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Detecting vertices of building roofs from ALS point cloud data
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ABSTRACT
Roof vertex information is vital for 3D roof structures. Reconstructing 3D
roof structures from point cloud data using traditional methods remains
a challenge because their extracted roof vertices are affected by
uncertainty and additional errors from roof plane segmentation and
supplementary sub-steps for extracting primitives. In this study, instead
of segmenting roof planes and then extracting primitives based on
them, a flexible rule-based method is proposed to directly detect the
vertices of building roofs from point cloud data without the
requirement of training data. The point cloud data is first voxelized with
a dominant direction-based rotation. Based on the different features of
the interior roof points and vertices, rules for voxel filtering and
structure line determination are defined to extract the roof vertices. The
experimental results on a custom dataset in Trondheim, Norway
demonstrate that the proposed method can effectively and accurately
extract roof vertices from point cloud data. The comparative
experimental results with an unfine-tuned deep learning-based method
on custom and benchmark datasets with different point densities
further show that the proposed method has good generalization and
can adapt to changes of datasets.
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1. Introduction

The 3D roof structure is an essential component in 3D building models from Level of Detail (LoD)
2 to LoD4 in the CityGML (Gröger et al. 2012; Kutzner, Chaturvedi, and Kolbe 2020). The roof
structure consists of two elements: roof vertices and the edges between these vertices, and its recon-
struction generally includes two steps: geometric primitive extraction (e.g. the extraction of roof
plane polygons or boundaries) and primitive relationship inference. As point cloud data provides
accurate 3D information with few occlusions and distortions, many methods for reconstructing 3D
roof structures from point cloud data (Tarsha Kurdi, Awrangjeb, and Liew 2019; Tarsha Kurdi,
Awrangjeb, and Munir 2021) have been proposed in the last decades.

Methods for 3D roof structure reconstruction from point cloud data can be classified into two
types: model-driven and data-driven (Awrangjeb, Zhang, and Fraser 2013; Cao et al. 2017; Tarsha
Kurdi et al. 2007). Top-down model-driven methods infer roof structures based on predefined roof
primitives. Although robust, they are easily limited by a predefined primitive library. Bottom-up
data-driven methods can overcome the problem of flexibility but require more sub-steps to achieve
3D roof reconstruction. This remains a challenge for data-driven methods: the additional steps and
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rules for segmentation, plane fitting and refinement, and boundary tracing and regularization
increase the uncertainty and lead to additional errors in the detected roof vertices.

To retain the advantages of flexibility offered by data-driven methods and address the challenges
associated with the uncertainty of roof topology and vertices caused by roof plane segmentation and
additional sub-steps of primitive extraction, Li et al. (2022) applied a new strategy in their research
and proposed a deep learning-based method, Point2Roof. In their method, roof vertices were
extracted, and edges were then predicted directly from point cloud data rather than from
additional-step-extracted roof primitives. Their experimental results demonstrated its success of
roof vertex detection and edge prediction. However, the deep learning-based method requires a
large dataset for training, and its generalization is tightly linked to the diversity and richness of
the dataset, whereas the roof structure dataset is limited. This particularly affects the performance
of roof vertex detection. Hence, to directly extract roof vertices from point cloud data and avoid the
need for a large labeled dataset for the deep learning-based method, a method for roof vertex detec-
tion without the requirement of training data is essential. In this study, a flexible voxel-based and
noise-resistant method for detecting the vertices of building roofs from point cloud data is proposed
to better support 3D roof structure reconstruction. The highlights of the present study are as
follows.

(1) The proposed method directly detects roof vertices from roof point cloud data. This simplifies
the process of existing data-driven methods, resulting in fewer errors in the extracted roof ver-
tices that can ultimately improve the accuracy of the reconstructed 3D roofs.

(2) The proposed method achieves roof vertex detection without the requirement for training data.
The filters for detecting the roof vertices and structure lines in the proposed method are rule-
based, making the proposed method free of labeling data and training. This results in lower
computational and data annotation costs.

The remainder of this paper is organized as follows: Section 2 summarizes related works on 3D
roof reconstruction and roof vertex detection, Section 3 describes the detailed workflow of the pro-
posed method, Section 4 introduces the experimental setup, Section 5 reports the experimental
results and further discusses the critical issues of the proposed method, and Section 6 presents con-
clusions from this study and discusses future work.

2. Related works

Conventional methods of 3D roof reconstruction follow the strategy of geometric primitive extraction
and primitive relationship inference. In the methods based on point cloud data, model-driven
methods (Huang, Brenner, and Sester 2013; Jarząbek-Rychard and Borkowski 2016; Kwak and
Habib 2014; Li and Shan 2022; Li, Xu, and Shan 2019) achieve the geometric primitive extraction
by predefined primitives. Maas and Vosselman (1999) defined a standard gable roof house type as
the basic primitive and then reconstructed building models using invariant moment analysis.
Huang, Brenner, and Sester (2013) defined a library of roof primitives, which was divided into
three groups with 11 types. The primitives were combined and merged with the proposed rules,
and the roof model was reconstructed using generative modeling. Kwak and Habib (2014) decom-
posed a building into sets of rectangular parts and defined rectangular primitives to model the build-
ing parts with different roof types. The primitive relationship inference of a building model and its
adjustment were based on the decomposed results, additional constraints, and sequential boundary
fitting. Jarząbek-Rychard and Borkowski (2016) utilized the Roof Topology Graph (RTG) with a
library of elementary structures to identify the topological structure of a segmented roof and achieved
the reconstruction. Li and Shan (2022) first extracted planar patches by segmentation, and then,
selected building primitives using four predefined primitives: shed, gable, pyramid, and hip. The
reconstruction was finally achieved by holistic parameter estimation and 3D Bool operations.
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Althoughmodel-driven methods perform well in terms of robustness and completeness during 3D
roof reconstruction, they are limited by inflexible prior knowledge when reconstructing undefined
shapes, and the high complexity of searching for appropriate primitives in large-scale scenes.

