
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Ruben Solvang Valen

Analysing Deep Halos
on Modern GPUs

Master’s thesis in Computer Science
Supervisor: Prof. Anne C. Elster
June 2023

Ruben Solvang Valen

Analysing Deep Halos
on Modern GPUs

Master’s thesis in Computer Science
Supervisor: Prof. Anne C. Elster
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Original Problem Description

This master thesis project builds on the student pre-project (a.k.a. "fall" project)
“Halo Exchange Performance Using CUDA MPI” which looked at the performance
of halo exchanges in a stencil computation using MPI and CUDA to run on mul-
tiple GPUs. This thesis and the fall project builds on Andreas’ Hammer’s master’s
thesis “Analyzing Halo Computations on Multicore CPUs” which in turn built on
Robin Holtet’s 2003 master’s thesis "Communication-reducing Stencil-based Al-
gorithm and Methods". In this thesis we will extend the author’s fall project to
2D variable-depth Halos computations on GPUs, and investigate the performance
impact of different optimizations for halo exchanges alone and in combination on
modern hardware. Optimizations will include multithreading and asynchronous
communications and benchmarks from at least 2 GPU platforms. Other optimiza-
tions may also be included.

iii

Abstract

Stencils are a family of algorithms that update points of a multi-dimensional
data mesh with the neighbouring values as inputs. They are compute-intensive
and used in many domains and thus account for a significant portion of High-
Performance Computing workloads.

This thesis presents a benchmarking tool for 2D stencil computations on GPUs.
Our work builds on A. Hammer´s work on Multicore 3D stencils. Our implemen-
tation uses MPI, and includes three different optimisation techniques: Deep halos,
Synchronous halo exchanges, and overlapping communication and computation.

Deep halos group communication together to reduce overhead traded off with
increased computation per iteration. This optimisation improves performance as
the halo size increases until the decrease in communication time is eclipsed by the
increase in computation time.

We show that overlapping communication and computation is a highly im-
pactful optimisation that improves performance over our serial version in almost
all cases, particularly for larger problem sizes. On the largest grid sizes tested,
overlapping communication and computation hides 83% of the parallel commu-
nication.

The synchronous halo exchange optimisation works as expected with or with-
out interacting with the other optimisations. Our asynchronous version highlights
the ability to overlap communication and computation optimisation to mitigate
the impact of unexpected inter-node communication slowdowns at low halo depths.

Overall, these three parallel optimisations offer significant performance im-
provement in stencil computations on GPUs with MPI communication.

Note, however, that the performance gains achieved with these optimisations
depend highly on the problem size and hardware configuration. On the largest
problem size tested, all three optimisations in conjunction gave a 1.09 speedup
when using nodes with V100 GPUs and a 1.17 speedup when using nodes with
A100 GPUs.

Our results provide insight for decision-makers when considering the imple-
mentation of these optimisations given different problem domains. Suggestions
for future work on this benchmarking tool is also included.

v

Sammendrag

Stensilalgoritmer er en familie av algoritmer som oppdaterer punkter i et flerdi-
mensjonalt datanett med naboverdiene som vekter. De er beregningsintensive og
brukes i mange domener, og utgjør dermed en betydelig del av arbeidsbelastnin-
gen innen høy-ytelses databehandling.

Denne avhandlingen presenterer et verktøy for benchmarking av 2D stensil-
kalkulasjoner på GPUer. Arbeidet bygger på A. Hammer’s arbeid med flerkjernede
3D-stensiler. Vår implementasjon bruker MPI og inkluderer tre forskjellige op-
timaliseringsteknikker: dype haloer, synkroniserte kantutvekslinger og overlap-
pende kommunikasjon og beregning.

Dype haloer grupperer kommunikasjon sammen for å redusere overhead, men
med økt beregning per iterasjon som en avveining. Denne optimaliseringen forbedrer
ytelsen når halo-størrelsen øker, inntil reduksjonen i kommunikasjonstid blir over-
skygget av økningen i beregningstid.

Vi viser at overlappende kommunikasjon og beregning er en svært effektiv
optimalisering som forbedrer ytelsen i nesten alle tilfeller, spesielt for større prob-
lemstørrelser. På de største rutenettene som ble testet, skjulte overlappende kom-
munikasjon og beregning 83% av den parallelle kommunikasjonen.

Synkronisert kantutvekslingsoptimaliseringen fungerer som forventet, enten
med eller uten samspill med de andre optimaliseringene. Den asynkrone versjonen
vår viser evnen til overlapp av kommunikasjon og beregning optimaliseringen til
å redusere effekten av uventede forsinkelser i kommunikasjon mellom noder ved
lave halo-dybder.

Totalt sett gir disse tre parallelle optimaliseringene betydelig ytelsesforbedring
i stensilkalkulasjoner på GPUer med MPI-kommunikasjon. Merk imidlertid at ytelses-
gevinstene som oppnås med disse optimaliseringene avhenger i stor grad av prob-
lemstørrelsen og maskinvarekonfigurasjonen. På den største problemstørrelsen
som ble testet, ga alle tre optimaliseringene i kombinasjon en hastighetsøkning
på 1,09 når man brukte noder med V100 GPUer og 1,17 hastighetsøkning når
man brukte noder med A100 GPUer.

Våre resultater gir innsikt for beslutningstakere når de vurderer implementerin-
gen av disse optimaliseringene i ulike problemområder. Forslag til videre arbeid
med dette benchmark-verktøyet er også inkludert.

vii

Acknowledgements

First and foremost, I would like to thank my advisor Anne C. Elster for her invalu-
able guidance throughout the project. She kept me grounded when challenges
seemed insurmountable. In addition, the community she has fostered in the HPC
lab has resulted in a great work environment. And the workstations provided at
the lab have been a great boon to the work.

I would also like to thank former HPC-Lab master student Andreas Hammer for
a well-written and interesting masters thesis entitled "Analyzing Halo Computa-
tions on Multicore CPUs". His solid work was an inspirations for this thesis.

Thanks are also due the Department of Computer Science at NTNU for their con-
tinued support of the HPC-Lab and the IDI compute cluster which enabled this
work.

I want to thank my fellow HPC-lab members who have provided emotional and
academic support throughout the project.

Lastly, I thank my parents, whose encouragement was vital when things were
stressful.

ix

Contents

Original Problem Description . iii
Abstract . v
Sammendrag . vii
Acknowledgements . ix
Contents . xi
List of Figures . xiii
List of Tables . xv
List of Listings . xvii
Nomenclature . xix
1 Introduction . 1

1.1 Research Questions . 2
1.2 Contributions . 2
1.3 Outline . 2

2 Background . 5
2.1 General Purpose GPU Programming . 5
2.2 MPI . 5

2.2.1 MPI Datatypes . 7
2.3 CUDA . 7

2.3.1 Memory transfers . 7
2.3.2 CUDA streams . 7

2.4 Stencil computations . 8
2.5 Laplacian operator . 8
2.6 Domain decomposition . 9
2.7 Halo Exchanges . 10

2.7.1 Deep halo . 12
2.7.2 Pack/Unpack . 12

2.8 Overlapping calculation and communication 14
3 Creating a 2D Halo Exchange Benchmark for the GPU 15

3.1 Initialisation . 15
3.1.1 Input parameters . 15
3.1.2 MPI domain decomposition . 16
3.1.3 Topology . 16
3.1.4 Height and length adjustment 17
3.1.5 Domain initialisation . 17

xi

xii R. S. Valen: Analysing Deep Halos on Modern GPUs

3.1.6 Border buffers . 18
3.1.7 Initialising the GPU . 19

3.2 CUDA functions . 19
3.2.1 Primary computations and inner compute 19
3.2.2 Outer compute . 20
3.2.3 Packing and Unpacking . 21
3.2.4 Measuring time for CUDA Kernels 22

3.3 Communication . 23
3.3.1 Asynchronous halo exchange 23
3.3.2 Synchronous halo exchange . 24

3.4 Overlapping communication and computation 25
3.4.1 Iteration loop . 25

3.5 Measurements . 27
3.6 Challenges . 28

3.6.1 POSIX threads . 28
3.6.2 Desynchornisation issues . 28
3.6.3 Fetching borders before or after inner compute 28

4 Experimental setup . 31
4.1 The Idun Testbed . 31
4.2 Compilation . 32

4.2.1 Modules . 32
4.3 Launch parameters . 33

5 Results & Discussion . 35
5.1 Significant outliers . 35
5.2 Execution time . 35
5.3 Message time . 39
5.4 Packing and Unpacking time . 43
5.5 Overlapping . 47

6 Conclusions & Future Work . 49
6.1 Future Work . 50

Bibliography . 53
A Running guide . 57
B Code snippets . 59
C All benchmark results . 63

C.1 A100 results . 63
C.2 V100 Results . 71

List of Figures

2.1 IO and communication pattern for MPI programs 6
2.2 Example showing kernels executing with three CUDA streams in

parallel to complete faster . 8
2.3 Difference stencil for the discrete Laplacian 9
2.4 Problem domain one-dimensionally divided into smaller subdomains 10
2.5 Problem domain two-dimensionally divided into smaller subdomains 10
2.6 A 6x6 subgrid with a halo of size 1 . 11
2.7 Synchronised sharing of border values 11
2.8 Asynchronous sharing of border values 12
2.9 Halo exchange with halo depth two and two iterations of calculations 13
2.10 Border data is not contiguous in memory 13
2.11 Blue border data packed contiguously 13
2.12 Overlapping message passing . 14
2.13 The green gridpoints in the mesh can be calculated before the blue

border gridpoints are received. 14

3.1 Adjusted height and length with subdomain height and length on
a 2x6 subdomain with a halo depth of 1 17

3.2 The subdomain is stored in a row-major fashion, where m is the
length of the subdomain, and n is the height 18

5.1 Execution times for side lengths of 5000× 5000 on V100 nodes . . 36
5.2 Execution times for side lengths of 10000× 10000 on V100 nodes . 36
5.3 Execution times for side lengths of 30000× 30000 on V100 nodes . 37
5.4 Execution times for side lengths of 5000× 5000 on A100 nodes . . 38
5.5 Execution times for side lengths of 15000× 15000 on A100 nodes . 38
5.6 Execution times for side lengths of 35000× 35000 on A100 nodes . 39
5.7 Message times for the synchronous runs on V100 nodes 40
5.8 Message times for the asynchronous runs on V100 nodes 40
5.9 Message times for the synchronous runs on A100 nodes 41
5.10 Message times for the asynchronous runs on A100 nodes 42
5.11 Desynchronisation times for 35000×35000 on A100 and V100 nodes 43
5.12 Packaging time on the V100 nodes for all grid sizes 44
5.13 Unpacking time on the V100 nodes for all the serial runs 45

xiii

xiv R. S. Valen: Analysing Deep Halos on Modern GPUs

5.14 Unpacking time on the V100 nodes for all the overlap runs 45
5.15 Packaging time on the A100 nodes for all grid sizes 46
5.16 Unpacking time on the A100 nodes for all grid sizes on serial runs . 47

List of Tables

3.1 Input parameter table . 16
3.2 Problem domain decomposition dimensions 16
3.3 Border buffers and their sizes . 18

4.1 Idun nodes used in benchmark . 32
4.2 Compiler flags used with mpicc . 32
4.3 Modules used to run on idun . 32

5.1 Table showing how much of the communication is covered by the
overlapping on V100 nodes . 48

5.2 Table showing how much of the communication is covered by the
overlapping on A100 nodes . 48

xv

List of Listings

1 Initialising the subdomain . 17
2 Main compute kernel CUDA code . 20
3 Calculating coordinates for vertical outer compute 20
4 Calculating coordinates for horizontal outer compute 21
5 Kernel for packing values from subdomain into border buffers . . . 21
6 Kernel for un-packing values from border buffers into the subdomain 22
7 Code using events to take the time of kernel calls and cudaMemCpyAsync()

calls with two streams . 23
8 Code snippet declaring MPI datatypes with the vector function . . . 24
9 Function to launch the calculate kernel on only interior gridpoints . 25
10 Iteration loop for a run with overlapping communication and asyn-

chronous border exchange . 26

11 Iterative loop without overlap and synchronous halo exchange . . . 60
12 Synchronous halo exchange function 61
13 Asynchronous halo exchange function 62

xvii

Nomenclature

A100 Nvidia datacenter GPU with Ampere architecture, the successor of the
Volta architecture

CPU Central Processing Unit

CUDA Compute Unified Device Architecture, GPU programming platform

GPU Graphical Processing Unit

HPC High-Performance Computing

Idun Compute cluster at NTNU, see https://www.hpc.ntnu.no/idun/

MPI Message Passing Interface

Slurm Job scheduler used on compute clusters

V100 Nvidia datacenter GPU with Volta architecture

xix

Chapter 1

Introduction

In recent years, performance gains in computing have looked less at single-threaded
performance on single cores and more at the performance achievable with multi-
threaded programs running on powerful multi-core processors. Many compute-
heavy problems are excellent candidates for being run massively in parallel. Among
these are numerical methods, such as the finite difference method. Often, it is de-
sirable to perform these calculations on problem domains so large that they cannot
fit in, or make efficient use of, the memory or computational resources of a sin-
gle machine. So the computations have to be distributed over a larger cluster of
computers. The nodes doing the individual computations will often need to com-
municate some amount of data about the borders of their domains between each
other to get the correct result.

Stencils are a family of algorithms that update points of a multi-dimensional
data mesh with the neighbouring values as function inputs. They are used in
various domains such as medical imaging, numerical methods like the Jacobi
method, and convolution neural networks[1]. Stencil computations account for
large amounts of computational resources used in many High-Performance Com-
puting (HPC) centres worldwide, up to 49% of the workload [2].

Since the late aughts, the Graphical Processing Unit (GPU) has become an
incredible piece of hardware for massively parallel scientific computations. They
offer much slower single-core performance than modern Central Processing Units
(CPUs) but, in turn, are outfitted with many times more cores to do computations.
They are great candidates for doing stencil computations.

Stencil computations are a well-studied area with many common optimisa-
tions to increase performance. It is essential to understand what different opti-
misations are worth, so we can make informed decisions about whether imple-
menting certain features is worth the human work hours it takes to implement
[3].

