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1. Introduction. While the nonlinear Dirichlet eigenvalue problem for the equa-
tion

div(|VuP=2Vu) + Mul[P~?u = 0

has been thoroughly investigated for scalar functions u : 2 — R on a bounded
domain €2 in R™ and for p € (1,00), the corresponding vectorial problem
for u = (u1,us,...,un) has gained considerably less attention. The Dirichlet
problem of minimizing the Rayleigh quotient

/(|Vv1|2 + |Vv2|2 4+ 4+ |VvN|2)%d:c
Q

In(v) = , l<p<oo, (1.1)

/(|v1\2+|v2\2+~~+|uN|2)%dx
Q

among all vector-valued functions v in the Sobolev space WO1 P(Q; RY) leads
to the Euler-Lagrange equations

div(|DulP~2Vuy,) + Aju[P~2uy, = 0, k=1,2,...,N. (1.2)
Here u € Wy?(Q;RY) is a minimizer, |[Du? = |[Vuy|2 + - + [Vuy|? and

[u|? = u?+-- -+ u%. The existence of a minimizer comes by the direct method
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in the calculus of variations and in this case we denote Iy(u) by A;. In the
linear case (p = 2), the system (1.2) is decoupled into

Auy, + Auy, =0, k=1,2,...,N.

Then everything reduces to the scalar case N = 1 with Helmholtz’s equation.
Not all solutions of (1.2) are necessarily minimizers. A; is the smallest
eigenvalue and there are higher eigenfunctions.

Definition 1.1. We say that u € Wol’p(ﬂ; RY) is an eigenfunction if

/|Du|p*2Du - Do dx = A/ luP~2u- ¢ dz
Q Q

for all testfunctions ¢ = (p1,...,¢n) € C5°(; RY). Here A is the correspond-
ing eigenvalue.

By elliptic regularity theory [9], it is known that u € C(Q; RY). For irregu-
lar domains, however, u is not always in C'(; R"). In any case, the gradient is
known to be well-defined in Q because u € Ol (Q; RY) for a suitable o € (0, 1)
depending on p.

In what follows, we observe that if w : 2 — R is an eigenfunction in the
scalar case N = 1, then for any constant vector c,

u=(qw,...,cyw) =cw

is a vectorial eigenfunction. It turns out that the converse is true for the
smallest eigenvalue. The following result was proved by Brock and Manéasevich
in [3], see also del Pino [4].

Theorem 1.2. All minimizers u € Wol’p(Q; RN) of Iy are of the form u = cw,
where w is the scalar minimizer.

We shall present a streamlined proof of the theorem above using the identity
of Lagrange (2.1). In the case N = 1, the scalar minimizer is known to be
unique, except that it can be multiplied by constants. While [1] or [7] contain
fairly simple proofs for the scalar case, the proof given here does not even
require the use of Jensen’s inequality.

The vectorial case in only one independent variable, in which 2 is just an
open interval, was studied by M. Del Pino, who proved in [4] that all solutions
u=u(t) = (u1(t),...,un(t)) of the problem

L ()P~ () + AP 2u(t) =0 in (0.1),

dt (1.3)
u(0) =u(l) =0,

are just copies of the scalar ones, i.e., u = cw. Thus the previous theorem
is valid for all eigenfunctions. Since his proof is not easily available, for the
benefit of the reader, we present it in Section 3 below, based on an excerpt of
his thesis.
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Finally, we study the vectorial fractional Rayleigh quotient

)|p dx d
nJRn \y—x|"+51’ Y
/\v )P dx

for s € (0,1) and v € WP (Q; RY) with v = 0 in R™\ Q. The scalar case N = 1
was studied in [8] and [6]. We shall show that again the vectorial minimizers
are just copies of the scalar ones in Theorem 4.2 below. It is worth mentioning
that the isolation of the first eigenvalue (i.e., the minimum of the Rayleigh
quotient) is known only in the following cases: the scalar case N = 1, the
linear case p = 2, and the o.d.e. case n = 1. Establishing the “spectral gap”
for the general case seems to be an open problem.