Data-driven methods based on point cloud data (Kim and Shan 2011; Nan and Wonka 2017;
Sampath and Shan 2010; Wang et al. 2020; Xu et al. 2020) generally consider the geometric primi-
tive extraction in two steps: roof plane segmentation and basic roof primitive extraction. Roof plane
segmentation methods are commonly based on RANdom SAmple Consensus (RANSAC), Hough-
Transform (HT), region growing, and clustering. These related works are reviewed in Tarsha Kurdi
and Awrangjeb (2020). Some new methods (Chen et al. 2021; Dey et al. 2023; Wang and Ji 2021;
Zhang and Fan 2022) have also been proposed in recent years to further improve segmentation per-
formance. The segmented roof planes are usually further represented as plane equations, polygons,
or outlines to organize them into abstract primitives that can be used in the subsequent topological
analysis. Sampath and Shan (2010) used the convex-hull algorithm and the constraint of two
mutually orthogonal directions to track and regularize roof plane boundaries as abstract primitives
and finally reconstructed roofs and buildings based on these boundaries. Chen, Wang, and
Peethambaran (2017) employed algorithms based on the Voronoi diagram, α-shape, and minimum
spanning tree to achieve roof boundary tracing and further support reconstruction. Nan and
Wonka (2017) refined the segmented building planes using an algorithm that considered the
angle difference and shared points between two planes to prepare the plane selection and recon-
struction. A similar strategy was applied in their improved method City3D (Huang et al. 2022)
to achieve roof reconstruction. Wang et al. (2020) utilized the least-squares method to fit planes
after plane segmentation for further building reconstruction.

These data-driven methods can achieve 3D roof reconstruction without requiring predefined
information. However, more steps and rules in data-driven methods cause new issues: (1) The
data-driven method requires the step of roof plane segmentation to obtain the roof plane infor-
mation. This does not affect the visualization performance of the reconstructed roof structures,
even in the case of over- and under-segmentation. However, the uncertainty associated with the seg-
mentation step has the potential to influence the accuracy of the roof topology and vertices, and ulti-
mately affect the calculability and practicality of the reconstruction result. Given that accurate roof
structure information is a fundamental requirement for many applications, such as photovoltaic
panel planning in solar energy analysis, addressing this issue is critical. (2) The step of roof primitive
extraction after segmentation usually necessitates supplementary sub-steps and constraints, such as
plane fitting and refinement, or boundary tracing and regularization of planar primitives. Additional
constraint-based sub-steps increase the complexity of the method and lead to additional errors,
thereby increasing the uncertainty and bias in the extraction results of the roof vertices.

Recently, some researchers have explored the possibility of applying a more concise and intuitive
strategy to reconstruct 3D roof structures from point clouds (Li et al. 2022), in which the task of 3D
roof reconstruction is simply divided into vertex detection and edge prediction from point clouds.
A two-stage Deep Neural Network (DNN) named Point2Roof was designed to extract the roof ver-
tices and predict the edges for reconstruction. This method achieved state-of-the-art results for both
synthetic and real datasets. However, the need for training, fine-tuning, and a large training dataset
for a deep learning-based method affects the practicality and generalization of their method. This
particularly affects roof vertex detection because the essential point features are extracted in this
module, and the following edge prediction is dependent on the results of vertex detection. For
instance, when the model, trained on the synthetic dataset, was transferred to the real dataset,
additional labeled training data was required.

3. Methodology

The goal of the proposed method is to detect critical vertices of a building roof from point cloud
data. As shown in Figure 1, the workflow of the proposed method consists of four major sections:
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(1) voxelization of point cloud data with dominant-direction rotation, (2) detection of candidate
voxels of potential roof structure lines, (3) determination of structure lines based on candidate
voxels, and (4) segmentation of structure lines to obtain the final roof vertices.

The workflow input is the segmented point cloud data for each single roof (Figure 1(a)). In the
workflow, the voxels of the input roof point cloud data are first generated using a voxelization
method with a dominant-direction rotation (Figure 1(b)). Subsequently, candidate voxels on the
potential roof structure lines are detected by implementing rules for dividing the interior and
edge voxels (Figure 1(c)). Next, the candidate voxels are extended to straight lines, which are clus-
tered and merged to determine the roof structure lines (Figure 1(d)). Finally, the structure lines are
segmented by considering their included voxels and the intersection relationships between them.
The endpoints of the structure line segments are regarded as the final roof vertices in the voxel coor-
dinate system (Figure 1(e), left). After re-rotation, the final roof vertices in the geographic coordi-
nate system are obtained and output as the final result (Figure 1(e), right).

3.1. Voxelization with dominant-direction rotation

Point cloud data is a type of data with the irregular format (Qi et al. 2017). Voxelization is a com-
mon approach to regularize the unordered point cloud data and establish clear neighbor relations in
a set of point clouds (Xu et al. 2017). However, two challenges exist in the voxelization of raw point
cloud data:

(1) Many empty voxels are generated because of the misalignment of the point cloud data with the
voxel grid, as shown in Figure 2(a).

Figure 1. Overall workflow of the proposed method. The voxelization result shown in (b)∼(e) is represented by voxel center
coordinates.
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(2) Although the first issue can be addressed by removing empty voxels from the voxel set, the
neighborhood relationship of a voxel remains irregular, which affects the accuracy of the
extracted roof edges. This is because, in the proposed method, only the nearest neighbors of
a voxel are considered to extract the roof structure lines (which is a subset of all roof edges).
However, the angles between a voxel and its nearest eight neighbors in 2D are always 45° or
multiples thereof; therefore, edges with different angles are split into multiple segments, as
shown by sl1 and sl2 in Figure 2(a).sub.

