediate automorphisms Fn,t’s. Nevertheless, we believe that these Ω’s are also Loewner.

Next we prove that the sublevel sets of Green’s functions of Hénon maps are Loewner. As
before the form of Hénon maps plays the pivotal role. That any sublevel set of the Green’s
function of a Hénon map can be realized as the basin of attraction of a sequence of Hénon maps
with rapidly decaying coefficients (in other words, hypotheses of Thm. 1.7 are satisfied) leads us
to the following theorem.
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Theorem 1.8. Let H be a Hénon map and let G+
H be the Green’s function of H. Then for any

r > 0, the set
Ωr = {z ∈ C

2 : G+
H(z) < r},

is a Loewner Short C2.

We conclude the article by constructing new examples of Short C2’s.

Example 1: Instead of a single Hénon map, we consider a random sequence of Hénon maps
{Fn}n≥1 such that the moduli of the coefficients of Fn’s are uniformly bounded above. Then it
follows from [13, Prop. 1.1] that the corresponding random Green’s function

G+
{Fn}

(z, w) := lim
n→∞

1

dn
log+‖Fn ◦ · · · ◦ F1(z, w)‖,

for (z, w) ∈ C
2, exists where d = deg(Fn) for all n ≥ 1 and log+(x) = max{log x, 0}. In spirit

of [7, Thm. 1.12] (which shows that the sublevel sets of the Green’s function of a single Hénon
map are Short C2’s), we prove the following:

Theorem 1.9. Let {Fn} be a sequence of Hénon maps of the form Fn(z, w) = (zd + qn(z) +
δnw, z) where qn’s are polynomials of degree at most (d − 1) ≥ 1 and δn 6= 0, for all n ≥ 1.
Further, assume that the moduli of the coefficients of qn’s and δn’s are uniformly bounded above.
Then for any r > 0, the sublevel set

Ω{Fn},r =
{

(z, w) ∈ C
2 : G+

{Fn}
(z, w) < r

}

is a Short C2.

Example 2: For 0 < c < 1, let Fn(z, w) = (z2 + c2
n
w, c2

n
z) for all n ≥ 1. Then by [7, Thm.

1.4], it follows that the non-autonomous basin of attraction of Fn’s at the origin is always a
Short C2. The following theorem records that if we replace the coefficients of the linear terms
of Fn’s by ct

n
n with tn converging to 2, the corresponding basin of attraction is not necessarily

always a Short C2. The following theorem can also be compared with [7, Thm. 1.10].

Theorem 1.10. For n ≥ 1, let Fn(z, w) = (z2 + ct
n
nw, ct

n
nz) where tn → 2 and 0 < c < 1. Let

Ω = {(z, w) : Fn ◦ · · · ◦ F1(z) → 0}

be the non-autonomous basin of attraction of the sequence of automorphisms {Fn} at the origin.
Then,

A. There exists a sequence tn → 2 such that Ω is a Short C2.
B. There exists a sequence tn → 2 such that Ω is a Fatou-Biberbach domain.

Acknowledgements: The present article was initiated during the 2020 Complex Dynamics
conference at the CIRM-Luminy, France. Both authors are grateful to CIRM for providing local
hospitality during the conference. The second author would like to thank Koushik Ramachan-
dran and Sivaguru Ravisankar for partially supporting her travel to CIRM. The second author
was supported by National Board of Higher Mathematics postdoctoral fellowship.

2. Volume of Short C
k’s: Proof of Thm. 1.2

Proof. Let Ω = ∪∞
i=1Ωi. Let B(0, 1) be the unit ball in C

2. We choose biholomorphisms φi :
B(0, 1) → Ωi. We can assume that 0 ∈ Ω1 and hence in all Ωi’s. After pre-composing with
automorphisms of the unit ball, we can assume that φi(0) = 0 for all i.

Pick an ǫ > 0. Let ξ denote a tangent vector at 0 of length 1. Since the Kobayashi metric of Ω
vanishes at 0 identically, there exists a holomorphic map ψ : ∆ → Ω so that |ψ′(0)| = λξ for some
constant λ > 4

ǫ , where ∆ is the unit disc in C. Hence there is a holomorhic map ψ1 : ∆ → Ω
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such that ψ′
1(0) = λξ/2. Then the image is a compact subset of some Ωi. After small rotation

we then know that there is a relatively open neighbourhood of ξ in the unit sphere so that for
each ξ′ in this neighbourhood there is a map f : ∆ → Ωi so that f(0) = 0, f ′(0) = µξ′ with
µ > 2/ǫ. This then is true for all larger i. Hence by compactness of the unit sphere, there is
an integer j so that for any tangent vector ξ at zero of length one, there is a holomorphic map
f : ∆ → Ωj so that f(0) = 0 and f ′(0) = λξ for some λ > 2/ǫ. This is true for any large j.

Next consider the composite maps g = φ−1
j ◦ f. These are holomorphic maps from the unit

disc to the unit ball. Moreover, g(0) = 0 and

g′(0) = (φ−1
j )′(f(0))f ′(0) = (φ−1

j )′(f(0))(λξ).

