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Abstract

Low-dose computed tomography (LDCT) has attracted significant attention in the domain of

medical imaging due to the inherent risks of normal-dose computed tomography (NDCT)

based X-ray radiations to patients. However, reducing radiation dose in CT imaging pro-

duces noise and artifacts that degrade image quality and subsequently hinders medical dis-

ease diagnostic performance. In order to address these problems, this research article

presents a competent low-dose computed tomography image denoising algorithm based on

a constructive non-local means algorithm with morphological residual processing to achieve

the task of removing noise from the LDCT images. We propose an innovative constructive

non-local image filtering algorithm by means of applications in low-dose computed tomogra-

phy technology. The nonlocal mean filter that was recently proposed was modified to con-

struct our denoising algorithm. It constructs the discrete property of neighboring filtering to

enable rapid vectorized and parallel implantation in contemporary shared memory computer

platforms while simultaneously decreases computing complexity. Subsequently, the pro-

posed method performs faster computation compared to a non-vectorized and serial imple-

mentation in terms of speed and scales linearly with image dimension. In addition, the

morphological residual processing is employed for the purpose of edge-preserving image

processing. It combines linear lowpass filtering with a nonlinear technique that enables the

extraction of meaningful regions where edges could be preserved while removing residual

artifacts from the images. Experimental results demonstrate that the proposed algorithm

preserves more textural and structural features while reducing noise, enhances edges and

significantly improves image quality more effectively. The proposed research article obtains

better results both qualitatively and quantitively when compared to other comparative algo-

rithms on publicly accessible datasets.
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1. Introduction

Computed tomography (CT) is one of the most pivotal medical imaging technologies for clini-

cal diagnosis where it uses X-ray radiation to generate cross-sectional images of the internal

human body [1,2]. The internal abnormalities of the body for instance tumours, bone frac-

tures, and vascular disorders, can be accurately and non-invasively detected using computed

tomography (CT). It has been routinely utilised by clinicians in recent years to identify and

monitor diseases like cancer, lung nodules, and internal injuries. Anatomical information with

higher temporal spatial resolution can be obtained via CT scans and therefore several stake-

holders get an advantage from CT images, particularly in pathological diagnosis and treat-

ment. Widespread utilisation of CT is growing public concerns about its safety irrespective of

the fact that it is extremely vital for disease diagnosis [3]. A significant concern about radiation

exposure has arisen because CT images are produced by omitting X-ray beams at the body. In

comparison to a standard X-ray, a CT scan exposes the patient to far more radiation during a

single session. For instance, 10 days of background radiation are equal to the radiation a

patient would get during a chest X-ray radiography. The radiation that a person is exposed to

on a daily basis from cosmic and natural sources is known as background radiation. The radia-

tion dose from a chest CT scan is comparable to two years of ambient radiation. Therefore,

computed tomography carries a significantly higher radiation risk, particularly for those who

have undergone several CT scans [4,5]. Radiation affects people of all ages, but children are

more vulnerable than adults because of their developing bodies and longer lifespans which

means more CT scans may be required. According to studies, children who receive cumulative

doses from several head scans are up to three times more likely to develop disorders like leu-

kaemia and brain tumours. Finding a solution to the radiation issue is crucial, especially in

light of the benefits of CT scans for diagnosis. Using lower doses of X-ray current is one

method for reducing the radiation risk [6,7].

The CT-related X-ray radiation has the potential to harm human health irreparably and

sometimes even cause harmful diseases such as cancer. As a matter of fact, a widely recognized

preposition in CT-based studies over the past few years has been to decrease the radiation dose

in CT as low as reasonably achievable (ALARA) [8]. Medical problems such as metabolic

anomalies, cancer, leukaemia and other ailments are often triggered by excessive X-ray radia-

tion [9]. The problem of high radiation dose is currently the main barrier to the potential

expansion of CT clinical applications. Thus, the ALARA concept [10] states that the radiation

impact of X-rays on human beings should be as negligible as possible while ensuring image

quality to achieve the diagnostic requirements which is widely encouraged around the world

[11]. But decreasing radiation dose can increase multiplicative noise in projections that results

in noise and irregular artifacts in CT images. The noise and artifacts that are inevitably intro-

duced in the reconstructed images as a result of reducing radiation dose significantly hamper

the diagnosis [12,13]. Also, compared to CT scans taken at normal doses, the ones that are

obtained with low radiation doses are less sharp and precise. This means that they will not be

reliable for diagnoses [14]. Due to the demand, there is significant research being done in the

area of noise removal from low-dose CT (LDCT). To improve the calibre of the reconstructed

CT images, numerous types of research have been carried out recently [15]. The researchers

are consistently enthusiastic for achieving an image processing algorithm for competently sup-

pressing noise and artifacts in the LDCT images. Nevertheless, it remains a challenging task

due to its ill-posed nature. In recent times, numerous LDCT image-denoising techniques have

been developed while achieving notable results [16,17].

In recent years, the dominant research emphasis on nonlocal means (NLM) that considers

pixel similarity structure in the large-scale windows [18]. The non-local means theory is
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utilised in order to preserve edges and reduces noise adequately. The modified block-matching

3-dimsioonalal (m-BM3D) filtering method [19] integrates the benefits of spatial non-local

means denoising and wavelet thresholding shrinking that reduces the complexness of L2 dis-

tance along with identical judgement by using hard threshold linear transformation. Trung

et al. [20] presents a LDCT image denoising approach on the basis of image decomposition

with sparse representation (IDSR), where it decomposes noisy image into three image compo-

nents. However, noise in high and median components is effectively eliminated through

manipulating the fact that the smaller image patches of noisy images could be considered as

linear amalgamation of multiple components in the specified dictionary of denoised patches

extracted from denoised images captured at almost similar region as the noisy images. For

increasing the quality of LDCT images, a novel total variation (NTV) method is utilised [21].