To address these issues, a voxelization method with rotation is used in this study. Instead of
directly voxelizing the raw point cloud data, the point cloud data is first rotated according to its
dominant direction and then voxelized using 3D cubic grids with the provided voxel size. The
voxel size is set as 0.5 m to achieve the regularization of point cloud data, where the setting of
voxel size follows the related research that used a point cloud data with a point density similar
to that of the dataset used in the present study (Zięba-Kulawik et al. 2021). The dominant direction
is defined as the rotation angle of the Minimum Area Rectangle (MAR) of the α-shape polygon of
the point cloud data. The rotation angle is calculated using the minAreaRet function in OpenCV, as
introduced by Zhao et al. (2022). Additional rotation based on the dominant direction is designed
to assist in the generation of voxels with more regular neighbor relationships. This is illustrated in
Figure 2(b).sub; through the application of rotation, the same roof edge as shown in Figure 2(a).sub
can be represented more accurately as a single segment. The dominant-direction rotation effectively
reduces the number of edges at other angles, considering that a building is generally formed of recti-
linear shapes (Verma, Kumar, and Hsu 2006).

After voxelization and obtaining the voxels of the rotated point cloud data, empty voxels are
removed from the voxel set. The final cleaned voxel set V will be used in the next sections, with
V = {v|v = (xv, yv, zv) � (xgv , y

g
v , z

g
v)}, where v denotes a voxel, (xv, yv, zv)denotes the voxel’s

index coordinates in the local voxel index coordinate system, and (xgv , y
g
v , z

g
v) denotes the voxel’s

center coordinates in the rotated geographic coordinate system. The voxels at the same horizontal
slice (i.e. the voxels having the same z-indexes) are defined as one ‘layer’.

Figure 2. Example of voxelization without and with dominant-direction rotation.
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3.2. Detection of candidate voxels of potential roof structure lines

In this study, a ‘roof structure line’ is defined as a roof edge where all voxels it comprises lie on the
same layer, as shown by the red lines in Figure 3.

The structure lines of a roof are a subset of roof edges that can contain all the roof vertices. This
means that once all the structure lines of the roof are extracted, the roof vertices can be located by the
points on these lines. These structure lines have distinctive features in the z-axis direction, whereas the
features of other roof edges that contain voxels frommultiple layers are variable and should be defined
jointly in the x- and y- and even z- axes. For example, as shown in Figure 3, when calculating the
normal of each roof edge based on its neighboring area without voxels (indicated by the blue twill
area in Figure 3), the difference between the normals of the roof structure lines {nlsl} can be expressed
in the z-axis direction, and their normalized normals have the same absolute value. In contrast, the
normals of the other roof edges {nlo} have various directions, which results in the unfixed values of
these normalized normals.

Therefore, considering that roof structure lines are easier to detect and can be used to locate all
roof vertices, in this study, roof structure lines are extracted to identify roof vertices instead of
extracting all roof edges.

In the process of extracting the structure lines of a roof, the first step is the detection of candidate
voxels situated on these roof structure lines. For this, in this section, Rules 1 and 2 are used to divide
voxels into two categories: interior voxels and candidate voxels on the roof structure lines, where the
‘interior voxel’ denotes the voxels that are not on the roof structure lines. Rule 1 filters out the interior
voxels on the sloped roof planes, and Rule 2 filters out the interior voxels on the flat roof planes.

Rule 1: When considering the 3D neighbors of a voxel v (v [ V) from different layers, if v is
positioned on a roof structure line, it should not have two neighbors from the different layers,
which could combine to form a 180° structure with itself (i.e. v and its two neighbors are collinear).
The definition of ‘layer’ is described at the end of Section 3.1. The mathematical representation of
this rule is given by Equation (1).

∀ vui�� · vuj�� = −1, when zv(ui) = zv(uj) = zv(v),

where ui, uj [ U(v, r), i, j [ [0, s(U(v, r))), i = j
(1)

U(v, r) = {u|distCb(v, u) ≤ r, u = v, u [ V} (2)

where zv(·) denotes the z-value of the specified object (e.g. zv(v) represents the z-value of voxel v),
U(v, r) # V denotes the set comprising the neighbors of voxel v, r denotes the radius of the

Figure 3. Example of roof structure lines and other roof edges.
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searching neighbors (unit: voxel), and s(·) denotes the function that returns the number of objects
in the specified set. Thus, s(U(v, r)) denotes the size of the neighbor set of voxel v when the search-
ing radius is set to r. The mathematical representation of U(v, r) is given by Equation (2), where -
distCb(v, u) denotes the Chebyshev distance between voxels v and u.

Rule 2: When considering voxel v (v [ V) whose all neighbors from the same layer, if v is situ-
ated on a roof structure line, the number of 180° structures formed between itself and any two
neighbors on the same layer should be less than four. The mathematical representation is given
by Equation (3). The value ‘4’ is constant because, for a voxel and its nearest neighbors on the
same layer, the maximum number of 180° structures that include the voxel itself is four.

count
( vui
��, vuj

��)| vui�� · vuj�� = −1,
zv(ui) = zv(uj) = zv(v),
ui, uj [ U(v, r), i, j [ [0, s(U(v, r))), i = j

⎧⎨
⎩

⎫⎬
⎭

⎛
⎝

⎞
⎠ , 4 (3)

where count(·) denotes the function that returns the number of elements satisfying the given con-
dition. In Equation (3), the ‘element’ is the neighbor combination.

Theoretically, the interior voxels can be removed by applying Rules 1 and 2 for each voxel. How-
ever, in practical scenarios with real-world point cloud data, affected by noise and the angle of the
slope roof plane, the slope plane of the roof appears ‘stepped (staircase-like)’ after voxelization, as
shown in Figure 4. As a result, some unexpected interior voxels might be saved after filtering with
the rules, even though they do not belong to the roof structure lines, such as voxels va and vb shown
in Figure 4, where va, vb [ V . Hence, Rules 1 and 2 should be iteratively applied to remove these
voxels.