Then by Schwarz lemma it follows that

‖(φ−1
j )′(f(0))(λξ)‖ ≤ 1, i.e., ‖(φ−1

j )′(f(0))(ξ)‖ ≤ 1/λ < ǫ/2.

Let ξ̃ be the unit vector in the direction of (φ−1
j )′(f(0))(ξ). Then (φ−1

j )′(f(0))(ξ) = σξ̃ and

σ < ǫ/2. Therefore φ′j(0)(ξ̃) =
ξ
σ . Thus it follows that ‖φ′j(0)(ξ̃)‖ ≥ 2

ǫ . But as ξ runs over all

unit tangent vectors, the same is true for the vectors ξ̃. Therefore, we have shown: For any large
enough j, we have that if ξ̃ is any unit tangent vector at the origin, then ‖φ′j(0)(ξ̃)‖ ≥ 2

ǫ .

Let A be a 2 by 2 matrix so that ‖A(x)‖ ≥ 2‖x‖/ǫ for every vector x. Then the inverse matrix
B satisfies ‖B(y)‖ ≤ ǫ‖y‖/2. Hence each entry in the matrix of y has size at most ǫ/2. Then
the Jacobian of the matrix can be at most ǫ2/2. But this implies that the Jacobian of A is at
least 2/ǫ2.

To finish the proof we only need to show that there is no non-trivial L2 holomorphic function
on Ω. In particular this shows that the function f ≡ 1 is not in L2(Ω) which implies that the
volume of Ω is infinite. So assume to the contrary that there is such an f on Ω. We could have
chosen the point 0 differently, so we can assume that f(0) = c 6= 0. Then for every i, we have
that

∫

Ωi
|f |2 < 1. By the change of variable formula this shows that

∫

B(0,1)
|(f ◦ φi)× Jac(φi)|

2 dV < 1.

Let gi = (f◦φi)×Jac(φi). Then gi is a holomorphic function on the unit ball with |gi(0)| ≥ 2|c|/ǫ2

and
∫

B(0,1) |gi|
2 < 1 for all large enough i.

After writing gi(z) = gi(0)+h.o.t., if we estimate the integral of |gi|
2 we get an estimate from

below by integrating only the constant term. This gives a contradiction if we choose ǫ small
enough. �

3. Loewner Short C
k’s

Proof of Theorem 1.7. By Thm. 1.4 in [7], it follows that Ω is a Short C
2. Now we prove

that Ω is Loewner.

Test Case: To make the idea of the proof transparent, we first deal with the simplest case:
Namely, Ω is non-autonomous basin of attraction of quadratic Hénon maps Fn’s where Fn(z, w) =
(z2 + a2

n

n w, a
2n
n z) with 0 < an+1 ≤ an < 1, for all n ≥ 1.

For r > 0 sufficiently small, let ∆2(0; r, r) be the bidisc of radius r and

Ωn = F−1
1 ◦ · · · ◦ F−1

n (∆2(0; r, r)).

It follows from Thm 1.4 in [7] that Ωn ⊆ Ωn+1 and Ω = ∪∞
n=1Ωn. We show that for any n ≥ 1,

Fn(∆
2(0; r, r)) can be deformed holomorphically and monotonically to ∆2(0; r, r).

For 0 ≤ t ≤ 1, define ∆2
t = ∆2 (0, (1 + t)r, (1 + 2t)r) and Fn,t on ∆2

t as follows:

Fn,t(z, w) = ((1− t)z2 + [a2
n

n + rt]w, a2
n

n z).
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Note that when t = 0, then Fn,0 ≡ Fn and ∆2
0 = ∆2(0, r, r). For t = 1, Fn,1(z, w) =

(

(a2
n

n + r)w, a2
n

n z
)

and the image of ∆2
1 under the map Fn,1 becomes ∆2

(

0, (a2
n

n + r)3r, a2
n

n 2r
)

.

First we show that as t increases, the images of ∆2
t ’s under the map Fn,t’s strictly increase,

i.e., if 0 ≤ t < s ≤ 1, then

(3.1) Fn,t(∆
2
t ) ⊂⊂ Fn,s(∆

2
s).

Fix a z0 with |z0| < (1+ t)r. Now we consider the vertical slice Lz0 = {w ∈ C : |w| < (1+ 2t)r}.
The image

Fn,t(Lz0) =
{(

(1− t)z20 + [a2
n

n + rt]w, a2
n

n z0
)

: |w| < (1 + 2t)r
}

,

is the horizontal disc at height a2
n

n z0 with center (1 − t)z20 and radius (a2
n

n + rt)(1 + 2t)r. The
image of Lz0 under the map Fn,s gives the horizontal disc with center (1 − s)z20 and radius
(a2

n

n + rs)(1 + 2s)r at the same height. The condition of strict monotonicity is the following:

(1− s)|z0|
2 + (a2

n

n + rs)(1 + 2s)r > (1− t)|z0|
2 + (a2

n

n + rt)(1 + 2t)r,

which is equivalent to

(a2
n

n + rs)(1 + 2s)r − (a2
n

n + rt)(1 + 2t)r > (1− t)|z0|
2 − (1− s)|z0|

2,

i.e. to

[a2
n

n (1 + 2s)r − a2
n

n (1 + 2t)r] + [r2s(1 + 2s)− r2t(1 + 2t)] > (s− t)|z0|
2.