This thesis looks at a few different optimisations for the communication step of
stencil computations running on Graphical Processing Units on cluster machines
and communicating using MPI. The optimisations we’re looking at are deep halos,
overlapping communication and calculation, and synchronised border exchanges.

1

2 R. S. Valen: Analysing Deep Halos on Modern GPUs

1.1 Research Questions

These are the questions that we intend to answer in this thesis:

• RQ1: What performance impact will deep halos and synchronised halo ex-
changes have on halo exchanges on modern GPUs?
• RQ2: What performance impact can be expected from overlapping commu-

nication and calculation with stencil computations on GPUs?
• RQ3: How do these different optimisations impact each other?

1.2 Contributions

The primary contributions of this thesis are detailed descriptions of how to im-
plement the optimisations, and the performance increases they provide. On the
largest problem size tested, all three optimisations in conjunction gave a 1.09
speedup when using nodes with V100 GPUs and a 1.17 speedup when using nodes
with A100 GPUs. In general, it finds that on most of the tested problem sizes, es-
pecially the biggest ones, the synchronous halo exchange with overlapping com-
munication and calculations with a halo depth of eight performs best. The results
clearly show why the halo exchange’s synchronous version is more used than the
asynchronous version.

1.3 Outline

The rest of this thesis is outlined as follows:

• Chapter 2: Background - A look at the most relevant and necessary theo-
retical knowledge that lays the groundwork for the rest of the thesis.

• Chapter 3: Methodology - Describes the details of how the prototype func-
tions and how the performance of the different parts was measured.

• Chapter 4: Experimental setup - Overview of the specific software and
hardware the prototype was run on. Also where which parameters were
used for each different run are documented.

• Chapter 5: Results & Discussion - Shows the results of the benchmarks
and talks about what we can deduce from those.

• Chapter 6: Conclusions & Future Work - Summarises the thesis and pro-
vides a list of future work that may be interesting to study further.

• Appendix A: Running guide - Readme from the code repository.

Chapter 1: Introduction 3

• Appendix B: Code snippets - Relevant code from the project that would
take up too much space in the text of the thesis.

• Appendix C: Result tables - All the benchmarking results in numerical
form in tables.

Chapter 2

Background

This chapter will cover the theoretical groundwork for the thesis. Topics will in-
clude a short description of General Purpose GPU programming, an introduction
to MPI and MPI Datatypes, a short overview of CUDA including Memory trans-
fers and CUDA streams, as well as a general introduction to stencil computations,
the 2D Laplacian operator, and 2D grid decomposition and halo exchanges. Fi-
nally, an overview of how to overlap communication and computation and pack-
ing/unpacking of deep halos is given.

Note that Sections 2.2, 2.4, 2.6 and 2.7.2 are based on equivalent Sections
from the Authors pre-project (fall-project) entitled "Halo Exchange Performance
Using CUDA MPI".

2.1 General Purpose GPU Programming

General-purpose GPU programming, or GPGPU programming, is a technique that
makes use of the massive computational power of GPUs for tasks unrelated to
graphics. In the past, GPUs were built only for the purpose of rendering video
game graphics, images, or other graphically intensive programs. However, mod-
ern GPUs have architectures that have opened the path for new programming
techniques, that have made it possible to make use of the parallel processing
functionality of GPUs to speed up a host of different compute-intensive tasks. By
moving computations from the CPU to the GPU, applications are able to get sig-
nificant speedups relative to running on the CPU [4]. To make use of the massive
parallelism offered by GPUs, GPGPU programming uses specialised programming
frameworks or languages, such as CUDA or OpenCL.

2.2 MPI

MPI, or Message-Passing Interface, is a standardised message-passing system de-
signed for parallel computing on various computer architectures [5]. It allows dif-
ferent processes to communicate across different computers, allowing resources

5

6 R. S. Valen: Analysing Deep Halos on Modern GPUs

to be consolidated to solve a problem that is too large to handle on a single com-
puter.

MPI is a low-level system often used in HPC environments, such as super-
computers and cluster computers. Following the Single-Program Multiple-Data
(SPMD) model, MPI executes the same code in different processes. MPI processes
still have access to control functions like conditionals, which can make processes
behave differently based on their unique world rank despite running the same
code.

When MPI processes communicate data between each other, it is often done
using the functions MPI_Isend() and MPI_Irecv(), that respectively send and
receive messages sent from one process to another. MPI_Isend() and MPI_Irecv()
are the non-blocking forms of MPI_Send() and MPI_Recv(), meaning that multiple
messages can be sent in succession without waiting for a corresponding receive
function to be called on the other end of the communication. MPI also offers
collective communication options such as MPI_Reduce() that gather values from
every MPI process in the root process and applies some reduction operation to it.

When MPI programs read inputs, it is common for each process to read its
own part of the input file rather than a single process reading the entire file and
distributing the data among the other processes [6]. The processes then commu-
nicate the necessary parts between each other, then write their domains back to
the output, as shown in Figure 2.1.

Figure 2.1: IO and communication pattern for MPI programs: Each process reads
its own section from the input and writes its own section to the output.

Chapter 2: Background 7

2.2.1 MPI Datatypes

MPI datatypes allow for the coordination of data layout and structure during com-
munication between processes. They describe how the packing and interpretation
of data should happen when receiving or sending messages. MPI comes packaged
with a lot of MPI datatypes, like MPI_Float, MPI_Int and MPI_Byte.

Often it is however desirable to communicate arbitrary collections of data. MPI
allows the programmer to define custom MPI types. A simple such case is strided
data, a type for which can be defined using MPI_Type_vector().

2.3 CUDA

Compute Unified Device Architecture (CUDA) is a parallel computing platform
and programming model developed by NVIDIA [5]. It enables the use of a GPU
for General Purpose Computing which can provide a significant increase in com-
putational resources over the CPU. CUDA is supported on a wide range of NVIDIA
GPUs which makes it easy to write efficient general-purpose GPU computing pro-
grams without specialised hardware or hardware-specific knowledge.

CUDA programs execute code on the GPU through kernels. Kernels are launched
with a special syntax where the programmer has to state how many CUDA threads
should be started expressly. CUDA kernel launches are inherently asynchronous,
meaning that the code on the CPU resumes after the kernel has been launched on
the GPU without waiting for it to finish.

2.3.1 Memory transfers

One primary consideration when using CUDA is the split between device (GPU)
and host (CPU) memory. By default, a CUDA kernel cannot directly access host
memory, and the host cannot directly access the device’s memory. Memory on the
device needs to be explicitly declared, and data has to be moved between host
and device using the function cudaMemCpy() or one of its derivatives [7]. There
are other methods for managing device and host memory, like Unified Memory,
but that is not part of this thesis.

2.3.2 CUDA streams

Even though CUDA kernel launches are asynchronous, CUDA kernels will execute
in a serial manner by default. CUDA has functionality for scheduling kernels in
different CUDA streams. Such streams allow kernels to be scheduled to run con-
currently on the device. An example of this is illustrated in Figure 2.2. Using CUDA
streams to run kernels concurrently can often lead to performance increases [8].

When using multiple CUDA streams, the device will wait for all work in all
other streams to finish before it begins executing work in the default stream.

8 R. S. Valen: Analysing Deep Halos on Modern GPUs

Figure 2.2: Example showing kernels executing with three CUDA streams in par-
allel to complete faster, based on Figure 3 from [8].

2.4 Stencil computations

Stencil computations are a common type of parallel algorithm used in scientific
computing [9]. They are used to solve differential equations using numerical
methods like finite difference, finite volume, and finite element. These methods
are used in HPC applications like space weather predictions, seismic wave prop-
agation, simulating fluid dynamics and others. In stencil computations, a set of
mathematical operations are performed on each element in a grid of data. Each
gridpoint in the data grid can have one or multiple values, also referred to as
quantities. Each element is updated based on the values of the neighbouring el-
ements in the grid. The stencil defines the magnitude and manner in which the
neighbouring elements affect the number being updated.

Stencil computations are easily parallelised, meaning they can be done using
many computing cores spread over many different computing units and comput-
ers.

Stencil computations are often iterative, for example, with the finite difference
method, where each iteration will numerically approximate the grid values for the
next time step.

2.5 Laplacian operator

The discrete Laplacian of a function φ can be approximated by Equation 2.1. The
discrete Laplacian is often used in edge detection for images[10].

∆hφ =
φ(x + h, y) +φ(x − h, y)− 4φ(x , y) +φ(x , y + h) +φ(x , y − h)

h2
(2.1)

Chapter 2: Background 9

The discrete Laplacian can be presented as a difference stencil, or difference
star, which can be used for stencil computations. The difference stencil for the
discrete Laplacian is shown in Figure 2.3[11].

Figure 2.3: Difference stencil for the discrete Laplacian

Since this stencil has five points, it is often referred to as a five-point stencil.

2.6 Domain decomposition

If we want to model phenomena with high resolution, either in the space or time
domains, we get a lot of data which leads to gigantic stencil grids. Currently, large-
scale simulations running on the CPU use grids of sizes up to 1010, running on 105

CPUs [12][13]. Yet they are too small to capture many interesting phenomena in
a timely and energy-efficient manner.

When doing large stencil computations on GPUs, the problem grid may be
significantly larger than what any single GPU can store in memory. This leads to
needing to decompose the grid into smaller subgrids, which are placed in different
memories.

For recent large-scale stencil computations, it is typical to have subgrids of
size 5123 when the domain is three-dimensional or 81922 for two-dimensional
problem domains, with anywhere between one to eight quantities for each grid-
point. With a stencil of radius three. With at most 1010 total problem domain size
[14][15].

When dividing a two-dimensional grid, it can be divided one-dimensionally
like in Figure 2.4, or two-dimensionally like in Figure 2.5.

10 R. S. Valen: Analysing Deep Halos on Modern GPUs

Figure 2.4: Problem domain one-dimensionally divided into smaller subdomains

Figure 2.5: Problem domain two-dimensionally divided into smaller subdomains

2.7 Halo Exchanges

Stencil computations are based on calculating the value for a gridpoint based on
the neighbouring values. When performing these computations on a distributed
computing cluster, the neighbouring values are sometimes not stored on the same
machines, which necessitates communication between the computing nodes. This
exchange is called a halo exchange due to the ring of data that makes up the
perimeter of the subdomain being exchanged [16].

Figure 2.6 shows a subgrid with 6x6 gridpoints. As we can see, the halo re-
quires the extra ghost cells stored along the perimeter of the subgrid. The shape of
the subgrid determines the number of ghost cells needed to be stored relative to
the size of the subgrid. In Figure 2.4 the domain is split one-dimensionally which
leaves us with tall thin subdomains with four data points each. These subgrids
will need to store a total of 14 ghost cells each, causing more data to be stored on
each node compared to the square subgrids in Figure 2.5 that contain the same
amount of data points but need only store 12 ghost cells.

When doing halo exchanges with the domain split in more than one direction,
it is common to reduce the number of communication instances by passing data
to the corners of the halo by combining them with other communication. This is
shown in Figure 2.7 where the lower right corner from the red subgrid, is passed
to the blue subgrid alongside the bottom row of the orange subgrid. In a 2D grid,

Chapter 2: Background 11

Figure 2.6: A 6x6 subgrid with a halo of size 1

this means that a subgrid that needs data from eight surrounding subgrids only
needs to communicate with four of them. Though it introduces some blocking
communication like in Figure 2.7, where the left/right exchange must happen
before the up/down exchange happens to ensure that the red corner value arrives
along with the orange values. For the rest of this thesis, we will refer to this version
as a synchronous halo exchange due to it needing to wait for the first step to
finish before performing the second step, even if the actual MPI communication
is performed using asynchronous functions. The asynchronous version, shown in
Figure 2.8 ignores all this coordination and simply sends the data directly to all
eight neighbours.

Figure 2.7: Synchronised sharing of border values

12 R. S. Valen: Analysing Deep Halos on Modern GPUs

Figure 2.8: Asynchronous sharing of border values

2.7.1 Deep halo

Figure 2.7 shows halo exchanges with a depth of one. That means each subdomain
exchanges one layer of data with its neighbours. It is possible to exchange more
than one layer of data, which is necessary when using larger stencils but also
allows multiple iterations of computations to be done on the subdomain between
halo exchanges. Such halo exchanges are called deep halos. Each level of depth
allows for one extra iteration of computation to be done without another round
of message passing [16].

Deep halos allow each node to calculate what the neighbouring data would
be in the next iteration if it was communicated. Each additional layer of halo
increases the amount of data needed to be stored in memory for each subdomain,
the amount of data being transferred in each communication, and increases the
number of calculations. In return, the time spent on communication overhead is
reduced due to needing fewer messages between nodes.

Figure 2.9 shows a round of halo exchange and computations on a subgrid of
size 4x4, with a halo depth of two. It is important to note that deep halos increase
the number of computations needed for each iteration of calculations [16]. In
Figure 2.9, the innermost layer of the deep halo needs to have its new values
calculated in the first iteration, so that the values will be correct for the second
iteration.

2.7.2 Pack/Unpack

Very often, the border data that is to be exchanged with a neighbouring subgrid is
not stored contiguously in memory. CUDA is an extension of C++, which is a row-
major language. Being row major means that arrays are stored with contiguous
rows in memory rather than columns. In Figure 2.7 we see a halo exchange where

Chapter 2: Background 13

Figure 2.9: Halo exchange with halo depth two and two iterations of calculations,
based on Figure 2.4 from Master´s thesis by A. Hammer [10]

columns are being changed between two subgrids. After the border exchange the
data stored in one of the subgrids may look something like what is shown in Figure
2.10 which shows how four rows would be stored in memory.

Passing non-contiguous data between computers, or between a GPU and CPU
can be costly. Therefore it is often beneficial to pack non-contiguous data into
contiguous buffers, and then transfer those buffers between nodes [9]. In Figure
2.10 we need to pack the gridpoints stored to the left, or just before the blue
border points in memory, into a contiguous buffer.

Figure 2.10: Border data is not contiguous in memory

In return, the node working on the yellow subgrid will receive a packed buffer
of blue gridpoints, like Figure 2.11 which must then be unpacked into the subgrid
before it can be used for calculation.

