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Abstract
1. Assessing the biological relevance of variance components estimated using 

Markov chain Monte Carlo (MCMC)- based mixed- effects models is not straight-
forward. Variance estimates are constrained to be greater than zero and their 
posterior distributions are often asymmetric. Different measures of central ten-
dency for these distributions can therefore vary widely, and credible intervals 
cannot overlap zero, making it difficult to assess the size and statistical support 
for among- group variance. Statistical support is often assessed through visual in-
spection of the whole posterior distribution and so relies on subjective decisions 
for interpretation.

2. We use simulations to demonstrate the difficulties of summarizing the posterior 
distributions of variance estimates from MCMC- based models. We then describe 
different methods for generating the expected null distribution (i.e. a distribution 
of effect sizes that would be obtained if there was no among- group variance) that 
can be used to aid in the interpretation of variance estimates.

3. Through comparing commonly used summary statistics of posterior distribu-
tions of variance components, we show that the posterior median is predomi-
nantly the least biased. We further show how null distributions can be used to 
derive a p- value that provides complementary information to the commonly 
presented measures of central tendency and uncertainty. Finally, we show how 

www.wileyonlinelibrary.com/journal/mee3
mailto:
https://orcid.org/0000-0002-6295-3742
https://orcid.org/0000-0001-7305-3996
https://orcid.org/0000-0001-9357-9151
https://orcid.org/0000-0003-3320-0861
https://orcid.org/0000-0002-8370-4614
https://orcid.org/0000-0003-1523-9340
https://orcid.org/0000-0002-5901-0911
https://orcid.org/0000-0002-9124-2261
https://orcid.org/0000-0001-5163-8096
https://orcid.org/0000-0002-5848-4736
https://orcid.org/0000-0001-7844-0477
http://creativecommons.org/licenses/by-nc/4.0/
mailto:joel.l.pick@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1111%2F2041-210X.14200&domain=pdf&date_stamp=2023-09-07


2558  |   Methods in Ecology and Evoluon PICK et al.

1  |  INTRODUC TION

Estimating variance components using mixed- effects models is com-
mon in ecology and evolution (Bolker et al., 2009; Dingemanse & 
Dochtermann, 2013; Harrison et al., 2018). Mixed- effect models 
are a flexible statistical tool used to study hierarchically structured 
data, with extensions facilitating quantitative genetic (animal mod-
els; Henderson, 1988; Kruuk, 2004) and comparative (meta- analysis 
and phylogenetic mixed models; Hadfield & Nakagawa, 2010) analy-
ses. Markov chain Monte Carlo (MCMC) algorithms are increasingly 
used to fit mixed- effects models due to their flexibility and the avail-
ability of open- source software (e.g. winBUGS (Gilks et al., 1994), 
JAGS (Plummer, 2003), MCMCglmm (Hadfield, 2010) and Stan (Stan 
Development Team, 2022b)). MCMC algorithms are a collection of 
probabilistic simulation methods for generating observations from 
designated statistical distributions and are typically implemented 
within a Bayesian framework (Gelman et al., 2021).

MCMC methods have many advantages. Derived metrics (such as 
standardized measures of variance like repeatability, heritability and 
evolvability; Houle, 1992; Nakagawa & Schielzeth, 2010) can be eas-
ily estimated using the posterior distributions of their components, 
propagating uncertainty within and among analyses. In contrast, in 
a maximum likelihood framework, the methods to estimate the un-
certainty of derived metrics (e.g. the delta method) can be laborious 
and biased with small sample sizes (O'Hara et al., 2008). Data in eco-
logical and evolutionary studies are also commonly non- Gaussian, for 
example counts (e.g. number of offspring), binary and ratio data (e.g. 
survival, presence/absence, sex ratio) and categorical data (e.g. colour 
morphs). The performance of MCMC algorithms in generalized lin-
ear mixed- effects models (GLMMs) has been found to be superior in 
terms of accuracy and precision compared with restricted maximum 
likelihood (REML) approaches (de Villemereuil et al., 2013; O'Hara & 
Merilä, 2005). Bayesian methods also allow existing information to be 
incorporated as a prior distribution, although this has rarely been used 
in ecological or evolutionary studies (Lemoine, 2019).

Despite these advantages, empiricists face several issues when 
using MCMC mixed- effect models. Here we focus on the difficul-
ties of describing and interpreting variance estimates and their un-
certainty. We highlight two problems, both of which centre around 
the difficulty of describing the posterior distribution of variance 

components using summary statistics: (i) finding an appropriate 
measure of central tendency; and (ii) assessing the statistical sup-
port for non- zero among- group variance. These problems arise as 
variance estimates are constrained to be greater than zero, and so 
their posterior distributions are often asymmetric.

When describing posterior distributions, we typically present some 
measure of central tendency alongside some measure of uncertainty 
(quantile- based intervals or highest posterior density intervals). The pos-
terior mean, median and mode have all been used as measures of central 
tendency, and recent works have advocated the general use of the pos-
terior median (Gelman et al., 2020; McElreath, 2020). There is, however, 
no clear guidance on which measure provides an appropriate summary 
statistic for variance components; in our experience the mode and mean 
are most commonly reported. When the posterior distribution of a vari-
ance component is far away from zero and is symmetric, then the mean, 
median and mode are approximately equal (Figure 1a) and inferences 
are robust to the choice of central tendency metric. However, when 
variances are small (relative to the total variance) and/or sample sizes 
are small (both common in ecology and evolution), the posterior distri-
butions can be close to zero. As variances are constrained to be greater 
than zero, these posterior distributions are typically asymmetric and can 
even be bimodal, with one mode close to zero (e.g. Figure 1b). Conse-
quently, there can be a considerable difference between the mean, me-
dian and mode (Figure 1b), making it difficult to draw inferences about 
the magnitude of the posterior variance estimate.

The use of the posterior mode is often justified as being the clos-
est to the maximum likelihood estimate (MLE) when uninformative 
priors are used. However, this comparison refers to the joint poste-
rior mode, rather than the marginal mode that is typically estimated 
and reported. In more complex models, the joint and marginal modes 
may differ (Held & Sabanés Bové, 2020, section 6.5.4), meaning that 
the marginal mode and MLE are no longer the same. As shown in Fig-
ure S1, the convergence of the posterior mode and MLE also requires 
the use of uninformative improper priors on the variance, which are 
generally not advised (Gelman et al., 2021), in part because ‘unin-
formative’ priors can be uninformative on one scale but not another 
(e.g. priors on standard deviation vs. variance). The posterior mode 
is also hard to estimate; it is typically done using kernel density esti-
mation and different methods may provide quite different estimates 
(Figure 2), thereby providing another source of hidden ambiguity. 

these p- values facilitate the implementation of power analyses within an MCMC 
framework.

4. The use of null distributions for variance components can aid study design and 
the interpretation of results from MCMC- based models. We hope that this manu-
script will make empiricists using mixed models think more carefully about their 
results, what descriptive statistics they present and what inference they can 
make.