Thus it suffices to prove that

r2s(1 + 2s)− r2t(1 + 2t) > (s− t)|z0|
2,

which is equivalent to

r2(s − t) + 2r2(s2 − t2) > (s − t)|z0|
2,

in other words, to

r2(1 + 2s+ 2t) > |z0|
2.

Now since |z0| < (1 + t)r and s > t, it suffices to prove that (1 + 4t) > (1 + t)2 which is clearly
true since t < 1.

For 0 ≤ t ≤ 1, let Ωt = Fn,t(∆
2
t ). We now show that Ωt =

⋃

t′<tΩt′ . Since (3.1) holds, clearly
⋃

t′<tΩt′ ⊆ Ωt. To prove the reverse containment, let (z0, w0) ∈ Ωt. Then

(z0, w0) = Fn,t(z, w) =
(

(1− t)z2 + [a2
n

n + rt]w, a2
n

n z
)

for some (z, w) ∈ ∆2
t . Thus z = w0/a

2n
n and (1 − t)z2 + [a2

n

n + rt]w = z0. If there exists t′ < t
such that Fn,t′(z

′, w′) = (z0, w0) for some (z′, w′) ∈ ∆2
t′ , then

(1− t)z2 + [a2
n

n + rt]w = (1− t′)z2 + [a2
n

n + rt′]w′,

i.e.,

(t′ − t)z2 + (a2
n

n + rt)w = (a2
n

n + rt′)w′

which is equivalent to

w′ = w +
(t− t′)

(a2nn + rt′)
[rw − z2].

To check the existence of some w′ with |w′| < (1 + 2t′)r, it is sufficient to check if t′ < t can be
chosen so that

|w|+
(t− t′)

(a2nn + rt′)

[

r|w|+ |z|2
]

< (1 + 2t′)r,

i.e.,

(3.2) |w|

(

1 +
(t− t′)r

(a2nn + rt′)

)

+
(t− t′)

(a2nn + rt′)
|z|2 < (1 + 2t′)r.
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To check whether t′ < t exists so that (3.2) holds, it is enough to see whether the following holds
for t′ sufficiently close to t:

(3.3) |w|

(

1 +
t− t′

a2nn

)

+
(t− t′)

a2nn
|z|2 < (1 + 2t′)r.

Now there exists t̃ < t such that |w| < (1 + 2t̃)r. Thus it is possible to choose t′ < t such that
(3.3) holds. This proves

Ωt =
⋃

t′<t

Ωt′ .

Next we prove that Ωt =
⋂

t′>tΩt′ . That Ωt ⊆
⋂

t′>tΩt′ follows from (3.1). Now let (z0, w0) ∈
Ωt′ for all t

′ > t. Therefore,

(z0, w0) =
(

(1− t)z2t′ + [a2
n

n + rt]wt′ , a
2n
n zt′

)

for some (zt′ , wt′) ∈ ∆2
t′ . This implies z = zt′ = w0/a

2n
n for all t′ > t and

(1− t′)
w2
0

a2n+1

n

+
(

a2
n

n + rt′
)

wt′ = z0,

i.e.,

wt′ =

[

z0 − (1− t′)
w2
0

a2n+1

n

]

1

(a2nn + rt′)

for all t′ > t. Now clearly (z, wt) = limn→∞(z, wt′) ∈ ∆2
t and Fn,t(z, wt) = (z0, w0). Therefore

⋂

t′>tΩt′ ⊆ Ωt.

Till now we proved that for all n ≥ 1, Ω0 = Fn(∆
2(0; r, r)) can be expanded monotonically to

Ω1 = ∆2
(

0, (a2
n

n + r)3r, a2
n

n 2r
)

via a holomorphically varying family of domains Ωt for 0 ≤ t ≤ 1
that satisfies the properties enlisted in Definition 1.5. Now it is easy to see that the bidisc
Ω′
0 = ∆2

(

0, (a2
n

n + r)3r, a2
n

n 2r
)

can be expanded to the bidisc Ω′
1 = ∆2(0; r, r) monotonically

and holomorphically via bidisc Ω′
t =

(

0; tr + (1− t)(a2
n

n + r)3r, tr + (1− t)a2
n

n 2r
)

for 0 ≤ t′ ≤ 1.
Further, this family of bidiscs satisfies the properties indicated in Definition 1.5. Therefore, for
each n ≥ 1, we showed existence of domains {Ωn,t}0≤t′≤1 such that Ωn,0 = Fn

(

∆2(0; r, r)
)

and

Ωn,1 = ∆2(0; r, r). Further Ωn,t ⊂⊂ Ωn,s if 0 ≤ t < s ≤ 1, Ωn,t =
⋃

t′<tΩn,t′ and Ωn,t =
⋂

t′>tΩn,t′ . In turn for each n, we have

Ωn−1 = F−1
1 ◦ · · · ◦ F−1

n (Fn(∆
2(0; r, r))) ⊆ · · · ⊆ F−1

1 ◦ · · · ◦ F−1
n (Ωn,t)

⊆ · · · ⊆ F−1
1 ◦ · · · ◦ F−1

n (Ωn,s) ⊆ · · · ⊆ F−1
1 ◦ · · · ◦ F−1

n ((∆2(0; r, r))) = Ωn.(3.4)

This proves Ω is Loewner when for each n ≥ 1, deg(Fn) = 2 and an is real.