The block matching 3D filter is used to generate fidelity term of the NTV method to effectively

preserve details and edges since it executes well in edges and details preservation. To improve

LDCT images, an efficient image denoising technique on the basis of discriminative weighted

nuclear norm minimisation [22] is presented. This approach exploits the local entropy of the

images for variable streak artifacts from tissue structure along with adaptively tuned WNNM

weight components. In addition, a pre-processed images are also employed to increase block

matching accuracy as well as the total variation method is used for decreasing residual artefacts

in the reconstructed image even more. Traditional post-processing methods perform well in

general, but they cannot eliminate the issue of over smoothing and could introduce new

noises. Yuan et al. [23] recently proposes a method based on weighted coding approach on the

basis of edge preserving median filtering and sparse non-local regularisation. This method

shows great potential on removing noise and artefacts while reconstructing high image quality

images.

Due to growth of deep learning in the domain of image processing in recent times. Deep

learning-based research is also active in the domain of LDCT image denoising. Therefore,

some deep learning-based LDCT image denoising algorithms are emerged in recent times

[24–26]. Ren et al. [27] presented a deep learning strategy to alleviate some of the LDCT image

denoising problems. In order to prevent the damage of shallow layer information while

extracting rich feature details, this method utilizes dilated convolution rather than standard

convolution to aggregate data from diverse receptive fields. For LDCT image denoising, a par-

allel-clone network (PCN) [28] is proposed that uses a modularised network design and

exploits advantage of extraction of richer information. When compared to traditional models,

this model preserves an identical or smaller amount of unknown network weights however

could dramatically speed up the learning procedure. Pre-processing as well as post processing

methods are incorporated into the dilated CNN to expand receptive fields in a novel CNN-

based methods [29,30]. Chen et al. introduced residual learning for LDCT image denoising

[29]. Moreover, skip connections were made available for network optimization. The effi-

ciency of this method in preserving clarity and minimizing noise was then examined through

meticulous experimental study. The FTV loss can preserve important structural information

while reducing noise, resulting in CT scans of the highest caliber that are ready for radiologists

to assess. A state-of-the-art intra-task knowledge transfer method was also proposed [30],

which made use of the knowledge collected from NDCT images for training purposes. The

CRM works to force the restored CT images distant from the LDCT samples while moving the

NDCT samples in the latent space closer to the restored CT images.

Zhang et al. developed a task-oriented denoising network (TOD-Net) [31] along with task-

oriented leverage data from downstream operations to enhance the family of LDCT denoising

algorithms. According to the studies, task-oriented loss helps other task agnostic losses and

enhances image quality in regions of interest that are task-based. Li et al. [32] introduce a
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denoising algorithm for improving image quality while reducing CT radiation exposure and

the whole network structure is defined as having a top-down self-guiding strategy. Han et al.

[24] propose a novel form of generative adversarial network (GAN) with dual-encoder and

single-decoder strategy to enhance the capability of network to completely handle diverse

types of information. In order to boost the effectiveness of feature extraction by strengthening

features with self-similarity, the primary encoder channel of the generator is constructed. Fur-

ther a novel technique is developed for eliminating image blur while training the convolutional

neural network (CNN) denoiser with an activation map [25]. The focal region that the CNN

classifier utilized to categorize the image is observed on the activation map. Activation map of

an image is obtained utilizing trained CNN classifier which is trained to distinguish between

CT images with lesions and those without lesions (a binary detection problem). The lesions

and image edges are discovered to be activated in the activation map which highlights small

features. Liu et al. [26] proposes a denoising method where it assumes that noise and irregular

characteristics are connected and is used to generate DFSNE-Net, a network architecture that

is sensitive to these features. MSC-DFPM discovers further abnormal features in this network,

and SISA-FM transmits and filters them. Jiang et al. [33] introduced a denoising algorithm for

improving image visual superiority of LDCT images. Residual learning supports network

learning, and batch normalization counters performance decline caused on by adding addi-

tional neural network layers. The efficiency of the denoising algorithm and the generalizability

of the model were evaluated using both real and simulated datasets. Trung et al. [34] developed

a method based on a recently introduced dilated residual network for de-speckling of synthetic

aperture radar. In order to enhance the receptive field and accelerate computation, pre- and

post-processing layers are added. Utilising a GAN framework [35], Yin et al. [36] develops a

novel denoising strategy. In recent years, a tuneable CycleGAN structure with a single genera-

tor for LDCT denoising was presented [37] and further a GAN with dual encoder and single

decoder scheme is developed [38] for enhancing the networks potential to categorically deals

with different types of image details. In the main encoder channel, a pyramid nonlocal atten-

tion module is constructed to enhance extraction of features efficiently.

Many GAN-based LDCT image denoising has been presented in recent times [39–41] and

producing excellent results in case of both removal of noise and preserving structural informa-

tion. Jiao et al. [39] presented a denoising algorithm to minimize noise in LDCT images. Li

et al. [40] further constructed a technique for LDCT denoising based on the hybrid loss func-

tions. The boundary regions might be highlighted by the adversarial loss. Recently a method

based on artifacts sensing generative adversarial networks for LDCT image denoising was pro-

posed [41]. First an artifacts direction sensing generator was designed. Based on the U-residual

encoding and decoding structure in generator, an artifacts direction sensing sub-module

(ADSS) was concatenated to improve the sensitivity of generator to artifacts direction features.

Then the attention discriminator was designed for improving the potentiality of distinguishing

noise and artifacts. The denoising performance of network was further improved by incorpo-

rating multiple loss functions.