K E Y W O R D S
hierarchical models, null distribution, permutation, simulations, squidSim, variance
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F I G U R E  1  Posterior distributions 
of variance estimates for two different 
scenarios (a and b) and their respective 
null distributions (c and d) generated 
using permutations. Example (a) shows 
a symmetric posterior distribution far 
away from zero with close agreement 
between the posterior mean (red lines) 
and mode (blue line), while (b) shows an 
asymmetric posterior distribution close to 
zero, with clear divergence between the 
posterior mean and mode. Examples (c) 
and (d) show null distributions of posterior 
means generated through permuting the 
datasets, and corresponding p- values, of 
(a) and (b) respectively. The values given 
in (a) and (b) correspond to mean (mode) 
[CRIs]. Both datasets were simulated 
from Gaussian distributions with among- 
group variances of 0.2, but with differing 
sample sizes; (a) with 80 groups and four 
observations per group; and (b) with 40 
groups and two observations per group.
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0.183 (0.161) 
 [0.063,0.33]

(a)

Permuted posterior means
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p < 0.001

(c)
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(b)

Permuted posterior means
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p = 0.054

(d)

F I G U R E  2  The effect of bandwidth choice on the estimation of the posterior mode. Top row shows kernel densities of the same posterior 
distribution, estimated with different bandwidth scalings, from 1 in (a) to 0.1 in (d) (with intermediate values in (b) and (c)). Red lines and the 
displayed number show the posterior modes estimated from that scaling. Bottom row (e– h) shows the equivalent histograms for comparison.
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Furthermore, the mode requires a larger number of samples in the 
posterior distribution to be reliably estimated, and will show greater 
variation between models/chains run on the same dataset (Krus-
chke, 2015). In contrast, the mean is strongly affected by extreme 
values, and so by the long tail of an asymmetric distribution.

It is also often important to assess statistical support for 
among- group variance at a particular level. Typically 95% credi-
ble intervals (CRIs) are presented as a measure of uncertainty in 
parameter estimates derived from MCMC models. As variance 
components cannot overlap zero, CRIs give no information about 
the compatibility of the estimates with a null hypothesis (e.g. no 
among- group variance). Posterior distributions are commonly in-
spected visually as density plots; a right skewed distribution with 
a mass near 0 is often assumed to signify that the estimated vari-
ance is not different from zero. What is seldom appreciated, how-
ever, is that the degree of smoothing that is applied in such plots 
(via the binning interval or bandwidth) can alter these conclusions. 
The same distribution can be seen as uni-  or bimodal, or peaking 
at zero or away from zero depending on the degree of smoothing 
(Figure 2). Such assessments are therefore subjective and lack a 
proper quantitative basis.

To address this, several metrics for assessing the confidence 
in a result (such as p- values) have been suggested in a Bayesian 
framework (reviewed in Makowski, Ben- Shachar, et al., 2019). Two 
of these, region of practical equivalence (ROPE) and Bayes factors, 
can be used for variance components. The ROPE approach iden-
tifies a range of values considered too small to be of any practical 
relevance (i.e. the ROPE), and quantifies the proportion of overlap 
between the posterior distribution and the ROPE. This is similar 
to equivalence testing in a frequentist framework, specifically 
to the two one- sided tests approach (Lakens et al., 2018). Bayes 
factors are analogous to frequentist likelihood ratios, comparing 
different models (e.g. with and without the random effects of in-
terest). Unlike likelihood ratios, they incorporate information from 
the prior distributions of the parameters into the comparison of 
the models, and are evaluated using the marginal likelihood rather 
than at the maximum likelihood. Additionally, Bayesian models 
can be compared using information criteria which aim to provide 
out- of- sample prediction accuracy, of which leave- one- out cross- 
validation (LOO- CV; Browne, 2000; Gelman et al., 2014) has been 
suggested as the most suitable for complex hierarchical models 
(Gelman et al., 2021). These metrics (ROPE, Bayes factors and 
LOO- CV) can be used to provide a measure of statistical support 
for estimates of variance components, but their implementation is 
complicated. ROPE requires the definition of a threshold, incor-
porating further subjectivity into the analysis, while the compu-
tation of Bayes factors and LOO- CV can be challenging, and even 
not implementable in some commonly used programs in ecology 
and evolution (e.g. MCMCglmm). The use of Bayes factors and 
LOO- CV is also the topic of active debate (Chandramouli & Shif-
frin, 2019; Gelman et al., 2021; Gronau & Wagenmakers, 2019a, 
2019b; Navarro, 2019; Vehtari et al., 2019). We address these 
metrics further in the discussion.

Here, we suggest a complementary method to assess statistical 
support in mixed- effect models, which compares variance estimates 
to a null distribution in order to aid statistical inference. This involves 
creating a distribution of effect sizes that would be expected under 
the null hypothesis (no among- group variance), and comparing this 
null distribution with the observed among- group variance. This 
method has several advantages. Null distributions can be used to 
generate a p- value describing the probability that the observed esti-
mate is as or more extreme than expected under the null hypothesis. 
Although often criticized through their association with null hypoth-
esis significance testing (NHST; Amrhein et al., 2017, 2019; McShane 
et al., 2019; Wasserstein & Lazar, 2016), p- values have well under-
stood and useful properties. When correctly interpreted, these sta-
tistics provide a continuous measure of statistical support, indicating 
how inconsistent an observed effect size is with a scenario in which 
there is no among- group variance. In contrast to ROPE, creating null 
distributions requires no subjective decisions about thresholds and, 
in contrast to Bayes factors and LOO- CV, they can be implemented 
using the output from any mixed model.

We present two methods, permutation and simulation, for 
generating null distributions for variance components. To gener-
ate a null distribution using permutation, some feature of the data 
is randomized to produce a new dataset with the structure of the 
original dataset, but with no relationship between the response 
variable and the variable of interest. This randomization is re-
peated a large number of times to create many different permuted 
datasets. The same analysis is then carried out on the permuted 
datasets as on the original dataset, and a test statistic of interest 
(e.g. the estimate of among- group variance) is used to create a null 
distribution of test statistics (Figure 1c,d). A (one- tailed) p- value 
can then be derived as the proportion of permuted datasets with 
a test statistic greater than or equal to the test statistic observed 
with the real dataset. Permutation tests have already been sug-
gested as an alternative to likelihood ratio tests for frequentist 
analyses (Fitzmaurice et al., 2007; Samuh et al., 2012), although 
they are not commonly utilized in ecology and evolution (but see 
Araya- Ajoy & Dingemanse, 2017; Stoffel et al., 2017). Permuta-
tion tests are a subclass of nonparametric tests (Lehmann & Ro-
mano, 2005; Pesarin & Salmaso, 2010) and do not rely on specific 
probability distributions, and so make few assumptions. However, 
as we show later in the manuscript, datasets can be permuted in 
several different ways when the data structure is complex, and the 
consequences of the choices involved in such cases are often not 
immediately obvious. Simulations provide an alternative method 
of creating a null distribution. This process is similar to permuta-
tion, but instead of generating permuted datasets we can simulate 
datasets from the observed model parameters (similar to paramet-
ric bootstrapping), while setting the variance in question to zero. 
Again, the same analysis is carried out on the simulated datasets, 
and the test statistics of interest used to create a null distribution. 
This simulation method makes more assumptions about the data 
and model, but allows for more control of the manipulated fea-
tures of the simulated datasets compared with permutations.
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Finally, a crucial part of designing experiments and statistical 
analyses is assessing the power to detect an effect size of interest. 
Power is defined as the probability of rejecting the null hypothesis 
for a given effect size at a specified alpha level. Although power typ-
ically relates to NHST and the often criticized alpha level (Amrhein 
et al., 2017, 2019; McShane et al., 2019; Wasserstein & Lazar, 2016), 
it remains an important tool for study design regardless of statistical 
philosophy, by providing a quantitative approach to calculating op-
timal sample sizes and designing sampling regimes. Power may also 
provide a more useful metric than precision when considering vari-
ance components. As their distributions are bounded at zero, stan-
dard errors will always decrease when distributions are close to zero 
(see Figure S2). However, The concept of power for variance compo-
nents in MCMC models is not well developed. As null distributions 
can be used to generate p- values, they provide a convenient way of 
conducting power analysis.