2. Vectorial minimizers. We will prove Theorem 1.2 by employing Lagrange’s
identity, which asserts

2N N
A Z(ti)z Z |Vi|2 - Z |t7;Vj - thi|2 (21)
i=1 i=1

1<i<j<N

for t1,...,txy € R and vi,...,vy € R? This identity is usually stated for
d = 1. Nevertheless, it is valid for all dimensions d > 1.

Proof of Theorem 1.2. Let u = (uy,us,...,uy) be a minimizer of the Rayleigh
quotient (1.1) on WyP(RY) and A, = Ix(u). Set w = |u. It is routine to
verify w € Wy (), and direct computation gives

N
wVw = ZuiVui (2.2)

i=1

on {w > 0}. By Lagrange’s identity (2.1), we also have

w Vol =w?Duf’ = > |u;Vu,; — u;Vu|? (2.3)
1<i<j<N

on {w > 0}. As Vw = 0 almost everywhere on {w = 0}, we deduce
|Vw| < |Dul| (2.4)

almost everywhere in ). Furthermore,

/|Vw|pdx /|Du|pdz
/\w|pdz /|u|pdx

Here A1 = inf I; is the smallest scalar eigenvalue.

(2.5)



748 R. HYND ET AL. Arch. Math.

Now suppose u € VVO1 P(Q,R) is a scalar first eigenfunction and ¢ € RY
with ¢ # 0. Then v = cu € W, ?(Q,RY) and

/|Dv|pdz |c|p/ |Vu|Pdz /\Vu|pdx
Q _ Q _Jo —\

= = = Aq.
/|V|pdx |c|p/ |u|Pdx /|u|pd:£
Q Q Q

In view of (2.5), A\ = Ay, so w is necessarily a scalar first eigenfunction and
equality must hold almost everywhere in (2.4). Harnack’s inequality for the
p-Laplacian (see [11]) also gives w > 0 in Q. Therefore, by (2.3),

A <

u;Vu; = u;Vu;  almost everywhere in (2.6)
for all i,5 =1,..., N. Combining (2.6) and (2.2) gives

N N N
w?Vu,; = Zuj(ujVui) = Zuj(uiVuj) = u; ZujVuj = u;(wVw).
Jj=1 Jj=1 j=1
That is,
wVu; = u;Vw

almost everywhere for ¢ =1,..., N. Since
v (%)= WVt — Ve,

w w

almost everywhere and €2 is connected, u; = c;w for some ¢; € R and i =

1,...,N. We conclude
u=(c,...,cN)w = cw.

O

3. One independent variable. In this section, we treat the o.d.e. case n = 1,
based on an excerpt of Manuel del Pino’s work [4] in an interval, say (0,1) C R.
The Euler-Lagrange equations (1.2) for u(t) = (ui(t),...,un(t)) reduce to
ordinary differential equations

— (W'[P~?) = AJulP~2u. (3.1)
A smooth u : (0,00) — RY which satisfies (3.1),
u(0) =0, and u'(0) = ¢
is
u(t) = ﬁw (Al/”t) . (3.2)
Here w : R — R is the solution of
{ (Jw'[P2w") = JwlP~2w  in (0,1),
w(0) =0, w'(0)=1.

Such a scalar function can be found through integration. Moreover, each scalar
eigenfunction on Q = (0, 1) is given by a multiple of

w (kAP
(kx3/70)

(3.3)
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for some k € N. The corresponding eigenvalue (see [5], [10]) is kP A, with

\ 2P
[psin(m/p)]?
We claim the initial value problem associated with the o.d.e. (3.1) admits
a unique solution. This will be essentially due to the following lemma.

Lemma 3.1. Suppose ¢ € RN with ¢ # 0 and tg > 0. There is € > 0 so that
the initial value problem

{ (|u/‘p72ul)/ = [ulP~2u in (to,to +€), (3.4)

u(ty) =0, u'(ty) =c
has a unique solution.