This study presents a denoising scheme based on non-local means algorithm and morpho-

logical processing of its residuals in order to successfully reduce noise and artifacts in LDCT

images. NL-means algorithm generally performs well in images with lots of repetitive struc-

tured patterns. By calculating a weighted average of the pixel values, it makes use of redundant

information to lower noise. We avoid the sliding window design commonly used in neigh-

bourhood filtering implementations in favour of more sophisticated concepts that enable faster

implementation. To further improve noise suppression, we use lowpass filtering with morpho-

logical processing of residuals edge-preserving image processing algorithm. This can be

accomplished by combining a linear lowpass filter with non-linear algorithms which enable
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the selection of significant portions of images where edges may be appropriately preserved.

These regions are selected by morphologically processing the residuals of a linear filter in

order to locate relevant regions with high amplitude edges and the optimal size. The original

shape of the edges is recovered by integrating the meaningfully reconstructed regions with the

output of the lowpass filter. This technique also enables you to adjust the contrast of final out-

put image. The final output may be modified to meet the specific needs depending on the pref-

erence of parameters.

The main contributions of this study are:

1. This method proposes a competent LDCT image denoising method by combining the ben-

efits of a constructive non-local means (NLM) algorithm and edge preserving processing

where it adapts more state-of-the-art concepts and speed-ups processing time over other

methods.

2. The method reduces the computational complexity of the prior non-local means (NLM)

approach while presenting a fast vectorized and parallel implementation in contemporary

shared memory computer platforms.

3. The edge preservation processing performs area opening and reconstruction on the low-

pass linear filter residuals using morphological operators by avoiding blurring in the image

regions.

4. The proposed method is able to achieves high-quality image reconstruction and further

boosts the generalization for different types of noise properties resulting in better balance

between visual perceptibility and quantitative evaluation.

The remainder part of this study is structured as follows. Section 2 illustrates the proposed

LDCT image denoising framework based on a constructive non-local means algorithm with

morphological residual processing in detail. The experimental details and results are presented

using a publicly accessible dataset in Section 3 and the ablation study is illustrated in Section 4.

Section 5 further elaborated inclusive discussion on results and Section 6 exhibits the conclu-

sion and the future research scope.

2. Proposed image denoising method

This section put forward a detailed illustration of the proposed denoising framework. The

flowchart of the proposed method is demonstrated in Fig 1. First, it employs efficient non-

local mean filter that can deliver quality results. It constructs upon separable property of neigh-

boring filtering to provide a rapid vectorized and parallel implementation in contemporary

shared memory computer platforms. This strategy provides filters with a variety of desirable

features as well as considerably reduces the noise and artefacts. Further, a morphologically pro-

cessed residuals is used for edge preserving image processing. It combines linear lowpass filter-

ing with nonlinear technique that enable to extract relevant image regions where edges could

be preserved while removing noise and residual artefacts from the LDCT images.

2.1. Nonlocal means algorithm

A state-of-the-art algorithm was introduced to remove noise in CT scans with an assumption

that CT images are noisy due to Gaussian noise. NL-means system [42] performs well when

the image comprises abundant of repetitive structured patterns. It computes a weighted aver-

age pf pixel value by using redundant information to decrease noise. According to formal

assumptions, images are assumed to be defined on the discrete regular grid O of size d and car-

dinality |O|. Let consider CT image be noisy and represented by v. The convex combination
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shows the value of recovered image u at the location s � O as follows:

u sð Þ ¼
1

ZðsÞ

X

t2N ðsÞ

wðs; tÞvðtÞ; ð1Þ

where N ðsÞ is a pair of nearby locations of s, w(�,�) represents non negative weight and Z(s) is

the normalization constant that provide us Z(s) =
P

t2N ðsÞwðs; tÞ for any site s, respectively. N
(�) is denoted as a searching window in Buades et al. [42]. A weight w (s, t) is a measure of how

similar two square patches positioned at locations s and t, respectively. The following is its defi-

nition as

wðs; tÞ ¼ ghð
X

d�D

GsðdÞðvðsþ dÞ � vðt þ dÞÞ
2
Þ ð2Þ

Fig 1. Flowchart of the proposed LDCT denoising algorithm.

https://doi.org/10.1371/journal.pone.0291911.g001
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where Δ represent discrete patch area that contains neighboring locations that represent a

Gaussian filter of variance σ2. The parameter h controls the degree of filtering. The gh function

is generally utilized in expressions such as gh xð Þ ¼ 1

1þðx2=h2Þ
and ghðxÞ ¼ e� x

2=h2

, where the latter

of which is used in [42]. The former is used in our algorithm since it performs highly effective

implementation. The nonlocal means reconstructs an image through computing the weighted

average of pixel values that considers similarity in intensity and spatial properties of pixels.

The equal-sized patches are used to measure similarity because they accurately represent

regional structures around the locations in consideration. It is important to notice that pixel

outside of N ðsÞ does not contribute the value of u(s). In the domain decomposition scheme,

this property permits us to split an image into separate, unconnected parts and progress them

in parallel.

According to [42], we adopt searching window N and patch Δ maintains the uniform cardi-

nalities. The Eqs 1 and 2 are used to implement non-local means algorithm [42] that has O(|O|

KdPd) for time complexity. Be careful because this complexity has an exponential with spatial

dimension d but polynomial with number of pixels. The method continuous to be polynomial

when dimensions are fixed and less in practice. To make the average more resilient, one could

want to make theN(�) as large as possible and finally stretch it throughout the entire image.

However, this led to an unreasonable lengthy computation time, thus we limit our search to the

closest neighborhood as recommended in [42]. We recommend the readers to [43] for the dif-

ferent definition of neighborhood filtering along the contexts of non-local means.

