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Background: Radiomics can provide in-depth characterization of cancers for 
treatment outcome prediction. Conventional radiomics rely on extraction of 
image features within a pre-defined image region of interest (ROI) which are 
typically fed to a classification algorithm for prediction of a clinical endpoint. 
Deep learning radiomics allows for a simpler workflow where images can be used 
directly as input to a convolutional neural network (CNN) with or without a pre-
defined ROI.

Purpose: The purpose of this study was to evaluate (i) conventional radiomics and 
(ii) deep learning radiomics for predicting overall survival (OS) and disease-free 
survival (DFS) for patients with head and neck squamous cell carcinoma (HNSCC) 
using pre-treatment 18F-fluorodeoxuglucose positron emission tomography 
(FDG PET) and computed tomography (CT) images.

Materials and methods: FDG PET/CT images and clinical data of patients with 
HNSCC treated with radio(chemo)therapy at Oslo University Hospital (OUS; 
n  =  139) and Maastricht University Medical Center (MAASTRO; n  =  99) were 
collected retrospectively. OUS data was used for model training and initial 
evaluation. MAASTRO data was used for external testing to assess cross-
institutional generalizability. Models trained on clinical and/or conventional 
radiomics features, with or without feature selection, were compared to CNNs 
trained on PET/CT images without or with the gross tumor volume (GTV) 
included. Model performance was measured using accuracy, area under the 
receiver operating characteristic curve (AUC), Matthew’s correlation coefficient 
(MCC), and the F1 score calculated for both classes separately.

Results: CNNs trained directly on images achieved the highest performance on 
external data for both endpoints. Adding both clinical and radiomics features 
to these image-based models increased performance further. Conventional 
radiomics including clinical data could achieve competitive performance. 
However, feature selection on clinical and radiomics data lead to overfitting and 
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poor cross-institutional generalizability. CNNs without tumor and node contours 
achieved close to on-par performance with CNNs including contours.

Conclusion: High performance and cross-institutional generalizability can 
be achieved by combining clinical data, radiomics features and medical images 
together with deep learning models. However, deep learning models trained on 
images without contours can achieve competitive performance and could see 
potential use as an initial screening tool for high-risk patients.

KEYWORDS

machine learning, deep learning, artificial intelligence, feature selection, radiomics, 
head and neck cancer, interpretability, outcome prediction

1. Introduction

Head and neck cancer (HNC) accounts for 3% of cancers 
worldwide (1). The majority of HNCs are head and neck squamous 
cell carcinomas (HNSCC) of the oral cavity, oropharynx, hypopharynx 
and larynx (2, 3). Most patients present with locally advanced disease 
where standard treatment is concurrent radio-chemotherapy with or 
without surgery first (4). Pre-treatment imaging is routinely done 
using computed tomography (CT) and/or magnetic resonance 
imaging (MRI), but 18F-fluorodeoxyglucose positron emission 
tomography (FDG PET)/CT can be  superior at identifying 
locoregional nodal involvement or distant metastasis and cancer 
recurrence at follow-up (5).

Major risk factors for HNSCC include smoking and heavy alcohol 
consumption particularly for oral cavity, hypopharyngeal, and 
laryngeal cancers, as well as oropharyngeal cancers not related to 
human papillomavirus (HPV) (5, 6). HPV is associated with an 
estimated 60%–70% of oropharyngeal cancers. The 8th edition of the 
American Joint Committee on Cancer (AJCC) tumor–node–
metastasis staging system (TNM8) defines HPV-related and 
HPV-unrelated oropharyngeal cancer as distinct entities with different 
tumor characteristics and treatment outcomes (6). Staging is strongly 
associated with treatment outcome as are other clinical factors such as 
comorbidity status, tobacco use, gender, and age (5). Image-based 
parameters such as the FDG PET maximum standardized uptake 
value (SUVmax) (7) of the primary tumor (8) or texture-related 
parameters (9) characterizing tumor heterogeneity (10) may provide 
additional information aiding in HNC outcome prediction.

Image-based parameters can be obtained using radiomics where 
medical images are mined for information not readily apparent to the 
human eye that can improve and guide diagnostics and medical 
decision-making (9, 11–14). In its basic form, radiomics uses 
mathematical algorithms to convert 2D or 3D images into high-
dimensional tabular data of radiomics features. These features require 
contouring of the region of interest (ROI), such as the primary tumor 
and involved lymph nodes, and consist of three main categories 
describing the intensity distribution, the shape and size, and the 
texture of the ROI (9). The tabular data is passed to a machine learning 
algorithm for model training and prediction of a clinical endpoint and 
is henceforth referred to as conventional radiomics. In deep learning 
radiomics, on the other hand, images are sent directly into a 
convolutional neural network (CNN) either with tumor/node 
contours or without these contours (9, 15). Thus, calculation of 

radiomics features can be  bypassed, as can tumor and node 
contouring. During training, the network automatically learns 
discriminant features which form the basis for its prediction.

For HNSCC, radiomics has been used for prediction of treatment 
outcomes including locoregional control (LRC), distant metastases 
(DM), disease-free survival (DFS), progression-free survival (PFS), 
and overall survival (OS) (15–22), as well as nodal failure (23, 24), 
HPV status (10), and xerostomia (25). Radiomics features from multi-
modality images can improve radiomics model performance relative 
to single-modality features in some but not all cases (19, 26). Other 
studies find that radiomics features alone do not improve model 
performance relative to clinical models, but combined models 
incorporating radiomics, clinical and biological features can 
significantly improve performance (19, 20, 23, 24). Single and multi-
modality deep learning radiomics have also been explored for HNC 
and provide overall good performance, on par with or higher than 
conventional radiomics (15, 27).

Despite its potential, radiomics has certain pitfalls. Radiomics is 
influenced by several factors in the radiomics pipeline that can affect 
both the robustness and generalizability of models across patient 
cohorts and centers (12, 28). These include differences between image 
acquisition and reconstruction protocols, uncertainties introduced 
due to interobserver variations during contouring of the ROI, as well 
as the many possibilities available for image pre-processing (29). In 
addition, conventional radiomics involves several alternatives related 
to image discretization and feature extraction (29), which can generate 
thousands of features that may greatly outnumber the number of 
patients. An exhaustive search for all possible combinations of relevant 
features is not possible and may end up with an overfitted solution 
where the set of features is too focused on the training or validation 
data, while not generalizing well to unseen test data, preferably from 
an external center (11). An optimal feature selection method should 
find a small set of features that are representative across the entire 
patient population, are medically justifiable, and have diagnostically 
discriminant properties. This would greatly improve model 
interpretability. In addition, although powerful, deep learning 
radiomics can be much more difficult to interpret relative to models 
based on a few interpretable radiomics features (30–33).

As conventional radiomics may be particularly sensitive to issues 
in the radiomics pipeline, we hypothesize that deep learning radiomics 
may be more robust and generalizable to external testing and provide 
higher overall performance. We further hypothesize that combining 
explainable artificial intelligence (AI) with deep learning radiomics 
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will provide a sanity check that deep learning models focus on regions 
within the images that are of importance for treatment outcome. The 
aim of this study was therefore to conduct a comprehensive 
comparison of prediction models using conventional radiomics or 
deep learning radiomics based on pre-treatment multi-modal PET/
CT of HNC for two clinical endpoints OS and DFS. Models based 
solely on clinical factors were used as reference to assess the added 
benefit of radiomics. To assess model generalizability, prediction 
models were first trained and tested on internal data from one center 
and then tested on external data from another center in a 
different country.