Proof. Without any loss of generality, we may suppose ty = 0. We note that
the second-order initial value problem (3.4) is equivalent to the following first
order one

u = vy in (0,€),
v/ =—|ulP72u in (0,¢),
u(0) =0,  v(0)=lc["?c
for u and v. Here ¢ = p/(p — 1). Furthermore, if p > 2, then u  |u[P~2u is

continuously differentiable on RY, while v + |v|9~2v is smooth in a neighbor-
hood of each point in R aside from the origin. In particular, the mapping

F(u,v) = ([v]*7%v, ~[u[’"*u) (3-5)

on RN x RV is continuously differentiable in a neighborhood of (u,v) =
(0,]c|P~2c). The claim then follows from the Picard-Lindel6f theorem.

Let us now consider the case 1 < p < 2. In view of (3.2), a solution u exists
globally. We just need to show that it is unique. Suppose u and z are two
solutions in question for some € > 0. Then

VO (1)~ (0 (1)
— [ WP ) - )P 2 () ds
0

_ 7/ (Ju(s)P~2u(s) — [2(s)]"2a(s))ds forte[0,d.  (3.6)
0

Let us recall two basic inequalities

[a]P~2a — [b[P~2b| < (3~ p)[b — a| / la+ (b — a)[P~2dr

§2\b7a\/|a+7(b7a)|p*2d7
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and
p—2
|la]’~?a — [b|P~?b| > (p— 1)|b —a| (1 + |a]* + [b]?) E

which hold for each a,b € RY and 1 < p < 2. Combining these inequalities
with (3.6) gives

(p— V') = 2/ ()] (1 + [ () + 12 (1)) T
< [l @) (t) — |2/ ()P~ (2)]

P=24(s) — |z(s)P~2z(s)| ds
so/uu(sn (s) — [2(s)["2a(s)| d

t 1 1
< 2 max [u(s) — 2(s)] O/O/ Fa(s) + 7(a(s) —u(s)) 2?0
e 1
1
< 2 pmax, Juls) — z(s) O/J Fa(s) + 7(2(5) —u(E)) PP
1 € 1
= QOrgsagt lu(s) — z(s)] 0/0/ a(s) F 7 (2(s) = u(E)) P dsdr

for each 0 <t <e.
Asu(0) =z(0) =c#0,

u(s) + 7(z(s) —u(s)) = cs+ o(s)
as s — 0 uniformly in 7 € [0, 1]. Reducing € > 0 if necessary, we may suppose
1
[u(s) + 7(z(s) —u(s))| > §|c|s for s € [0, ¢].

It follows that

6 p=2 p-
0/ |U(S)+T(z(51)_u(smz_pdsg (;M) p_ll |

Since u and z are continuously differentiable on [0, €), we also have a con-
stant K such that

[u'(t)],|2'(t)] < K for t €0, ¢€].
Therefore,
p=2 _
1+ @)+ 2P F > (1+2K%)"7 .
Putting these estimates together yields
2 2)P—2
max [u'(t) —z'(t)| < (Iel/2) —e”71 - max |u(t) — z(t)]
0<t<e (p—1)2 (1+ 2K2)”T 0<t<e

=Ce ! t) — z(t)].
Ce™" - max |u(t) —=(t)]
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Furthermore, we can integrate the left hand side over [0, €] to get

_ < CeP . _ .
max [u(t) — 2(t)| < Ce” - max [u(t) - 2(0)

For Ce? < 1, we get a contradiction unless maxo<;<. [u(t) — u(t)| = 0. O
This leads to the following theorem.
Theorem 3.2. Suppose A # 0 and a,b € RN. The initial value problem
{ (l[P2u) = AjufP~2u  in (0,00),
u(0) = a, u'(0)=Db
has a unique solution.

Proof. By scaling, we may suppose A = 1. This second order initial value
problem is equivalent to the first order initial value problem for u and v
u = |v|97%v in (0, 00),
v/ = —[u|P"2u in (0, 00),
u(0) = a, v(0) = |b|P~?b.
Here ¢ = p/(p — 1). Moreover, v would satisfy
— (|V’|q_2v’)/ =|v|?2v in (0, 00),
v(0) = |b|P—2b, v/(0) = —|a|P2a.