2.2. A constructive non-local means algorithm

The fundamental concept of the proposed strategy is to precisely calculate the weights w(s, t)
provided by the Eq 2. When producing the restored image u, the weight computation takes the

longest time. We present a simple tactic to making 1-dimensional images more understand-

able, which can be easily extended to large sides. Under the 1-dimensional hypothesis, we have

O = ⟦0, n−1⟧ for the images having n pixels. Based on the specified translation vector dx, we

present an image Sdx as denoted by

SdxðpÞ ¼
Xp

k¼0

ðvðkÞ � vðkþ dxÞÞ
2
; p 2 O ð3Þ

where Sdx represent discrete amalgamation of the squared difference between an image v and

its translation by dx. Remember that Eq 3 is need access to the pixels outside the image domain.

In order to restrict corruption of cache, we symmetrically or periodically expand the image

boundaries. Remember that in 1-dimensional, we have patch of the form Δ = ⟦−P, P⟧. We sub-

stitute a Gaussian filter with a constant without clear variations. Then, the Eq 2 is transformed

as

wðs; tÞ ¼ ghð
X

dx2D

ðvðsþ dxÞ � vðt þ dxÞÞ
2
Þ; ð4Þ

Let dx = (t−s) and define p̂ ¼ sþ dx. With this reparameterization enables us to write as

wðs; tÞ ¼ ghð
XsþP

p̂¼s� P

X

dx2D

ðvðp̂Þ � vðp̂ þ dxÞÞ
2
Þ; ð5Þ

By dividing sum and further applying identity in Eq 3, we can define as

wðs; tÞ ¼ ghðSdxðsþ PÞ � Sdxðs � PÞÞ ð6Þ
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where in the fact independent of t given by quantity Sdx is known. A critical expression which

permits us to calculate the weight for the set of in a given length of time. In general, for large

sizes correspond to have combinations with image orthogonal axis in Eq 3. This method

unquestionably results in a weight computation formula that calls for O(2d) operations on d-

dimensional images. The formulation in [42], where it calls for operations for each patch, does

not account for this method which is unaffected by the size of the patches. In short, the

approach basically functions as follows: First, all values Sdx are calculated utilizing Eq 3 and the

weights are determined utilizing Eqs 2 and 4. Then the denoising computation is executed uti-

lizing Eq 1. The process is repeated for all probable translation provided by the dimensions of

searching window.

2.3. Morphological residual processing

This section illustrates morphological residual processing [44] in detail. It is mainly based on

the residual of a Gaussian filter and illustrate as follows.

Io ¼ u∗L ð7Þ

where * is a convolutional operator and u is the denoised output of nonlocal means from Eq 1.

L is the Gaussian filter or any other lowpass filter mask. Henceforth, a linear filter residual is

defined as

ResðuÞ ¼ u � Io ð8Þ

The residual is then put through another processing utilizing functions that are described

using positive value images. In that case, the Res(u) that include both positive and negative val-

ues is decomposed into two parts ~ positive and negative.

Iresþ ¼ 0:5ðResðuÞ þ jResðuÞjÞ;

Ires� ¼ 0:5ðjResðuÞj � ResðuÞÞ ð9Þ

The residual fraction follows the apparently related relationship described below:

ResðuÞ ¼ ðIresþÞ þ ðIres� Þ ð10Þ

Both fractions of the residual (Ires+, Ires−) are processed to cutoff an irrelevant dissimilarity

of the residual while maintaining relevant ones. The processing method which selects most sig-

nificant residuum regions and preserves their original structures is based on morphological

function M and reconstruction. Lastly, significant residual areas are added in the image for

recovering meaningful edges while simultaneously images remain blurs across irreverent

image regions as

Iout ¼ Io þMðIresþÞ � MðIres� Þ ð11Þ

An operator M, similar for both residual is described by

MðIÞ ¼ RIðminðI; StðIÞjfminfIg;maxfIggÞÞ ð12Þ

When RI (A) represent morphological restoration of gray level mask image I from the

marker A and ‘|’ is a mapping operator where an image is recovered by transforming a binary

image by substituting primary values of 0’s and 1’s by two specified ones. A 0min0 is a pointwise

minimal function of two images. A binary masker S that consists of significant regions where

contrast can be maintained is the key aspect for the interpretation of M. The substitute of
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these regions is based on the amplitude of residuum as

StðIÞ ¼ ðI � tÞ ð13Þ

where S represent selection function that extract regions of I whose amplitude exceeds a spe-

cific threshold t. The number of regions where the original sharpness of regions is recovered.

2.3.1. Size criterion for selection of meaningful regions. According to initial implemen-

tation of this strategy, the edges of relevant areas are present in the binary mask that is

extracted via thresholding. Using the amplitude residual, a meaningfulness is calculated. So

far, amplitude is not the only factor that affects how significant an image component. It is easy

to envision an image component with a greater residual amplitude specification that has no

impact on how the image should be perceived. For instance, addition of salt and pepper to the

image would result in the generation of several smaller image components with larger ampli-

tudes and the addition of high amplitude components, which would alter the original image.

Subsequently, they could be detected as relevant parts that is not optimal. Thus, further

another set is incorporated to the original approach to tackle with this problem. Binary mask is

filters by the area opening filter [45]. The binary image is removed by this filter, all related

components with the size smaller than given threshold s (size coefficient). Subsequently, Eq 13

is expressed as

St;sðIÞ ¼ ðI � tÞoðsÞ ð14Þ

where o(s) represents an area opening which remove elements smaller than that of specific size

specified by s. As compared to initial method, one can notice that in both situations, when the

coefficient (s in terms of modified method and t in terms of initial method) enhances, number

of selected regions reduces. In contrary, in case of original situation, when the coefficient s is

employed, the parts are eliminated related to their sizes. It permits thus for rejecting smaller,

in case of number of pixel and objects from residuals even if their amplitudes are higher.