Figure 2.11: Blue border data packed contiguously

14 R. S. Valen: Analysing Deep Halos on Modern GPUs

2.8 Overlapping calculation and communication

The subgrid’s interior gridpoints can be computed without receiving the border
data from neighbouring subgrids as the necessary data needed to perform the next
iteration of the computations is already present.

Figure 2.13 shows how the inner and outer data is divided in a subgrid with
a halo depth of one, and where the stencil has a length and height of three. The
green gridpoints can be computed regardless of whether the blue gridpoints, the
border cells, are present. The gridpoints that are dependent on the ghost cells
are those coloured in red. The inner and outer compute kernels can be launched
separately; this way, a program can run its communication stage concurrently with
its calculation stage following the dependency graph shown in Figure 2.12.

Figure 2.12: Overlapping message passing and calculation.
.

Figure 2.13: The green gridpoints in the mesh can be calculated before the blue
border gridpoints are received.

Chapter 3

Creating a 2D Halo Exchange
Benchmark for the GPU

This chapter provides details on how our 2D halo exchange benchmark for the
GPU was designed and the relevant optimisations we did for the benchmark im-
plementation. The details include initialisation such as input parameters, domain
decomposition, defining the MPI topology, domain adjustment and initialisation,
and buffer creation on the CPU and the GPU. Also, the CUDA functions we used
for inner and outer compute, packing/unpacking of data and time measurements.
Section 3.3 provides further communication details, including how to implement
synchronous and asynchronous halo exchanges, and how to overlap communica-
tions and computations. Finally, we list a set of measuring parameters and high-
light some of the challenges with our benchmark implementation.

3.1 Initialisation

Before calculations and measurements can be made, there are many things to
initialise. The setup for the implementation is outlined here.

3.1.1 Input parameters

To make testing easier, many of the configurations for running the code were
passed through as command line parameters. This allows for many tests to be
run with different configurations on the same source code. Table 3.1 outlines the
parameters used.

The height and length parameters decide the total size of the problem domain.
Depth sets the halo size for each subdomain. Iterations set how many times the
stencil will pass over the problem domain. Sparse, when true, changes the print
mode so log files with the output of multiple runs are more easily parsed for
analysis

15

16 R. S. Valen: Analysing Deep Halos on Modern GPUs

Table 3.1: Input parameter table

Parameter name Command line flag Default

height -h 100
length -l 100
depth -d 1
iterations -i 1
sparse -s 0

3.1.2 MPI domain decomposition

The dimensions the problem domain gets split into are based on how many MPI
processes are run. The MPI dimensions are defined by the programmer in the
factorise() function in the utils.c file. The dimensions chosen for the tests
try to split the problem domain as even length- and height-wise as possible. The
dimensions are shown in Table 3.2.

Table 3.2: Problem domain decomposition dimensions

MPI world_size Height Length
1 1 1
2 1 2
4 2 2
6 2 3
8 2 4
9 3 3

10 2 5
12 3 4
16 4 4

The problem domain height and length are divided by the height and length
of the MPI dimensions. If the problem domain dimensions are not evenly divisible
by the MPI dimensions, the leftover rows and columns are distributed in such a
way that if there are n leftover rows, the n first MPI processes on each column
gets an extra value in that direction, the same goes for columns.

3.1.3 Topology

The MPI processes have their neighbours defined in utils.c with neighbours in
all cardinal and ordinal directions. To benchmark processes having to perform
halo exchanges with neighbours in all directions, we decided that the problem do-
main would be periodical in both north-south and east-western directions, rather
than have a separate boundary condition. This means that we only need an MPI
world_size of four for each process to have neighbours that are not themselves

Chapter 3: Creating a 2D Halo Exchange Benchmark for the GPU 17

in all eight directions and an MPI world_size of nine for every process to have a
unique neighbour in all eight directions.

3.1.4 Height and length adjustment

Before the problem domain is initiated the adjusted height and length are calcu-
lated for the subdomain. The adjusted height and length are the subdomain height
and length plus two times the halo depth.

Figure 3.1: Adjusted height and length with subdomain height and length on a
2x6 subdomain with a halo depth of 1

3.1.5 Domain initialisation

As explained in Section 2.2, when reading data for MPI processes it is normal
for each process to read its own subdomain from the input, rather than have a
single MPI process load the entire domain and scatter it throughout the commu-
nicator. Since this implementation uses dummy data it is left to each process to
generate its own subdomain. This is done using a single malloc() statement, to
initialise a one-dimensional array of floats with a size equal to ad justedHeight ∗
ad justed Leng th. The initialisation is shown in code Listing 1. The structure of
the subdomain is shown in Figure 3.2. Every value in the subdomain is initialised
to one.

int area = adjustedHeight * adjustedLength;
float *problemArray = malloc(area*sizeof(float));
for(int i =0;i<adjustedHeight;i++){

for(int j = 0; j<adjustedLength;j++){
problemArray[i*adjustedLength+j] = 1;

}
}

Listing 1: Initialising the subdomain

18 R. S. Valen: Analysing Deep Halos on Modern GPUs

Figure 3.2: The subdomain is stored in a row-major fashion, where m is the length
of the subdomain, and n is the height

3.1.6 Border buffers

All the buffers that are used to communicate the borders are initialised in the
setup. Each buffer is a one-dimensional array of floats. And there is a buffer for
each cardinal direction. Each buffer also has a corresponding receive buffer of the
same size. Values from neighbours in ordinal directions are stored in the north
and south buffers

Table 3.3: Border buffers and their sizes, there are two copies of each buffer, one
for sending and one for receiving messages

Buffer name Height Length

left border original height depth
right border original height depth
north border depth adjusted length
south border depth adjusted length

Chapter 3: Creating a 2D Halo Exchange Benchmark for the GPU 19

3.1.7 Initialising the GPU

The border buffers are initialised on the GPU, with sizes corresponding to those in
Table 3.3. This is done using cudaMalloc(). Two arrays the size of the subdomain
are allocated on the GPU, deviceinput and deviceprocess. The former is where
we will store the subdomain on the GPU, the latter is where the result of each
iteration will be stored. A short buffer is also initialised for the stencil. Three
CUDA streams, altStreamOne, altStreamTwo, and altStreamThree are initiated
here so that they can be used later. The data from the subdomain and the stencil
is loaded onto the GPU.

3.2 CUDA functions

To have the MPI processes running a C program call functions from a CUDA file,
all the functions in the CUDA file are declared as extern "C" void functions. This
section describes all the functions that deal with the GPU during the iterative loop.

3.2.1 Primary computations and inner compute

The majority of the computation is performed in the calculate CUDA kernel, it
is called by the launchKernel() and innerCompute() functions. The kernel itself
is a really simple implementation of stencil computations. It starts by finding its
own global coordinates x and y based on the thread and block coordinates. Then
it checks to see if the coordinates are in a valid range of the area that is to be com-
puted. Since all blocks in a kernel call are the same size, this check is necessary to
avoid segmentation faults, as the kernel will often launch with a few more threads
than necessary. Then the new value for the point is calculated by multiplying the
value in the deviceinput array and its neighbours by the corresponding kernel
value and being added together. The kernel can work with any five-point stencil
but would need adjustment if, for example, a full 3 × 3 stencil was to be used.
The sum is then stored in deviceprocess index with coordinates identical to the
one used for the deviceinput array. The main CUDA kernel for computations is
shown in Listing 2.

When launching the compute kernel, the deviceinput pointer should point
to the first index to be computed. When launching the kernel on the entire sub-
domain using launchKernel(), the computeHeight and computeLength values
are set to the adjusted height and length of the subdomain minus two, since
the outermost values cannot be calculated. When used for the inner compute
step during concurrent communication and calculation, the computeHeight and
computeLength is set to be the original height and length of the subdomain minus
two.

20 R. S. Valen: Analysing Deep Halos on Modern GPUs

__global__ void calculate(float *deviceinput, float* deviceprocess,
int *dkernel, int computeHeight, int computeLength,
int adjustedLength){

float sum = 0.0;
int x = threadIdx.x + blockDim.x * blockIdx.x;
int y = threadIdx.y + blockDim.y * blockIdx.y;

if(x< computeLength && y < computeHeight){
sum+=deviceinput[x+y*adjustedLength-adjustedLength]*dkernel[0];
sum+=deviceinput[x+y*adjustedLength-1] * dkernel[1];
sum+=deviceinput[x+y*adjustedLength] * dkernel[2];
sum+=deviceinput[x+y*adjustedLength+1] * dkernel[3];
sum+=deviceinput[x+y*adjustedLength+adjustedLength]*dkernel[4];
deviceprocess[x+y*adjustedLength] = sum;

}
}

Listing 2: Main compute kernel CUDA code. dkernel is an abbreviated name for
devicekernel so the listing fits on the page.

3.2.2 Outer compute

To perform the outer compute stage, such as is described in Section 2.8, two CUDA
kernels are used. They are very similar to the normal compute kernel described in
Subsection 3.2.1, but are made to take in two z levels of blocks. The vertical kernel
has one z level of blocks for the left and right borders of the domain each, and
the horizontal kernel has one z level of blocks for the north and south borders of
the domain each. The coordinates for the vertical kernel are calculated as shown
in Listing 3, and the horizontal coordinates are calculated as shown in Listing
4. calculationoffset is an offset calculated on the CPU side, which is equal to
the distance between the first elements of the north and south borders for the
horizontal kernel, and between the first elements of the left and right borders for
the vertical kernel.

int x = threadIdx.x + blockDim.x * blockIdx.x;
int xd = x + blockIdx.z * calculationoffset;
int y = threadIdx.y + blockDim.y * blockIdx.y;

Listing 3: Calculating coordinates for vertical outer compute

x and y are still used for the range check like in Listing 2, but xd and yd are
used when accessing elements in deviceinput and deviceprocess.

These kernels are launched from main.c by calling the function outerCompute().

Chapter 3: Creating a 2D Halo Exchange Benchmark for the GPU 21

Both of the outer compute kernels are launched in separate CUDA streams to
achieve better occupancy on smaller subdomain sizes.

int x = threadIdx.x + blockDim.x * blockIdx.x;
int y = threadIdx.y + blockDim.y * blockIdx.y;
int yd = y + blockIdx.z * calculationoffset;

Listing 4: Calculating coordinates for horizontal outer compute

3.2.3 Packing and Unpacking

As described in Subsection 2.7.2, it is beneficial to pack data into contiguous
buffers before transfer from GPU to CPU, in Listing 5 we see the packing ker-
nel for vertical borders. We don’t use a packing kernel for the horizontal borders
because the data can be fetched directly from those with a cudaMemCpyAsync()
call.

__global__ void packVert(float *deviceinput, float *border,
int height, int length, int depth, int ogheight){

int x = threadIdx.x + blockDim.x * blockIdx.x;
int y = threadIdx.y + blockDim.y * blockIdx.y;
int target = x + y * depth;
int source = x + y * length;

if(x < depth && y < ogheight){
border[target] = deviceinput[source];

}
}

Listing 5: Kernel for packing values from subdomain into border buffers

The function fetchBorders() launches two instances of the packing kernels,
starting them both in different CUDA streams. Then it makes four asynchronous
CUDA memory transfers from device to host, one for each border. The memory
transfer calls for the left and right border are in the same stream as the corre-
sponding pack kernel was launched in, this way we can ensure that the kernel
finishes before the data is read from it without worrying about any further con-
trol structures in the code.

In Listing 6 we see the unpacking kernel, which is almost identical to the
packing kernel.

22 R. S. Valen: Analysing Deep Halos on Modern GPUs

__global__ void unpackVert(float *deviceinput, float *border,
int height, int length, int depth, int ogheight){

int x = threadIdx.x + blockDim.x * blockIdx.x;
int y = threadIdx.y + blockDim.y * blockIdx.y;
int target = x + y * length;
int source = x + y * depth;

if(x < depth && y < ogheight){
deviceinput[target] = border[source];

}
}

Listing 6: Kernel for un-packing values from border buffers into the subdomain

The function placeBorders() first performs four asynchronous CUDA mem-
ory transfers. Similarly to the fetching function, the left and right border memory
transfers are launched in different CUDA streams, so that once the unpacking ker-
nels are launched, we can use the serial nature of the streams to ensure that the
packed border buffers are fully in place before being packed out.

3.2.4 Measuring time for CUDA Kernels

Timing CUDA kernel launches and memory transfers is done using events. In List-
ing 7 we see all the calls involved in taking the times of CUDA functions using
two different streams to achieve concurrency. This is how time is taken for the
pack and unpack functions, and the outer compute function. The inner compute
function runs in a third stream, altStreamThree, and as such only needs a single
set of start and stop events. When launching the compute kernel on the entire
subdomain, the calculate kernel is executed and timed in the default stream.

Chapter 3: Creating a 2D Halo Exchange Benchmark for the GPU 23

extern "C" void someFunction(){
cudaEvent_t start1, start2, stop1, stop2;
cudaEventCreate(&start1);
cudaEventCreate(&stop1);
cudaEventCreate(&start2);
cudaEventCreate(&stop2);
cudaEventRecord(start1, altStreamOne);
cudaEventRecord(start2, altStreamTwo);

/* perform kernel launches and cudaMemCpyAsync
calls in altStreamOne and altStreamTwo */

cudaEventRecord(stop1, altStreamOne);
cudaEventRecord(stop2, altStreamTwo);
cudaEventSynchronize(stop1);
cudaEventSynchronize(stop2);
float milliseconds1, milliseconds2;
cudaEventElapsedTime(&milliseconds1, start1, stop1);
cudaEventElapsedTime(&milliseconds2, start2, stop2);
/* store larger of milliseconds 1 and 2

in global accumulator variable */
}

Listing 7: Code using events to take the time of kernel calls and
cudaMemCpyAsync() calls with two streams

3.3 Communication

For this implementation, we’re benchmarking two different patterns for commu-
nicating deep halos using MPI. One version is the asynchronous way of exchang-
ing borders shown in Figure 2.8 where each process communicates with all of
its neighbours directly. The other is the synchronous method shown in Figure 2.7
where one round of communication is performed along one cardinal axis, and
then the corner values are passed through in the second round of communication
along the other cardinal axis.

3.3.1 Asynchronous halo exchange

The asynchronous communication function for performing the halo exchange is
called asynchronousMpiBorderExchange(), which can be found in Appendix B.

asynchronousMpiBorderExchange() begins by using eight non-blocking re-
ceive operations to receive the border data from its neighbours in all ordinal
and cardinal directions. All the receive operations store their request status in
a recvRequests array.