Note that any solution u and v must also fulfill the identity
1 1 1 1
—u@®)” + =|v(t)|? = —|a]? + —|bJ?.
pl ()] q\ (®)] pl | ql |

So if a=b = 0, then both u and v vanish identically and the unique solution
in question is u = v = 0. Otherwise, suppose a or b is not zero. In this case,
both u(t) and v(¢) cannot vanish simultaneously for any solution. If for a given
to, u(to) # 0 and v(tyg) # 0, then we can uniquely continue this solution on
(to,to + €) for some € > 0 as the mapping (3.5) is Lipschitz in a neighborhood
of (u(ty),v(to)). Alternatively, if u(tg) = 0 and v(¢p) # 0, we can appeal to
the lemma to uniquely continue the solution on (tg,to+¢€). If instead u(tg) # 0
and v(tp) = 0, we can apply the lemma to v as this function satisfies the same
type of equation. In conclusion, at any time ¢y > 0, we may uniquely continue
the solution to a longer interval. It follows that a solution u is globally and
uniquely defined. O

Finally, we are able to conclude that each eigenfunction is a scalar one when
Q=(0,1).

Corollary 3.3. Suppose u £ 0 solves
{_ (IlWP—2w) = Ajuf~2u in (0,1),
u(0)=0, u(l)=0
for some A > 0. Then A = kP, for some k € N and

u(t) = Af/pw (Al/Pt)
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for some ¢ € RN, where w is the solution of (3.3).

Proof. By uniqueness, u has the stated form for ¢ = u/(0) and is defined on
(0,1). Since u(1) = 0,
w (Al/p> =0.

This forces A = kP, for some k € N. O

4. Vectorial fractional minimizers. We now consider

Ip
L L S daty
/|v|pdx
Q

for N € N, s € (0,1), and p € (1,00). In this infimum, v = (vy,...,vN) €
WP (Q;RY) is assumed not to be identically 0. It is a standard exercise to
check that the infimum is attained. Using this fact, we will derive analogues
of the assertions made above for the “local” case.

Ay 1nf

Lemma 4.1. For each N € N,
AN = AL

Proof. Suppose u € WP (;RY) is a minimizer for AY and set w = |u| €
W, P (92). By the Cauchy—Schwarz inequality,

w(z) = w(y)*= (@) + [u(y)® - 2lu(@)/[u(y)]
< Ju(@)? + uy)* - 2u(z) - u(y)
= |u(z) — u(y). (4.1)

As a result,

[w(z) —w(y) / / [u(z) — u(y)P
dxd dxd
Al < /nlw/R" |5C - |”+Sp Y RnJRD |37* |n+3p o =AY
/|w|pd:c /|u\pdm

Alternatively, suppose u is an extremal when N = 1 and set v = cu for
some ¢ € RV with ¢ # 0. Then

/ \V(x)fV(y)I”dxdy ‘C|p/ \U(m)fu(y)lpdzdy
AN =

|z —y|ntep reJre |2 — y[nFep

/\v|pdx |c|P/ |u|Pdz
Q Q

Theorem 4.2. Suppose u € WP ((;RY) is a vector minimizer for AY. Then
there is ¢ € RV\{0} and a scalar minimizer w € WP (Q;R) for AL such that
u=cw.

= Al

O

Proof. Suppose u = (uy,...,uy). An inspection of our proof of Lemma 4.1
shows that |u| € W (€;R) is a scalar minimizer and

u(z) - u(y) = |u(z)[[u(y)|
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for almost every z,y € R". By Lagrange’s identity (2.1), it must be that

ui(2)ug(y) = uj(z)ui(y)

for all 7,5 and almost every x,y € R"™. Since u does not vanish identically,
there is some i = 1,..., N and y € R"™ for which u;(y) # 0. Set w = u; and
note that

u;(y)
u;(x) = ui(x) = c;w(x
@) = @) = (o)
for almost every x € Q and 7 = 1,...,N. That is, u = cw with ¢ =
(c1,...,¢n). As u is a vector minimizer, ¢ # 0 and w is a scalar
minimizer. O

Just for the record and to answer a question raised by the referee, we
should point out that in the case of the fractional p-Laplacian our result does
not require  to be connected. Moreover, (cf. [2, p. 329f]) in contrast to the
local case s = 1, scalar first eigenfunctions are everywhere positive and unique
modulo constant factors even on multiply connected domains.
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