General Case. For each n ≥ 1, Fn(z, w) = (pn(z) + δnw, δnz) , where pn(z) = zd + qn(z) with
qn a polynomial of degree d − 1. For each n ≥ 1, we modify Fn as follows. Let 0 ≤ tn < 2π be
such that δ′n = eitnδn > 0. Define

F̃n(z, w) =
(

p̃n(z) + δ′nw, δ
′
nz

)

where p̃n(z) = pn ((δ
′
n/δn) z). As before we can show that for any n ≥ 1, the bidisc ∆2(0; r, r)

can be deformed to F̃n(∆
2(0; r, r)). Choose M >> 2d + d/rd. For each n ≥ 1, define Fn,t on

∆2
t = ∆2 (0, (1 + t)r, (1 + 2t)r) as follows:

F̃n,t(z, w) =
(

(1− t)p̃n(z) + [δ′n +Mrd−1t]w, δ′nz
)

.

As before, for fix a z0 with |z0| < (1 + t)r, the condition of strict monotonicity, i.e., for 0 ≤ t <

s ≤ 1, F̃n,t(∆
2
t ) ⊂⊂ F̃n,s(∆

2
s) is

(

δ′n +Mrd−1t
)

(1 + 2t)r + (s− t)|p̃n(z0)| <
(

δ′n +Mrd−1s
)

(1 + 2s)r,
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which is equivalent to showing

δ′n [(1 + 2s)− (1 + 2t)] r +Mrd−1s(1 + 2s)r −Mrd−1t(1 + 2t)r > (s − t)|p̃n(z0)|.

Thus it is sufficient to show

Mrd(s − t) + 2Mrd(s2 − t2) > (s− t)|p̃n(z0)|,

or equivalently,

(3.5) Mrd(1 + 2s+ 2t) > |p̃n(z0)|.

Now since |z0| < (1 + t)r, |p̃n(z0)| < (1 + t)drd + a2
n

n

(

(1 + t)d−1rd−1 + · · ·+ (1 + t)r + 1
)

<

2drd + d. Thus clearly (3.5) holds.

Thus F̃n,1(∆
2(0; r, r)) and thus ∆2(0; r, r) can be deformed holomorphically and monotonically

to F̃n,0(∆
2(0; r, r)). We claim that F̃n,0(∆

2(0; r, r)) = Fn,0(∆
2(0; r, r)). Fix a z0 with |z0| < r,

then Fn(z0, w) = F̃n ((δn/δ
′
n)z0, (δn/δ

′
n)w). Thus Fn,0(∆

2(0; r, r)) ⊆ F̃n,0(∆
2(0; r, r)). Similarly

it follows that F̃n,0(∆
2(0; r, r)) ⊆ Fn,0(∆

2(0; r, r)). The rest of the proof follows as before.

Proof of Thm. 1.8. We complete the proof in three steps.
Step 1: Let deg(H) = d and let rn ↑ r as n → ∞. Let δ < 1 and for each n ≥ 1, let us choose
m(n) ≥ n such that

(3.6) e(rn+1−rn+2)dm(n)
<
δ

n
.

Let ‖(z, w)‖1 = max{|z|, |w|}. For each n ≥ 1, set

Ωn =
{

(z, w) ∈ C
2 : ‖Hm(n)(z, w)‖1 < ern+1dm(n)

}

.

Now since (3.6) holds,

(rn+1 − rn+2)d
m(n) < log

(

δ

n

)

< − log n

⇒ (rn+2 − rn+1) >
log n

dm(n)

⇒ rn+1 +
log n

dm(n)
< rn+2.(3.7)

Claim: Ωr is increasing union of Ωn’s.

There exists L > 1 such that

(3.8) G+
H(z, w) ≤ log+ ‖(z, w)‖1 + L

for all (z, w) ∈ C
2. Now

1

dm(n)
log+ ‖Hm(n)(z, w)‖1 < rn+1

for all (z, w) ∈ Ωn. Thus by (3.8),

G+
H ◦Hm(n)(z, w) ≤ log+ ‖Hm(n)(z, w)‖1 + L

⇒ G+
H(z, w) ≤

1

dm(n)
log+ ‖Hm(n)(z, w)‖1 +

L

dm(n)
< rn+2 < r.(3.9)

The second last inequality follows from (3.7). We can choose m(n+ 1) large enough such that

1

dm(n+1)
log+ ‖Hm(n+1)(z, w)‖1 <

1

dm(n)
log+ ‖Hm(n)(z, w)‖1 +

L′

dm(n)
< rn+2 < r

for some L′ > 0 and for all (z, w) ∈ Ωn. Therefore,

Ω1 ⊆ Ω2 ⊆⊂ · · · = ∪∞
n=1Ωn ⊆ Ωr.
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To prove the converse, let G+
H(z, w) < r. This implies G+

H(z, w) < rk for some k ≥ 1. Therefore,

1

dn
log+ ‖Hn(z, w)‖1 < rk

for all n ≥ n0. Therefore, (z, w) ∈ Ωn for some large n. Thus the claim follows.