24 R. S. Valen: Analysing Deep Halos on Modern GPUs

MPI_Datatype MPI_corner;
MPI_Datatype MPI_center_horizontal;
MPI_Type_vector(depth, depth, adjustedLength,

MPI_FLOAT, &MPI_corner);
MPI_Type_commit(&MPI_corner);
MPI_Type_vector(depth, myLength, adjustedLength,

MPI_FLOAT, &MPI_center_horizontal);
MPI_Type_commit(&MPI_center_horizontal);

Listing 8: Code snippet declaring MPI datatypes with the vector function

Then, the process sends all its border data directly to all eight neighbours using
the non-blocking MPI_Isend operations.

Lastly, the function waits using MPI_Waitall on the recvRequests array to
ensure all the receives have been completed before the code continues to execute.

We use two custom MPI datatypes to send and receive the correct data out of
and into the north and south border buffers. They are declared as in Listing 8. We
use MPI_center_horizontal when sending and receiving the middle portions of
the north and south border. MPI_corner is only used when receiving the corner
values into the north border. We do not use it when sending because the corner
values can be sent directly from the left and right border buffers where the data
is already contiguous in memory.

3.3.2 Synchronous halo exchange

The synchronous communication function for performing the halo exchange is
called synchronousMpiBorderExchange(), and it can be found in Appendix B.

synchronousMpiBorderExchange uses non-blocking communication operations
to asynchronously receive the border data from a process’ left and right neighbours
into the corresponding receive buffers (leftBorderReceive and rightBorderReceive).
It then asynchronously sends its left and right border data to the left and right
neighbours, respectively (leftBorder and rightBorder) with non-blocking send-
ing operations.

After posting all the non-blocking send and receives for the horizontal border
exchange, the code waits for the non-blocking receive calls to resolve by invoking
MPI_Wait and stores the received data in the appropriate indices the northBorder
and southBorder arrays. This is done by iterating over all the corners of the bor-
ders with for loops. This operation has a time complexity of O(n2), scaling with
halo depth.

Once the data has been moved between the arrays, the function again uses the
non-blocking receive operations to asynchronously receive the border data, this
time from the north and south neighbours (northBorderReceive and southBorderReceive).
It also sends the local north and south border data to the north and south neigh-
bours (northBorder and southBorder) using non-blocking send operations.

Chapter 3: Creating a 2D Halo Exchange Benchmark for the GPU 25

Finally, the function uses MPI_Wait for the receive operations to complete so
that the rest of the code doesn’t execute before the northBorderReceive and
southBorderReceive buffers contain the data from the neighbouring processes.

3.4 Overlapping communication and computation

When doing overlapping communication and calculation, we are looking to ex-
ecute code on the host and the device at the same time. And in the context of
running concurrently with halo exchanges, we are really only looking to run the
calculations on the interior grid points while performing the communication step.

This is easily achieved since CUDA kernel launches are non-blocking. So after
fetching the border data from the device, the host code launches the kernel for the
inner computation, the same as the kernel shown in Subsection 3.2.1. But starting
at the interior gridpoints and with the compute height and length adjusted so it
stays within the interior. The function used to launch the inner compute is shown
in Listing 9.

extern "C" void* innerCompute2(struct blockDims blockDims){
dim3 grid(blockDims.gridLength, blockDims.gridHeight, 1);
dim3 block(blockDims.blockLength, blockDims.blockHeight, 1);
calculate<<<grid,block,0,altStreamThree>>>

(&deviceinput[adjustedLength * (depthVal + 1) + depthVal + 1],
&deviceprocess[adjustedLength * (depthVal + 1) + depthVal + 1],
devicekernel, ogheight-2, oglength-2, adjustedHeight,
adjustedLength, depthVal);

return NULL;
}

Listing 9: Function to launch the calculate kernel on only interior gridpoints

Once this function returns, which happens after the kernel has been queued
on the device and not after the kernel finishes, one of the communication methods
described in Section 3.3 is used. Once the MPI communication step is complete,
the borders are loaded onto the GPU and placed into the subdomain array. Then
the outer computation is started.

3.4.1 Iteration loop

In Listing 10 the main iterative loop with overlapping communication and com-
putation is shown. First, the borders are fetched, and then the inner computation
is started. While the inner computation is running, the halo exchange happens;
in this case, it is the asynchronous version, but the loop is identical to the syn-
chronous version sans the name of the halo exchange function. After the halo
exchange is finished, the borders are placed back onto the GPU and moved into the

26 R. S. Valen: Analysing Deep Halos on Modern GPUs

correct positions on the array so the outer compute can begin. The swapInputProcessPointers()
function synchronises all streams on the device and swaps the pointers to deviceinput
and deviceprocess. Afterwards, the calculation is run on the entire subdomain
for the remaining halo depths.

for (int i = 0;i<i1;){
fetchBorders(/* params */);
innerCompute2(innerDomain);
threadedSegmentStart = MPI_Wtime();
MPI_Barrier(MPI_COMM_WORLD);
threadedSegmentSum += MPI_Wtime() - threadedSegmentStart;
messageStart = MPI_Wtime();
asynchronousMpiBorderExchange(/* params */);
messagePassing += MPI_Wtime() - messageStart;
placeBorders(/* params */);
outerCompute(outerBorders);
swapInputProcessPointers();
i++;
for(int j = 1; j<depth && i<i1;j++){

calcStart = MPI_Wtime();
launchKernel(problemDomain);
calcSum += MPI_Wtime() - calcStart;
i++;

}
}

Listing 10: Iteration loop for a run with concurrent communication and asyn-
chronous border exchange. For the sake of brevity, the parameters of functions
with long parameter lists are omitted.

The loop for the non-concurrent version is very similar. The function calls to
the inner and outer compute functions are not made, there is no call to the func-
tion to swap input buffers, and the loop variable i is only incremented inside the
second for loop. The second loop variable j is also initialised to zero. The exact
code is shown in Appendix B.

Chapter 3: Creating a 2D Halo Exchange Benchmark for the GPU 27

3.5 Measurements

Each time our benchmark suite is run, we take measurements of the time spent
at different times of the program. Since one cannot time a CUDA kernel reliably
with Wall-Time, two different methods are used to take the times of varying pro-
gram parts: the method using CUDA events described in Subsection 3.2.4, and the
method using the function for taking the wall time that comes packaged with the
MPI library, MPI_Wtime. The program parts timed are:

• Border packing - This segment involves everything about moving data from
the device to the border buffers in host memory. It takes the time spent on
two instances of the packing kernel shown in Listing 5 and the memory
transfer of all four border regions with the packed data from the device to
the host. This measurement is done using CUDA events.
• Message passing - This segment contains only the MPI communication in

either of the two functions described in Section 3.3. This segment is timed
using MPI_Wtime.
• Border unpacking - This segment, similar to the packing step, measures

four memory transfers, this time from the host to the device, and two kernel
launches, specifically the kernel shown in Listing 6. Again, this measurement
is done using CUDA events.
• Calculation time - This segment refers specifically to the launch and run-

time of the calculate kernel shown in Listing 2 when run on the entire sub-
domain. This measurement is done using CUDA events.
• Outer compute - This segment is the time to launch and complete the outer

compute kernels discussed in Subsection 3.2.2. The measurements for this
segment are taken using CUDA events.
• Inner compute - This segment is the time to launch and complete the inner

compute. As discussed in Section 3.4, this kernel is the same as the one used
to calculate the next iteration of the entire domain, but a smaller section of
it. This segment is timed using CUDA events.
• Desynchronised time - Before the message passing segment, a MPI_Barrier

call is made on all processes in the communicator. The purpose of this seg-
ment is described in more detail in Subsection 3.6.2. The measurement is
done using MPI_Wtime.

28 R. S. Valen: Analysing Deep Halos on Modern GPUs

3.6 Challenges

During development, a few tough challenges arose that took a while to solve. For
posterity’s sake, they’re documented here, along with the approach used to resolve
them.

3.6.1 POSIX threads

Early versions of the prototype used POSIX threads (Pthreads) to achieve con-
currency while taking time measurements of the inner compute kernel execution.
However, Pthreads have an overhead attached to them, and in the end, it turned
out to be faster and simpler to launch the inner compute from the main thread
since kernel launches are asynchronous already. This means that our implemen-
tation is no longer testing CPU-side multithreading.

3.6.2 Desynchornisation issues

Idun doesn’t give us complete control over which nodes get assigned to our pro-
gram. In the early stages of testing, it was discovered that certain runs of the
prototype would have atrocious performance in the message-passing stage. This
was usually caused by a single or two out of the four or nine nodes the program
ran on having slower hardware. For example, the P100 GPUs on the nodes on
idun-06 compared to the V100 or A100 on idun-04 and idun-05. Because of this
hardware difference, the time measurements for the message passing stage would
include the time the fastest nodes spent waiting for the slowest nodes to catch up
and send their border data.

The final benchmarks are run on the same hardware for the most part, but
demanding specific hardware on Idun will generally increase the time spent in the
queue before a job runs. This would increase the time taken between testing code
during development significantly. To remedy that, a call to MPI_Barrier can be
made just before the message passing stage; this helps us get an accurate reading
of how the different optimisations impact the message passing stage even when
assigned to hardware that performs differently.

In program runs where the segments are individually timed, we also take the
time of this MPI_Barrier call.

3.6.3 Fetching borders before or after inner compute

An early prototype version showed a slowdown when doing overlapping commu-
nication and calculations, especially on large domain sizes. This happened because
we started the inner compute before we fetched the border data from the device.
Even if everything would run in different streams, the occupancy for the inner
compute kernel was so high that there weren’t many leftover GPU resources for
the border fetching. This meant that the inner compute would often finish entirely
before the borders could be fetched from the device. The GPU would then be idle

Chapter 3: Creating a 2D Halo Exchange Benchmark for the GPU 29

during the halo exchange before running the outer compute. Splitting the com-
pute into an outer and inner step means that calculations can take more time, but
it should be worth it due to the time saved on doing the communication in parallel
with the calculations. However, by launching the inner compute kernel first, the
concurrency could be partially lost, and the iterative loop could take longer due
to the increased overhead.

This was solved simply by fetching the border data entirely before starting the
inner compute stage.

Chapter 4

Experimental setup

This chapter provides an overview of the hardware and software used to run and
test our benchmarking tool for 2D halo exchanges on GPUs. Compilation details
and the different parameters used for each run of the benchmarks is also listed in
Section 4.2 and Section 4.3.

4.1 The Idun Testbed

Different faculties and departments at NTNU have collaborated and contributed
their computational resources to the Idun cluster. It is designed to provide stu-
dents and researchers with the computational resources they need to rapidly cre-
ate, test, and prototype HPC software. The university’s IT division provides the
cluster’s backbone, high-speed switches, storage, and servers. The departments
collaborating on the cluster are the ones who provide the computing resources.
Departments can use the resources they themselves contribute, and any idling
resources from other departments [17].

Slurm

The benchmark was run on Idun using Slurm, which is a job scheduler for Linux
and Unix-like kernels. A single script ran all the versions of the code with each
parameter listed in Section 4.3 so that all the runs for each GPU type would be
assigned the same nodes with the same hardware.

Idun Nodes used in our Testbed

The nodes used when running on Idun are shown in Table 4.1.
The V100 nodes were used for all runs on the V100. For the A100, idun-06-

[17-19] and idun-04-07 were used for almost all the runs. The exceptions were
the 5000 × 5000 runs where Slurm failed to write to the log file, therefore that
grid size was repeated separately. The nodes used for that were idun-04-06, idun-
04-10 and idun-06-[18-19].

31

32 R. S. Valen: Analysing Deep Halos on Modern GPUs

Table 4.1: Idun nodes used in benchmark, all server types are Dell, all Processors
are from intel, and all GPUs are from Nvidia

Node Type Processor RAM GPU
idun-04-[01-03] DSS8440 Xeon Gold 6148 754 V100 8x32Gb, 2x16Gb
idun-05-08 PE740 Xeon Gold 6132 754 Tesla V100 16Gb
idun-06-[17-19] PE730 Xeon E5-2650 v4 128 A100 40Gb
idun-04-[06-07] DSS8440 Xeon Gold 6248R 1509 A100 40Gb
idun-04-10 DSS8440 Xeon Gold 6248R 1509 A100 80Gb

4.2 Compilation

The implementation has been built to run MPI calls from the main.c file, linked
with a CUDA file mul.cu. CUDA extends C++ with additional features. The C
files using MPI have to be compiled using mpicc, while the CUDA files have to
be compiled using nvcc. Finally, the executable is built using mpicc to link all the
output files together. Certain libraries have to be included to ensure linking of the
CUDA runtime and to supply the library directory for the CUDA runtime. The flags
used for compiling are shown in Table 4.2.

Table 4.2: Compiler flags used with mpicc

-lcudart
-lstdc++
-L/usr/local/cuda-11/lib64/
-O3

4.2.1 Modules

When testing the code on idun, these are the modules used to get the runtimes
and compilers necessary to perform the tests.

Table 4.3: Modules used to run on idun

foss/2022a
CUDA/11.7.0

Foss is a common compiler toolchain composed entirely of open-source soft-
ware, hence the name which is short for Free and Open Source Software. Foss
is the toolchain that provides the GNU compiler collection, and the OpenMPI li-
brary. The CUDA/11.7.0 module provides the CUDA toolkit necessary to run the
program on CUDA-compatible GPUs.

Chapter 4: Experimental setup 33

4.3 Launch parameters

For all four versions of the code, we ran the tests 35 times with each set of param-
eters. The results for each different set of parameters when presented in Chapter 5
are the averages of 35 runs for each setting.

• Problem domain dimensions - All runs were performed with square prob-
lem domains with side heights and lengths of 5000, 10000, 15000, 20000,
25000, 30000, and 35000.
• Iterations - All runs were performed with 2048 iterations.
• Halo depth - The intervals at which we check the performance of different

halo depths is the next power of two up to 64. So runs were done with halo
depths of 1, 2, 4, 8, 16, 32, and 64.