2. Materials and methods

2.1. Patient characteristics

In this study, two HNSCC datasets from two separate centers, 
namely Oslo University Hospital (OUS) and Maastricht University 
Medical Center (MAASTRO), were analyzed. The OUS patients were 
used for model training, validation and internal testing, whereas the 
MAASTRO patients were used as an external test set. HNSCC patients 
treated with radio(chemo)therapy at OUS between 2007 and 2013, or 
MAASTRO between 2008 and 2014, were retrospectively collected. 
The OUS patient cohort is described in detail in Moan et al. (7) which 
assessed the prognostic role of clinical factors and standard FDG PET 
parameters on DFS. Patients from the OUS cohort have also been 
analyzed in three automatic segmentation studies (34–36). Briefly, the 
inclusion criteria at both centers were: HNSCC of the oral cavity, 
oropharynx, hypopharynx and larynx, and available radiotherapy 
plans based on FDG PET/CT. Patients who did not have a contrast-
enhanced CT along with the PET examination, as well as patients with 
oropharyngeal cancer and unknown HPV status, were excluded from 
the present study. This resulted in 139 OUS patients and 99 
MAASTRO patients included for analysis. Characteristics of the 
included patients are summarized in Table 1. Due to the moderate 
number of included patients and the different primary tumor site 
distributions between the OUS and MAASTRO datasets (Table 1), a 
mixed analysis, i.e., including all primary tumor sites in the datasets, 
was preferred over subgroup analysis, i.e., focusing on one single 
primary tumor site. Mixed analysis for HNC outcome prediction is 
also encountered frequently in the literature, as summarized in 
Adeoye et al. (37).

Both the OUS and MAASTRO patients were originally staged 
according to the 7th edition AJCC TNM system. The patients were, 
however, re-staged in accordance with the latest 8th edition TNM 
system, i.e., TNM8 (38). The similarity in patient characteristics 
between the two cohorts was assessed using unpaired Wilcoxon rank 
sum tests for continuous variables, and two-proportion z-tests for 
categorical variables. The statistical analysis was conducted in R. All 
tests were two-sided with a significance level of 0.05. An overview of 
the treatments given to the included patients at each center is provided 
in Supplementary Table A1.

For both datasets, the tabular data (i.e., clinical factors and response 
variables), as well as the image and contour data were screened for outliers 
and missing records prior to analysis. No imputation was performed.

TABLE 1 Patient characteristics of the OUS and MAASTRO datasets.

Characteristics OUS 
(n =  139)

MAASTRO 
(n =  99)

p-valuec

Age (years)

  Mean ± SD (median) 60.2 ± 7.7 (60) 61.6 ± 9.5 (61) ns

Gender

  Female 32 (23.0%) 26 (26.3%)
ns

  Male 107 (77.0%) 73 (73.7%)

Smoking (pack years)

  Mean ± SD (median) 25.0 ± 22.8 (22.5) 46.1 ± 47.5 (40.0) <0.0001

Tumor site

  Oral cavity 11 (7.9%) 3 (3.0%) ns

  Oropharynx 91 (65.5%) 44 (44.4%) <0.01

  Hypopharynx 16 (11.5%) 15 (15.2%) ns

  Larynx 21 (15.1%) 37 (37.4%) <0.001

Overall stage (TNM8a)

  I–II 72 (51.8%) 19 (19.2%)
<0.0001

  III–IV 67 (48.2%) 80 (80.8%)

HPV-relatedb

  Yes 80 (57.6%) 22 (22.2%)
<0.0001

  No 59 (42.4%) 77 (77.8%)

Histologic grade

  Low/moderate 43 (30.9%) 59 (59.6%)
<0.0001

  High 96 (69.1%) 40 (40.4%)

Charlson comorbidity index

  0 86 (61.9%) 25 (25.3%)
<0.0001

  1–6 53 (38.1%) 74 (74.7%)

SUVpeak

  Mean ± SD (median) 11.0 ± 5.4 (10.0) 11.2 ± 6.2 (10.6) ns

MTV

  Mean ± SD (median) 11.9 ± 13.5 (7.1) 15.1 ± 12.0 (10.9) <0.001

TLG

  Mean ± SD (median) 121.0 ± 194.7 

(56.6)

109.9 ± 105.6 

(74.1)

0.03

DFS

  Event (class 1) 68 (48.9%) 59 (59.6%)
ns

  Non-event (class 0) 71 (51.1%) 40 (40.4%)

OS

  Event (class 1) 57 (41.0%) 53 (53.5%)
ns

  Non-event (class 0) 82 (59.0%) 46 (46.5%)

OUS, Oslo University Hospital; MAASTRO, Maastro Clinic, Maastricht; HPV, human 
papillomavirus; MTV, metabolic tumor volume; TLG, total lesion glycolysis; DFS, disease-
free survival; OS, overall survival; ns, not significant.aAccording to the 8th edition tumor—
node—metastasis (TNM) system.
bHPV-related defined as HPV positive oropharyngeal cancers.
cp-values for unpaired Wilcoxon rank sum tests (continuous variables) and two-proportion 
z-tests (categorical variables) assessing the similarity in patient characteristics between the 
two cohorts (significance level: 0.05).
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The study was conducted in accordance with the Declaration of 
Helsinki. Approval was obtained from the Institutional Review Board 
and the Regional Ethics Committee for Medical and Health 
Research Ethics.

2.2. FDG PET/CT imaging and manual 
contouring

FDG PET/CT imaging was conducted at baseline following the 
standard image acquisition and reconstruction protocols used for 
HNC radiotherapy planning at each center. Briefly, imaging was 
performed using a radiotherapy compatible flat table with head 
support and a radiotherapy fixation mask. The included PET data 
were collected from the skull base to the mid chest with arms down. 
CT imaging was optimized for the head and neck region and 
performed with an iodinated contrast medium. The PET and CT 
were acquired in one session on the PET/CT scanner. Further 
details on the imaging protocols can be  found in 
Supplementary Table A2.

The gross primary tumor (GTVp) and any involved nodal 
volume (GTVn) were contoured manually at the time of initial 
radiotherapy planning, in accordance with the local delineation 
protocols. For patients treated at OUS, contouring was done in 
accordance with the previous DAHANCA guidelines (39) based on 
the radiotherapy FDG PET/CT information using the following 
strategy: first an experienced nuclear medicine physician contoured 
the structures based on PET. Next, one or two oncology residents 
refined the delineations based on clinical information and the 
contrast-enhanced CT. Finally, a senior oncologist reviewed and 
approved the contours. For patients treated at MAASTRO, the 
GTVp and GTVn were delineated on the FDG PET/CT used for 
radiotherapy planning purposes, by the treating radiation 
oncologist with consultation of the nuclear medicine physician if 
needed. The contours were always reviewed and approved by a 
second radiation oncologist.