Step 2: Note that for each n ≥ 1, the global map Φn = ϕm(n) ◦H
m(n) maps Ωn to ∆2(0; 1, 1)

where ϕm(n)(z, w) =
(

e−rn+1dm(n)
z, e−rn+1dm(n)

w
)

. Now we claim that

Ωr = {(z, w) ∈ C
2 : Φn(z, w) → 0 as n→ ∞}.

For any (z, w) ∈ Ωr, there exists n0 large enough such that (z, w) ∈ Ωn for all n ≥ n0. Now
if (z, w) is in the non-escaping set K+

H = {(z, w) ∈ C
2 : ‖Hn(z, w)‖ < M for all n ≥ 1}, then

clearly, Φn(z, w) → 0 as n→ ∞. Let (z, w) /∈ K+
H and let (z, w) ∈ Ωn for all n ≥ n0, then there

exists a large natural number, without loss of generality, m(n0) say, such that Hm(n0)(z, w) ∈ V +
R

where V +
R =

{

(z, w) ∈ C
2 : |z| ≥ max{|w|, R}

}

. Now

∥

∥

∥
Hm(n)(z, w)

∥

∥

∥

1
=

∥

∥

∥
Hm(n)−m(n0)

(

Hm(n0)(z, w)
)
∥

∥

∥

1
∼

∣

∣

∣

(

Hm(n0)(z, w)
)

1

∣

∣

∣

dm(n)−m(n0)

<
(

ern0+1dm(n0)
)dm(n)−m(n0)

= ern0+1dm(n)
.

Thus

‖Φn(z, w)‖ =
∥

∥

∥
ϕm(n) ◦H

m(n)(z, w)
∥

∥

∥
< e(−rn+1+rn0+1)dm(n)

→ 0

as n → ∞. Conversely, it is straightforward to see that if Φn(z, w) → 0 as n → ∞, then
(z, w) ∈ Ωr.

Now without loss of generality, we assume that ∆2(0; c, c) ⊆ Ωr, for c > 0 sufficiently small.
Let Φn(z, w) ∈ ∆2(0; c, c). This implies

∥

∥

∥
Hm(n)(z, w)

∥

∥

∥

1
< cern+1dm(n)

.

Therefore combining (3.7) and (3.9), we get

1

dm(n)
log+

∥

∥

∥
Hm(n)(z, w)

∥

∥

∥

1
<

log c

dm(n)
+ rn+1

⇒
1

dm(n+1)
log+

∥

∥

∥
Hm(n+1)(z, w)

∥

∥

∥

1
<

log c

dm(n)
+ rn+1 +

L′

dm(n)
<

log c

dm(n+1)
+ rn+2.

Thus Φn+1(z, w) ∈ ∆2(0; c, c). This shows Φ−1
n (∆2(0; c, c)) ⊆ Φ−1

n+1(∆
2(0; c, c)) for all n. Also

we have Ωr =
⋃∞

n=0Φ
−1
n (∆2(0; c, c))

Step 3: Without loss of generality we further assume that ∆2(0; 1, 1) ⊆ Ωr. Let Φ0 ≡ Id. Then

Φn = (Φn ◦ Φ−1
n−1) ◦ (Φn−1 ◦ Φ

−1
n−2) ◦ · · · ◦ (Φ2 ◦ Φ

−1
1 ) ◦ (Φ1 ◦ Φ

−1
0 ) ◦ Φ0 = Fn ◦ · · · ◦ F1 ◦ F0

where Fn = Φn ◦ Φ−1
n−1 = ϕm(n) ◦ H

m(n)−m(n−1) ◦ ϕ−1
m(n−1) for n ≥ 1 and F0 ≡ Id. Note that

F (n)−1(∆2(0; c, c)) ⊆ F (n+ 1)−1(∆2(0; c, c)) where F (n) = Fn ◦ · · · ◦ F1 ◦ F0 for all n. Further,

Ωr =

∞
⋃

n=0

F (n)−1
(

∆2(0; c, c)
)

.

Now we show that for each n, ∆2(0; c, c) can be distorted monotonically to Fn(∆
2(0; c, c)) which

in turn proves that Ωr is Loewner as in Thm. 1.7. For each n, consider arbitrary sequence of
real numbers satisfying

rn = rm(n−1) < rm(n−1)+1 < rm(n−1)+2 < · · · < rm(n)−1 < rm(n) = rn+1.
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Further let

ϕm(n−1)+k(z, w) =
(

e−r[m(n−1)+k]d
[m(n−1)+k]

z, e−r[m(n−1)+k]d
[m(n−1)+k]

w
)

Now note that

ϕm(n) ◦H
m(n)−m(n−1) ◦ ϕ−1

m(n−1)

=
[

ϕm(n) ◦H ◦ ϕ−1
m(n)−1

]

◦
[

ϕm(n)−1 ◦H ◦ ϕ−1
m(n)−2

]

◦ · · · ◦
[

ϕm(n−1)+1 ◦H ◦ ϕ−1
m(n−1)

]

= Lm(n) ◦ Lm(n)−1 ◦ · · · ◦ Lm(n−1)+1.