The full algorithm for detecting candidate voxels on roof structure lines is as follows. First, the set
of candidate voxels on roof structure lines is initialized to include all voxels. Subsequently,Rules 1 and
2 are iteratively applied to each voxel in the candidate voxel set until the maximum specified number
of iterationsmaxIter is reached. In each iteration iter, the radius for searching for nearby neighbors (r)
is expanded and set to the value equal to the current iteration number iter. Voxels that do not satisfy
Rules 1 and 2 are regarded as interior voxels and are removed from the candidate voxel set. The value
of maxIter is half that of the number of layers. This setting ensures that all possible neighbor combi-
nations from different layers for each voxel are covered. The mathematical representation of its

Figure 4. Example of laddering voxelization for a slope roof plane.
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calculation is given by Equation (4).

maxIter = max ({zv(v)})+ 1
2

⌈ ⌉
(4)

where {zv(v)} is the z-values of all voxels.
After applying this algorithm, the candidate voxel set VC = {vC} is obtained. To further clean VC,

the isolated voxels in VC are removed using a post-processing step. Here, ‘isolated’ means a voxel
without any neighboring voxels at the same layer among its double nearest neighbors in VC, where
the ‘double nearest’ means that the neighbor search radius is set as 1×2 voxels. The cleaned candi-
date voxel set, VC, is applied in Section 3.3.

3.3. Determination of roof structure lines

In this section, the structure lines are determined using the candidate voxel setVC. This section con-
sists of two sub-sections: (1) extraction of the set of candidate structure lines LC = {lC} using VC,
and (2) clustering and merging of the candidate structure line set LC to determine the structure
lines L = {l}. L will be used in the next section for the roof vertex extraction. The workflow of
this section is illustrated in Figure 5.

3.3.1. Extraction of candidate structure lines
The first sub-section for extracting the candidate structure lines LC is achieved by applying Rule 3.

Rule 3: A candidate structure line lC (lC [ LC) of a candidate voxel vC (vC [ VC) is defined as
follows. In considering all straight lines that pass through both the voxel vC and any one of its near-
est neighbors U(vC, 1) in the set of all voxels (V ) on the same layer, the candidate structure line of
vC among these straight lines should be the line that includes the greatest number of voxels from V.
The z-value of the candidate structure line zv(lC) is equal to zv(vC), where zv(vC) is the z-value of
the voxel vC. The mathematical representation of the candidate structure line lC is provided by
Equation (5).

lC = l(vC,mc, uC,mc):AlCx+ BlCy+ ClC = 0,

where cntd(l(vC,mc, uC,mc)) = max
cntd(l(vC, uC,i))|
uC,i [ U(vC, 1), i [ [0, s(U(vC, 1)))

{ }( ) (5)

where (A, B, C) denotes the line parameters, uC denotes a voxel from U(vC, 1) # V (U(vC, 1) # V:
the nearest neighbors of voxel vC in the set of all voxels V ), and the other variables and functions in

Figure 5. Workflow of determining structure lines.
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Equation (5) are explained as follows.

l(vC, uC):A(vC ,uC)x+ B(vC ,uC)y+ C(vC ,uC) = 0, uC [ U(vC, 1) (6)

distl(v, l(vC, uC)) = |A(vC ,uC) · xv(v)+ B(vC ,uC) · yv(v)+ C(vC ,uC)|������������������
A2
(vC ,uC)

+ B2
(vC ,uC)

√ , v [ V (7)

cntd(l(vC, uC)) = count
v|distl(v, l(vC, uC)) ≤ disonl,

zv(v) = zv(uC) = zv(vC),
v [ V

⎧⎨
⎩

⎫⎬
⎭

⎛
⎝

⎞
⎠ (8)

where Equation (6) provides the mathematical representation of l(vC, uC), which denotes a straight
line passing through vC and uC. As defined in Equation (7), distl(v, l(vC, uC)) is used to calculate the
distance between voxel v in V and the line l(vC, uC), where xv(v) and yv(v) denote the x and y values
of voxel v. As defined in Equation (8), cntd(l(vC, uC)) is used to count the number of voxels that are
on line l(vC, uC) and are from the same layer of vC. A voxel positioned on a line is mathematically
represented as a voxel whose distance from the line is less than 1/

��
2

√
voxel, where 1/

��
2

√
is the

maximum distance for excluding voxels that deviate from the line. To simplify the representation
of the subsequent equations, Equation (7) uses disonl to represent a special distance that determines
whether a voxel is on a line. Moreover, in this study, disonl is set as 0.4, which is the round of half of
1/

��
2

√
, to provide a stricter limitation.

After applying Rule 3 to each voxel vC in candidate voxel set VC, the candidate structure line set
LC can be obtained. Simultaneously, for each candidate structure line lC, its VlC (the set of voxels on
this candidate line) can also be obtained. The mathematical representation of VlC is given by
Equation (9).

VlC = {v|distl(v, lC) ≤ disonl, zv(v) = zv(lC), v [ V} (9)

where distl(v, lC) denotes the distance between a voxel v and a candidate structure line lC.
An example of the extracted candidate structure lines is presented in Figure 5(b). This sub-sec-

tion is not only used to extract candidate structure lines, but also contributes to complementing the
roof structure, as shown by the blue boxes in Figure 5(a) and (b).

3.3.2. Clustering and merging of candidate structure lines
The second sub-section ‘clustering and merging’ is implemented to merge the candidate structure
lines which represent the same structure, as shown by the red ellipse in Figure 5(b). This sub-section
describes the application of Rules 4 and 5 for clustering, and an algorithm with Rules 6 and 7 for
merging.

During the clustering process, all candidate structure lines LC = {lC} are partitioned into several
clusters CLS = {cls}, and each cluster is required to satisfy the two conditions in Rules 4 and 5. One
cluster corresponds to a single roof structure line. A line lC assigned to a cluster cls is rebranded as
lP. This renaming is undertaken to declare the differences between the clusters to which they belong,
as shown in Equation (10).

Rule 4: In a cluster, all included lines should come from the same layer and have the same slope.
This implies that they share the same z-values and line parameters (A, B). The mathematical
representation of this rule is given by Condition (i) in Equation (10).