The PET/CT image series and DICOM structures were exported 
to an external computer and pre-processed using Interactive Data 
Language (IDL) v8.5 (Harris Geospatial Solutions, Broomfield, CO, 
United States). The PET and CT images along with the delineated 
GTVp and GTVn structures were resampled to 1 mm3 isotropic voxels 
and registered to a common frame of reference. PET image values 
(Bq/mL) were converted to standardized uptake values (SUV), 
normalized with respect to body weight.

2.3. Clinical factors and image features

The 11 clinical factors (7 factors + 4 tumor sites) listed in Table 1 
were included for analysis. HPV-related HNSCC was defined as HPV 
positive oropharyngeal cancers. In addition, the three standard PET 
parameters SUVpeak, metabolic tumor volume (MTV) and total lesion 
glycolysis (TLG) were calculated within the delineated GTVp. SUVpeak 
was defined as the maximum mean SUV of a 1 cm3 sphere with center 
within the GTVp. The MTV was thresholded within the GTVp using 
a threshold value equal to 50% of the SUVpeak, whereas the TLG was 
defined as the MTV × SUVmean where SUVmean was defined as the mean 
SUV within the GTVp.

The PET/CT images and binary GTVp and GTVn image 
masks were also included for analysis. In addition, 354 radiomics 
features (40 first order, 14 shape, and 300 texture features) were 
extracted from the primary tumor based on the PET/CT images 
and the GTVp image masks using our in-house software imskaper1 
based on PyRadiomics (40). As an extension to radiomics features 
from PyRadiomics, imskaper also extracted 20 local binary pattern 
(LBP) features (41) that capture additional 3D textures and 
patterns. Note that, all these 374 radiomics features were extracted 
from the primary tumor (GTVp) only, and not the involved nodal 
volume (GTVn). Detailed information about the process of 
extracting radiomics features can be  found in 
Supplementary material B.

In summary, three different types of input data (D) were analyzed: 
tabular data including the aforementioned 11 clinical factors and three 
standard PET parameters (D1, 14 features); image-based tabular data 
of radiomics features (D2, 374 features); and image data including 
PET/CT images, the GTVp image masks, and the GTVn image 
masks (D3).

2.4. Data pre-processing

Before feeding to a conventional machine learning or deep 
learning algorithm, the tabular data (D1 and D2) was pre-processed. 
First, the clinical factors gender, histologic grade, Charlson 
comorbidity index, and TNM8 stage (Table 1) were converted into 
binary features. The dichotomization of the multi-level clinical factors 
histologic grade, Charlson comorbidity index and TNM8 is outlined 
in Table 1 and was done in accordance with a previous analysis of the 
same OUS cohort (7). Thereafter, since conventional machine learning 
and deep learning algorithms can only handle numeric data, the 
categorical feature tumor site was transformed into four different 
binary features representing each associated tumor site. Thus, D1 
contained a total of 14 features, including 11 clinical factors and three 
standard PET parameters. Finally, all continuous features in D1 and 
D2 were standardized using the z-score standardization. In addition, 
we removed any duplicated radiomics features extracted from the PET 
and CT images (and from different binning settings), resulting in D2 
having a total of 374 radiomics features. For details see 
Supplementary material B.

The original image size was reduced by cropping all images and 
structure masks to a 191 x 265 x 173 mm3 volume of interest, 
encompassing the head and neck region. A narrow soft-tissue CT 
window of center 70 Hounsfield Units (HU) and width 200 HU was 
applied to all CT images, in line with our previous analysis of the OUS 
patients (34, 35). Based on the 95% percentile of the maximum SUV 
(SUVmax) among all patients in the OUS dataset (used for model 
training), we decided to apply a cut-off SUV of 25 on the PET images 
to remove any unexpected outliers. All voxel intensities of the CT and 
PET images were then scaled to the range [0, 1] before feeding into 
any CNN.

1 Available at: https://github.com/NMBU-Data-Science/imskaper.
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2.5. Modeling overview and response 
variables

As briefly outlined in the Introduction, we compared conventional 
radiomics to deep learning radiomics using the models shown in 
Table  2. For the conventional radiomics analysis we  compared 
conventional machine learning prediction algorithms to fully 
connected neural networks (FCNN). For deep learning radiomics, 
we  used CNNs and assessed the effect of including manually 
delineated GTVp and GTVn contours on model performance. 
Ensemble models combining both clinical and radiomics models were 
used to examine their relative importance for outcome prediction. 
Lastly, as a sanity check, we explored model explainability using a 
feature selection method based on a repeated elastic net technique 
(42) on radiomics features and explainable AI techniques for our 
CNN models.

Separate prediction models were trained to predict OS and 
DFS. OS was recorded as the length of time from start of treatment to 
death, and DFS was recorded as the length of time, from start of 
treatment, that the patients survived without any signs or symptoms 
of cancer. Both endpoints were treated as binary responses (0 and 1), 
in which class 1 indicated an event occurrence. Thus, for OS death was 
counted as an event, whereas for DFS local, regional or metastatic 
failure, or death, was counted as an event. End of follow-up time was 
June 13, 2017, for the OUS patients, and February 18, 2018, for the 
MAASTRO patients.

2.6. Feature selection using RENT—
repeated elastic net technique

Given the high number of features in the tabular data there is the 
potential that machine learning models trained on these data will 
overfit, which in turn leads to poorer generalization capability when 
used on new unseen data. Moreover, high numbers of features may 
impact model interpretability, which is particularly problematic in 
healthcare data science, since interpretability is of highest importance 
to healthcare personnel. For this reason, we  applied the repeated 
elastic net technique feature selection method named RENT (42) to 
the data using the RENT feature selection package (43). RENT 
acquires information on selection stability for each feature and utilizes 
this information for the selection of the final set of features. RENT, or 
slight modifications thereof, has been shown to be useful specifically 

for high-dimensional datasets consisting of more features than 
samples and has been applied in life-science research (44–46).

RENT trains an ensemble of generalized linear models on unique 
subsets of the data using elastic net regularization. The RENT 
framework provides information on which features in the dataset are 
selected consistently across all ensemble models and determines the 
final set of selected features based on the weight distribution of each 
feature. The distribution of the weights of each feature is acquired 
from the ensemble of models.

Three different weight-based criteria are used to summarize 
consistency for each feature across the modeled subsets: (i) the 
number of non-zero occurrences (how often was the feature weight 
non-zero, meaning that the feature been selected), (ii) the sum of 
coefficient signs (how often do the weights have the same sign?), and 
(iii) the Student’s t-test for deviation from zero (are the weights 
significantly larger than zero?). Each of the criteria emphasizes 
different aspects of stability and contribution. By thresholding each 
criterion and combining them, feature selection of higher quality than 
simple filter-based selection methods can be obtained.

In the feature selection process, we applied RENT in a brute-force 
manner by using repeated stratified K-fold cross validation with 5 
splits and 20 repetitions with various combinations of values of the 
elastic net hyperparameter and regularization strength hyperparameter 
of the underlying logistic regression model used in RENT. For each 
combination of hyperparameters this results in a total of 100 sets of 
RENT-selected features where important features appear in all 100 
feature sets (selection frequency 100%), non-informative features are 
present in none of the 100 feature sets (selection frequency 0%), and 
partially important features are present in between 0 and 100% of the 
100 feature sets. The combination of hyperparameters leading to the 
best average predictive performance across 100 RENT models was 
then used for feature selection.