Now as in Thm. 1.7, one can show that ∆2(0; c, c) can be distorted monotonically to Lj(∆
2(0; c, c))’s

and therefore, ∆2(0; c, c) can be distorted monotonically to ϕm(n)◦H
m(n)−m(n−1)◦ϕ−1

m(n−1)(∆
2(0; c, c)) =

Fn(∆
2(0; c, c)). This completes the proof.

4. Examples of Short C
2’s

Proof of Theorem 1.9. The proof follows a similar line of arguments as in Thm. 1.12 in [7].
We start the proof with a claim.
Claim: For any compact set K ⊆ Ω{Fn},r and for any ǫ > 0, there exist an open set U ⊆ Ω{Fn},r

and an automorphism Φ of C2 such that Φ(U) = B(0, 1) and Φ(K) ⊆ B(0; ǫ) where B(0; 1) and
B(0; ǫ) are balls with center at the origin and of radius 1 and ǫ, respectively.

We denote the random Green’s function corresponding to the sequence of Hénon maps {Fn}n≥m

byG+
{Fn},m

and following the notation in the introduction of this article we have G+
{Fn},1

≡ G+
{Fn}

.

By Prop. 1.1 in [13], we have

(4.1) G+
{Fn},m+1 ◦ Fm ◦ · · · ◦ F1(z, w) = dmG+

{Fn}
(z, w),

for all (z, w) ∈ C
2 and for all m ≥ 0. Further, there exists L > 1 such that

(4.2) G+
{Fn},m

(z, w) ≤ log+‖(z, w)‖ + L,

for all (z, w) ∈ C2 and for all m ≥ 1. Now choose 0 < r1 < r2 < r such that K ⊆ Ω{Fn},r1 .

Further, choose n sufficiently large such that e(r1−r2)dn < ǫ and set

U =
{

(z, w) ∈ C
2 : (z, w) ∈ F−1

1 ◦ · · · ◦ F−1
n

(

B
(

0, er2d
n
))}

⊆ Ω{Fn},r.

This choice is possible since (4.1) and (4.2) hold.
Let ϕ : (z, w) 7→

(

z/er2d
n
, w/er2d

n)

for (z, w) ∈ C
2 and let Φ = ϕ ◦ Fn ◦ · · · ◦ F1. Then

Φ(U) = B(0, 1) and Φ(K) ⊆ B(0, ǫ).
Let rn ↑ r and Rn → ∞, as n → ∞. Now Ω{Fn},r =

⋃

n≥1Kn where Kn = Ωrn ∩ VRn

and VRn = {(z, w) ∈ C
2 : |z|, |w|} ≤ Rn}. For each n ≥ 1, there exists m(n) > 1 such that

e(rn+1−rn+2)dm(n)
< 1/n and

Un =
{

(z, w) ∈ C
2 : (z, w) ∈ F−1

1 ◦ · · · ◦ F−1
m(n)

(

B
(

0, ern+2dm(n)
))}

⊆ Ω{Fn},r.

Thus there exists a sequence of automorphisms Φn = ϕm(n) ◦ Fm(n) ◦ · · · ◦ F1 such that

Φn(Kn) ⊆ B

(

0,
1

n

)

and Φn(Un) = B(0, 1).

where ϕm(n)(z, w) =
(

z/ern+2dm(n)
, w/ern+2dm(n)

)

.

Let p ∈ Ω{Fn},r and ζ be a tangent vector at p. Without loss of generality, assume p = 0.

Let p ∈ Un for all n ≥ n0. Now Φn(p) = 0 for all n. Let (F−1
1 ◦ · · · ◦ F−1

m(n0)
)′(0)(η0) = ζ. Now

(F−1
1 ◦ · · · ◦ F−1

m(n))
′(0)(ηn) = ζ where ηn = (Fm(n) ◦ · · · ◦ Fm(n0+1))

′(0)(η0). Clearly, |ηn| ≤ |η0|
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for all n ≥ n0. So for any R > 0, we can choose n sufficiently large such that the map
ρ(∆) ⊆ B(0, ern+2dn) where ρ(z) = Rηnz and ∆ is the unit disc. Now consider the map
Tn = F−1

1 ◦ · · · ◦ F−1
m(n) ◦ ρ : ∆ → Ωr. Note that Tn(0) = 0 and T ′

n(0) = Rζ. Thus the Kobayashi

metric vanishes identically on Ω{Fn},r. This completes the proof.

4.1. Proof of Theorem 1.10: We first show the existence of a sequence tn → 2 such that the
corresponding basin of attraction is a Short C2.

Proof of A. Let 0 < r′ < r < 1 and rl = r(r′)l. Then

(4.3) Fn+l(∆
2(0; rl)) ⊆ ∆2(0; r2l + ct

n+l
n+l).

Claim: For large n, tln >
l+1
2 , for all l ≥ 1.