Rule 5: In a cluster, all included lines should be located close to one another, meaning that each
line in this cluster should have at least one nearest neighboring line. As shown by Condition (ii) in
Equation (10), its mathematical representation is that the minimum intercept distance between a
line and its nearest neighbor line is less than or equal to 1 (unit: voxel), where 1 represents the
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distance between the nearest neighbor line.

cls = {lP [ LC:AlPx+ BlPy+ ClP = 0}, cls # CLS and cls # LC,

cls should satisfy following conditions:

(i) zv(lP,i) = zv(lP,j), lP,i ‖ lP,j;

(ii) min(ClP − C{lP}
C) ≤ 1;

∀lP, lP,i, lP,j [ cls, i, j [ [0, s(cls)), i = j

(10)

where lP is a candidate structure line in a cluster cls, (AlP , BlP , ClP) represents the line parameters of
line lP, and {lP}

C is the complement of lP in universe cls.
After obtaining CLS (i.e. the cluster sets of candidate structure lines), the lines in each cluster are

sorted based on the x and y values of their contained voxels to obtain the ordered cluster lines. Clus-
ters with ordered lines are denoted as CLSO = {clsO}, and the lines in a cluster are denoted as
clsO = {lO}.

As previously mentioned, each cluster corresponds to one roof structure line; however, some
clusters may contain multiple lines. These lines in each cluster should be merged to obtain the sim-
plest set of roof structure lines, L = {l}. To achieve the merging process, two merging rules, Rules 6
and 7, are defined as follows.

Rule 6: For a cluster clsO = {lO} with an odd number of included lines, the central-most line (i.e.
the line whose line parameter C is the closest to the mean C value of this cluster) is regarded as the
merging result and saved as one roof structure line l [ L.

Rule 7: For a cluster clsO = {lO} with an even number of included lines, the roof structure line
l [ L extracted from this cluster is determined as follows. It is the line with better continuity
between the two central-most lines. If these two lines have the same continuity, the longer line is
regarded as the roof structure line. The length of a line is equal to the distance between the two
voxels with the minimum and maximum x-y coordinates on this line. In this rule, the continuity
of a line lO, fc(lO), is defined by Equation (11). This means that, by counting the number of inter-
section points between (1) line lO and (2) a set of lines cls+lO that can interrupt lO, the line with fewer
intersection points is considered to have better continuity. The set cls+lO of line lO is obtained using
Equation (12).

fc(lO) = −s(IP(lO, cls
+
lO
)), lO [ clsO, cls

+
lO
, clsO (11)

cls+lO =
{l+O |zv(l+O ) . zv(lO), l+O [ clsO} (zv(lO) = minZv(clsO))

{l+O |zv(l+O ) = maxZv(clsO), l+O [ clsO} (minZv(clsO) , zv(lO) , maxZv(clsO))

∅ (zv(lO) = maxZv(clsO))

⎧⎪⎨
⎪⎩

where Zv (clsO) = {zv(lO), lO [ clsO}

(12)

where IP(lO, cls+lO) in Equation (11) denotes the set of intersection points between a line lO and its
cls+lO , and the coordinates of each intersection point should be between the minimum andmaximum
x-y coordinates of VlO (the set of voxels on the line lO). s(IP(lO, cls

+
lO
)) returns the number of inter-

section points. In Equation (12), Zv(clsO) denotes the z-value set of the voxels in the set clsO.
The full algorithm of the merging process can be described as follows. First, based on the parity

of the number of included lines in each cluster, all clusters are categorized into two types: odd and
even. Next, Rule 6 is applied to clusters with an odd number of included lines, and Rule 7 is applied
to clusters with an even number of included lines. Following the application of these two rules to
CLSO (the clusters with ordered lines), the result of merging can be obtained for each cluster.

After the merging process, a set of roof structure lines L = {l} is determined. The red ellipses in
Figure 5(b) and (c) illustrate examples of the roof structure lines before and after clustering and
merging. Figure 5(c) also provides a full example of the roof structure lines ultimately obtained
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in this sub-section. This set of roof structure lines is used in the next section to extract the roof
vertices.

Furthermore, additional information for use in the next section, {Vl, l [ L}, is obtained. This
represents the set of voxels on these structure lines. The detailed mathematical representation of
Vl is given by Equation (13).

Vl = {v|distl(v, l) ≤ disonl, zv(v) = zv(l), v [ V}, l [ L (13)

where distl(v, l) denotes the distance between a voxel v and a roof structure line l.

3.4. Extraction of roof vertices by segmenting structure lines

The roof structure lines determined in Section 3.3 include the information of all the roof vertices.
These roof vertices are represented as the endpoints of the roof line segments. Therefore, in this
section, the roof structure lines are first converted into roof line segments. Next, the voxels at
the roof vertices are extracted using the endpoints of these segments. Finally, the roof vertices
are obtained by extracting the center coordinates of these voxels and re-rotating them. The
workflow of this section is illustrated in Figure 6.

3.4.1. Extraction of roof line segments
In this sub-section, two sets of data are used: (1) L (i.e. the set of roof structure lines) and (2)
{Vl, l [ L} (i.e. the set of voxels on the roof structure lines). These data are utilized in the following
algorithm to extract roof line segments. An example of the algorithm used to extract roof line seg-
ments is shown in Figure 7.

In the algorithm, first, the final output set of line segments is set as SegL, and SegL is initialized as
an empty set. Then, for each structure line l (l [ L), the following steps (1)–(4) are implemented.

(1) Calculate the intersection points between a line l (l [ L) and the set of lines which can interrupt
it. The intersection points of l are denoted as IP(l, L+l ), where L

+
l = {l+} denotes the set of lines

which can interrupt l. The L+l of l is obtained using the same method as that shown in Equation
(12), where clsO in Equation (12) is replaced by L, lO is replaced by l, and l+O is replaced by l+. For
example, as shown in Figure 7(a), the orange line l1 is selected as the structure line prepared to
be interrupted. Then, its L+l1 is obtained by applying Equation (12), which includes a single line
l2, as shown by the red line. Finally, IP(l1, l2), the intersection point between l1 and L+l1
(L+l1 = {l2}), can be calculated, which is represented by the blue box in Figure 7(b).