Here, we first compare the metrics of central tendency that are 
commonly used as summary statistics of posterior distributions of 
variance components. We then demonstrate the utility of null dis-
tributions to generate a complementary p- value statistic and aid the 
interpretation of the variance components, and compare two meth-
ods of generating them. Null distributions can provide a continuous, 
quantitative measure of confidence that the observed variance com-
ponent is larger than what might be expected under the null hypoth-
esis (no among- group variance), given the data structure and priors 
used. Importantly, we are not advocating that this approach should 
replace the presentation and use of effect sizes and CRIs, but rather 
that it should be used as an additional and complementary statis-
tic. Finally, we show how null distributions can be used to perform 
power analysis within an MCMC framework.

2  |  MATERIAL S AND METHODS

All simulations were carried out in R (version 4.1.0; R Core 
Team, 2022) using the squidSim R package (version 0.1.0; Pick, 2022).

2.1  |  Generation of ‘observed’ datasets

We generated a series of datasets with known parameters, which 
we will refer to as our ‘observed’ datasets (to distinguish them from 
the ‘null datasets’ in following sections). We first simulated Gauss-
ian data with one hierarchical level and varied the number of obser-
vations per group (2 and 4) and the number of groups (20, 40 and 
80). We simulated a total variance of 1 and varied the among- group 
variance (0, 0.1, 0.2 and 0.4; also representing the intra- class cor-
relations [ICCs]/repeatabilities). We simulated every combination of 
these parameters (24 parameter sets) and for each set we simulated 
500 ‘observed’ datasets. Power to detect among- group variance is 
known to be determined by effect size and sample size both within 
and among groups. We chose these parameter values and sam-
ple sizes to explore scenarios where power is low (Dingemanse & 

Dochtermann, 2013) to understand the impact on posterior distri-
butions. These sample sizes also correspond to typical experimental 
designs in behavioural ecology or life history data collected on wild 
populations (Bell et al., 2009).

We analysed each ‘observed’ dataset with a linear mixed- effects 
model specifying group level random effects in a Bayesian frame-
work, using Stan with the rstan package (version 2.21.3; Stan De-
velopment Team, 2022a). We specified weakly informative priors 
on the among- group and residual standard deviations (half- Cauchy 
distribution with scale 2; a commonly used and recommended prior 
for variance components (Gelman, 2006)), and ran one chain for 
each model with 5000 iterations and a warm- up period of 2000 
iterations. This ensured an effective sample size in the posterior 
distribution of the among group variance of >500 across the ma-
jority of models (95%). For comparison, we also ran REML models 
using the lmer function of the lme4 package (version 1.1- 29; Bates 
et al., 2015), the results of which are shown in Figure S3. To en-
sure that our results were not affected by the choice of the prior, 
we ran additional models on a subset of the data with a range of 
different priors (see Supplementary Materials). Changing the prior 
on the among- group standard deviation did not affect our results, 
while using uninformative priors on the among- group variance led 
to a concordance between REML estimates and posterior mode, as 
might be expected (Figure S1).

As a demonstration that our findings hold with more complex 
data, we additionally simulated Bernoulli (binomial with one ob-
servation) and Poisson data. Bernoulli data were simulated with 80 
groups and four observations per group. Among- group effects were 
simulated from a Gaussian distribution on the latent scale, with a 
mean of 0 and among- group variances of 0 and 0.2, 0.4 and 0.8. 
The latent scale response variable was then transformed using the 
inverse logit function to provide the probabilities, and sampled with 
a Bernoulli process. Poisson data were simulated with 80 groups and 
two observations per group, with a mean of 2 and a total variance 
of 0.2 on the latent scale, with among- group variances of 0, 0.02, 
0.04 and 0.08 (ICCs of 0 and 0.1, 0.2 and 0.4 on the latent scale). The 
mean and total variance were chosen based on a literature survey 
of provisioning data in Pick et al. (2023). We took the exponent of 
the latent scale response variable to provide expected values, and 
sampled them with a Poisson process. We simulated 500 ‘observed’ 
datasets for each variance, and analysed the data using GLMMs as 
outlined above.

2.2  |  Comparison of posterior distribution 
summary statistics

From the posterior distributions of the among- group variances, we 
calculated the posterior mean, median and mode, and compared 
these estimates with the true values.

While calculating the mean and median of the posterior distribu-
tion is straightforward, estimating the posterior mode involves some 
(hidden) assumptions. Typically the mode is estimated using kernel 
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density estimation, which involves fitting a model to the distribution 
of posterior samples to estimate a density function. The maximum of 
this function is then calculated over a series of predicted values, to 
give the estimated mode. One key parameter in kernel density esti-
mation is the bandwidth, which describes the amount of smoothing 
and is analogous to the number of breakpoints in a histogram. As 
shown in Figure 2, with the degree of smoothing can affect where 
the posterior mode is estimated. To explore this further, we esti-
mated the posterior mode using two bandwidth scalings (0.1 and 1; 
low and high smoothing respectively), which are the defaults in two 
commonly used R functions for estimating the mode (MCMCglmm 
(Hadfield, 2010) and the ggdist and bayestestR packages (Kay, 2022; 
Makowski, Ben- Shachar, & Lüdecke, 2019) respectively). Further de-
tails about the differences between these functions are presented 
in the Supplementary Materials. In both cases, the kernel density 
was estimated using the SJ algorithm (Sheather & Jones, 1991), and 
the mode was estimated using 512 predicted values with a cut- off 
point at zero.

To compare these different measures of central tendency, we 
calculated measures of bias, precision and accuracy. Because vari-
ance components are limited by 0, deviations from the mean or sim-
ulated values will be smaller at smaller effect sizes. To account for 
this, we also calculated relative measures. We calculated the bias as 
1

n

∑

�̂i − � (where � is the true value, �̂i is the model estimate from ith 
simulation in a parameter set and n is the number of simulations). For 
the non- zero effect sizes, we also calculated relative bias as 1

n

∑ �̂i − �

�
 , 

and mean absolute error as 1
n

∑ ∣ �̂i − � ∣

�
. Note this is also a relative 

measure. Mean absolute error is similar to root mean squared error, 
and combines bias and precision. We also calculated the precision as 

1∕

�

1

n

∑

�

�̂i− �̂

�2, and relative precision as �̂ ∕
�

1

n

∑

�

�̂i− �̂

�2, where �̂ is 
the mean of the model estimates across all simulations in a parame-
ter set. Precision is presented in Figure S2.