Finally, it offers to keep these parts blurred on the output image.

2.3.2. Control contrast. Addition (subtraction ~ depending of the components) of high-

pass filtering from original image is one of the most well-known methods for improving con-

trast in images. It has to do with high pass filtering property to distinguish local differences in

value of image pixels. Additional approach to get high pass filter results is to compared differ-

ences across lowpass filtering and image itself. High frequency components of images with

amplitude areas exceeding threshold t are referred to as morphologically processed residuals.

In order to control the contrast in the final denoised image, a contrast control coefficient (c) is

introduced in Eq 11, which provides the updated formula as

Iout ¼ Io þ ðMðIresþÞ � MðIres� ÞÞ:c: ð15Þ

By depending on c, can be further enhanced, preserved and reduced. Also shown are the

results of contrast enhancement without morphological processing of its residual. How mor-

phological processing affects this information can be realized in the quantity of small image

features that is visible in the output [44]. Contrast of the relevant regions is improved by this

processing method since it is enables to eliminate information that is unimportant. This strat-

egy is controlled by the mainly three factors t, s, and c. The amount of information obtained

depends on amplitude of residual (t) and particle size of the residual (s). The parameter c
allows contrast of an output image to be controlled. Fig 9 determines the performance of our

method in case of amplitude of residual (t).
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3. Experimental results and discussion

This section presents visual and quantitative comparisons between the proposed algorithm

and other comparative techniques including modified block matching 3D filtering (m-

BM3D) [19], residual convolutional network with fractional TV loss (RCN-FTVL) [29], image

decomposition and sparse representation (IDSR) [20], dilated residual convolutional neural

networks (DRCNN) [34] and probabilistic self-learning framework (PSL) [46]. The peak sig-

nal-to-noise ratio (PSNR), feature similarity (FSIM), structural similarity (SSIM) and root

mean square error (RMSE) are four quality indicators that are used to objectively evaluate the

effectiveness of the given methods [47]. The intensity difference between a source image and

the denoised image is calculated by PSNR. However, PSNR and RMSE do not authenticate

image visual quality which is indeed significant for the justification of medical images. In com-

parison, SSIM and FSIM better expresses feature resemblance between denoised images and

the reference image which helps to describe important information.

3.1. Dataset

The 2016 AAPM Mayo Clinic Low-Dose CT Grand Challenge dataset is utilized for this study

[48]. This database contains both standard and low dose CT images of 1mm and 3mm thick-

ness obtained from ten anonymous patients. This study considered only 3mm CT images. The

dataset contains scans of chest, abdominal and head images from a multidetector row Siemen

16 CT scanner with 120 kVp tube voltage. Low-dose images are composed of the reduced tube

current of 30 mAs compared to normal dose images which use a higher tube current of 240

mAs. However, in our study, the corresponding low-dose images are generated by adding

Gaussian noise into the sinograms simulated from the NDCT images. The Gaussian noise is

added to all of the images at different intensities with sigma values ranging from 30 to 5. This

will allow us to simulate different doses and estimate the results of the proposed technique

while also controlling the noise levels in the data. The severe streak noise and artifacts are visi-

ble in simulated LDCT images especially in local proximity to tissues with high attenuation

components such as bones. Patient L035 data (abdominal CT scan), L129 data (abdominal CT

scan), and L250 data (abdominal CT scan) datasets are considered in our experiments for eval-

uation. The NDCT images are considered as the ground truths for estimating the quality

indices.

3.2. Parameter settings

In case of existing LDCT image denoising techniques (m-BM3D, PSL, IDSR, DRCNN, and

RCN-FTVL), parameters are set as instructed by the authors of the respective articles. In terms

of proposed algorithm, the parameters P in Eq 6 are generally set to 5, while parameters K and

h were set to 3 and 0.15, respectively. Also, the values of parameters such as the size of residual

particles (s) and the amplitude of the residual (t) typically rely on the level of information that

is intended to be controlled. The parameter (c) controls contrast of the denoised results. We

set t = 0.15, s = 3, and c = 1.2 for all datasets in our method. All the experiments are imple-

mented on CPU Intel (R) Core (TM) i9-9900K CPU @3.60GHz with 8GB RAM using

MATLAB.

3.3. Qualitative analysis

In order to qualitatively evaluate the denoising results, three set of CT slices that represent an

abdominal region are considered from the dataset and exhibited with denoising results using

several techniques in Figs 2, 4 and 6, respectively. Figs 2H, 4H and 6H observed NDCT images
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of several features with sharp edges, tissues as well as low density lesions. However, the corre-

sponding noisy images shown in Figs 2A, 4A and 6A with visual degradations. The experimen-

tal results of a simulated abdominal CT scans L035, L129 and L250 considered for analysis.

The denoising results ofm-BM3D, IDSR, DRCNN, PSL, RCN-FTVL, and the proposed

method are demonstrated in Figs 2B–2G. In Fig 3, red circles represent lesions. By compari-

son, them-BM3D approach is effectual for denoising LDCT images but it could not obtain bet-

ter results in noise removal task and fails to preserve details in optimal level. In Fig 3B, for

example, region of interests (ROIs) is more smooth and vaguely visible. IDSR outperformsm-

BM3D in terms of maintaining features, however as observed in Fig 2C, there is a blocky effect

in the edge regions. The DRCNN shows better performance while maintaining details and

edges as shown in Fig 2D, where the edges and textural information noticeable and generates

ideal contrast. But DRCNN is inefficient in flat areas particularly in heavily contaminated

regions. Note that, DRCNN needs numerous iterations to improve performance as the denois-

ing results. The regions of interests are highlighted in red circles for clear observation in Fig 3.