Let n be so large such that tn > 1.9, then for l = 1, the claim follows. Assuming that it holds
for l, we shall prove that it holds for l + 1. Note that

tl+1
n = tlntn >

l + 1

2
1.9 = 1.9

l

2
+

1.9

2
>
l

2
+
.9l

2
+

1.9

2
≥
l

2
+

2.8

2
>
l + 2

2
.

Therefore,

log ct
n+l
n+l = tn+l

n+l log c

= (tnn+l)(t
l
n+l) log c ≤ (tnn+l)

(l + 1)

2
log c

≤ (tnn+l)
(l + 1)

4
log c+ (tnn+l)

(l + 1)

4
log c

≤ log r(1− r) + (l + 1) log r′

for n sufficiently large and for all l ≥ 1. Thus

ct
n+l
n+l ≤ r(1− r)r′(l+1) ≤ r(r′)

l+1
− r2(r′)

l+1
≤ r(r′)

l+1
− r2(r′)

2l

which gives

r2l + ct
n+l
n+l ≤ rl+1.

This proves that for large n,

(4.4) Fn+l(∆
2(0; rl)) ⊆ ∆2(0; rl+1)

for all l ≥ 1. Once we prove (4.4), that Ω is an increasing union of balls and the Kobayashi
metric on Ω vanishes identically, follow exactly in the same way as in Thm. 1.4 in [7].

Choose a sequence {tn}n≥1 such that

(4.5) tnn ≥ 2tn−1
n−1.

One such example is given by tn = 2(1−
ǫn
n ) with 0 < ǫn+1 ≤ ǫn < 1, for all n ≥ 1. Now let

F (n) = Fn ◦ · · · ◦ F1 for all n ≥ 1 and

ϕn(z, w) = max{|(F (n))1(z, w)|, |(F (n))2(z, w)|, c
tn−1
n−1}.

If ϕn(z) ≤ 1, then

ϕn+1(z, w) = max
{

((F (n))1(z, w))
2 + ct

n
n((F (n))2(z, w)), c

tnn((F (n))1(z, w)), c
tnn
}

≤ max
{

ϕ2
n(z, w) + ct

n
nϕn(z, w), c

tnnϕn(z, w), c
tnn
}

.

Therefore it follows from (4.5) that if ϕn(z, w) ≤ 1, then

ϕn+1(z, w) ≤ 2ϕ2
n(z, w).
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If ϕn(z, w) ≥ 1, then it is easy to see that

ϕn+1(z, w) ≤ 2ϕ2
n(z, w).

Therefore we have

ϕn+1(z, w) ≤ 2ϕ2
n(z, w).

for all (z, w) ∈ C
2 and

1

2n+1
logϕn+1(z, w) ≤

log 2

2n+1
+

1

2n
logϕn(z, w).

Thus the sequence of psh function

1

2n
logϕn(z, w) +

∑

j>n

log 2

2j

monotonically decreases to a psh function ϕ in C
2.

It can be easily checked that if ϕ(z, w) < 0 for any (z, w) ∈ C
2, then (z, w) ∈ Ω. Now if

(z, w) ∈ Ω, then (Fn ◦ · · · ◦ F1)(z, w) → 0 as n→ ∞ and thus

1

2n
logϕn(z, w) = max

{

1

2n
log |Fn

1 (z, w)| ,
1

2n
log |Fn

2 (z, w)| ,
tn−1
n−1

2n
log c

}

≤
1

2n
log c

for sufficiently large n. This implies

1

2n
logϕn(z, w) +

∑

j>n

log 2

2j
≤

1

2n
log c+

1

2n
log 2 =

1

2n
log(2c) < 0

for large n. Therefore, ϕ(z, w) < 0 for all (z, w) ∈ Ω. It remains to show that ϕ is non-constant
on Ω which follows applying the same argument as in Thm. 1.4 in [7]. Thus we omit the proof
here.

Proof of B. We prove a series of lemmas to show the existence of a sequence {tn} → 2 such
that the corresponding non-autonomous basin of attraction turns out to be a Fatou-Bieberbach
domain.

We use the following notations: For each n ≥ 1, let F (n) = Fn ◦ · · · ◦ F1. For (z, w) ∈ Ω,
let (zn, wn) = F (n)(z, w). For a compact set K in the basin of the attraction Ω, set δn =
max {|zn|, |wn| : (z, w) ∈ K}.

Lemma 4.1. Assume that an = ct
n

for 0 < c < 1 and 1 < t < 2. Fix 0 < b < 1. Set
Fn(z, w) = (z2 + anw, anz). Then there exists an n0 such that δn+k ≤ an+k+1b

k for all n ≥ n0
and for all k ≥ 0.

Proof. There are two steps. First we prove that there exists an arbitrarily large n, so that δn ≤
an+1. Suppose on the contrary there is some n0 so that δn > an+1 for all n > n0. Then for all such

n’s, δn+1 ≤ δ2n + an+1δn ≤ 2δ2n. Hence δn+k ≤ 21+2+···+2k−1
(δn)

2k . So an+k+1 ≤ δn+k ≤ (2δn)
2k .