2.3  |  Creation of null distributions and p- values

We created null distributions for each ‘observed’ dataset using 
two methods to generate ‘null datasets’. First, we permuted the 
‘observed’ datasets by shuffling the group indices (IDs) to create 
100 new permuted null datasets per ‘observed’ dataset, in which 
among- group variance is expected to be zero. Second, we used 
simulations to create 100 null datasets with the same data struc-
ture but no among- group variance for each ‘observed’ dataset. To 
determine the value of the residual variance for these simulations, 
we added together the posterior distributions of the among- group 
variance and residual variance from the models of each original ‘ob-
served’ dataset, and used the median of the resulting distributions. 
This ensured that the total variance in the simulated null datasets 
was the same as in the ‘observed’ datasets. The choice of the me-
dian for this step should have little consequence, as this derived 
distribution will be estimated with much less uncertainty and so will 
be symmetric, meaning that the three measures of central tendency 
will be equivalent. It is important that any fixed effects, including 

the intercept, are included in the simulations, especially for GLMMs 
as the expectations will affect the stochastic variance on the data 
scale. Each of these null datasets was analysed with the same 
model as the original ‘observed’ dataset, and the same parameters 
(the central tendency estimates of the posterior distribution of the 
among- group variance) were extracted to create the corresponding 
null distributions. Although we recommend using null distributions 
with more samples for empirical studies (e.g. 1000), here we used 
100 permutations/simulations for each ‘observed’ datasets in order 
to reduce the computational burden (500 simulations for 24 param-
eter sets is 12,000 Gaussian datasets, each with 100 permutations 
and 100 simulations). We calculated a p- value for each ‘observed’ 
dataset, as the proportion of estimates in the null distribution that 
were higher than the estimate from that ‘observed’ data. We cal-
culated p- values using each central tendency measure, which are 
compared in Figure S4.

2.4  |  Power analysis and comparison with 
bias and precision

Power is defined as the probability of rejecting the null hypothesis 
(no among- group variance in this case) for a given effect size and 
data structure at a specified alpha level (typically 0.05). Although 
power is typically interpreted in the context of NHST, power can 
also be seen as a description of the distribution of p- values expected 
for a given effect size and data structure (it is the cumulative density 
at 0.05 for a given p- value distribution). Other descriptions of the 
p- value distribution (e.g. the mean) would be simple functions of the 
power (Figure S5). We chose to present power as a description of 
the distribution of p- values as it is conceptually well understood and 
frequently used rather than because of any philosophical alignment 
with NHST.

Using the ‘observed’ datasets described above, we compared 
two ways by which power can be calculated. In both methods, power 
was calculated for the parameter sets where the true value was 
greater than zero, as the proportion of ‘observed’ datasets in which 
the p- value was below a nominal threshold of 0.05. In the first (‘full’) 
method, we used the p- values generated above, through compari-
son of the ‘observed’ datasets with their null distributions from both 
permutation and simulation approaches. In the second (‘reduced’) 
method, we generated p- values by using model estimates from the 
‘observed’ datasets with zero among- group variance for each data 
structure (combination of among-  and within- group sample sizes) as 
a null distribution, against which the estimates from ‘observed’ data-
sets simulated with among- group variance could be compared. This 
method of generating p- values is similar to the simulation method 
of generating null distributions, but uses one null distribution for 
all ‘observed’ datasets with the same data structure, instead of null 
distributions for each ‘observed’ dataset. It is therefore massively 
less computationally intensive for power analyses; exploring power 
within the parameter space presented here required 12,000 models, 
rather than 1,212,000.
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We were also able to calculate the false positive rate (FPR) for 
the ‘full’ method in the same way as power, using the parameter sets 
where the simulated value was zero. It was pointless to calculate a 
FPR for the ‘reduced’ method; by comparing the null distribution 
with itself, the FPR is, by definition, 5%.

As stated above, posterior distributions are expected to be asym-
metric when power is low, which is also when we expect biases in 
the different measures of central tendency. We therefore examined 
how well power predicts the relative bias of the different measures 
of central tendency. During the review process, it was suggested 
that we could use relative precision to account for the appearance 
of higher precision in effect sizes near zero. We therefore also com-
pared this metric with power, as it may provide an alternative mea-
sure to power for study design.

2.5  |  Worked example— Random slopes

Empiricists commonly encounter more complex questions and data 
structures in their studies than we have presented above. Here we 
outline a more realistically complex example where the permutation 
of datasets requires some careful decisions.

Random slope models (where group- specific intercepts and 
slopes are modelled, also known as random regression) provide a 
good example of this complexity. We will focus here on generating a 
null distribution for the estimate of among- group variance in slopes. 
This estimate is based upon the relationship between the predic-
tor variable and response, the distribution of the response variable 
across groups and the distribution of the predictor variable within 
and across groups. This structure provides four ways to generate 
null distributions via permutation that retain different relationships 
in the observed dataset (illustrated in Figure S6). The first two are 
general to variance components, and the second two are specific to 
random regression models.

1. Permuting the response variable. This is the most unspecific 
permutation. It retains data structure and breaks all relationships 
with the response, removing the effects of all random factors 
and predictors, and allows for testing multiple components at 
the same time. It is a full null model of all biological processes 
described by the model.

2. Permuting the group identities. This is a more specific permuta-
tion. It breaks the relationship between a specific group and both 
the response and other predictors, and retains associations be-
tween predictors and response (including any other random ef-
fects linked to different grouping variables). It will remove the 
effects of both random intercepts and random slopes associated 
with the grouping factor in question.

3. Permuting the predictor. This is even more specific, targeting ran-
dom slopes specifically. It retains the group data structure, but 
breaks link between predictor and response, and the distribu-
tion of the predictor across groups. By breaking the link between 

predictor and response, there is no relationship that can vary be-
tween groups (i.e. random slopes).

4. Permuting the predictor within groups. This is the most specific 
permutation. It is similar to (3) but retains the distribution of the 
predictor across groups, while breaking the link between predic-
tor and response within group.

We can also generate null distributions through simulation. 
Here we have multiple variance components (intercepts and 
slopes), and so the simulations can either test one component 
at a time or both together. In this example, we can either sim-
ulate no among- group variance in slopes (adding the variance 
generated by the random slopes to the residual to ensure the 
same total phenotypic variance), or simulate no variance in ei-
ther intercepts or slopes (adding the variance generated by both 
random intercepts and slopes to the residual). We explore these 
six null distributions using a simulated and a real dataset. They 
provide a useful contrast between a dataset where we know the 
true values, and one where the true values are unknown with the 
potential for greater complexity.

To generate our simulated dataset, we imagined a hypothetical 
researcher who wants to test whether there is variation among in-
dividuals in how temperature affects their body mass. The dataset 
was simulated with 300 individuals measured four times each. Body 
mass and temperature were both normally distributed. Tempera-
ture was scaled to have a mean of 0 and variance of 1, and has an 
effect on body mass of 0.2 for the average individual. The simulated 
among individual variance in the intercepts was 0.2 and the phe-
notypic variance generated by variation in slopes was 0.1 (with no 
correlation among random slopes and intercepts), while the residual 
variance was set to 0.7 to ensure a total phenotypic variance not 
explained by the average effect of the environment was 1. Formulas 
to estimate the total phenotypic variance in random slope models 
can be found in Allegue et al. (2017). There were no systematic dif-
ferences in the average temperature experienced by the different 
individuals.