In Fig 4, it can be seen that m-BM3D and IDSR efficiently suppress mottle noise and streak

artefacts however the edges and the details are blurred. DRCNN has lost texture information

as shown by the arrow in Fig 5D. However, it is abundantly clear from the visual representa-

tions that the structural and textural features of DRCNN have been improved by the deep

learning-based methodology. However, some soft tissue boundaries have been smoothed by

the PSL and RCN-FTVL in those smooth areas has led to streaking artefacts. Figs 5 and 7

zoomed in one region of interests (ROI) represented in Figs 4 and 6, respectively to further

highlight noise reduction and detail retention of the specific images. The ROIs of L129, which

are shown in Fig 5 display a solid non-calcified lesion which is denoted by orange and blue

arrows. This lesion region has been effectively retained by the majority of algorithms. Accord-

ing to the DRCNN result in Fig 6D, the visibility of the bone structures and lesions has

Fig 2. Qualitative results of numerous methods using L035 dataset. A red rectangle designates the regions of interest (ROI). The display window makes it

simpler to visualize the lesion.

https://doi.org/10.1371/journal.pone.0291911.g002
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marginally improved. But the edges still haven’t fully recovered their sharpness. The image has

poor texture preservation when it is visualized. From the Fig 6E and 6F denote how the perfor-

mance from PSL and RCN-FTVL techniques successfully preserved the lesion and other struc-

tural characteristics. When it comes to texture preservation and artefact reduction, the

proposed method outperformed PSL and RCN-FTVL results. A metastasis is highlighted by

the ROIs represented in in Fig 7 of the abdomen CT image from Fig 6. Due to the impact of

noise, the lesion is not evidently visible in ROI of LDCT demonstrated in Fig 7A. The meta-

static region is oversmoothed in the m-BM3D and IDSR presented in Fig 7B and 7C, even if

the chosen denoising techniques have somewhat decreased noise in every of these sub-images.

The lesion region is shown in the DRCNN with blurry edges. Furthermore, streaking artefacts

have interfered with smooth portions of PSL presented in Fig 7E. In addition, compared to the

RCN-FTVL result shown in Fig 7F, our proposed technique as shown in Fig 7G has main-

tained textural and structural information considerably sharper. In the flat regions as shown in

Fig 7D, it works well in terms of maintaining details but in the curved regions, it works poorly.

RCN-FTVL in Fig 7F executes well in removing noise and artefacts but the edges are some-

what blurred. Therefore, it could be described that the proposed method could denoise LDCT

images reasonably well than the other methods.

Fig 4. Qualitative results of various methods using the L129 dataset. A red rectangle designates the regions of interest (ROI). The display window makes it

simpler to visualize the lesion.

https://doi.org/10.1371/journal.pone.0291911.g004

Fig 3. The regions of interest (ROI) are shown for better comparisons by red circle from Fig 2. The two subtle structural regions are pointed by green and

blue arrows.

https://doi.org/10.1371/journal.pone.0291911.g003
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3.4. Quantitative analysis

Tables 1 and 2 demonstrates quantitative results of PSNR, SSIM, FSIM, and RSME obtained

from different algorithms for all the datasets. The ideal among all these algorithms is empha-

sized with bold. In Tables 1 and 2, it shows that our method generates comparatively ideal

results for all the test samples. The values for all these metrics vary for different methods. The

proposed technique achieved the lowest RMSE value for the test image, as observed by the

findings in Table 1. A minimal RMSE indicates that the noise level in the proposed method

has been significantly reduced. Similarly, this judgement is also constant with all the samples

verified utilizing PSNR. The PSNR scores for the tested image samples show that m-BM3D has

the lowest PSNR. According to the SSIM and FSIM scores tabulated in Tables 1 and 2, the PSL

and RCN-FTVL can preserve structural features better than the other approaches. The results

in Table 1 indicate that the RMSE values gradually decrease from the PSL, RCN-FTVL, to the

proposed approach. This trend highlights the capability to decrease the noise. The highest

value is shown in the proposed technique and continues to rise from PSL and RCN-FTVL

among all other methods. The PSNR signifies the overall visual quality irrespective of the

Fig 6. Qualitative results of various methods using the L250 dataset. A red rectangle designates the regions of interest (ROI). The display window makes it

simpler to visualize the lesion.

https://doi.org/10.1371/journal.pone.0291911.g006

Fig 5. The regions of interest (ROI) are shown for better comparisons by red circle from Fig 4. The two subtle structural regions are pointed by orange and

dark-blue arrows.

https://doi.org/10.1371/journal.pone.0291911.g005
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spatial information. The results provided in Table 1 indicate that PSNR obtained using pro-

posed method outperforms all other approaches. Similar trend for SSIM, RMSE and FSIM was

observed along with PSNR scores. The SSIM and FSIM of our algorithm is more than SSIM

and FSIM of other techniques due to improved contrast. For all test images, the proposed

approach produces higher PSNR, SSIM and FSIM values. The proposed strategy yields neces-

sary best results across all test samples. To analysis, the graph-based assessment technique

sums up, our technique obtains finer results in case of noise removal as well as preserving

information when compares to other comparative algorithms. In addition to qualitative as well

as quantitative of denoised image i.e., intensity profile has been implemented where it com-

pares the line profile of denoised image with the reference image.