These parameters were used on two different sets of nodes on Idun with dif-
ferent hardware. One set was with Nvidia V100 GPUs, and the other was with the
Nvidia A100 GPUs.

Chapter 5

Results & Discussion

This chapter presents the results from benchmarking the prototype for 2D deep
halos. The process explained in Chapter 4 produced a large amount of data, most
of which relay similar information. Therefore, the figures in this chapter are just
a selection of the results needed to show the performance impacts of the different
optimisations. A complete list of the results with the problem sizes we used with
our benchmarking code can be found in numerical form in Appendix C. Those
sizes are 5000, 10000, 15000, 20000, 25000, 30000, and 35000.

5.1 Significant outliers

For the V100 benchmark for grid size 25000 × 25000, three runs in the syn-
chronous overlap version at halo depth two in succession were significantly slower
than all the other runs for the same input parameters. Those three runs took 5.482,
2.361 and 2.452 seconds passing messages, while the average for that set of runs
with the same parameters is 0.193 seconds. We see no other explanation for this
than that this is a slowdown caused by the hardware on Idun possibly being busy
with another job since we were not able to run on Idun with exclusive access.
Those outliers are therefore omitted from the results presented in this chapter.

5.2 Execution time

Here the results of the different execution time measurements for each combina-
tion of halo exchange optimisations er shown and discussed.

35

36 R. S. Valen: Analysing Deep Halos on Modern GPUs

Figure 5.1: Execution times for side lengths of 5000× 5000 on V100 nodes

Figure 5.2: Execution times for side lengths of 10000× 10000 on V100 nodes

For all grid sizes on the V100 GPUs, the results show that with a halo depth
of one, the serial versions with synchronous and asynchronous halo exchanges
perform similarly, and the overlap versions of synchronous and asynchronous halo
exchanges perform similarly. However, the overlap versions tend to outperform
the serial counterparts, even if only by a little. This is especially visible on the

Chapter 5: Results & Discussion 37

smaller grid sizes shown in Figure 5.1 and Figure 5.2, which shows the execution
times with grid size 5000× 5000 and 10000× 10000 respectively. There we see
a clear difference between the overlap and serial versions up until halo depth 64,
where the asynchronous versions slow down faster than the synchronous versions.

Figure 5.3: Execution times for side lengths of 30000× 30000 on V100 nodes

When looking at the larger grid sizes, the results show that the versions with
asynchronous halo exchanges perform significantly worse on the V100 nodes with
the larger halo depth values. For example, for the runs with grid size 30000 ×
30000, which are shown in Figure 5.3, there is a sharp increase in execution time
at halo depths beyond eight for both the serial and overlap versions of the proto-
type when using the asynchronous halo exchange function. For the synchronous
halo exchange on this grid size, the serial version is shown to be slowly increasing
in performance all the way. In contrast, the overlap version performs best at halo
depths eight and 16 before it slowly starts climbing. The synchronous overlapping
version at halo depth eight was the fastest at 6.40 seconds, with a 1.09 speedup
on the entire execution against the asynchronous serial version at halo depth one,
which was the slowest.

Looking at the execution times for the A100 nodes, there is a steady decrease
in time spent when looking at the versions with synchronous halo exchanges until
halo depth eight, where similarly to the V100 nodes, the execution time tends to
flatten out or increase.

In Figure 5.4, some aberrant results from the asynchronous versions are shown.
While the synchronous version of the code has a steady decrease, the asynchronous
versions slow down significantly at halo depth four and come back down at halo
depth 32.

38 R. S. Valen: Analysing Deep Halos on Modern GPUs

Figure 5.4: Execution times for side lengths of 5000× 5000 on A100 nodes

Figure 5.5 shows the execution times on the 15000×15000 grid. We see a more
expected result here than in Figure 5.4, with a more steady decrease in execution
time as the halo depth decreases until the halo depth reaches eight. Still, however,
the asynchronous versions slow down after halo depth one and come down again
at halo depth eight.

Figure 5.5: Execution times for side lengths of 15000× 15000 on A100 nodes

Chapter 5: Results & Discussion 39

In Figure 5.6, the execution times on the largest tested grid size on the A100
nodes are shown. Again the synchronous overlapping version performs the best
here at halo depth eight with a 1.1736 speedup against the synchronous serial
version at depth one. At this grid size, the asynchronous versions slow down at
halo depths two and 32. The slowdown for the async overlap version is much less
prominent at halo depth two than at halo depth 32 because the inner compute
makes up a much more prominent fraction of the total computation time and can
thus hide more of the increased message time.

Figure 5.6: Execution times for side lengths of 35000× 35000 on A100 nodes

5.3 Message time

Here the time results for the message passing stage are shown and discussed. This
measurement only takes the time of the functions shown in Section 3.3.

The synchronous version of the halo exchange shown in Figure 5.7 shows a
fairly consistent pattern across the different grid sizes. Where more time is spent
sending messages with lower halo depths than with higher depths, most of the
gains in halo exchange time happen up until halo depth eight. For example, with
grid size 35000×35000, the synchronous halo exchange takes 0.287 seconds with
a halo depth of one and 0.170 seconds with a halo depth of eight. That is a speedup
of 1.680. For halo depths greater than eight, there is no gain in performance at
that grid size.

40 R. S. Valen: Analysing Deep Halos on Modern GPUs

Figure 5.7: Message times for the synchronous runs on V100 nodes

Figure 5.8: Message times for the asynchronous runs on V100 nodes

With the asynchronous version on the V100 nodes shown in Figure 5.8, the
only significant performance gains for the message passing stage happened with
small grid sizes. For the runs on the 5000×5000 grid, the asynchronous function
takes 0.119 seconds at halo depth one and 0.072 seconds at halo depth 64. That
is a speedup of 1.639. For grid size 10000× 10000, there is a speedup of 1.333

Chapter 5: Results & Discussion 41

between halo depths one and 32. We see a significant slowdown at higher halo
depths as the grid sizes get larger. This slowdown is not at all present in the syn-
chronous runs for any grid size. This slowdown is not present in the A100 runs,
and since the GPU doesn’t impact the halo exchange function, it shows that the
CPU side hardware on the V100 nodes doesn’t handle the eight simultaneous mes-
sages in the asynchronous function the same way as the CPU side hardware does
on the A100 nodes.

The times for the halo exchange on the A100 nodes are shown in Figure 5.9
and Figure 5.10. Generally, We see a speedup for the synchronous versions as the
halo depth increases.

When looking at the largest grid size, there is a halving in time spent, with a
2.01 speedup from halo depth one to 64 on the 35000×35000 grid for the A100
nodes. We know from the overall execution times that even though the message
time is lowest at depth 64, the speedup at halo depth eight and 16 are more likely
to be interesting since the overlap version often reaches its best performance. At
halo depth eight, there is a speedup of 1.78 compared to halo depth one on the
synchronous version.

Figure 5.9: Message times for the synchronous runs on A100 nodes

The asynchronous times on the A100 nodes are shown in Figure 5.10. Here it is
shown that the hardware consistently struggles at halo depth two. Especially with
the larger grid sizes we see a significant slowdown. While the largest grid size has
a substantial increase in message time at halo depths 32 and 64, that consistent
increase in message time for the asynchronous function that was present on the
V100 nodes is not present on the A100 nodes.

42 R. S. Valen: Analysing Deep Halos on Modern GPUs

Figure 5.10: Message times for the asynchronous runs on A100 nodes

The synchronous version of the halo exchange tends to outperform the asyn-
chronous version, especially after halo depth one where the message time de-
creases for the synchronous version but not always for the asynchronous version.
The clear takeaway, however, is that the asynchronous version performs worse in
unexpected ways on different hardware. On the A100 nodes, the asynchronous
version had a drop in performance at halo depth two across most of the grid sizes
that was not present in the synchronous runs. This phenomenon is not present in
the V100 runs, but the V100 has a significant slowdown at higher halo depths on
the larger grids that is not present in the A100 runs or the synchronous version.

The synchronous version consistently shows a more predictable response to
the increasing halo depth in line with the theory proposed in Chapter 2. The the-
ory suggests that when messages are grouped together, the overall time spent
decreases due to an overhead reduction with the associated message handling.

So far, the desynchronisation measurements have not been included in the
messaging times shown here. But it is still a part of the overall runtime and must
be included to determine how well the overlap covers the communication. The
desynchronisation times for the 35000× 35000 runs on both the A100 and V100
nodes are shown in Figure 5.11. The async versions show the same patterns as
the message times for the same data points. We recognise the spikes at halo depth
two and 32 for the A100 runs, and the increase after halo depth eight for the V100
runs. This suggests that the slowdowns for the asynchronous versions of the halo
exchange are not even across the nodes, and some nodes reach the barrier before
the message passing stage much sooner and have to wait there.

Chapter 5: Results & Discussion 43

Figure 5.11: Desynchronisation times for 35000 × 35000 on A100 and V100
nodes

The overlapping version of the code covers a significant amount of the halo
exchange communication with computations. Beyond halo depth eight, most of
the overlap measurements begin to show slower execution times. This is because
the shift from halo depth eight to 16 is when the inner compute time becomes less
than the communication time, which means that the computations can no longer
cover the message time.

5.4 Packing and Unpacking time

Here the results of timing the border fetching and border placing operations are
described. Since both the kernels and transfers are timed together, we refer to the
whole operation of fetching and placing as packing and unpacking respectively.

Since the packing operation happens at the start of the iterative loop and be-
fore the beginning of the inner compute on the overlap versions, it is entirely in-
dependent of both overlap and the nature of the halo exchange. Because of this,
the results from all four versions are combined to look at the impact of increasing
the halo depth across the different grid sizes in the same graph.

The unpacking operation will often happen simultaneously as the inner com-
pute in the overlapping communication versions of the prototype. Therefore, the
graphs showing the time measurements for this stage combine the asynchronous
and synchronous communication versions but not the overlap and serial versions.

44 R. S. Valen: Analysing Deep Halos on Modern GPUs

Figure 5.12: Packaging time on the V100 nodes for all grid sizes

Figure 5.12 shows the packing time for all grid sizes on the V100. Across all
grid sizes, there is a speedup as the halo depth increases up to eight. For example,
at grid size 35000 × 35000, there is a speedup of 1.47 going from halo depth
one to eight. Beyond that, the performance flattens out or, in a few cases, has
a slight slowdown. The slowdowns are not particularly significant. For grid size
5000 × 5000, the runs at halo depth 32 had a packing time of 0.0281 seconds,
while the time at halo depth 64 was 0.0285 seconds, a 0.1% increase in time
spent.

The times for the unpacking operation on V100 are shown in Figure 5.13 and
Figure 5.14. As the figures show, the overlap versions of the code spend signif-
icantly more time unpacking at low halo depths. This is because the unpacking
operations share resources with the inner compute. The dramatic reduction in
time taken for those versions is then because as the halo depth increases, the un-
packing operation spends less time waiting for the resources used by the inner
compute operation.

Chapter 5: Results & Discussion 45

Figure 5.13: Unpacking time on the V100 nodes for all the serial runs

In the serial versions, there is a decrease in unpacking time as the halo depth
increases, more similar to the packaging time. For example, on the V100 nodes,
the runs on grid size 30000×30000 have a speedup between halo depths one and
eight of 1.34.

Figure 5.14: Unpacking time on the V100 nodes for all the overlap runs

46 R. S. Valen: Analysing Deep Halos on Modern GPUs

Figure 5.15: Packaging time on the A100 nodes for all grid sizes

In Figure 5.15, the timing results for the packing operation on the A100 nodes
are shown. There is a decrease in time spent packing throughout the entire data
set. Again, this speedup is entirely a performance gain since it is run in serial with
all the other parts of the computation. In the V100 runs, the speedup was the most
significant up to halo depth eight, which is not entirely dissimilar to the results
from the runs on the A100 nodes. However, there are no speed decreases as the
halo size increases on the A100 for any grid size. Also, for the A100, the speedup
past halo depth eight is still generally higher than for the V100. For example, on
the V100, the speedup on the 35000 × 35000 grid when going from halo depth
eight to 64 was 1.099, while on the A100, it was 1.199.

For the serial unpacking operation, shown in Figure 5.16, the A100 results
show a very similar pattern to the one on the V100, with the caveat of the op-
eration being overall faster on the newer hardware. The overlap version is not
shown in a figure here, it has the same decrease where the time spent is halved
every time the halo depth doubles. But overall runs faster on the A100 than the
V100.

Chapter 5: Results & Discussion 47

Figure 5.16: Unpacking time on the A100 nodes for all grid sizes on serial runs

These results of the benchmark show that as the halo depth increases, the
time spent packing data and transporting data between the CPU and GPU is sig-
nificantly decreased. Because the packing operation is always performed in serial,
these performance gains will always impact the overall execution time.

5.5 Overlapping

Table 5.1 and Table 5.2 show how much of the message + desynchronisation +
unpack time is covered on the V100 and A100 for the synchronous run on the
35000 × 35000 grid size. These are the times that are relevant to the overlap
as they are the operations running alongside the inner compute. The increase in
computation time associated with higher halo depths is implicitly included as it
decreases the difference in execution times. We see that on the A100 nodes at
depth one, 83.3% of the communication time is covered by the overlap. However,
this coverage decreases as halo depth increases to 75.1% at halo depth eight,
which, as discussed earlier, is the most performant setting. At halo depths beyond
this, the share of the communication being covered is significantly reduced as the
inner compute takes less time than the communication time. Between halo depths
one and eight.

The V100 runs at this grid size have less coverage than the ones for the A100
nodes, with a 31.6% communication coverage on the most performant halo depth.

The amount of communication able to be covered by the overlap heavily de-
pends on the grid size. For example, in the 10000×10000 grid on the A100, there
is 63.9% coverage at halo depth one and 21.0% at depth eight.

48 R. S. Valen: Analysing Deep Halos on Modern GPUs

Table 5.1: Table showing how much of the communication is covered by the
overlapping synchronous version on the V100 nodes on the 35000× 35000 grid.

Depth Message + Desync time Execution difference % Decrease
1 1.0852 0.5224 48.1397
2 0.9532 0.3182 33.3786
4 0.8687 0.3062 35.2514
8 0.8422 0.2662 31.6126

16 0.8767 0.2957 33.7302
32 0.8770 0.2700 30.7901
64 0.8254 0.1204 14.5914

Table 5.2: Table showing how much of the communication is covered by the
overlapping synchronous version on the A100 nodes on the 35000×35000 grid.