For our real data example, we employed a study on the ag-
gressive response of great tits (Parus major) to intruders in a 
nestbox population in southern Germany (Araya- Ajoy & Dinge-
manse, 2017). Data were collected over a 6- year period (2010– 
2015) for all males during their first breeding attempt each year. 
A male great tit model was presented with a playback song 1 m 
away from the subject's nest box. Aggression was measured as 
the minimum distance of the focal male to the model (Araya- Ajoy 
& Dingemanse, 2014). Territorial intrusions were performed twice 
during the egg- laying stage and twice during the egg- incubation 
stage of each focal nest, with males responding, on average, to 
2.8 of the 4 intrusions. Males were also sampled across years, 
with an average of 1.4 reaction norms per male. In total there was 
2854 aggression tests performed to 1042 breeding attempts of 
679 individuals. Full details are provided in Araya- Ajoy and Ding-
emanse (2014, 2017).
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Both datasets were analysed using random slope mixed- 
effects models, specifying the environmental predictor (tem-
perature and breeding stage respectively) as a fixed covariate, 
and random intercepts and environment slopes across individ-
uals. Breeding stage was coded as zero (for egg- laying) versus 
one (for incubation), and then mean centred and standardized 
to standard deviation units (Schielzeth, 2010). We generated 
six null distributions of posterior medians for each dataset (four 
permutations and two simulations), as outlined above, with 
which we compared the estimate of among individual variance 
in slopes from the observed data. Null distributions were gen-
erated based upon the analyses of 1000 null datasets. Models 
were fitted in a Bayesian framework, using Stan with the rstan 
package (version 2.21.3; Stan Development Team, 2022a). We 
specified weakly informative priors on the among- group and re-
sidual standard deviation. We ran three chains for the models 
of the simulated and real observed datasets, and a single chain 
the models for the null datasets, all with 5500 iterations and a 
warm- up period of 500 iterations.

3  |  RESULTS

3.1  |  Comparing summary statistics of the 
posterior distribution

When the simulated among- group variance was zero, all summary 
statistics were upwardly biased to some extent as the posterior dis-
tribution cannot include 0 (Figure 3a; full sampling distributions are 
shown in Figure S7). Predictably, the posterior mean and median 
from datasets with zero variance were considerably more upwardly 
biased than the mode for small sample sizes, with the mean being the 
most biased. Note that this upward bias was also present in frequen-
tist analyses (see Figure S3), and was not just a feature of Bayesian 
analyses.

When the simulated among- group variance was non- zero, then 
the mean, median and mode all appeared to be consistent estima-
tors, in that any bias occurred only at small sample and/or effect 
sizes. The posterior median generally converged on the simulated 
value at lower effect and sample sizes (Figure 3b) with a slight 
tendency to be biased downwards, as compared with the poste-
rior mean, which was upwardly biased, and the posterior mode 
that was biased towards zero (Figure 3b). Consistent with Figure 2, 
the bias in the mode depended upon the chosen bandwidth, with 
the higher smoothing bandwidths showing less bias. We found 
similar overall patterns in the Poisson and Bernoulli simulations 
(Figure S8).

In terms of relative precision (Figure 3c), the mean was the most 
precise estimator, with both estimates of the mode showing consid-
erably lower precision than either median or mean. Similar to the 
bias, the precision of the different estimators converged as sample 
size and effect size increased.

In terms of mean absolute error (Figure 3d), a (relative) measure 
of accuracy that combines bias and precision, the mean and median 
were very similar, with exception of the lowest sample and effect 
size combination where the mean was less accurate. The mode was 
consistently less accurate than the other measures (Figure 3d), al-
though this lower accuracy disappeared at higher sample and effect 
sizes.

3.2  |  Performance of the null distributions

A p- value is defined as the probability that an estimate equal to 
or more extreme than the observed estimate would occur under 
the null hypothesis (i.e. if the true among- group variance is zero). 
When the null hypothesis is true, we expect a uniform distribu-
tion of p- values (we expect 5% of values to be ≤ 0.05, 50% to be 
≤ 0.5 etc). When the null hypothesis is false, we expect smaller 
p- values to become more likely, in line with the power we have 
to detect an effect. We find exactly these patterns when consid-
ering the p- values generated by null distributions. Both permu-
tation and simulation methods produced a uniform distribution 
of p- values when the simulated among- group variance was zero 
(Figures 4), and the distributions of p- values from both permuta-
tion and simulation methods shift towards zero as the sample 
size and the magnitude of the variance increase (Figure 4). We 
found similar results in the Bernoulli and Poisson simulations 
(Figure S9).

Importantly, although the mean, median and mode were often 
quite different in magnitude (reflecting skew in the posterior dis-
tribution), the inference based upon the p- values did not differ 
between the different metrics. There were strong correlations be-
tween p- values derived with the different central tendency metrics, 
except when the mode was estimated with less smoothing which 
produced less consistent p- values (see Figures S4 and S10). p- values 
were also strongly correlated between simulation and permutation 
methods (see Figure S11).

3.3  |  Power analyses and comparison with 
bias and precision

When we used the full method of estimating power, both ways of 
generating null distributions (permutation and simulation) gave very 
similar results (Figure 5), with marginally higher power for the permu-
tation method. These power estimates were very similar to previous 
published estimates for frequentist models (Dingemanse & Dochter-
mann, 2013). When the among- group variances was simulated as 
zero, these methods displayed the expected FPRs of 5% (black points 
in Figure 5). The reduced method for estimating power, using the 
same null distribution for all datasets with an effect size >0 within a 
particular data structure, generally showed similar power to the other 
methods (Figure 5). As with the p- values, power was not particularly 
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sensitive to the measure of central tendency used, the highest power 
being seen in the mode with higher smoothing and the lowest power 
for the mode with the least smoothing (Figure S12).

As shown in Figure 6, relative bias in all measures of central 
tendency decreased as power increased. This pattern was similar 
across Gaussian, Poisson and Bernoulli traits. Power was also closely 

F I G U R E  3  Bias (a), relative bias (b), relative precision (c) and mean absolute error (d) of posterior mean, median and mode of variance 
components from linear mixed- effects models run on data simulated with a Gaussian distribution varying in among group variance (intra- 
class correlations— 0, 0.1, 0.2, and 0.4) and sample size within (2 or 4) and among (20, 40 and 80) groups. Each point is based on the 
estimates from 500 datasets. Two posterior modes were estimated: mode 1 and mode 0.1 with more and less smoothing respectively (see 
text for more details). Mean absolute error is also a relative measure, being standardized by the simulated value (see text for more details).
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related to relative precision (Figure S13) and consequently also to 
relative bias (Figure S14).

3.4  |  Random slope worked example

In both the simulated and real datasets, the different types of null 
distributions (generated using two simulations and four permuta-
tions; Figure S6) provided the same qualitative results, supporting 
the conclusion that there was among- individual variation in slopes 
(Figure 7). For both of these datasets, permuting individual iden-
tity created null distributions with a larger mean value of random 
slope variance than the other permutations. Note that these results 
should be considered in the context of random regression, and may 
not generalize to other types of model (see Section 4). We there-
fore generally recommend exploring the particular consequences 
of different types of permutations for specific datasets where pos-
sible, as this may reveal patterns in the data that warrant further 
exploration.

4  |  DISCUSSION

We demonstrate the difficulties of summarizing the posterior dis-
tributions of variance estimates from MCMC- based models. We 
describe different methods for generating null distributions that 
provide useful complementary information alongside the presenta-
tion of central tendency and uncertainty that are generally reported. 
We also show a way in which null distributions could be used to de-
rive a p- value, which is a simple addition to the statistics presented 
when summarizing a posterior distribution and also facilitates power 
analysis. Importantly we show that biases in central tendency meas-
ures are functions of power.