Figure 6. Workflow of roof vertex extraction.
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(2) For l, first, sort its corresponding Vl (the set of voxels on l) by the x and y values of these voxels.
Then, connect each two neighboring voxels to obtain all line sub-segments {subSegl} for l. An
example of the line sub-segments is shown by the orange and red line segments with arrows in
Figure 7(b).

(3) Remove the sub-segment(s) in l that is(are) closest to the intersection point(s). If an intersection
point is located in a sub-segment, this sub-segment, including the intersection, is removed. If the
intersection point is at the endpoint of the two sub-segments, both sub-segments will be removed.
An example of the latter case is shown in Figure 7(b). IP(l1, l2) is at the endpoints of both l1 and l2.
Hence, the two sub-segments closest to IP(l1, l2) are removed, as shown in Figure 7(c).

(4) After step (3), remove the recurring voxels on the saved sub-segments of l and re-organize the
saved voxels into new segments {segl}. An example of the new segments, {segl1,1, segl1,2} of l1, is
shown by black segments in Figure 7(c). Each segment segl of l includes two voxels
{vS, vE|vS, vE [ Vl}, where vS and vE are the endpoints of this segment. The re-organized
line segments {segl} of l will be added into the final output set SegL.

After implementing these steps for each structure line, the final output set SegL = {{segl}|l [ L}
can be obtained. An example of these segments of a roof is shown in Figure 6(b). SegL includes the
line segment information of all roof structure lines L. This information is then used in sub-section
3.4.2 to extract the roof vertices.

3.4.2. Extraction of roof vertices with re-rotation
As mentioned in sub-section 3.4.1, each line segment is formed by two end voxels
(segl = {vS, vE|vS, vE [ Vl}). Hence, these voxels can be obtained directly from the set of line seg-
ments SegL and considered as voxels at the roof vertices. The center coordinates of these voxels are
extracted as the coordinates of roof vertices, where these coordinates are in the local voxel coordi-
nate system. Subsequently, after re-rotating these coordinates using the transformation parameters
from Section 3.1, the 3D roof vertices in the global geographic coordinate system can be obtained, as
shown in Figure 6(c).

4. Experimental setup

4.1. Experimental datasets

Two datasets are utilized for the experiments. The first custom dataset uses the Airborne Laser
Scanning (ALS) point cloud data in Trondheim, Norway, which was collected in 2018 and pro-
vided by the mapping authority of Trondheim Municipality. The point density of this point cloud
data is 12–20 points/m2. For the quantitative evaluation, 50 roofs are manually extracted from the

Figure 7. Example of roof line segment extraction.
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point cloud data. Different roof types, including both primary (e.g. gabled and hipped) and com-
bined (e.g. L-shaped, T-shaped, and cross-shaped) (Zhang and Fan 2022), are considered to
ensure a comprehensive evaluation. Their roof vertices are manually labeled as the ground
truth data.

Furthermore, to better evaluate the proposed method and facilitate comparisons with existing
methods, a public dataset called RoofN3D (Wichmann et al. 2019; Wichmann, Agoub, and Kada
2018), is also selected. The ALS point cloud data of RoofN3D was obtained from the publicly avail-
able New York City dataset with a point density of approximately 4.72 points/m2. Li et al. (2022)
provided 500 manually labeled 3D structures of roofs from RoofN3D of which 450 were used for
training and the remaining 50 for testing. In the present study, these 50 roofs from the testing data-
set are utilized to quantitatively evaluate the proposed method and compare the evaluation results
with those of Li et al. (2022).

4.2. Evaluation metrics

Similar to the study by Li et al. (2022), two types of metrics are used to quantitatively evaluate the
performance of the proposed method: (1) vertex distance errors and (2) precision and recall for ver-
tices. The former is used to evaluate the geometric quality of the detected roof vertices, and the latter
is used to evaluate the overall quality of the detection results.

Vertex distance errors are calculated as follows (Equation (14)).

vdx = |xpred − xgt|
vdy = |y pred − ygt|
vdz = |z pred − zgt|

(14)

where vdx, vdy, and vdz are the distance errors of the roof vertex in the x-, y-, and z- directions,
respectively. {xpred, y pred, z pred} denotes the coordinates of a roof vertex detected using the proposed
method, and {xgt , ygt , zgt} denotes the corresponding ground truth coordinates for the same vertex.
A correctly detected roof vertex is defined as a detected roof vertex whose distance error between
itself and its nearest vertex in the ground truth data is less than a specified threshold.

The calculations of precision (P) and recall (R) are given by Equations (15) and (16), respectively.

P = TP
TP + FP

(15)

R = TP
TP+ FN

(16)

where TP is the number of correctly detected roof vertices, FP is the number of incorrectly detected
roof vertices, and FN is the number of undetected roof vertices which actually exist in the ground
truth data.

4.3. Experimental design

To evaluate the proposed method, two experiments are conducted: (1) a basic experiment on the
custom dataset, which evaluate the proposed method qualitatively and quantitatively; and (2) a
comparative experiment with another method on both the custom dataset and a public benchmark
dataset (RoofN3D) with different point densities, to comprehensively evaluate the generalization
and practicality of the proposed method.