Depth Communication time Execution difference % Decrease
1 0.8578 0.7146 83.3034
2 0.7389 0.6130 82.9539
4 0.5363 0.4247 79.1934
8 0.4760 0.3574 75.0933

16 0.4976 0.2707 54.3979
32 0.4828 0.1190 24.6493
64 0.4366 0.0749 17.1672

Chapter 6

Conclusions & Future Work

Stencils are a family of algorithms that update points of a multi-dimensional data
mesh with the neighbouring values as inputs. Given how compute-intensive the
stencil computations are they beg for better benchmarking tools, especially on
GPUs that are becoming central accelerators for High-Performance Computing
workloads.

In this thesis, we described our benchmarking tool for doing stencil compu-
tations on the GPU with halo exchanges using MPI. Three different optimisations
were presented and tested: synchronous halo exchanges, deep halos, and over-
lapping communication and computation. The ways the different optimisations
impacted the different parts of the program were measured and analysed for sev-
eral relevant problem sizes ranging from 5000 × 5000 to 35000 × 35000, and
benchmarked on two different popular GPU HPC architectures, the NVIDIA V100
and A100.

Because the speedups that were achieved were so dependent on the grid size,
even when only looking at the communication parts of the results, it is challenging
to answer the research questions laid out in the introduction with specific numeri-
cal performance gains. However, we did observe that these optimisations do work
in general and give significant performance increases for the halo exchanges. For
the largest problem size tested, the optimisations gave a 1.09 speedup when using
nodes with V100 GPUs and a 1.17 speedup when using nodes with A100 GPUs.

We showed that deepening halos reduce the amount of communication over-
head by batching communication together in exchange for an increase in the num-
ber of computations needed for each iteration. That reduction was shown for both
communication between the GPU and CPU, and between different nodes in a com-
pute cluster. These results showed that deepening the halos on their own, continue
to provide increased performance as halo size increases until the decrease in com-
munication time is eclipsed by the increase in computation time.

Note that deep halos are the only optimisation that affects the device to host
border transfer, where increasing the halo depth to the 64 would decrease the
time spent on the fetching operation by between 0.08 and 0.10 seconds on the
V100 GPUs and between 0.09 and 0.11 seconds on the A100 GPUs. The biggest

49

50 R. S. Valen: Analysing Deep Halos on Modern GPUs

performance gains, in terms of wall-time, were for the biggest problem sizes.
Synchronised halo exchanges provided either slightly better performance or

vastly better performance than the asynchronous version used in our implemen-
tation. The synchronous versions perform predictably. However, there are times
when the asynchronous version unpredictably performs much worse to the point
where it spends more time communicating than calculating. This may make it
unreasonable to use it over the synchronous version in a practical use case.

Overlapping communication and calculations was shown to be a very impact-
ful optimisation. It provided better performance than the serial version in almost
every instance, and especially so on larger grid sizes. On the largest grid size with
the newest hardware, the overlapping version was able to cover 83.3% of the
communication. It was also shown that maximising coverage is not always going
to give the best performance.

Our original idea for implementing the overlapping optimisation was to use
POSIX threads to start the kernel in a separate thread. However, during develop-
ment it was discovered that it was simpler and more efficient to not use multi-
threading on the CPU and just make use of the fact that CUDA kernel launches
are asynchronous by default to achieve the overlap.

The synchronous halo exchange doesn’t interact with the other optimisations
in particularly interesting ways outside of it working as expected. The asynchronous
version showed that at low halo depths, overlapping communication and calcu-
lation can hide unexpected slowdowns in communication between nodes in the
cluster.

Deep halos provided the most speedup with the synchronous version of the
halo exchange, a decrease which kept going for all halo sizes albeit with dimin-
ishing returns. Overlapping communication and calculations meant that the point
where increasing halo depth was no longer when the increase in computation
outpaced the decrease in communication time, but rather when the inner com-
pute took less time than the communication. This means that the ideal halo depth
for the overlap versions is lower than for the version where communications and
computation is serialised.

6.1 Future Work

This thesis has focused primarily on the halo exchange part of 2D stencil compu-
tations. Therefore there are many things related to stencil computations that were
not examined. Following are several suggestions.

Optimizing computations

Note that the computation part in itself was not explored in this work. There are
implementations of stencil computations that should make better use of the warp-
level and shared memory when performing the stencil computation. It would thus
be interesting to explore a less naive implementation of the calculate kernel.

Chapter 6: Conclusions & Future Work 51

An implementation that uses shared memory to share data between warps
could also change the efficacy of splitting the computation into an inner and outer
compute.

Explor CUDA memory operations

There are memory operations in CUDA that were not explored here. For example
pinned memory, which pins a region of host memory so that the GPU can access
it directly [18], could be interesting to look at.

Extending the benchmark to 3D

A fairly straightforward expansion is extending the benchmark to 3D. There are
many natural phenomena that cannot be modelled using only two dimensions,
and problem domains of three dimensions are necessary. Going from 2D to 3D
changes the relationship between the amounts of inner and outer points and how
they are stored in memory, which could give different results.

Running on more nodes and devices

We scheduled jobs on Idun to run with more than four nodes, but those jobs were
not run in time to be included here because the relevant hardware was in high
demand during the semester in which this thesis was written. So all our results
are from runs with four total nodes. This means that for the asynchronous halo
exchange, four of the MPI messages were sent to the same neighbour, which could
have changed the results to something different than what they would have been
with eight unique neighbours. So it could be interesting to see how the benchmark
scales to even bigger problem sizes on more nodes.

This benchmark was run with each node on the cluster running one MPI pro-
cess using one GPU. Often nodes will have access to multiple GPUs. Extending
the work to work on multiple devices per node would allow for benchmarking the
impact these optimisations have on device-to-device data transfers, such as the
"colocated" communication described in [9].

Bibliography

[1] B. Hagedorn, L. Stoltzfus, M. Steuwer, S. Gorlatch, and C. Dubach, “High
performance stencil code generation with lift,” in Proceedings of the 2018
International Symposium on Code Generation and Optimization, Vienna Aus-
tria: ACM, Feb. 24, 2018, pp. 100–112, ISBN: 978-1-4503-5617-6. DOI:
10.1145/3168824. [Online]. Available: https://dl.acm.org/doi/10.
1145/3168824 (visited on 05/24/2023).

[2] L. Zhang, M. Wahib, P. Chen, J. Meng, X. Wang, T. Endo, and S. Mat-
suoka, Revisiting temporal blocking stencil optimizations, May 12, 2023. DOI:
10.1145/3577193.3593716. arXiv: 2305.07390[cs]. [Online]. Available:
http://arxiv.org/abs/2305.07390 (visited on 05/24/2023).

[3] W. Elwasif, W. Godoy, N. Hagerty, J. A. Harris, O. Hernandez, B. Joo, P. Kent,
D. Lebrun-Grandie, E. Maccarthy, V. G. M. Vergara, B. Messer, R. Miller,
S. Opal, S. Bastrakov, M. Bussmann, A. Debus, K. Steinger, J. Stephan, R.
Widera, S. H. Bryngelson, H. L. Berre, A. Radhakrishnan, J. Young, S. Chan-
drasekaran, F. Ciorba, O. Simsek, K. C. F. Spiga, J. Hammond, J. E. S. D.
Hardy, S. Keller, and J.-G. P. C. Trott, Application experiences on a gpu-
accelerated arm-based hpc testbed, 2022. DOI: 10 . 48550 / ARXIV . 2209 .
09731. [Online]. Available: https://arxiv.org/abs/2209.09731.

[4] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C. Phillips,
“GPU computing,” Proceedings of the IEEE, vol. 96, no. 5, pp. 879–899, May
2008, Conference Name: Proceedings of the IEEE, ISSN: 1558-2256. DOI:
10.1109/JPROC.2008.917757.

[5] C.-T. Yang, C.-L. Huang, and C.-F. Lin, “Hybrid cuda, openmp, and mpi par-
allel programming on multicore gpu clusters,” 2010.

[6] R. Thakur, W. Gropp, and E. Lusk, Optimizing noncontiguous accesses in
MPI-IO, Oct. 15, 2003. arXiv: cs/0310029. [Online]. Available: http://
arxiv.org/abs/cs/0310029 (visited on 05/22/2023).

[7] S. Chien, I. Peng, and S. Markidis, “Performance evaluation of advanced
features in CUDA unified memory,” in 2019 IEEE/ACM Workshop on Mem-
ory Centric High Performance Computing (MCHPC), Nov. 2019, pp. 50–57.
DOI: 10.1109/MCHPC49590.2019.00014.

53

https://doi.org/10.1145/3168824
https://dl.acm.org/doi/10.1145/3168824
https://dl.acm.org/doi/10.1145/3168824
https://doi.org/10.1145/3577193.3593716
https://arxiv.org/abs/2305.07390 [cs]
http://arxiv.org/abs/2305.07390
https://doi.org/10.48550/ARXIV.2209.09731
https://doi.org/10.48550/ARXIV.2209.09731
https://arxiv.org/abs/2209.09731
https://doi.org/10.1109/JPROC.2008.917757
https://arxiv.org/abs/cs/0310029
http://arxiv.org/abs/cs/0310029
http://arxiv.org/abs/cs/0310029
https://doi.org/10.1109/MCHPC49590.2019.00014

54 R. S. Valen: Analysing Deep Halos on Modern GPUs

[8] H. Li, D. Yu, A. Kumar, and Y.-C. Tu, “Performance modeling in CUDA
streams - a means for high-throughput data processing,” in 2014 IEEE In-
ternational Conference on Big Data (Big Data), Oct. 2014, pp. 301–310. DOI:
10.1109/BigData.2014.7004245.

[9] C. Pearson, “Movement and placement of non-contiguous data in distributed
gpu computing,” Ph.D. dissertation, University of Illinois Urbana-Champaign,
2021.

[10] A. Hammer, “Analyzing halo computations on multicore CPUs,” Accepted:
2022-02-24T18:19:25Z, Master thesis, NTNU, 2021. [Online]. Available:
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2981316 (vis-
ited on 05/24/2023).

[11] “Finite difference methods,” in Numerical Treatment of Partial Differential
Equations: Translated and revised by Martin Stynes, ser. Universitext, C.
Grossmann, H.-G. Roos, and M. Stynes, Eds., Berlin, Heidelberg: Springer,
2007, pp. 23–124, ISBN: 978-3-540-71584-9. DOI: 10.1007/978-3-540-
71584-9_2. [Online]. Available: https://doi.org/10.1007/978-3-540-
71584-9_2 (visited on 05/29/2023).

[12] H. Hotta, M. Rempel, and T. Yokoyama, “High-resolution calculations of the
solar global convection with the reduced speed of sound tech- nique. i. the
structure of the convection and the magnetic field without the rotation,”
The Astrophysical Journal, 2014.

[13] A. Beresnyak, “Spectra of strong magnetohydrodynamic turbulence from
high-resolution simulations,” The Astrophysical Journal Letters, vol. 784,
no. 2, p. L20, Mar. 2014. DOI: 10.1088/2041-8205/784/2/L20. [Online].
Available: https://dx.doi.org/10.1088/2041-8205/784/2/L20.

[14] J. Pekkilä, M. S. Väisälä, M. J. Käpylä, P. J. Käpylä, and O. Anjum, “Methods
for compressible fluid simulation on gpus using high-order finite differ-
ences,” 2017.

[15] P. Chen, M. Wahib, S. Takizawa, R. Takano, and S. Matsuoka, “A versa-
tile software systolic execution model for gpu memory-bound kernels,”
in Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis, ser. SC ’19, Denver, Colorado:
Association for Computing Machinery, 2019, ISBN: 9781450362290. DOI:
10.1145/3295500.3356162. [Online]. Available: https://doi.org/10.
1145/3295500.3356162.

[16] F. B. Kjolstad and M. Snir, “Ghost cell pattern,” in Proceedings of the 2010
Workshop on Parallel Programming Patterns, ser. ParaPLoP ’10, New York,
NY, USA: Association for Computing Machinery, Mar. 30, 2010, pp. 1–
9, ISBN: 978-1-4503-0127-5. DOI: 10.1145/1953611.1953615. [Online].
Available: https : / / doi . org / 10 . 1145 / 1953611 . 1953615 (visited on
03/02/2023).

https://doi.org/10.1109/BigData.2014.7004245
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2981316
https://doi.org/10.1007/978-3-540-71584-9_2
https://doi.org/10.1007/978-3-540-71584-9_2
https://doi.org/10.1007/978-3-540-71584-9_2
https://doi.org/10.1007/978-3-540-71584-9_2
https://doi.org/10.1088/2041-8205/784/2/L20
https://dx.doi.org/10.1088/2041-8205/784/2/L20
https://doi.org/10.1145/3295500.3356162
https://doi.org/10.1145/3295500.3356162
https://doi.org/10.1145/3295500.3356162
https://doi.org/10.1145/1953611.1953615
https://doi.org/10.1145/1953611.1953615

Bibliography 55

[17] M. Själander, M. Jahre, G. Tufte, and N. Reissmann, EPIC: An energy-efficient,
high-performance GPGPU computing research infrastructure, 2019. arXiv:
1912.05848 [cs.DC].

[18] A. Nukada, T. Suzuki, and S. Matsuoka, “Efficient checkpoint/restart of
CUDA applications,” Parallel Computing, vol. 116, p. 103 018, Jul. 2023,
ISSN: 01678191. DOI: 10.1016/j.parco.2023.103018. [Online]. Avail-
able: https://linkinghub.elsevier.com/retrieve/pii/S0167819123000248
(visited on 06/11/2023).

https://arxiv.org/abs/1912.05848
https://doi.org/10.1016/j.parco.2023.103018
https://linkinghub.elsevier.com/retrieve/pii/S0167819123000248

Appendix A

Running guide

To run this code you need to have an MPI implementation installed and a CUDA
toolkit installed on a machine with a CUDA-capable device.