2.7. Prediction models

In this study, we  conducted a comprehensive comparison of 
conventional machine learning and deep learning models based on 
different input types (D1, D2, and D3) to evaluate the effect of 
algorithm and input type on model performance and generalizability. 
Table 2 shows the seven models (M1–M7) with increasing complexity 
levels and different input data used in this study. The included 
classification algorithms (conventional machine learning: logistic 

TABLE 2 Overview of the models. The models (M1-M7, column 1) are sorted with increasing level of complexity. Input data (D) to each model is 
specified in the last two columns.

ID Model architecture Model type Input data type Input data

M1 Logistic regression Conventional machine learning Tabular data Clinical data (D1), Radiomics data 

(D2) or all tabular data (D1 + D2)

M2 Random forest Conventional machine learning Tabular data D1, D2 or D1 + D2

M3 Neural network without interaction Deep learning (FCNN) Tabular data D1, D2 or D1 + D2

M4 Neural network with interaction Deep learning (FCNN) Tabular data D1, D2 or D1 + D2

M5 EfficientNet3D CNN Deep learning (CNN) Image data PET/CT (D3)

M6 EfficientNet3D CNN Deep learning (CNN) Image data PET/CT & GTVp (D3)

M7 EfficientNet3D CNN Deep learning (CNN) Image data PET/CT, GTVp & GTVn (D3)

FCNN, fully connected neural network; CNN, convolutional neural network.
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regression and random forest; deep learning: fully CNN (FCNN) with 
or without interactions and EfficientNet CNN) were selected to span 
several levels of complexity. More specifically, the rationale for 
selecting logistic regression and random forest were as follows: (i) 
both algorithms are commonly used and have documented adequate 
performance for binary classification tasks, both outside and within 
the medical domain. (ii) Logistic regression is often a method of 
choice for outcome prediction within the medical domain, making it 
a natural reference algorithm. (iii) The two algorithms capture 
different relationships between the input features and the response 
variable: logistic regression is a linear algorithm resulting in linear 
decision boundaries between classes, whereas random forest can 
capture non-linear relationships, thereby resulting in more complex 
decision boundaries. The EfficientNet CNN was selected as it is one of 
the state-of-the-art 2D image classification models, with its ability to 
efficiently learn different characteristics from the images with 
significantly fewer parameters than similar CNNs (47–49).

Reference prediction models based on tabular data (clinical 
factors D1 and radiomics features D2) were constructed using the 
conventional machine learning methods logistic regression (M1) and 
random forest (M2). In addition, two deep learning approaches were 
also tested on these tabular data: one using a simple FCNN (M3) and 
the other using a FCNN with interactions between network nodes 
(M4) to learn possible feature interactions within the data. See 
Supplementary material C for details. The input data to models M1–
M4 were: (i) all features in the clinical data (D1), (ii) all features in the 
radiomics data (D2), (iii) the combination of all tabular data (D1 + D2) 
and (iv) subsets of (i), (ii) or (iii) based on features selected by RENT 
at least once (1%) or at least 50 times (50%) out of 100 RENT runs (see 
Section 2.6).

Since the input images in this study were 3D images, a 3D version 
of the original EfficientNet was required. While constructing an 
EfficientNet that works with 3D images is possible in theory, a full-
scaled 3D EfficientNet is still limited by computing power and suffers 
from the curse of dimensionality (47). Therefore, we  designed a 
downscaled 3D version of the EfficientNet CNN to derive patterns or 
possibly radiomics features from 3D image input (D3) 
(Supplementary material C and Supplementary Table C5). With this 
CNN, three outcome prediction models using the following different 
groups of image input were evaluated: (i) PET and CT (M5); (ii) PET, 
CT and GTVp (M6); (iii) PET, CT, GTVp and GTVn (M7). Note that 
model M5 was based only on the PET/CT images and did not use ROI 
contours (contour-free model).

Since there were two different input data types, tabular data and 
image data, we wanted to investigate the benefit of combining models 
trained on different data types. These combinations resulted in 
combined models (i.e., ensembles of models) with the following input 
combinations: D1 + D3, D2 + D3 and D1 + D2 + D3. The primary 
outputs of all models M1–M7 were class probabilities within the range 
[0, 1]. Based on the receiver operating characteristic curve (ROC) 
analysis of OUS data, an optimal threshold of 0.5 for the predicted 
class probability was selected to separate class 0 and class 1. 
We combined the different models by averaging their predicted class 
probabilities, giving the ensemble average.

Model hyperparameters were optimized based on a weighted 
score (Supplementary material C) calculated from the validation area 
under the receiver operating characteristic curve (AUC), Matthew’s 
correlation coefficient (MCC), F1 score on both class 1 and class 0, 

and the training F1 score on class 1. See Section 2.8 for details. The 
hyperparameters that were optimized were the model regularization 
parameter for the logistic model M1, the number of trees (estimators) 
and maximum features in each split for the random forest model M2, 
and the loss function, dropout rate, and architecture complexity for 
the deep learning models M3–M7. Detailed information on the 
selected hyperparameters used in models M1–M7, as well as the 
chosen architectures of models M3–M7 are shown in 
Supplementary Tables C1–C5.

2.8. Training and evaluation metrics

Models M1–M7 (Table 2) were first trained, validated and tested 
on the OUS dataset. This dataset was split into five folds, where the 
folds were stratified to conserve the proportion of stage I + II vs. 
III + IV patients (TNM8) in the full dataset. Even though a simple 
K-fold cross-validation can be used to tune model hyperparameters, 
we were also interested in evaluating the actual model performances 
(i.e., internal testing) across the OUS dataset. Therefore, we used a 
nested five-fold cross-validation approach (50) for hyperparameter 
optimization and model assessment, as shown in Figure 1, where 
four models were trained on three folds and validated on one fold 
using different train-validation fold combinations to predict each 
unseen test fold. This process was repeated five times, generating a 
total of 20 models. Since there were four different prediction outputs 
per patient for each test fold, we  combined these outputs via 
ensemble averaging, thus generating the final OUS test prediction 
outputs. Note that prediction outputs for binary classification 
models are always within the range 0 and 1, where 0.5 was used as a 
threshold to decide if the prediction labels belonged to class 0 or 
class 1.

After training and evaluating a given model on the OUS dataset, 
the external MAASTRO dataset (Figure 1) was used for testing the 20 
models on a different cohort, playing the role of an external test set 
(51). The final prediction outputs of the 20 models on the MAASTRO 
dataset were then averaged, giving one outcome label per patient. The 
full workflow of training and evaluating the models can be found in 
Figure 1.

Five main performance metrics emphasizing different aspects of 
model performance were computed: (i) Accuracy, (ii) AUC, (iii) MCC 
(rescaled to the interval 0 to 1), and F1 score on class 1 (iv) and class 
0 (v) separately. To allow for thorough future inter-study comparisons, 
the following three additional performance metrics were also 
computed: precision, recall, and specificity. Performance metric 
definitions are given in the Supplementary material D.