4.1  |  Summary statistics

Our experience in ecology and evolution is that both posterior mean 
and mode are commonly, but inconsistently, presented without 
justification. For fixed effect parameter estimates, this is typically 

F I G U R E  4  Distributions of p- values for the among- group variance, estimated used linear mixed- effects models run on data simulated 
with a Gaussian distribution, varying in among- group variance (intra- class correlations— 0, 0.1, 0.2 and 0.4) and sample size among groups 
(20, 40 and 80), with 500 datasets per combination. p- values were estimated using the posterior median and null distributions generated 
through simulations. (a) shows a within group sample size of 2, and (b) a within group sample size of 4.
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inconsequential, as the posteriors are usually symmetrically distrib-
uted. For estimates of variance components, however, our simula-
tions show that depending upon the underlying parameter value, 
both mean and mode can show large biases in opposite directions. 
When posterior distributions were close to zero and there was 
among- group variance, the posterior mode was very biased towards 
zero, whereas the posterior median and mean performed better. On 
the other hand, if there was no among- group variance, the mode 
was the least biased. The mode, however, is more subjective as its 
estimation depends on the choice of underlying algorithm (results 
shown here), it requires larger posterior distributions for reliable 
estimation, and will show greater variation between models/chains 
(Kruschke, 2015). Unfortunately, the method of mode estimation 
is rarely justified or even stated in empirical papers. Therefore, we 
cautiously recommend the presentation of the posterior median, or 
both median and mean, as a measure of central tendency for vari-
ance components. This recommendation is based upon the median 
being generally less biased than the mean when power is low (Fig-
ure 6). Presenting both allows any discrepancy to be seen, which 
would indicate that the distribution is near to zero and not symmet-
ric, and further emphasize the uncertainty in these measures.

Upward biases in variance components have been seen before 
when power is low, but the dependence on the choice of the cen-
tral tendency metric has not been highlighted. For example, Fay 
et al. (2022) note overestimation of variance components in Ber-
noulli models, with this overestimation decreasing in size as sample 
size and effect size increase. Fay et al. (2022) use the posterior mean 
as a summary statistic, and (as we show in Figure S15) this bias will 
decrease (although not disappear completely) through the use of a 
posterior median. This is not just a bias in Bernoulli models, or in 

fact MCMC models (Figure S3), but a general property of variance 
components estimated with low power (Figure 6, or low relative 
precision— Figure S14).

We urge caution in interpreting our results in terms of absolute 
sample sizes or effect sizes alone. Different types of data and data 
structures will contain different amounts of information and so vary 
in power, meaning that the same bias might not result from the same 
sample size or variance in a different context. GLMMs make this 
more complex, as similar variances on the latent scale can equate 
to different variances and so different effect sizes on the expected 
and observed scales, depending on the link function and the form 
of stochastic variance (de Villemereuil et al., 2018). For example, we 
found a comparable range of powers for our Poisson and Bernoulli 
examples, despite very different simulated variances on the latent 
scale (0.02, 0.04 and 0.08 vs. 0.2, 0.4 and 0.8 respectively). Similarly, 
Bonnet and Postma (2015) found very different power to detect the 
same latent scale variances in Bernoulli and Poisson traits. Given 
the strong relationship between these biases and power (or rela-
tive precision), considering the potential bias in variance estimates 
in relation to power (or relative precision) may be a productive way 
forward, as this is comparable across models, distributions, effect 
and sample sizes.

It is commonly argued that rather than presenting summary sta-
tistics, we should present and interpret the whole posterior distribu-
tion, typically portrayed using density plots. However, the underlying 
parameters of the kernel density estimation are not given alongside 
density plots, meaning the amount of smoothing is unknown. A large 
degree of smoothing can hide asymmetry and/or bi- modality, and so 
change inferences. We therefore suggest the use of histograms over 
density plots in the presentation of posterior distributions, because 

F I G U R E  5  Comparisons of power (in colour) and false positive rate (FPR, in black) calculated using permutation (perm), simulation (sim) or 
a global null distribution (the ‘reduced’ method in the main text). For each within- group sample size of (a) 2 and (b) 4, we show results for four 
among- group variances (0 (representing FPR), 0.1, 0.2 and 0.4) and three among- group sample sizes (20, 40 and 80), with 500 datasets per 
combination. All datasets were simulated with a Gaussian distribution. Power/FPR was calculated using posterior medians.
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although histograms are subject to the same smoothing problems, 
the degree of smoothing is at least explicit. Alternatively, other plots 
that explicitly show the raw posterior samples can be used (e.g. 
beeswarm plots; Figures 4 and 7).

4.2  |  Null distributions

The null distribution approaches outlined here are relatively easy 
to use, although computationally intensive (see Section 4.5). They 
allow the quantification of confidence that the estimated group- 
level variance is not simply a consequence of the choice of priors 
and data structure. Importantly, the p- values based upon null distri-
butions are not dependent upon which measure of central tendency 
is used. Such inferential statistics comparing the observed estimates 
with the null distributions can provide quantitative measures that 
can be reported alongside the observed estimates and uncertainty, 

and provide a useful tool for assessing the probability that variance 
components are non- zero and thereby supplement visual inspec-
tions of posterior distributions, or comparison of posterior mode, 
median and mean. Furthermore, inferential statistics can serve as 
an objective and easy- to- communicate assessment of the biological 
relevance of an estimated variance component to the general public 
and policy makers, or for the statistical support of non- zero values 
for derived statistics like heritability, repeatability or evolvability. A 
common criticism of p- values is that they are often misinterpreted. 
We therefore recommend those using the null distribution approach 
to acquaint themselves with the relevant literature (useful examples 
include: Amrhein et al., 2017, 2019; McShane et al., 2019; Wasser-
stein & Lazar, 2016). Importantly, p- values cannot demonstrate the 
absence of effect, just confidence in difference from the null hy-
pothesis. We believe generating null distributions will help empiri-
cists understand these concepts, as they give a visual representation 
of what p- values signify.

F I G U R E  6  Relationships between power and relative bias, the latter being estimated across different measures of central tendency. 
Power was calculated using null distributions generated using the simulation method and the posterior median. Each point is based on 500 
datasets, simulated with either a Gaussian, Bernoulli or Poisson distribution, with varying effect and sample sizes. Mean and 95% confidence 
intervals of the relative bias are shown.

0.0 0.2 0.4 0.6 0.8 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

Power

M
ea

n 
re

la
tiv

e 
bi

as

0.0 0.2 0.4 0.6 0.8 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

Power

M
ed

ia
n 

re
la

tiv
e 

bi
as

0.0 0.2 0.4 0.6 0.8 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

Power

M
od

e1
 re

la
tiv

e 
bi

as

0.0 0.2 0.4 0.6 0.8 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

Power

M
od

e0
.1

 re
la

tiv
e 

bi
as

Gaussian
Poisson
Bernoulli

 2041210x, 2023, 10, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.14200 by N
tnu N

orw
egian U

niversity O
f S, W

iley O
nline L

ibrary on [24/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  2569Methods in Ecology and EvoluonPICK et al.