To compile every version, run the ./compile.sh script from the root folder
To compile only one version, simply enter the folder for that version and run

make
Once the code is compiled, the code can be executed with 4 MPI processes by

running the command

mpirun -np 4 output1

Or for a 20000*20000 grid with 100 iterations and depth of eight, with sparse
output

mpirun -np 4 output1 -h 20000 -l 20000 -i 100 -d 8 -s 1

To run all the versions in succession, the runner.py script can be executed
from the root folder.

57

Appendix B

Code snippets

59

60 R. S. Valen: Analysing Deep Halos on Modern GPUs

for (int i = 0;i<i1;){
fetchBorders(leftBorder, rightBorder, northBorder, southBorder,

adjustedHeight, adjustedLength, depth, mpiBorders,
horizontalMpiBorders);

threadedSegmentStart = MPI_Wtime();
MPI_Barrier(MPI_COMM_WORLD);
threadedSegmentSum += MPI_Wtime() - threadedSegmentStart;
messageStart = MPI_Wtime();
syncronousMpiBorderExchange(leftBorder, rightBorder, leftBorderReceive,

rightBorderReceive, northBorder, southBorder,
northBorderReceive, southBorderReceive,

neighbours, myHeight, depth, adjustedLength);
messagePassing += MPI_Wtime() - messageStart;
placeBorders(leftBorderReceive, rightBorderReceive, northBorderReceive,

southBorderReceive, adjustedHeight, adjustedLength, depth,
mpiBorders, horizontalMpiBorders);

for(int j = 0; j<depth && i<i1;j++){
calcStart = MPI_Wtime();
launchKernel(problemDomain);
calcSum += MPI_Wtime() - calcStart;
i++;

}
}

Listing 11: Iterative loop without overlap and synchronous halo exchange

Chapter B: Code snippets 61

void syncronousMpiBorderExchange
(float *leftBorder, float *rightBorder, float *leftBorderReceive,
float *rightBorderReceive, float *northBorder, float *southBorder,
float *northBorderReceive, float *southBorderReceive, struct neighbours
neighbours, int myHeight, int depth, int adjustedLength){
MPI_Status status1, status2;
MPI_Request sendRequest1, sendRequest2, recvRequest1, recvRequest2;
MPI_Irecv(rightBorderReceive, sizeof(float) * myHeight * depth,

MPI_BYTE, neighbours.east, 0, MPI_COMM_WORLD, &recvRequest1);
MPI_Irecv(leftBorderReceive, sizeof(float) * myHeight * depth,

MPI_BYTE, neighbours.west, 1, MPI_COMM_WORLD, &recvRequest2);
MPI_Isend(leftBorder, sizeof(float) * myHeight * depth,

MPI_BYTE, neighbours.west, 0, MPI_COMM_WORLD, &sendRequest1);
MPI_Isend(rightBorder, sizeof(float) * myHeight * depth,

MPI_BYTE, neighbours.east, 1, MPI_COMM_WORLD, &sendRequest2);
MPI_Wait(&recvRequest1, &status1);
MPI_Wait(&recvRequest2, &status2);
for(int id = 0; id < depth; id++){

for(int jd = 0; jd < depth; jd++){
northBorder[jd + id * adjustedLength]

= leftBorderReceive[jd + id * depth];}}
for(int id = 0; id < depth; id++){

for(int jd = 0; jd < depth; jd++){
northBorder[jd + id * adjustedLength + adjustedLength - depth]

= rightBorderReceive[jd + id * depth];}}
for(int id = 0; id < depth; id++){

for(int jd = 0; jd < depth; jd++){
southBorder[jd + id * adjustedLength]

= leftBorderReceive[jd+id*depth+depth*myHeight-depth*depth];}}
for(int id = 0; id < depth; id++){

for(int jd = 0; jd < depth; jd++){
southBorder[jd + id * adjustedLength + adjustedLength - depth]

= rightBorderReceive[jd+id*depth+depth*myHeight-depth*depth];}}
MPI_Irecv(northBorderReceive, sizeof(float) * adjustedLength * depth,

MPI_BYTE, neighbours.north, 3, MPI_COMM_WORLD, &recvRequest1);
MPI_Irecv(southBorderReceive, sizeof(float) * adjustedLength * depth,

MPI_BYTE, neighbours.south, 2, MPI_COMM_WORLD, &recvRequest2);
MPI_Isend(northBorder, sizeof(float) * adjustedLength * depth,

MPI_BYTE, neighbours.north, 2, MPI_COMM_WORLD, &sendRequest1);
MPI_Isend(southBorder, sizeof(float) * adjustedLength * depth,

MPI_BYTE, neighbours.south, 3, MPI_COMM_WORLD, &sendRequest2);
MPI_Wait(&recvRequest1, &status1);
MPI_Wait(&recvRequest2, &status2); }

Listing 12: Synchronous halo exchange function

62 R. S. Valen: Analysing Deep Halos on Modern GPUs

void asynchronousMpiBorderExchange
(float *leftBorder, float *rightBorder, float *leftBorderReceive,
float *rightBorderReceive, float *northBorder, float *southBorder,
float *northBorderReceive, float *southBorderReceive,
struct neighbours neighbours, int myHeight, int myLength,
int depth, int adjustedLength, MPI_Datatype MPI_corner,
MPI_Datatype MPI_center_horizontal, MPI_Request *sendRequests,
MPI_Request *recvRequests, MPI_Status *statuses){

MPI_Irecv(leftBorderReceive, sizeof(float) * myHeight * depth,
MPI_BYTE, neighbours.west, 1, MPI_COMM_WORLD, &recvRequests[0]);

MPI_Irecv(rightBorderReceive, sizeof(float) * myHeight * depth,
MPI_BYTE, neighbours.east, 0, MPI_COMM_WORLD, &recvRequests[1]);

MPI_Irecv(&northBorderReceive[depth], 1, MPI_center_horizontal,
neighbours.north, 3, MPI_COMM_WORLD, &recvRequests[2]);

MPI_Irecv(&southBorderReceive[depth], 1, MPI_center_horizontal,
neighbours.south, 2, MPI_COMM_WORLD, &recvRequests[3]);

MPI_Irecv(northBorderReceive, 1, MPI_corner, neighbours.northWest,
7, MPI_COMM_WORLD, &recvRequests[4]);

MPI_Irecv(&northBorderReceive[adjustedLength-depth], 1, MPI_corner,
neighbours.northEast, 6, MPI_COMM_WORLD, &recvRequests[5]);

MPI_Irecv(southBorderReceive, 1, MPI_corner, neighbours.southWest,
5, MPI_COMM_WORLD, &recvRequests[6]);

MPI_Irecv(&southBorderReceive[adjustedLength-depth], 1, MPI_corner,
neighbours.southEast, 4, MPI_COMM_WORLD, &recvRequests[7]);

MPI_Isend(leftBorder, sizeof(float) * myHeight * depth,
MPI_BYTE, neighbours.west, 0, MPI_COMM_WORLD, &sendRequests[0]);

MPI_Isend(rightBorder, sizeof(float) * myHeight * depth,
MPI_BYTE, neighbours.east, 1, MPI_COMM_WORLD, &sendRequests[1]);

MPI_Isend(&northBorder[depth], 1, MPI_center_horizontal,
neighbours.north, 2, MPI_COMM_WORLD, &sendRequests[2]);

MPI_Isend(&southBorder[depth], 1, MPI_center_horizontal,
neighbours.south, 3, MPI_COMM_WORLD, &sendRequests[3]);

MPI_Isend(leftBorder, sizeof(float) * depth * depth, MPI_BYTE,
neighbours.northWest, 4, MPI_COMM_WORLD, &sendRequests[4]);

MPI_Isend(rightBorder, sizeof(float) * depth * depth, MPI_BYTE,
neighbours.northEast, 5, MPI_COMM_WORLD, &sendRequests[5]);

MPI_Isend(&leftBorder[myHeight*depth-depth*depth], sizeof(float)*depth*depth,
MPI_BYTE, neighbours.southWest, 6, MPI_COMM_WORLD, &sendRequests[6]);

MPI_Isend(&rightBorder[myHeight*depth-depth*depth], sizeof(float)*depth*depth,
MPI_BYTE, neighbours.southEast, 7, MPI_COMM_WORLD, &sendRequests[7]);

MPI_Waitall(8, recvRequests, statuses);
}

Listing 13: Asynchronous halo exchange function

Appendix C

All benchmark results

All results from the benchmark are here. Abbreviated column titles are Dp. for
Depth, Ex. for Execution time, Pack for Packing time, Unpack for Unpacking time,
I. Cal. for Inner calculation, O. Cal. for Outer calculation, P. Cal. for Primary cal-
culation, Mess. for Message time, and Desyn. for Desynchronization time.

C.1 A100 results

Table C.1: 5000 async serial

Dp. Ex. Pack Unpack I. Cal. O. Cal. P. Cal. Mess. Desyn.
1 0.6504 0.1357 0.0546 0.0000 0.0000 0.1337 0.0906 0.1162
2 0.4452 0.0763 0.0332 0.0000 0.0000 0.1369 0.0713 0.0595
4 0.6889 0.0491 0.0245 0.0000 0.0000 0.1515 0.1667 0.2489
8 0.6108 0.0334 0.0197 0.0000 0.0000 0.1538 0.1414 0.2206

16 0.5900 0.0257 0.0164 0.0000 0.0000 0.1555 0.1808 0.1768
32 0.2903 0.0226 0.0148 0.0000 0.0000 0.1502 0.0396 0.0321
64 0.3146 0.0224 0.0143 0.0000 0.0000 0.1570 0.0547 0.0366

Table C.2: 5000 async overlap

Dp. Ex. Pack Unpack I. Cal. O. Cal. P. Cal. Mess. Desyn.
1 0.5437 0.1295 0.0570 0.1323 0.0305 0.0000 0.1006 0.0911
2 0.4111 0.0756 0.0349 0.0695 0.0160 0.0681 0.0736 0.0600
4 0.6506 0.0490 0.0251 0.0378 0.0090 0.1138 0.1629 0.2357
8 0.5914 0.0334 0.0198 0.0190 0.0046 0.1339 0.1633 0.1941

16 0.5853 0.0256 0.0162 0.0096 0.0023 0.1463 0.1866 0.1747
32 0.2915 0.0226 0.0148 0.0045 0.0012 0.1463 0.0402 0.0371
64 0.3198 0.0224 0.0143 0.0022 0.0007 0.1546 0.0592 0.0414

63

64 R. S. Valen: Analysing Deep Halos on Modern GPUs

Table C.3: 5000 sync serial

Dp. Ex. Pack Unpack I. Cal. O. Cal. P. Cal. Mess. Desyn.
1 0.5741 0.1347 0.0542 0.0000 0.0000 0.1324 0.0772 0.0680
2 0.4483 0.0769 0.0334 0.0000 0.0000 0.1372 0.0825 0.0510
4 0.3848 0.0483 0.0240 0.0000 0.0000 0.1409 0.0817 0.0434
8 0.3464 0.0334 0.0193 0.0000 0.0000 0.1433 0.0690 0.0406

16 0.3152 0.0258 0.0162 0.0000 0.0000 0.1459 0.0546 0.0387
32 0.3068 0.0232 0.0147 0.0000 0.0000 0.1499 0.0508 0.0371
64 0.3272 0.0223 0.0143 0.0000 0.0000 0.1569 0.0629 0.0411

Table C.4: 5000 sync overlap

Dp. Ex. Pack Unpack I. Cal. O. Cal. P. Cal. Mess. Desyn.
1 0.5155 0.1300 0.0584 0.1323 0.0306 0.0000 0.0785 0.0824
2 0.4157 0.0770 0.0352 0.0701 0.0161 0.0686 0.0821 0.0541
4 0.3658 0.0482 0.0244 0.0352 0.0084 0.1051 0.0843 0.0422
8 0.3225 0.0333 0.0194 0.0178 0.0043 0.1253 0.0605 0.0386

16 0.3050 0.0257 0.0160 0.0090 0.0022 0.1367 0.0573 0.0342
32 0.3293 0.0231 0.0147 0.0045 0.0011 0.1455 0.0589 0.0511
64 0.3008 0.0224 0.0144 0.0022 0.0006 0.1532 0.0478 0.0351

Table C.5: 10000 async serial

Dp. Ex. Pack Unpack I. Cal. O. Cal. P. Cal. Mess. Desyn.
1 1.0301 0.1465 0.0587 0.0000 0.0000 0.4359 0.1565 0.1273
2 1.0738 0.0950 0.0413 0.0000 0.0000 0.4515 0.1904 0.2307
4 0.9674 0.0676 0.0342 0.0000 0.0000 0.4509 0.1626 0.2030
8 0.8284 0.0550 0.0288 0.0000 0.0000 0.4422 0.1275 0.1367

16 0.6833 0.0487 0.0248 0.0000 0.0000 0.4510 0.0821 0.0447
32 0.6767 0.0455 0.0237 0.0000 0.0000 0.4580 0.0778 0.0426
64 0.6933 0.0440 0.0278 0.0000 0.0000 0.4667 0.0805 0.0467

Table C.6: 10000 async overlap

Dp. Ex. Pack Unpack I. Cal. O. Cal. P. Cal. Mess. Desyn.
1 0.8100 0.1449 0.1205 0.4373 0.0283 0.0000 0.1659 0.2165
2 0.8283 0.0942 0.0492 0.2209 0.0144 0.2207 0.1731 0.1967
4 0.7962 0.0674 0.0351 0.1112 0.0074 0.3336 0.1489 0.1502
8 0.8225 0.0551 0.0290 0.0560 0.0037 0.3926 0.1412 0.1610

16 0.6774 0.0486 0.0250 0.0281 0.0019 0.4241 0.0958 0.0504
32 0.6743 0.0454 0.0236 0.0141 0.0011 0.4427 0.0922 0.0416
64 0.6743 0.0440 0.0279 0.0071 0.0007 0.4612 0.0747 0.0400

Chapter C: All benchmark results 65

Table C.7: 10000 sync serial

Dp. Ex. Pack Unpack I. Cal. O. Cal. P. Cal. Mess. Desyn.
1 1.0805 0.1466 0.0584 0.0000 0.0000 0.4364 0.1880 0.1461
2 0.9791 0.0938 0.0407 0.0000 0.0000 0.4415 0.2351 0.1040
4 0.8533 0.0667 0.0339 0.0000 0.0000 0.4416 0.1843 0.0784
8 0.7874 0.0538 0.0284 0.0000 0.0000 0.4446 0.1621 0.0604