As the event ratios (class 1 ratios) were different between the two 
datasets [DFS: 49% (OUS), 60% (MAASTRO); OS: 41% (OUS), 54% 
(MAASTRO)], all metrics were calculated from 1,000 bootstrap 
samples from prediction outputs of each dataset, using a 1:1 ratio 
between the two classes (Figure 1).

2.9. CNN model interpretability analysis

Even though it may be relatively straightforward to determine 
the input features that contribute to the outputs of conventional 
machine learning models such as logistic regression and random 
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forest, this is not the case for deep learning models, especially for 
CNNs. The limitation in interpretability and explainability of 
deep learning models are often due to their non-linear 
characteristics and vast amount of training parameters (32). 
Various approaches for solving this problem provide heatmaps of 
important voxels that contribute to the model predictions. The 
main concept is based on the saliency map (52), which calculates 
the effect of a small change in an input voxel for the model 
prediction. However, saliency maps are usually noisy (53), which 
leads to other methods such as guided back-propagation (54), 

SmoothGrad (53), VarGrad (55), and GradCAM (56). In this 
study, we used VarGrad which has been shown to outperform 
other mentioned methods (57).

The VarGrad method calculates the variance of the model 
gradients based on each prediction. Let f be the function indicating 
the deep learning model where prediction inputresponse image= ( )f , 
then the gradients G is the derivative of the function f, G f= ′, 
resulting in the saliency maps. To generate the VarGrad heatmap, 
we perturbed each input image by adding noise, then calculated the 
gradients G to generate the saliency map associated with the input 

FIGURE 1

The workflow of training, validating, and testing models M1–M7. The OUS dataset was divided into five folds (top), with three folds (green) used for 
training, one fold (orange) used for validation and one fold (red) used for internal testing. A nested five-fold cross-validation repeated five times was 
then applied to these folds resulting in a total of 20 models. In this approach, four models (1–4) were trained and then tested on the internal test fold 
(red). The four predictions on the test fold were averaged giving the ensemble average for each patient in this fold. This process was repeated five 
times, creating 20 models and five ensemble averages. Then the five ensemble averages were stacked vertically, resulting in the full predictions for 
each patient in the OUS dataset based on the hold-out internal test data. The 20 models were then evaluated on the external MAASTRO dataset. The 
MAASTRO predictions for each patient were also obtained via ensemble averaging. To compensate for class imbalances when calculating the 
performance metrics, the final metrics were calculated from 1,000 bootstrap samples (patients) using 1:1 ratio between classes.
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image. We repeated these steps 20 times, and the variances of the 
resulting 20 different gradients for each input image provided the 
VarGrad heatmaps showing the important voxels associated with 
each input image.

For each response variable DFS and OS, we applied the VarGrad 
method to the highest performing CNN models M5–M7 and analyzed 
the resulting heatmaps to investigate which areas in the input image 
contributed the most to the model prediction.

3. Results

3.1. Features selected by brute-force 
RENT

Tables 3, 4 show the features most frequently selected by the 
brute-force RENT feature selection approach, as described above, 
when predicting DFS and OS on the OUS dataset. The complete list 

TABLE 3 Features selected by RENT with at least 25% frequency for predicting DFS.

Input group Feature Frequency (%)

Clinical factors D1

HPV-related 98

TNM8 stage 89

Smoking (pack year) 41

Tumor site—oral cavity 39

Tumor site—oropharynx 37

Radiomics features D2

Shape feature—tumor sphericity 95

PET texture—LBP_102 95

Shape feature—tumor Elongation 69

CT texture—GLSZM small area low gray level emphasis 63

PET texture—LBP_201 48

PET texture—GLSZM gray level non uniformity normalized 31

All tabular data. Clinical factors 

D1 + radiomics features D2

Shape feature—tumor sphericity 98

Shape feature—tumor elongation 95

PET texture—LBP_102 94

CT texture—GLSZM small area low gray level emphasis 85

PET texture—LBP_201 68

HPV related 55

PET texture—GLSZM gray level non uniformity normalized 49

TNM8 stage 47

TABLE 4 Features selected by RENT with at least 25% frequency for predicting OS.

Input group Feature Frequency (%)

Clinical factors D1

TNM8 stage 100

HPV-related 95

Smoking (pack year) 47

Tumor site—oropharynx 36

Radiomics features D2

Shape feature—tumor sphericity 100

CT texture—GLCM joint average 79

CT texture—GLCM sum average 79

Shape feature—major axis length 57

CT first order—maximum discrete HU 35

PET texture—GLRLM high gray level run emphasis 34

Shape feature—maximum tumor 3D diameter 31

PET texture—GLCM cluster shade 25

All tabular data. Clinical factors 

D1 + radiomics feature D2

Shape feature—tumor sphericity 100

TNM8 stage 88

HPV-related 86
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of features selected at least once by brute-force RENT (≥ 1% selection 
frequency) is shown in Supplementary material E.

For input group D1 (clinical factors and standard PET parameters), 
seven and ten (out of 14) features were selected by RENT at least once 
for OS and DFS, respectively (Supplementary Tables E1, E2 and 
Supplementary material E). The most frequently selected features were 
HPV status and the TNM8 stage, followed by smoking status and the 
tumor site (Tables 3, 4). Out of the 374 radiomics features from D2, less 
than 10% were selected by RENT at least once, with the shape feature 
sphericity as the top feature for both outcomes. For DFS prediction, PET 
rather than CT texture features were more frequently selected, whereas 
PET and CT textures were selected about equally for OS prediction. For 
DFS models based on both clinical and radiomics features (D1 + D2), 
RENT selected 42 features where two shape features, namely sphericity 
and elongation, and an LBP PET texture feature were selected most 
frequently. Only seven clinical features were selected in this feature 
subset, and the remaining selected features were mostly PET texture 
features. Surprisingly, for the OS models based on the combined data 
(D1 + D2), sphericity was the only selected radiomics feature, whereas 
the remaining six features were clinical factors, with TMN8 stage and 
the HPV status being the most frequently selected after sphericity. For 
both outcomes, first order radiomics features and the three standard 
PET parameters were rarely selected by RENT 
(Supplementary Tables E1, E2).

3.2. Model performances

Figures 2–7 show the performance of DFS and OS models on the 
two cohorts, OUS (internal test set) and MAASTRO (external test 
set). A dashed reference line is given in the figures to indicate the 
points of equal model performance on both cohorts. Models (data 
points) lying along this line performed equally well on both cohorts. 
Data points below the diagonal dashed reference line, show models 
overfitting the OUS dataset whereas data points above the line show 
models with higher performance on the MAASTRO than the OUS 
set. Since the results were the median of 1,000 bootstrap samples to 
maintain the 1:1 ratio between class 1 (event occurrence) and class 
0, the two metrics MCC (scaled) and accuracy were very similar. 
Thus, the accuracy is not shown in Figures 2–7. As precision, recall, 
and specificity were primarily included to facilitate future inter-
study comparisons, they are reported in the Supplementary material 
only. See Supplementary Figures F1–F4 and 
Supplementary Tables F1, F2 for the full model performances. Note 
that the model standard deviations (of the mean performances on 
the OUS test folds; cf. Figure 1) were in the range 0.03–0.10 for all 
performance metrics.