This implies that (ct
n+1

)t
k
≤ (2δn)

2k . But we can assume that 2δn < 1. Then this will fail for all
large k’s. The second step is to fix a large such n and then prove that δn+k ≤ an+k+1b

k for all
positive k. This is true for k = 0. We will show that this inquality holds inductively. So suppose
that δn+k ≤ an+k+1b

k. Then we have that δn+k+1 ≤ (an+k+1)
2(b2k + bk). Hence we would like

to say that (an+k+1)
2(b2k + bk) ≤ an+k+2b

k+1. This means that
(

ct
n+k+1

)2−t
≤

b

bk + 1
.

This works as long as we have fixed a large n. �

In the next lemma, we assume 1 < tn < 2 for all n.
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Lemma 4.2. We set an = ct
n
n . If there exists an arbitrarily large n ≥ 1 and a k(n) ≥ 1

(depending on n) so that tn+k(n)+1 ≤ 2
k(n)

n+k(n)+1 , then there exists an arbitrarily large n so that
δn ≤ an+1.

Proof. If the claim of the lemma does not hold, then δn > an+1 for all large n. Therefore,

δn+1 ≤ δ2n + an+1δn ≤ 2δ2n and inductively we get δn+k ≤ 21+2+···+2k−1
δ2

k

n for all k ≥ 1. Hence

an+k+1 < (2δn)
2k and consequently, ct

n+k+1
n+k+1 < (2δn)

2k . If n is large enough, then 2δn < c. Thus

tn+k+1
n+k+1 > 2k for all large n and for all k ≥ 1. Hence we have 2k(n) < tn+k+1

n+k+1 < 2k(n) which is
contradiction. This completes the proof. �

Lemma 4.3. Let 0 < b, c < 1. Set tn = 21−
ǫn
n where ǫn+1 ≥ ǫn + 1

2n/2 ln 2
and ǫn/n → 0. Let

an = ct
n
n and let Fn = (z2+anw, anz). Suppose there exists an arbitrarily large n and k(n) ≥ 1 so

that tn+k(n)+1 ≤ 2
k(n)

n+k(n)+1 (This means that ǫn+k(n)+1 ≥ n+1). Then there exists an arbitrarily

large n so that for all k ≥ 0, δn+k ≤ an+k+1b
k.

Proof. By Lemma 4.2, there exists an arbitrarily large n so that δn ≤ an+1. Pick such a large
n. As in the proof of Lemma 4.1, we would like to have the estimate (an+k+1)

2(b2k + bk) ≤
an+k+2b

k+1 to prove the lemma for all k. This means that we want

c2[2
(1−

ǫn+k+1
n+k+1

)
]n+k+1

(b2k + bk) ≤ c[2
(1−

ǫn+k+2
n+k+2 ]n+k+2

bk+1,

i.e.,

c2
1+n+k+1−ǫn+k+1

≤ c2
n+k+2−ǫn+k+2 b

1 + bk
,

i.e.,

c(2
n+k+2[2−ǫn+k+1−2−ǫn+k+2 ]) ≤

b

1 + bk
,

i.e,.

c2
n+k+2·2−ǫn+k+2 [2ǫn+k+2−ǫn+k+1−1] ≤

b

1 + bk
.

The above follows if

c2
n+k+2·2−ǫn+k+2 [ln 2(ǫn+k+2−ǫn+k+1)] ≤

b

1 + bk
,

which again follows if

c
2n+k+2·2−ǫn+k+2 1

2(n+k+1)/2 ≤
b

1 + bk
.

The above follows if n is large enough. �

We continue to use previous notations and suppose that ǫn → ∞. Then we prove that Ω is a
Fatou-Bieberbach domain.

Since ǫn → ∞, for every n ≥ 1 there exists an integer k(n) ≥ 1 so that ǫn+k(n)+1 ≥ n+1. Then

applying Lemma 4.3, we have an arbitrarily large n so that for all k ≥ 0, δn+k ≤ an+k+1b
k. We

then need to show that a1 · · · an ≤ cn/2an+1 for all large n. This is equivalent to the inequality

t11 + t22 + · · · + tnn ≥ n/2 + tn+1
n+1.

We write this as lsn ≥ rsn. Here the nth left side is lsn = t11 + t22 + · · · + tnn and the nth right
side is rsn = n

2 + tn+1
n+1. We compare the growth of the left side and the right side:

Gn = (lsn+1 − lsn)− (rsn+1 − rsn) = (tn+1
n+1)− (1/2 + tn+2

n+2 − tn+1
n+1) = 2tn+1

n+1 − tn+2
n+2 − 1/2.
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Thus

Gn = 2(21−
ǫn+1
n+1 )n+1 − (21−

ǫn+2
n+2 )n+2 − 1/2 = 2n+2(2−ǫn+1 − 2−ǫn+2)− 1/2

= 2n+22−ǫn+2(2ǫn+2−ǫn+1 − 1)− 1/2.

Hence
Gn ≥ 2n+22−ǫn+2 ln 2(ǫn+2 − ǫn+1)− 1/2

which implies

Gn ≥ 23(n+2)/4 1

2(n+1)/2
− 1/2 → ∞.

Now this is the first step in the proof of Lemma 3.13 in [7]. Now the rest of the proof of Lemma
3.13 goes through and then to show that Ω is a Fatou-Bieberbach domain, one can follow the
same steps as in the the last paragraph of [7].
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