The intensity profile is a line graph that plots the pixel values along the line segment of an

image. If the intensity profile of line segment of denoised image overlaps the intensity profile

of line segment of reference image, then the denoised image is good. However, if the intensity

profile of denoised image does not overlap, then the denoising results are not good. Fig 8

denotes the overlapping scenario of intensity profiles of reference and denoised images. From

the Fig 8, it clearly presents that the overlapping performance of our algorithm is better com-

pared to other comparative algorithms and it concludes that denoising efficiency of our algo-

rithm is satisfactory comparing to other algorithms.

4. Ablation study

In this section, comparative experiments are conducted to study the impact of the constructive

non-local means model, morphological residual processing and the size criterion approach.

A constructive non-local means model

This model allows for the decomposition of an image into disjoint parts, allowing for parallel

denoising of the distinct image parts. This fact has already been researched in order to enhance

Fig 7. The regions of interest (ROI) are shown for better comparisons by red circle from Fig 6. The two subtle structural regions are pointed by the yellow

and blue arrows.

https://doi.org/10.1371/journal.pone.0291911.g007

Table 1. Quantitative indices PSNR, FSIM and RMSE scores of different methods on L035, L129 and L250. The bold values represent the best results.

Method L035 L129 L250

PSNR (") FSIM (") RMSE (#) PSNR (") FSIM (") RMSE (#) PSNR (") FSIM (") RMSE (#)

LDCT 24.6827 0.9355 0.0487 24.0722 0.9411 0.0535 23.2526 0.9211 0.0545

m-BM3D [19] 26.8262 0.9588 0.0436 25.3552 0.9542 0.0520 24.9922 0.9324 0.0522

IDSR [20] 27.2524 0.9614 0.0422 25.8252 0.9623 0.0513 25.4424 0.9672 0.0509

DRCNN [34] 27.5927 0.9628 0.0419 26.5662 0.9732 0.0497 25.7725 0.9712 0.0492

PSL [46] 27.9626 0.9713 0.0413 26.9524 0.9752 0.0475 26.6722 0.9784 0.0473

RCN-FTVL [29] 28.1828 0.9784 0.0402 27.3827 0.9887 0.0463 26.9926 0.9887 0.0457

Ours 28.5610 0.9895 0.0389 27.8297 0.9926 0.0447 27.6327 0.9911 0.0435

https://doi.org/10.1371/journal.pone.0291911.t001
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Fig 8. Intensity profile of reference image (L035) against the denoised images of m-BM3D [19], IDSR [20],

DRCNN [34], PSL [46], RCN-FTVL [29] and the proposed method, respectively.

https://doi.org/10.1371/journal.pone.0291911.g008

Table 2. Quantitative indices SSIM scores of different methods on L035, L129 and L250. The bold values represent

the best results.

Method Dataset

L035 L129 L250

LDCT 0.7617 0.7226 0.7828

m-BM3D [19] 0.7915 0.7683 0.8026

IDSR [20] 0.8015 0.7762 0.8193

DRCNN [34] 0.8266 0.7925 0.8263

PSL [46] 0.8516 0.8262 0.8366

RCN-FTVL [29] 0.8715 0.8285 0.8526

Ours 0.8816 0.8546 0.8627

https://doi.org/10.1371/journal.pone.0291911.t002
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computation times. However, combining image decomposition with this technique enabling

vectorization of operations using contemporary SIMD (Single Instruction Multiple Data)

instructions set results in a significantly faster speed improvement. This is equivalent to paral-

lelism at the data level. To use SIMD instructions, our solution must strictly adhere to the con-

straint of accessing aligned data in memory, which is not required when implementing non-

local means with sliding windows. Our method makes use of the most recent SIMD instruc-

tions set and makes use of the prefix sum construct to effectively build images in a cache-

aware manner. It is crucial to note that, while using SIMD instructions and maximizing cache

hits do not improve the temporal complexity of an algorithm in the RAM model, they do sig-

nificantly reduce the computational load of its implementation.

Morphological residual processing

It works on the principle of extracting the low-pass linear filter residuals, which are then pro-

cessed using a non-linear technique based on morphological operators of area opening and

reconstruction. The output of the later processing is added back to the result of the low-pass

filtering. Non-linear filtering attempts to localize and extract relevant edges restored on the

final image such that blurring does not occur inside their regions. The method’s behavior is

determined by four parameters: the mask of the Gaussian (or other low-pass linear) filter, the

threshold t, the size coefficient s, and the contrast coefficient c. The final result may be adapted

to specific requirements depending on the parameters selected.

Size criterion approach

The amplitude of residuals is used to estimate meaningfulness. However, amplitude is not the

only criterion that affects the relevance of an image region. Image elements with a high ampli-

tude of residual are easily characterized as being unimportant for image understanding. For

example, the addition of salt-and-pepper noise to the original image generates a large number

of tiny (one-pixel-size) image elements of high amplitude on the input image and consequently

alters the residual image by adding high-amplitude elements. As a result, they would be identi-

fied as meaningful regions, which is undesirable. To address this issue, an additional step is

added where an area opening filter is used to filter the binary mask. This filter removes from

the binary image, all connected components with sizes smaller than a specified size threshold s
(size coefficient).

5. Discussion

The study presents a significance of LDCT image denoising that can reduce undesired noise

and streak artefact, which degrades the diagnostic performance. For analysis, we used a num-

ber of images from the standard dataset [48]. Both NDCT and simulated LDCT images of the

corresponding images are presented in Figs 2–7. The regions of interest (ROI) of local regions

represented by red boxes and red circles are shown in Figs 2–7 in case of accurately compara-

tion of resultant images of numerous strategies. The LDCT images clearly show streak artefacts

and mottling noise. We can see that the proposed strategy significantly improves image quality

while effectively suppressing streak artefacts. The reconstructed images bym-BM3D algorithm

shows that there are still some artifacts and noise. From the overall visual analysis, the images

obtained IDSR suffer from noticeable blocky effects. The results obtained from DRCNN

method, PSL method, and RCN-FTVL method still have a tendency to generate residual

artifacts.