3.2.1. DFS prediction
Figure 2 shows that for prediction of DFS, CNN models M5–M7 

were the most generalizable across the two cohorts, with high 
performances on both OUS and MAASTRO datasets (see also 
Supplementary Figure F2 and Supplementary Table F1). These CNN 
models, either trained only on PET and CT images (M5) without 
ROI contours or with additional tumor (M6) or tumor and node 
(M7) information, obtained similar and good performance, with 
AUC in the range of 67% and 75% and scaled MCC between 65% 
and 72% on the OUS and MAASTRO datasets. Although models 

M1–M4 trained on either clinical data and standard PET parameters 
(D1) or radiomics features (D2) obtained similar or slightly lower 
AUC and MCC values, they did not generalize as well on the 
MAASTRO dataset (Supplementary Figure F1, top and middle 
panels). This is evident by their class 0 F1 score being below the 
reference line (Figure 2, last panel). Note that the three M1 models 
(linear classifiers based on logistic regression) trained on any of the 
tabular data (D1, D2, D1 + D2) did not generalize well when 
considering the class 0 F1 score.

Apart from the linear logistic model M1, models M2–M4 trained 
on the combined clinical and radiomics features (D1 + D2) also had 
good generalizability across the two cohorts, but with slightly lower 
performance than the CNN models M5–M7 (Figure  2; 
Supplementary Figure F1, bottom).

Figure 3 shows CNN models M5–M7 combined with models 
trained on tabular data D1, D2, or D1 + D2 (see also 
Supplementary Figure F2). Overall, adding either clinical factors (D1) 
or both clinical and radiomics features (D1 + D2) to CNN models 
slightly improved performance with some trade-off on the class 0 F1 
score (about 5%) for prediction on the external MAASTRO dataset. 
However, adding radiomics features only (D2) did not alter CNN 
model performance.

While adding more information slightly increased the 
performance of CNN models, removing features from the 
radiomics data (D2) or all tabular data [combined clinical and 
radiomics features (D1 + D2)] using RENT made models M1–M4 
(Supplementary Figure F1, middle and bottom panels) substantially 
overfit to the OUS dataset, as seen by the lower performance 
metrics when testing on the MAASTRO set. However, as seen in 
Figure 4 (see also Supplementary Figure F1, top), RENT feature 
selection did not substantially affect models M1–M4 based on 
clinical features only (D1). Note that models using only two 
clinical features from D1 (HPV and TNM8 stage, Table 3) selected 
in more than 50% of the repeated RENT runs, performed similarly 
or even better than those trained on many more clinical features 
(Figure 4).

3.2.2. OS prediction
As for DFS prediction, Figure 5 shows that CNN models M5–M7 

predicting OS had good generalizability across the OUS and 
MAASTRO datasets (see also Supplementary Figure F4 and 
Supplementary Table F2). Models M6 and M7 with additional tumor 
and tumor + node information obtained similar and higher 
performances with AUC up to 75% and scaled MCC of almost 70% 
on both datasets relative to the contour-free M5 model trained only 
PET and CT images. Apart from the logistic model M1, tabular-based 
models M2–M4 trained on both clinical and radiomics features 
(D1 + D2), also generalized well across the two different cohorts, with 
similar or slightly higher performance than the CNN models 
(Supplementary Figure F3, bottom). Similar to the DFS predictions, 
the three linear logistic M1 models trained on any of the tabular data 
(D1, D2, D1 + D2) did not generalize well with regard to class 0 F1 
score performance.

Moreover, all models M1–M4 trained on clinical data only (D1) 
overfitted to the OUS dataset, with all metric values below the 
reference line (Figure 5; Supplementary Figure F3, top panel). Models 
M2–M4 trained on radiomics features D2, while having the good 
AUC, scaled MCC and class 0 F1 score on both datasets, had large 
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differences in the class 1 F1 score between the OUS and MAASTRO 
datasets (Supplementary Figure F3, middle panel).

As seen in Figure 6, combining CNN models with another model 
trained on tabular data (D1, D2 or D1 + D2) substantially improved 
model performances on both datasets, with AUC around 80% and 
scaled MCC from 70%–77% (Supplementary Figure F4). The highest 
performance on both datasets was achieved by combining CNN model 
M6 (PET/CT images and GTVp) and the radiomics model, evident by 

the combined model’s data point (Figure 6, orange four-pointed star, 
and Supplementary Figure F4) being close to the reference line and in 
the top right corner for all metrics.

As was also observed for DFS prediction, feature reduction using 
RENT (Supplementary Figure F3) resulted in overfitting to the OUS 
for models M1–M4 trained on the radiomics data (D2) or all tabular 
data (D1 + D2). Again, for OS models trained on clinical features only 
(D1), Figure 7 shows that reducing the number of clinical features to 

FIGURE 2

Median performance metrics for prediction of DFS by tabular based models (M1–M4) trained on all clinical data (D1, blue), all radiomics features (D2, 
orange) and all tabular data (D1  +  D2, green), together with CNN models (D3, red) trained on PET/CT only (M5), PET/CT and GTVp (M6) and PET/CT, 
GTVp and GTVn (M7). All metrics were the calculated median from bootstrap sampling the OUS and MAASTRO datasets to maintain the 1:1 ratio 
between class 1 (event occurrence) and class 0. The x and y axes indicate model performance on OUS and MAASTRO datasets, respectively. The 
dashed reference line indicates equal model performance on both datasets.
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only two (HPV and TNM8 stage), did not substantially reduce model 
performance relative to models based on all clinical features.

3.3. Model interpretability analysis

Model M5 (contour-free model trained on PET and CT images 
only) predicting DFS and model M6 (trained on PET, CT + GTVp) 
predicting OS were chosen for model interpretation using the 
VarGrad method. Figure  8 shows the calculated mean VarGrad 

within different areas based on SUV values, HU values and tumor/
node locations.

According to the VarGrad results, SUV played an important role 
in DFS and OS prediction as voxels with higher SUV had higher mean 
VarGrad, indicating higher contribution to the model prediction 
(Figure 8). Voxels with SUV between 2 and 10 had similar effect on 
model predictions (10%–15%), whereas voxels with SUV over 10 
contributed up to 25% to the model prediction. Similarly, voxels with 
HU values higher than the window center (70 HU) contributed more 
to model predictions than those with HU values lower than the 

FIGURE 3

Median performance metrics for prediction of DFS by CNN models (D3, red) trained on PET/CT only (M5), PET/CT and GTVp (M6) and PET/CT, GTVp 
and GTVn (M7), (red) and models M5–M7 combined with tabular-based models (M1–M4) trained on clinical data (D1, blue), radiomics features (D2, 
orange) and all tabular data (D1  +  D2, green). All metrics were the calculated median from bootstrap sampling the OUS and MAASTRO datasets to 
maintain the 1:1 ratio between class 1 (event occurrence) and class 0. The x and y axes indicate model performance on OUS and MAASTRO datasets, 
respectively. The dashed reference line indicates equal model performance on both datasets.
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window center. However, the effect of the high HU values was not as 
strong as the effect of the high SUV.