In the comparative experiment, Point2Roof (Li et al. 2022) is compared with the proposed method
because it shares the same strategy as the proposed method, both of which separate the task of roof
structure reconstruction into roof vertex detection and edge prediction. The same parameters are
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used when testing the proposed method on both datasets; the voxel size is set as 0.5 m. In comparing
the proposedmethod with Point2Roof, different experiments are considered on two different datasets:
(1) when comparing Point2Roof on the custom dataset, only Point2Roof (not fine-tuned) is com-
pared. The trained Point2Roof model provided by the authors is used to predict the roof vertices
for the test data of the custom dataset (link for the trained model: https://github.com/Li-Li-Whu/
Point2Roof). This is because no training data is available for fine-tuning the custom dataset. In
addition, because the proposed method does not require training, a comparison between the pro-
posed method and the model (not fine-tuned) is fairer. (2) When testing the proposed method
and comparing it with Point2Roof on RoofN3D, in addition to testing Point2Roof (not fine-tuned)
using their provided trained model, the experimental results of Point2Roof (fine-tuned) reported
in their paper are also considered and discussed for a comprehensive comparison.

5. Results and discussion

This section presents and discusses the experimental results. The results of the basic experiment are
reported in Section 5.1 and the results of the comparative experiment are presented in Section 5.2.
Two critical issues with the proposed method are discussed in Sections 5.3 and 5.4.

5.1. Evaluation results of the basic experiment

Figure 8 shows the qualitative evaluation results of the proposed method on the custom dataset, as
well as the detailed results of each sub-section. In Figure 8, the black points in Figure 8(a)–(c) rep-
resent the roof voxels, whereas those in Figure 8(d)–(e) represent the roof points from the raw point
cloud data. The colored points in Figure 8(b)–(e) represent the extracted/detected results of the cor-
responding sub-sections, and the point sets with different colors in Figure 8(c) correspond to differ-
ent structure lines. The qualitative results indicate that the proposed method could accurately detect
roof vertices directly from point cloud data. Moreover, these results indicate that the proposed
method can adapt to different roof types. For primary roof types such as gabled (R1) and hipped
(R2) roofs, all roof vertices are successfully detected using the proposed method. In the case of
more complex combined roof types (R3–R5), the proposed method also successfully detects all
roof vertices, except for one vertex in R5 (as shown in the purple box in Figure 8(e)).

The quantitative evaluation results of the proposed method on the custom dataset are as
follows. The vertex distance errors vdx, vdy, and vdz are 0.219, 0.249, and 0.151 m, respectively,
with P = 65.96% and R = 83.40%. This result is calculated based on 50 roofs with ground truth
data, as introduced in Section 4.1. In addition, the mean running time of the proposed method
is calculated to be 50.73 s/roof on the custom dataset, with a mean of 2765.32 points per roof.
According to the obtained vertex distance errors, the geometric errors (quality) of roof vertices
detected by the proposed method are approximately 0.2 m in each direction, which satisfies the
accuracy requirement of LoD3 specified in CityGML 2.0 (Gröger et al. 2012). This demonstrates
the practicality of the proposed method for various applications. Furthermore, the high recall in
the evaluation results of the proposed method implies that it can successfully detect most roof ver-
tices, which is preferred in practical applications. The relatively good precision and running time
further confirm the practicality of the proposed method.

5.2. Comparative experiment

Table 1 presents the quantitative evaluation results of the comparative experiment. As shown in the
first two rows of Table 1, on the custom dataset, when comparing the proposed method with Poin-
t2Roof (not fine-tuned), the vertex distance errors vdx, vdy, and vdz of the proposed method reduce
by 0.066, 0.075, and 0.005 m, respectively, and the precision and recall increase by 19.35% and
57.99%, respectively. These results indicate that the performance of the proposed method is
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significantly better than that of Point2Roof without fine-tuning. The reduced vertex distance errors
signify that the roof vertices detected by the proposed method have better geometric quality, and the
higher precision and recall indicate that the proposed method can detect the roof vertices more
accurately and completely.

As shown in the last three rows of Table 1, on RoofN3D, when comparing the proposed method
with the fine-tuned Point2Roof reported in the paper of Li et al. (2022), the vertex distance errors
vdx, vdy, and vdz of the proposed method are larger by 0.044, 0.033, and 0.136 m, respectively, and
the precision and recall are lower by 59.23% and 10.65%, respectively. Although the evaluation
result of the proposed method is worse than that of Point2Roof, it is important to note that the
result for Point2Roof is obtained using a fine-tuned model. Li et al. (2022) extra manually label
450 roofs to achieve this result, which limits the generalization of their method. Compared to Poin-
t2Roof which uses the provided trained model (not fine-tuned), the performance of the proposed
method is better than that of Point2Roof. The vertex distance errors vdx and vdy of the proposed
method are reduced by 0.121 and 0.121 m, respectively, and the recall increases by 51.55%. Only
vdz in the proposed method is larger by 0.092 m, with a slight reduction of the precision by 3.23%.

Figure 8. Qualitative evaluation results on the custom dataset with detailed results for each section. (a) result of Section 3.1-
voxelization with rotation; (b) result of Section 3.2-detection of candidate voxels of potential roof structure lines; (c) result of
Section 3.3-determination of structure lines; (d) and (e) are the different-view results of Section 3.4-extraction of roof vertices;
and (f) is the ground truth data of roof vertices.
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Overall, the proposed method performs well when dealing with different point cloud data and
shows better generalization than deep learning-based methods, especially when these methods
are not fine-tuned.

5.3. Discussion for the effect of voxel size selection

In the proposed method, the parameter requiring manual consideration and setting is the voxel size.
Generally, the selection of voxel size depends on the point density of the dataset and the required
level of abstraction (Zięba-Kulawik et al. 2021). In this study, the voxel size is set as 0.5 m based on
the point density of the common ALS dataset (12–20 points/m2). To further explore the effect of
voxel size, the tests are conducted for the proposed method on the custom dataset using various
voxel sizes. In this experiment, considering that the minimum point spacing of the two datasets
is approximately 0.3 m (calculated based on the point densities), different voxel sizes ranging
from 0.3 to 1.0 m are used with the interval set as 0.1 m. The abovementioned metrics vdx, vdy,
and vdz and precision and recall are used to evaluate the experimental results. In addition, a metric

vdsum =
������������������
vd2x + vd2y + vd2z

√
is added to comprehensively represent the vertex distance error. The

experimental results are shown in Figure 9. When setting voxel size as 0.5 m on the custom dataset,
the proposed method achieves a balance between recall and precision, with achieving the highest
recall (83.40%) and maintaining a relatively high precision (65.96%). This result demonstrates
that a voxel size of 0.5 m is one of the best choices. Nevertheless, when changing the value of
voxel size, the maximum differences of vdsum, precision, and recall are 0.020 m, 14.68%, and
20.49%, respectively. This indicates that the critical role of voxel size selection in the voxel-based
method.