Although the PSL denoising result is finer than DRCNN, it could not totally suppress noise,

but performs best in flat regions than DRCNN. Fig 9 shows that PSNR, SSIM, FSIM and
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RMSE scores of proposed method in terms of amplitude threshold (t). The highlight of Fig 9 is

that the PSNR, SSIM and FSIM of our method is higher than other methods, however its

RMSE score remain less which is ideal for better performance. The score of the proposed algo-

rithm always exhibits better values when compares tom-BM3D, IDSR, DRCNN, PSL and

RCN-FTVL. We conclude that our method has generated superior performance efficiency to

its competitors. RCN-FTVL algorithm suffers from residual noise. Noise and artefacts have

been eliminated while maintaining structural details impressively by the proposed method.

Overall, our method outperforms others when it comes to denoising performance. In all cases,

our method yields higher SSIM or FSIM values and lowest RMSE. Further, the noise in region

of interest (ROIs) is substantially lowest in our method and obtains somewhat appropriate

than other algorithms in all the ROIs. The original LDCT images clearly shows mottle noise

and streak artefacts. Them-BM3D denoising method performs well at removing noise and

artefacts but the blocky effects are noticeable especially in flat areas. The regions in the

Fig 9. The influence of amplitude threshold (t) on the proposed method with respects to PSNR, SSIM, FSIM and

RMSE.

https://doi.org/10.1371/journal.pone.0291911.g009
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denoised image obtains using IDSR approach still suffers by mottle noise however it works

pretty well in case of preserving edges and features. However, there are still plenty of lots of

residual streak artefacts visible. In comparison to other competing methods, our method is the

typically effective. The PSNR, SSIM, FSIM and RMSE are utilized to objectively evaluate the

quality of images of denoised clinical CT scan images. It could be observed that the PSNR,

SSIM and FSIM scores of our approach are highest while RMSE values of our method are low-

est which indicates better performance. The quantitative evaluation criteria PSNR, SSIM,

FSIM and RMSE tabulated in Tables 1 and 2 represents that our method demonstrates ideal

results compares to other comparative approaches. Also, the denoised images demonstrate

that proposed approach surpasses all other competing algorithms in case of visual analysis.

That is to say, both a quantitative study and a visual result indicate to the accomplishment of

the proposed strategy. Table 3 presents the computational time for execution of all methods

(i.e.,m-BM3D, IDSR, DRCNN, PSL, RCN-FTVL and the proposed method). We can see that

the DRCNN and RCN-FTVL methods have the longest running times. This is so because deep

learning models takes longer processing time during training and testing phase. Other

approaches take less time besides these two models. As a result, our method requires much less

running time for all of the test images when compared to the other competing methods. In

addition, we can observe from the residual images represented in Fig 10 that the residual

images generated by the LDCT images are noisy and exhibits poor visualization, however,

residual images produced by the proposed denoised images are clearer and free on noise. This

further indicates that the proposed method is able to remove noise from the LDCT images and

exhibits visually appealing results.

6. Conclusions and future work

This study presented a competent LDCT denoising technique based on a constructive non-

local means algorithm with morphological residual processing for the purpose of removal of

noise and simultaneously improving the image quality of LDCT images. We proposed a fast

approach for computing non-local filtering and presented the results after denoising noisy

LDCT images. The proposed method uses an efficient version of non-local means filter that

can able to generate better results. The fast vectorized and parallel implementation in recent

common memory computer platforms based on the latest single instruction multiple data

(SIMD) instruction set is faster and scales fine with image dimension as well as core count. For

edge-preserving image processing, we also use lowpass filtering combined with residual mor-

phological processing. In order to achieve this, it combines linear lowpass filtering with the

non-linear approach which enables the selection of important regions where edges can be

effectively retained. Using morphological processing of the linear filer residuals, the regions

are selected with a focus on recognising important regions with high amplitude and precise

size. In terms of noise and artifact removal, our technique performs better than other

Table 3. Average running times for the different LDCT denoising algorithms.

Method Average running time (s)

m-BM3D [19] 0.0341

IDSR [20] 0.0485

DRCNN [34] 0.0627

PSL [46] 0.0527

RCN-FTVL [29] 0.0667

Ours 0.0286

https://doi.org/10.1371/journal.pone.0291911.t003

PLOS ONE Low-dose computed tomography denoising

PLOS ONE | https://doi.org/10.1371/journal.pone.0291911 September 27, 2023 18 / 22

https://doi.org/10.1371/journal.pone.0291911.t003
https://doi.org/10.1371/journal.pone.0291911


algorithms. The proposed approach effectively preserves structural and textural features. The

iteration times are significantly reduced by the proposed method which makes a substantial

contribution to the reduction of processing time and cost. However, the removal of noise from

the LDCT images is still a challenging process since it contains higher spatial variations and

correlations. The performance of denoising will continue to improve as soon as the parameters

in the proposed approach can be properly adjusted according to the noisy input images.

Although the proposed method produces high-quality LDCT images, the diagnostic

Fig 10. Residual images: (a, c, e) represents low-dose CT images and (b, d, f) represents corresponding denoised

images of the proposed method on L035, L129 and L250.

https://doi.org/10.1371/journal.pone.0291911.g010
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performance has not been investigated which is the limitation of the proposed method. The

practicability of utilising simulated CT images is examined however the diagnostic perfor-

mance was not accessed. In the future, more efforts will be formulated to translate our tech-

nique for other denoising problems.
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