The voxels within the tumor and node areas affected the model 
prediction more than voxels outside these areas (Figure 8). In the 
contour-free M5 model, the average effect of voxels within the tumor 
areas was double that of voxels within the node areas (20% vs. 10%). 
However, the average contribution of voxels within the tumor areas 
was almost four times higher than voxels within the node area for the 
M6 model (37% vs. 10%). Note that in model M5, no guided tumor 
or node mask was provided in the input. Model M6 used the tumor 
masks only (GTVp) but not the node masks.

Figure 9 shows examples of importance heatmaps generated by 
VarGrad on model M5 (trained only on PET/CT image) predicting 
DFS and model M6 (trained on PET/CT images and GTVp) predicting 
OS. In these examples, models M5 and M6 showed that the primary 
tumor area contributed most to model predictions, while the nodal 
areas GTVn were not as important. In some cases, the spine areas and 

regions around the tumor edges were also highlighted as important 
for the model predictions (Figure 9, bottom rows).

4. Discussion

In this study we conducted a comprehensive comparison between 
conventional radiomics and deep learning radiomics for prediction of 
OS and DFS in patients with HNC from two separate centers. Models 
based on clinical factors including three standard PET parameters 
were used as reference to assess the added benefit of radiomics. As a 
sanity check for our prediction models, we  explored model 
interpretability by using a new feature selection method for tabular 
data (RENT) (42) as well as a state-of-the-art method for deep 
learning explainability (VarGrad) (55).

Our results showed that models using all radiomics and 
clinical features as well as deep learning CNN models based 

FIGURE 4

Effects of RENT feature selection on performance metrics for prediction of DFS using clinical features (D1) only by M1–M4 models trained on all clinical 
features D1 (dark blue), clinical features selected by RENT at least once (1%, light blue), and clinical features selected in 50% of the RENT runs (50%, 
gray). All metrics were the calculated median from bootstrap sampling the OUS and MAASTRO datasets to maintain the 1:1 ratio between class 1 (event 
occurrence) and class 0. The x and y axes indicate model performance on OUS and MAASTRO datasets, respectively. The dashed reference line 
indicates equal model performance on both datasets.
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directly on image data with or without GTV masks performed well 
and could generalize to the external test cohort. Thus, conventional 
radiomics including clinical information and deep learning 
radiomics can perform similarly. This indicates that the deep 
learning radiomics can capture information similar to the 
information included in radiomics and clinical data. Interestingly, 

deep learning models performed well even if primary tumor and 
nodal contours were not provided to the models as also found in 
Wang et al. (15). As shown by the explainability approach, CNN 
models focused automatically on tumor and node regions in the 
images even without guidance. Based on our results, conventional 
radiomics appears to require complex nonlinear models for good 

FIGURE 5

Median performance metrics for prediction of OS by tabular based models (M1–M4) trained on all clinical data (D1, blue), all radiomics features (D2, 
orange) and all tabular data (D1  +  D2, green), together with CNN models (D3, red) trained on PET/CT only (M5), PET/CT and GTVp (M6) and PET/CT, 
GTVp and GTVn (M7). All metrics were the calculated median from bootstrap sampling the OUS and MAASTRO datasets to maintain the 1:1 ratio 
between class 1 (event occurrence) and class 0. The x and y axes indicate model performance on OUS and MAASTRO datasets, respectively. The 
dashed reference line indicates equal model performance on both datasets.
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performance as the linear logistic regression model in our case 
performed and generalized poorly. Models based only on either 
radiomics features or clinical data generally had lower 
performances and generalizability, suggesting that radiomics only 
or clinical data only is not sufficient. Thus, there was an added 
benefit of including radiomics with clinical factors. Feature 
selection of the high-dimensional radiomics data substantially 
reduced model generalizability, indicating that important 
information can be discarded by this approach.

Overall, models (excluding the linear logistic model) based on 
all clinical and radiomics features (i.e., no feature selection) as well 
as deep learning (CNN) models based on image data performed 
well on both patient cohorts with AUCs in the range 65%–75% for 
both outcomes. These performances are similar to those of other 

studies. Vallières et al. (19) obtained an AUC close to 60% for OS 
conventional machine learning models based on PET/CT radiomics 
features from both tumor and nodes, which increased significantly 
to about 70% when radiomics and clinical factors were combined. 
Likewise for OS, Liu et al. (58) obtained AUCs between 68%–90% 
for PET/CT radiomics of the primary tumor. Zhai et al. (23) found 
that for DFS, clinical and CT radiomics models performed similarly 
with AUCs of 65%, which increased to 70% when combined. 
We also observed increases when radiomics and clinical features 
were combined, especially for OS prediction. For OS prediction 
with image-based deep learning (CNN) models, concordance 
indices (CIs) in the range 0.60–0.78 have been reported for 
PET-based, CT-based and PET/CT models (15, 27, 59). Note that 
the HECKTOR 2021 challenge (21) reported CIs in the range of 

FIGURE 6

Median performance metrics for prediction of OS by CNN models (D3, red) trained on PET/CT only (M5), PET/CT and GTVp (M6) and PET/CT, GTVp 
and GTVn (M7) (red) and models M5–M7 combined with tabular-based models (M1–M4) trained on clinical data (D1, blue), radiomics features (D2, 
orange) and all tabular data (D1  +  D2, green). All metrics were the calculated median from bootstrap sampling the OUS and MAASTRO datasets to 
maintain the 1:1 ratio between class 1 (event occurrence) and class 0. The x and y axes indicate model performance on OUS and MAASTRO datasets, 
respectively. The dashed reference line indicates equal model performance on both datasets.
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0.67–0.71, and found that deep learning models often generalized 
better to the test set than conventional machine learning models for 
PFS, as also found in our study for DFS and OS. Submissions in 
HECKTOR 2022 found that combining image-based deep learning 
models, with radiomics and clinical features improved prediction 
of local regional recurrence-free survival (60). We  observed a 
similar improvement for our combined models for OS prediction, 
but not for DFS.

Selection of the most important features for the tabular data 
(clinical and radiomics features) by the feature selector RENT 
(42) was intended to increase model interpretability and stability 
by removing redundant and non-informative features. Due to the 
very many radiomics features in relation to patients, feature 
selection is also a common step in radiomics studies (12, 16). 
RENT was able to significantly reduce the number of features, 
and conventional machine learning models based on these 

features obtained high performances on unseen subsets of 
samples derived from the internal OUS dataset. Thus, RENT was 
able to extract the relevant features describing the internal cohort 
used for feature selection and model training. However, these 
models did not generalize to the external test cohort. This can 
be seen by the decrease in the performance metrics between the 
internal and external datasets, particularly for the F1 score for the 
class 0 (patients without event), which was very low for the 
external set indicating many false positive predictions. It should 
be noted that there are considerable differences between the OUS 
(internal) and MAASTRO (external) cohorts with regard to 
factors such as HPV status (higher OUS) and tumor site as well 
as TNM8 stage, comorbidity and smoking which were less 
favorable in the MAASTRO set. Despite these differences, deep 
learning methods based on image data performed well on both 
cohorts, indicating that the CNNs, most likely due to their 

FIGURE 7

Effects of RENT feature selection on performance metrics for prediction of OS using clinical features (D1) only by M1–M4 models, trained on all clinical 
features D1 (dark blue), clinical features selected by RENT at least once (1%, light blue), and clinical features selected in 50% of the RENT runs (50%, 
gray). All metrics were the calculated median from bootstrap sampling the OUS and MAASTRO datasets to maintain the 1:1 ratio between class 1 (event 
occurrence) and class 0. The x and y axes indicate model performance on OUS and MAASTRO datasets, respectively. The dashed reference line 
indicates equal model performance on both datasets.
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complexity, were able to automatically identify discriminant 
features across both cohorts. Though the highest prediction 
performance for CNN models was observed when incorporating 
GTV contours, models based solely on images obtained similar 
performances. Bypassing the need for manual contours to extract 
radiomics features may be an advantage in terms of simplicity 
and robustness. First, manual contouring is known to be time and 
resource-demanding. Second, substantial interobserver 
variability has been reported for manual contouring in a range of 
diagnoses including HNC (61–63). Such contour variability  
may impact on the derived radiomics features and is, therefore,  
a potential confounder in the single and multi-center  
radiomics studies relying on manual contours for 
feature extraction.