Increasing the complexity of the data structure and model will 
create more ways to permute datasets. In our random slope exam-
ples, we showed how these permutations can become increasing 
specific to target particular components of the model, from permut-
ing the response to permuting the environmental predictor within 
individuals. Here, these different permutations led to qualitatively 
similar results, although whether they always or usually do so would 
require a much broader set of simulations. Interestingly, permuting 
individual identity created null distributions with noticeably larger 
values of random slope variance. We believe this is due to the ex-
istence of random slopes generating heterogeneous residuals (i.e. 
variance in response changed with the environmental predictor) 
that were confounded with random slope variation in the analyses 
of the null datasets (similar effects were also shown in Ramakers 
et al., 2020), whereas the other permutation methods broke up the 
relationship between the predictor and response. Comparing the re-
sults of the different methods of null distributions generation may 
provide insights that help inform statistical inference or highlight the 
need for further exploration.

The bulk of the simulations presented here do not directly con-
sider how to assess multiple variance components. In our random 
slope examples, it made little difference whether we simulated no 
variance in random slopes and intercepts or just random slopes. 
However, this may differ between model structures. Generating 
null distributions for all components at once (e.g. by permuting the 
response variable, or setting all random effect variances to 0 in sim-
ulations) makes the assumption that the different variance compo-
nents do not affect each other. If this assumption is reasonable (it is 
typically being made when a given model structure is chosen to be 
appropriate), then generating null distributions for all components at 
once would be reasonable. If there is a reason to think that they may 
affect each other, then null distributions are better generated for 
each random term at a time.

In some instances, generating a null distribution using permuta-
tions may not be possible. For example, in event- history models of 
survival (where individuals have a sequence of 0/1 (survived/died) 
for each time point where they are observed), permuting the individ-
ual identifiers would fundamentally alter the data structure, mean-
ing that some individuals had multiple deaths. However, this could 
work in the context of an animal model, where 0s and 1s could be in-
terchanged between individuals, retaining the same structure across 
individuals, but breaking the link with the pedigree. This demon-
strates that the suitability of permutations and how they impact 
the data structure needs to be carefully assessed on a case- by- case 
basis. Overall, we are not advocating a specific recipe for permuta-
tions— it is likely context and question dependent. We instead advo-
cate a simulation approach at the planning stage to check in advance 
that the permutation design gives desired properties with your likely 
data structure.

Generating null distributions through simulation avoids many of 
the issues with the permutation approach, although it may not ac-
count so well for the particularities of each dataset, (e.g. the hetero-
scedasticity in the random regression examples above). Simulations 
allow the structure of the data to be fully retained, allow a more 
fine- scale alternation of the variances in question, and make no addi-
tional assumptions than those already made by the statistical model. 
A simulation approach also simplifies the simultaneous generation of 
null distributions for multiple variance components while retaining 
the data structure. Reassuringly, in our random regression examples, 
the null distributions generated using two simulation methods were 
similar, and the results were similar to those obtained using the per-
mutation methods. We therefore cautiously recommend the use of 
this simulation method, as it is the most flexible for complex models.

These null distribution approaches are computationally intensive 
and the suitability of their application will depend upon the model 
complexity, the amount of data and the available computational 

F I G U R E  7  Null distributions of 
posterior medians generated with five 
different methods (see main text), from (a) 
a simulated dataset, and (b) a real dataset 
on aggressiveness in great tits. Red line 
represents posterior median estimated 
from original dataset. Values above the 
points represent the respective p- values. Va
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resources (see Section 4.5). MCMC methods are often used for 
highly complex problems (e.g. double hierarchical GLMs; Cleasby 
et al., 2015), where generating a large number of samples for a null 
distribution may not be an option. The number of samples affects 
the minimum p- value that can be calculated and its precision; a null 
distribution with 100 samples can have a minimum p- value of 0.01 
and vary by intervals of 0.01. In addition, stochastic fluctuations in 
the p- value can have a large impact on inference. For this reason, 
we would recommend a higher number of samples in the null dis-
tributions than we used here. We remain neutral to the application 
of NHST, preferring the use of p- values as a continuous measure of 
statistical support. However, if NHST is employed, researchers must 
ensure that a large number of samples is used, to prevent inference 
being based on a handful of rare events. Note that, although not ad-
visable for NHST, we were able to produce meaningful results with 
100 simulations, which provided information (although much less 
reliably) of how incompatible the observed variance was with the 
range expected under the null hypothesis.

4.3  |  Alternative approaches

Use of a p- value relies upon the distribution of p- values being uni-
form when the null hypothesis is true, a property that is expected to 
be invariant to sample size (as we show in Figure 4). p- values there-
fore only provide support against the null hypothesis; they do not 
provide support for the null hypothesis. In contrast to p- values, the 
ROPE value and Bayes factors aim to additionally assess support for 
the null hypothesis, and therefore depend upon sample size under 
both the null and alternative hypotheses. These alternatives are not 
always simple to implement, and below we outline some potential 
issues that empiricists may encounter.

The ROPE introduces another source of subjectivity into the 
analysis through defining an arbitrary threshold. This is not trivial 
for variance components, as small variances can have large knock- on 
effects. For example, McFarlane et al. (2015) found that maternal 
genetic effects accounted for 2% of variation in fitness, which pre-
dicted a 56% increase in mean lifetime reproductive success under 
10 generations. Bonnet et al. (2022) employed a ROPE approach, 
using simulations to demonstrate the biological relevance of the 
thresholds they use. ROPE is often discussed in a context where a 
cost– benefit analysis can be used to work out the minimum effect 
size that warrants the use of a particular (e.g. medical) intervention 
(Kruschke, 2018). While there are clear applications for using ROPE 
in fields like conservation, where interaction with stakeholders 
requires thresholds over which decisions are made, for many em-
piricists, ROPE requires more subjective decisions to be made and 
justified.

Bayes factors can be used to test the ‘significance’ of parame-
ters in Bayesian mixed- effect models. However, the calculation of 
Bayes factors is not straightforward. They require large posterior 
distributions for stable estimation (Schad et al., 2022). They also 
depend on the marginal likelihoods of the two models which are 

sensitive to prior specification (Gelman et al., 2021; Navarro, 2019; 
Schad et al., 2022), even when there is little or no visible effect on 
the posteriors. Using Bayes factors as a measure of posterior odds 
also assumes equal probability of the two models, and it is not clear 
whether this is a reasonable assumption as some would argue that 
some among- group variance always exists.

Bayesian models can also be compared using information cri-
teria, in particular deviance information criteria (DIC; Spiegelhalter 
et al., 2002), widely applicable information criteria (WAIC; Wata-
nabe, 2010) and LOO- CV (Browne, 2000; Gelman et al., 2014), which 
aim to provide out- of- sample prediction accuracy. DIC has several 
problems which in part come from being based on a point estimate 
(Plummer, 2008), and provides poor estimates when posterior distri-
butions are not well described by their means (Gelman et al., 2021). 
WAIC addresses these issues by using the whole posterior. How-
ever, some assumptions of WAIC do not hold for hierarchical models 
with weak priors (Gelman et al., 2014; Millar, 2018). LOO- CV may, 
therefore, be the most suitable information criteria for this purpose. 
It is also important whether these information criteria are generated 
using marginal or conditional likelihoods (Ariyo et al., 2020; Merkle 
et al., 2019; Millar, 2018)— although the marginal likelihood may be 
more appropriate for comparing hierarchical models, many software 
packages only (MCMCglmm) or by default (BUGS, JAGS, Stan) pro-
vide the conditional likelihood.