The proposed method is further tested with different voxel sizes on RoofN3D which has a lower
point density of approximately 4.72 points/m2. As shown in Figure 10, for RoofN3D, the maximum
differences in vdsum, precision, and recall are 0.046 m, 21.34%, and 28.87%, respectively, which agree
with the results on the custom dataset. Moreover, the most balanced result also occurs when setting
the voxel size to approximately 0.5 m on this dataset, even though the point density changes. This
indicates that a smaller voxel size (approximately 0.5 m) would provide better generalization and be
appropriate for different datasets.

Furthermore, as shown in Figures 9 and 10, on both datasets, the three metrics exhibit
similar trends: recall decreases and precision increases with increasing voxel size, whereas
the change in vdsum is less significant. This is because, when the voxel size is gradually
increased in a point cloud set of a roof, the main roof structure in the point clouds can be
saved and gradually highlighted, while the small and detailed structures (as well as noise)
would be abstracted and lost. This also indicates that when planning a task aiming for higher
recall, a smaller voxel size is preferred, whereas a larger voxel size should be considered if the
task requires higher precision.

Table 1. Quantitative evaluation results on different datasets for different methods (*: For these experiments, the threshold for
identifying the correctly detected roof vertex (mentioned in Section 4.2) is set as 1 (m)).

Dataset Method vdx (m) vdy (m) vdz (m) P (%) R (%)

The custom dataset Point2Roof*
(not fine-tuned)

0.285 0.323 0.156 46.62 25.41

The proposed Method* 0.219 0.249 0.151 65.96 83.40
RoofN3D Point2Roof

(fine-tuned)
0.183 0.188 0.045 99.29 96.56

Point2Roof*
(not fine-tuned)

0.347 0.342 0.089 43.29 34.36

The proposed Method* 0.226 0.221 0.181 40.06 85.91
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5.4. Discussion for the effect of point density

As mentioned in Section 4.1, the point density of the custom dataset is 12–20 points/m2, and the
point density of RoofN3D is approximately 4.72 points/m2. These two datasets with different
point densities are helpful in exploring the effect of the data point density on the performance of
the proposed method.

The experimental results of the proposed method on the different datasets are presented in Table
1. Regarding precision, the comparative experimental result shows that the point density of point
cloud data affects the precision performance of the proposed method. As shown in the second and
fifth rows of Table 1, the proposed method performs better on the custom dataset (65.96%), with a
relatively high point density. This is because point cloud data with a high point density is more inte-
gral than that with a lower point density. Data integrity determines the significance and integrity of
the roof structure in the voxelization result of the point cloud data. A more significant and integral
representation of the roof structure in the voxelization space ensures the accuracy of the extracted
candidate voxels and the determined roof structure lines in the proposed method, which ultimately
results in higher precision.

In terms of the vertex distance errors, as shown in the same rows of Table 1, the proposed
method achieves vdx = 0.219 m, vdy = 0. 249 m, and vdz = 0.151 m on the custom dataset. On
RoofN3D, the proposed method achieves vdx = 0. 226 m, vdy = 0. 221 m, and vdz = 0. 181
m. Comparing the results of the proposed method on different datasets, the differences in
vdx, vdy, and vdz are only 0.007, 0.028 and 0.030 m, respectively. In addition, the recalls on
both datasets are similar (83.40% on the custom dataset and 85.91% on RoofN3D). These

Figure 9. Experimental results of applying different voxel sizes on the custom dataset (left: curves of precision and recall; right:
curves of vdsum, vdx, vdy, and vdz).

Figure 10. Experimental results of applying different voxel sizes on RoofN3D (left: curves of precision and recall; right: curves of
vdsum, vdx, vdy, and vdz).
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small differences indicate that the proposed method can perform stably in terms of the vertex
distance error and recall, even for point cloud data with different point densities. Accordingly,
considering the needs of practical applications that prefer high completeness of the detected
roof vertices (recall), the proposed method can work well on different point cloud data with
different point densities.

6. Conclusion

In this study, a new method is proposed for directly detecting roof vertices from point cloud data. In
the proposed method, after voxelization with dominant direction-based rotation of the point cloud
data, the rules for voxel filtering are defined and applied to detect candidate voxels on the roof struc-
ture lines. The roof structure lines are then determined by neighbor analysis, clustering, and mer-
ging of the candidate voxels. Ultimately, the roof vertices are obtained using these lines’ segments.
The workflow of the proposed method is general, meaningful, and flexible. No training process or
data are required. The proposed method is evaluated on two segmented point cloud datasets with
various roof types and different point densities. The qualitative and quantitative evaluation results
demonstrate that the proposed method can stably and accurately detect roof vertices from point
cloud data. Moreover, a comparative experiment with an unfine-tuned deep learning-based method
demonstrates the generalization and flexibility of the proposed method. However, the proposed
method has relatively low precision when processing point cloud data with low point density,
although most of the roof vertices could be detected and a high recall could be guaranteed. In
the future, this method can be further improved by adding postprocessing and considering the col-
linearity of the roof edges predicted from these detected vertices. Additionally, the proposed
method may not yield the desired result when dealing with highly complex buildings with curved
shapes, such as the Sydney Opera House, because these buildings lack clearly defined roof vertices.
A potential solution to address this issue is to stop the proposed method early and consider candi-
date voxels that contain more vertices with more detail as the output. This work will also be com-
bined with further research on roof edge prediction to provide an automatic solution for the
reconstruction of 3D roof structures and 3D buildings in models over LoD2.
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