Inspection of clinical features consistently selected by RENT 
for the OUS cohort include HPV status, TNM8 stage, pack years 
and site. These correspond to factors identified as important for 
OS and DFS in other studies (5, 6). Vallières et al. (19) also found 
that the factors T-stage, N-stage, HPV status and age were 
significantly associated with OS. In a study of the prognostic role 

of clinical factors and FDG PET parameters on the same OUS 
cohort, Moan et al. (7) found significant associations between 
DFS and HPV status, comorbidity and tumor and node volume, 
but no significance between DFS and the PET parameters SUVmax, 
MTV and TLG. Our current study using an advanced feature 
selection approach supports these finding as PET parameters 
were very rarely selected for either OS or DFS. Liu et al. (58) also 
found that traditional PET parameters did not predict OS or DFS 
as well as PET/CT radiomics features. Among the radiomics 
features, the shape feature sphericity, specifying the roundness of 
the tumor, was consistently selected for OS and DFS in our 
present study. This feature was also selected as a signature for OS 
and DFS prediction in Liu et al. (58). Interestingly, Keek et al. 
(20) also found tumor sphericity to be selected in a CT radiomics 
model for OS HNC prediction, inferring that rounder tumors had 
better prognosis, as also found in Apostolova et al. (64) and Aerts 
et al. (65). Other radiomics features highlighted by RENT include 
the shape features tumor major axis length and maximum 3D 
diameter. These two features are closely related to tumor volume, 
which has been identified as a treatment outcome predictor in 

FIGURE 8

Quantitative analysis of VarGrad heatmaps based on the contour-free M5 model predicting DFS (left) and the M6 model (PET/CT  +  GTVp) predicting 
OS (right). The mean VarGrad of voxels within different areas was calculated based on SUV (first row), HU values (second row) and tumor/node/other 
location (last row).
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other studies (19, 65). In addition, mainly PET and some CT 
texture radiomics features were selected, which are linked to 
intensity non-uniformity or heterogeneity within the primary 
tumor. Furthermore, first order radiomics features characterizing 
intensities and intensity distributions were seldom selected. This 
suggests that primary tumor heterogeneity rather than tumor 
intensities was more relevant for treatment outcome, supporting 
previous findings that tumor heterogeneity is associated with 
tumor aggressiveness (19, 65, 66).

Interpretability analysis of our deep learning models based 
on image data indicated that the CNNs focused primarily on the 
tumor region, followed by the nodal area and to a smaller degree 
on other areas. Unsurprisingly, including tumor/node contours 
as CNN input increased the importance of the tumor/node 
regions relative to other areas. Interestingly, CNN models 
performed similarly without inclusion of the tumor/node 
contours suggesting that peri-tumor environment, known to 
be of importance for cancer development (67), may be captured 

by the CNN and contribute to its prediction. The VarGrad 
importance score indicated that the PET signal was dominant but 
with some contribution from the CT signal. This is also consistent 
with the findings that the majority of the texture based radiomics 
features found in this study were derived from PET images. The 
dominance of the PET signal also corresponds to findings in 
Wang et al. (15) where CNN models based only on PET images 
outperformed CT-only or combined PET/CT models for 
prediction of OS and distant metastasis. Inspection of VarGrad 
importance heatmaps show that the tumor and node regions with 
peri-tumor surroundings were highlighted, which can be coupled 
to the high signal of these regions in FDG PET images. In 
addition, VarGrad heatmaps also in some cases included the 
spine and jaw, which can be linked to regions captured by CT 
images. One can speculate whether the CNN infers which regions 
are coupled to outcome, namely the tumor/nodes and 
surroundings, and which are not, namely the spine or jaw, and 
uses this information in its prediction.

FIGURE 9

Example VarGrad heatmaps generated by the contour-free M5 model predicting DFS (top panel) and the M6 model (PET/CT  +  GTVp) predicting OS 
(bottom panel). The fused PET/CT images with the delineated primary tumor GTVp and lymph nodes GTVn are shown under the associated VarGrad 
heatmaps (only VarGrad values above 0.25 are shown). The parts hidden under the VarGrad heatmaps can be seen beneath the images.
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This study has some limitations. It should be noted that only a 
moderate number of patients were included (OUS: n = 139; 
MAASTRO: n = 99). This was in part attributed to the fact that HPV 
status was not available for all (oropharyngeal cancer) patients, 
which in turn relates to the retrospective nature of this study. 
Furthermore, the included patients were not staged prospectively 
according to the TNM8 system, and the retrospective re-staging 
according to TNM8 only allowed differentiation of stage I–II vs. 
III–IV patients. As data were collected retrospectively, there are also 
differences in the treatment regimens, which could potentially 
impact on model performance and act as confounders. Thus, 
prospective studies on HNC outcome prediction, preferably with 
higher volume multi-centric data, would be desirable. In addition, 
HNC is known to be a heterogeneous group of malignancies with 
different characteristics and incidence rates. Analysis of one or 
more high-incidence and/or highly distinct HNC subgroups, such 
as HPV positive oropharyngeal cancers, would therefore be highly 
relevant. On the other hand, the mixed analysis of this study made 
it possible to capture general characteristics of HNC that are not 
dependent on primary tumor site or a particular subgroup. 
Moreover, a subgroup analysis would require more patients than in 
our present work. The aim of our present work was to conduct a 
comprehensive comparison of different approaches and input data. 
Thus, a natural extension of this study would be a more in-depth 
analysis of one selected model, including model fine-tuning and 
decision-curve analysis (68), possibly as part of the above 
subgroup analysis.

In summary, deep learning radiomics using image-based CNN 
models outperformed conventional radiomics and clinical models 
with regard to both performance and generalizability across cohorts 
from two different centers for prediction of OS and DFS in 
HNC. Combining these image-based models with clinical data and 
conventional radiomics features increased performance. Thus, image-
based CNN models were able to automatically extract relevant features 
discriminating between patients experiencing different treatment 
outcomes. Interestingly, image-based CNN models trained without 
tumor and node contours achieved as high or nearly as high 
performances as models trained with contours. Thus, deep learning 
models based on contour-free pre-treatment images could perhaps in 
the future contribute to an initial screening for patients at high risk.
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