The use of both LOO- CV and Bayes factors for complex models 
is currently the subject of intense debate. Regardless of the various 
intricacies of this debate, perhaps a more constraining factor is that 
Bayes factors and LOO- CV are not implementable in all programs, 
including those commonly used for variance component estimation 
in ecology and evolution (i.e. MCMCglmm). Our approach provides 
an alternative to these methods, which is easily implemented and 
allows straightforward interpretation.

4.4  |  Power analysis and possible alternatives

Power analysis is controversial because of its link to NHST, and the 
misuse of NHST has been linked to scientific misconduct and the 
replication crisis (Amrhein et al., 2017, 2019; McShane et al., 2019; 
Wasserstein & Lazar, 2016). While these criticisms relate to the 
use of p- values after data collection and analysis, power analysis 
is typically conducted pre- analysis, and serves a clear purpose in 
aiding experimental design. Power can also be seen as a descrip-
tion of the distribution of p- values expected for a given effect size 
and data structure. Other descriptions of this distribution (e.g. 
the mean) would be simple functions of the power (Figure S5), but 
the common use of this metric makes it more widely understood. 
One suggested alternative, Type M error (absolute relative bias 
of significant estimates), also relies upon calculation of p- values 
and an arbitrary alpha value, and is a simple function of power 
(Gelman & Carlin, 2014). Unlike power, Type M error is affected 
by the measure of central tendency that is chosen (Figure S16). 
Another alternative to power is to design studies around a desired 
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level of precision in estimates. Although this works for unbounded 
parameters, precision is difficult to interpret for variance compo-
nents, because it increases as the true value gets closer to zero 
due to the constraint at zero (see Figure S2). Using relative preci-
sion (the inverse of the coefficient of variation of the sampling 
distribution) avoids this problem. It is strongly related to power 
(Figure S13), and so optimizing this value may provide an alterna-
tive target for planning optimal experimental designs. The relative 
precision is, however, also highly dependent on the measure of 
central tendency used. We would therefore suggest that power 
still provides a suitable metric for designing studies to estimate 
variance components.

We show two methods of power analysis based upon null dis-
tributions. The first (full) method involved generating p- values by 
creating a null distribution for each ‘observed’ dataset. This method 
is highly computationally intensive as it involves running a certain 
number of simulations multiplied by the number of permutations/
simulations models, which could realistically be one million mod-
els per parameter. Our alternative (reduced) method involved gen-
erating p- values by comparing the parameter estimates from the 
‘observed’ datasets to a single null distribution for each data struc-
ture. While the two methods estimated similar power, the reduced 
method was massively less computationally intensive (requiring run-
ning 2000 models rather than a million for each set of parameters). 
The disadvantage is that a FPR cannot be calculated.

Even if power is not the intended use, these simulations can still 
serve an extremely useful purpose before studies are conducted. 
First, these simulations allow an empiricist to consider the distri-
bution of p- values expected under a given effect size and design 
(power is essentially a description of the shape of this distribution). 
Second, the null distribution of point estimates can be visualized. 
Even if an empiricist does not want to calculate a p- value, creating a 
null distribution is a powerful way of considering the distribution of 
estimates that would be generated with no among- group variance, 
and would serve to encourage caution in how results that lie within 
that distribution are interpreted.

4.5  |  Computational burden

Null distribution approaches can be computationally intensive. 
When model complexity and/or sample sizes are high, applying 
them can take a long time, and may prohibit their use. There are 
several points in this regard that are worth noting. First, these 
computational constraints will become increasingly less problem-
atic with advances in computing and software. For example, the 
introduction of Stan has led to a considerable decrease in computa-
tion time for many MCMC models, and the increased availability of 
computer clusters means that null distribution can be generated in 
parallel. Second, the mean and median require far lower effective 
sample size than CRIs to be well estimated (Vehtari et al., 2021). 
‘Null’ models can therefore be run for much shorter times than the 
original model, as only the mean/median is needed. Third, other 

metrics are also computationally expensive. For example, the gen-
eration of Bayes factors and LOO- CV requires running two models 
with much larger posterior distributions (one to two orders of mag-
nitude larger; Gronau et al., 2020; Vehtari et al., 2017), followed by 
additional computationally expensive steps. Finally, our suggested 
method will be the most efficient for power analysis. Whereas 
each Bayes factors and LOO- CV require two models with large 
posteriors, in our method the same null distribution can be used 
for all simulated datasets with the same data structure, requiring 
models with much smaller posteriors. Relative precision is even 
less computationally intensive to generate, but perhaps slightly 
harder to interpret. Overall, the computational burden of generat-
ing a null distribution is perhaps not so high when compared to 
other alternatives.

There will be cases in which none of these methods (null distri-
butions, Bayes factors or LOO- CV) will be feasible for computational 
reasons. Are there any less computationally expensive alternatives? 
The ROPE method provides a clear advantage here as it requires no 
additional computationally expensive steps to generate, although 
it may be difficult to apply with variance components. We realized 
when considering the relative precision as a metric for the sampling 
distributions that for an individual posterior distribution this metric 
(mean/SD) is analogous to a z- ratio. Interpretation in this context 
is a little strange, and z- ratios are typically used to represent the 
potential overlap of the uncertainty of a parameter estimate with 
0, which cannot occur here. However, this kind of method is used 
with variance components in frequentist models that report the SEs 
of the variance components (e.g. when estimating genetic variance/
heritability in ASReml (Butler et al., 2017)). Ultimately, we are look-
ing for a usable statistic to describe the support for a difference be-
tween the variance component estimate and 0. These metrics would 
be considerably less computationally intensive to generate than a p- 
value from a null distribution, but may give similar information about 
the model estimates. Comparing them for individual models shows 
that this appears to be true; the z- ratio correlates strongly with p- 
value (Figure S17a). This statistic (posterior mean/posterior SD) may 
therefore provide some inferences about the posterior distribution 
of variance components, although it is much more conservative than 
a p- value generated from null distributions (Figure S17b). While this 
may provide an interesting solution to the problems of computa-
tional power, use of the z- ratio requires further exploration before 
being implemented.

4.6  |  Recommendations

1. We advocate using the posterior median as a measure of central 
tendency for posterior distributions of variance components 
from MCMC- based models. Our results show that the median 
is the least biased estimate, but will overestimate variances 
when power is low. Reporting multiple measures of central 
tendency allows any asymmetry in the posterior to be made 
obvious.
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2. We advocate reporting of smoothing values in kernel estimation. 
Kernel density estimation is commonly used for estimating the 
posterior mode and creating density plots. The parameters used 
in this estimation are seldom reported, but can have a large im-
pact on interpretation. We advise the reporting of parameters in 
the kernel density estimation, or the use of more explicit methods 
of plotting posterior distributions, such as histograms.

3. We recommend using null distributions for inference. Null dis-
tributions provide a way of putting the observed parameter es-
timates into a context expected under an explicitly defined null 
hypothesis (i.e. no among- group variance). Null distributions can 
be created in multiple ways, but they are most easily controlled 
when generated using simulations. As with many aspects of statis-
tical analysis, there are many decisions relating to generating null 
distributions that may have an affect on the results. Therefore, 
these methods should be defined pre- analysis, in order to reduce 
researcher degrees of freedom (Simmons et al., 2011).

4. We also advocate for using a null distribution to estimate power. 
As well as aiding post- hoc inference, null distributions can be used 
for power analysis. We provide details of a method for doing so 
that does not present a large computational burden.
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