16 0.7042 0.0475 0.0246 0.0000 0.0000 0.4521 0.1065 0.0417
32 0.6951 0.0442 0.0239 0.0000 0.0000 0.4574 0.0976 0.0430
64 0.6945 0.0425 0.0282 0.0000 0.0000 0.4684 0.0903 0.0375

Table C.8: 10000 sync overlap

Dp. Ex. Pack Unpack I. Cal. O. Cal. P. Cal. Mess. Desyn.
1 0.8335 0.1442 0.1064 0.4362 0.0283 0.0000 0.2171 0.2040
2 0.8045 0.0940 0.0507 0.2230 0.0145 0.2226 0.2219 0.1209
4 0.7563 0.0667 0.0348 0.1113 0.0074 0.3338 0.1840 0.0762
8 0.7346 0.0538 0.0286 0.0559 0.0037 0.3918 0.1474 0.0695

16 0.6997 0.0476 0.0248 0.0281 0.0019 0.4254 0.1137 0.0548
32 0.6981 0.0441 0.0238 0.0141 0.0011 0.4452 0.1028 0.0534
64 0.7310 0.0424 0.0283 0.0071 0.0007 0.4622 0.1177 0.0539

Table C.9: 15000 async serial

Dp. Ex. Pack Unpack I. Cal. O. Cal. P. Cal. Mess. Desyn.
1 1.7274 0.1621 0.0697 0.0000 0.0000 0.9044 0.2729 0.2160
2 1.6515 0.1121 0.0527 0.0000 0.0000 0.9096 0.2571 0.2575
4 1.5487 0.0879 0.0466 0.0000 0.0000 0.9096 0.2244 0.2321
8 1.2751 0.0758 0.0392 0.0000 0.0000 0.9172 0.1372 0.0679

16 1.2545 0.0686 0.0362 0.0000 0.0000 0.9211 0.1310 0.0661
32 1.2503 0.0670 0.0351 0.0000 0.0000 0.9290 0.1315 0.0590
64 1.2132 0.0615 0.0339 0.0000 0.0000 0.9387 0.1023 0.0494

Table C.10: 15000 async overlap

Dp. Ex. Pack Unpack I. Cal. O. Cal. P. Cal. Mess. Desyn.
1 1.3066 0.1608 0.2527 0.9080 0.0280 0.0000 0.2768 0.4554
2 1.3042 0.1120 0.1090 0.4562 0.0146 0.4561 0.2435 0.2891
4 1.4140 0.0884 0.0535 0.2284 0.0072 0.6845 0.2342 0.2927
8 1.1924 0.0759 0.0402 0.1147 0.0037 0.8026 0.1451 0.0854

16 1.2016 0.0689 0.0362 0.0573 0.0020 0.8633 0.1229 0.0772
32 1.2285 0.0670 0.0351 0.0288 0.0012 0.9012 0.1276 0.0690
64 1.2125 0.0608 0.0339 0.0144 0.0008 0.9257 0.1036 0.0619

66 R. S. Valen: Analysing Deep Halos on Modern GPUs

Table C.11: 15000 sync serial

Dp. Ex. Pack Unpack I. Cal. O. Cal. P. Cal. Mess. Desyn.
1 1.7305 0.1625 0.0695 0.0000 0.0000 0.9030 0.3367 0.1566
2 1.5312 0.1118 0.0524 0.0000 0.0000 0.9083 0.2770 0.1196
4 1.3964 0.0869 0.0461 0.0000 0.0000 0.9116 0.2095 0.0944
8 1.2840 0.0742 0.0388 0.0000 0.0000 0.9164 0.1555 0.0617

16 1.2588 0.0667 0.0362 0.0000 0.0000 0.9216 0.1425 0.0606
32 1.2575 0.0644 0.0357 0.0000 0.0000 0.9292 0.1388 0.0610
64 1.2364 0.0584 0.0352 0.0000 0.0000 0.9402 0.1276 0.0479

Table C.12: 15000 sync overlap

Dp. Ex. Pack Unpack I. Cal. O. Cal. P. Cal. Mess. Desyn.
1 1.3086 0.1612 0.2711 0.9137 0.0281 0.0000 0.3335 0.3820
2 1.2036 0.1114 0.1220 0.4590 0.0146 0.4585 0.2534 0.1638
4 1.2487 0.0866 0.0535 0.2295 0.0072 0.6880 0.2368 0.1235
8 1.1810 0.0739 0.0393 0.1148 0.0037 0.8037 0.1594 0.0619

16 1.2102 0.0665 0.0364 0.0574 0.0020 0.8654 0.1464 0.0625
32 1.2448 0.0644 0.0357 0.0287 0.0012 0.8982 0.1474 0.0707
64 1.2424 0.0584 0.0352 0.0144 0.0008 0.9278 0.1332 0.0617

Table C.13: 20000 async serial

Dp. Ex. Pack Unpack I. Cal. O. Cal. P. Cal. Mess. Desyn.
1 2.4848 0.1814 0.0793 0.0000 0.0000 1.5615 0.3191 0.2431
2 2.5562 0.1329 0.0673 0.0000 0.0000 1.5651 0.3301 0.3917
4 2.4425 0.1082 0.0570 0.0000 0.0000 1.5663 0.3032 0.3598
8 2.0215 0.0959 0.0495 0.0000 0.0000 1.5750 0.1757 0.0879

16 2.0066 0.0894 0.0475 0.0000 0.0000 1.5799 0.1667 0.0917
32 1.9736 0.0852 0.0557 0.0000 0.0000 1.5870 0.1459 0.0713
64 2.3402 0.0799 0.0468 0.0000 0.0000 1.6072 0.2433 0.3357

Table C.14: 20000 async overlap

Dp. Ex. Pack Unpack I. Cal. O. Cal. P. Cal. Mess. Desyn.
1 1.9843 0.1793 0.4288 1.5682 0.0287 0.0000 0.3208 0.8941
2 1.9532 0.1326 0.2380 0.7856 0.0145 0.7855 0.2998 0.4010
4 1.9832 0.1080 0.1034 0.3934 0.0075 1.1785 0.2619 0.2705
8 1.8397 0.0955 0.0574 0.1970 0.0037 1.3816 0.1672 0.0950

16 1.9007 0.0889 0.0474 0.0985 0.0020 1.4803 0.1518 0.0992
32 1.9418 0.0852 0.0558 0.0493 0.0013 1.5373 0.1532 0.0816
64 2.2562 0.0799 0.0469 0.0249 0.0009 1.5824 0.2248 0.2957

Chapter C: All benchmark results 67

Table C.15: 20000 sync serial

Dp. Ex. Pack Unpack I. Cal. O. Cal. P. Cal. Mess. Desyn.
1 2.5000 0.1820 0.0793 0.0000 0.0000 1.5625 0.3943 0.1815
2 2.2475 0.1322 0.0668 0.0000 0.0000 1.5661 0.2885 0.1250
4 2.1427 0.1060 0.0563 0.0000 0.0000 1.5703 0.2517 0.1105
8 2.0254 0.0939 0.0490 0.0000 0.0000 1.5752 0.1969 0.0730

16 2.0047 0.0865 0.0479 0.0000 0.0000 1.5814 0.1889 0.0687
32 1.9726 0.0821 0.0570 0.0000 0.0000 1.5885 0.1508 0.0658
64 1.9765 0.0763 0.0484 0.0000 0.0000 1.6080 0.1532 0.0635

Table C.16: 20000 sync overlap

Dp. Ex. Pack Unpack I. Cal. O. Cal. P. Cal. Mess. Desyn.
1 2.0136 0.1800 0.4619 1.5697 0.0287 0.0000 0.4075 0.8027
2 1.8844 0.1320 0.2410 0.7865 0.0145 0.7864 0.3082 0.3207
4 1.8414 0.1057 0.1004 0.3943 0.0075 1.1818 0.2615 0.1313
8 1.8181 0.0935 0.0567 0.1972 0.0037 1.3829 0.1652 0.0772

16 1.8918 0.0863 0.0477 0.0985 0.0020 1.4813 0.1820 0.0618
32 1.9282 0.0818 0.0567 0.0494 0.0013 1.5395 0.1605 0.0612
64 1.9573 0.0759 0.0480 0.0249 0.0009 1.5849 0.1586 0.0638

Table C.17: 25000 async serial

Dp. Ex. Pack Unpack I. Cal. O. Cal. P. Cal. Mess. Desyn.
1 3.4616 0.2035 0.0910 0.0000 0.0000 2.4360 0.3686 0.2623
2 3.8056 0.1536 0.0819 0.0000 0.0000 2.4369 0.4551 0.6083
4 3.0423 0.1293 0.0664 0.0000 0.0000 2.4420 0.2348 0.1214
8 2.9989 0.1167 0.0611 0.0000 0.0000 2.4497 0.2240 0.1095

16 2.9668 0.1112 0.0588 0.0000 0.0000 2.4544 0.1904 0.1205
32 2.9196 0.1026 0.0612 0.0000 0.0000 2.4719 0.1730 0.0822
64 3.1663 0.0953 0.0632 0.0000 0.0000 2.4859 0.2331 0.2613

Table C.18: 25000 async overlap

Dp. Ex. Pack Unpack I. Cal. O. Cal. P. Cal. Mess. Desyn.
1 2.8897 0.2009 0.6752 2.4401 0.0295 0.0000 0.3718 1.4789
2 2.8659 0.1535 0.3675 1.2242 0.0153 1.2225 0.3560 0.6687
4 2.7084 0.1295 0.1873 0.6130 0.0076 1.8340 0.2329 0.2636
8 2.7438 0.1162 0.0925 0.3071 0.0040 2.1474 0.1942 0.1499

16 2.8476 0.1110 0.0596 0.1535 0.0022 2.3041 0.2115 0.1278
32 2.8914 0.1028 0.0615 0.0771 0.0015 2.3984 0.1847 0.1149
64 3.0907 0.0953 0.0631 0.0386 0.0012 2.4477 0.2166 0.2412

68 R. S. Valen: Analysing Deep Halos on Modern GPUs

Table C.19: 25000 sync serial

Dp. Ex. Pack Unpack I. Cal. O. Cal. P. Cal. Mess. Desyn.
1 3.4691 0.2041 0.0910 0.0000 0.0000 2.4343 0.4465 0.1932
2 3.2361 0.1527 0.0813 0.0000 0.0000 2.4423 0.3452 0.1451
4 3.0503 0.1269 0.0654 0.0000 0.0000 2.4442 0.2713 0.0949
8 2.9818 0.1138 0.0610 0.0000 0.0000 2.4520 0.2420 0.0755

16 2.9575 0.1075 0.0605 0.0000 0.0000 2.4569 0.2063 0.0949
32 2.9341 0.0994 0.0644 0.0000 0.0000 2.4728 0.1901 0.0787
64 2.9466 0.0928 0.0661 0.0000 0.0000 2.4869 0.1957 0.0779

Table C.20: 25000 sync overlap

Dp. Ex. Pack Unpack I. Cal. O. Cal. P. Cal. Mess. Desyn.
1 2.8841 0.2021 0.7119 2.4406 0.0295 0.0000 0.4312 1.3758
2 2.7949 0.1526 0.3567 1.2240 0.0153 1.2223 0.3933 0.5724
4 2.7173 0.1265 0.1697 0.6135 0.0076 1.8358 0.2890 0.2358
8 2.7056 0.1137 0.0800 0.3070 0.0040 2.1477 0.2302 0.0908

16 2.7982 0.1072 0.0611 0.1535 0.0022 2.3043 0.2152 0.0771
32 2.8666 0.0992 0.0642 0.0771 0.0015 2.3972 0.2064 0.0709
64 2.9078 0.0924 0.0661 0.0385 0.0012 2.4487 0.2000 0.0741

Table C.21: 30000 async serial

Dp. Ex. Pack Unpack I. Cal. O. Cal. P. Cal. Mess. Desyn.
1 4.6453 0.2232 0.1037 0.0000 0.0000 3.5397 0.4038 0.2754
2 5.1758 0.1743 0.0934 0.0000 0.0000 3.5404 0.5382 0.7597
4 4.2575 0.1510 0.0784 0.0000 0.0000 3.5503 0.2817 0.1478
8 4.1908 0.1368 0.0727 0.0000 0.0000 3.5546 0.2497 0.1390

16 4.1764 0.1336 0.0710 0.0000 0.0000 3.5683 0.2358 0.1360
32 4.1528 0.1214 0.0694 0.0000 0.0000 3.5895 0.2230 0.1207
64 4.2147 0.1133 0.0683 0.0000 0.0000 3.6063 0.2258 0.1734

Table C.22: 30000 async overlap

Dp. Ex. Pack Unpack I. Cal. O. Cal. P. Cal. Mess. Desyn.
1 4.0042 0.2222 0.9979 3.5459 0.0305 0.0000 0.3669 2.2522
2 4.1251 0.1742 0.4290 1.7749 0.0155 1.7730 0.4836 1.1665
4 3.8889 0.1511 0.3062 0.8912 0.0087 2.6651 0.2572 0.4466
8 3.8963 0.1366 0.1338 0.4418 0.0042 3.1170 0.2433 0.2216

16 3.9527 0.1333 0.0731 0.2213 0.0024 3.3470 0.2225 0.1429
32 4.0310 0.1209 0.0694 0.1127 0.0017 3.4757 0.2194 0.1162
64 4.1740 0.1124 0.0682 0.0561 0.0014 3.5514 0.2322 0.1824

Chapter C: All benchmark results 69

Table C.23: 30000 sync serial

Dp. Ex. Pack Unpack I. Cal. O. Cal. P. Cal. Mess. Desyn.
1 4.6837 0.2236 0.1036 0.0000 0.0000 3.5399 0.4998 0.2174
2 4.5115 0.1716 0.0925 0.0000 0.0000 3.5436 0.4494 0.1848
4 4.2309 0.1470 0.0781 0.0000 0.0000 3.5513 0.3032 0.1036
8 4.1889 0.1326 0.0733 0.0000 0.0000 3.5579 0.2800 0.1074

16 4.1323 0.1283 0.0736 0.0000 0.0000 3.5714 0.2389 0.0888
32 4.1386 0.1168 0.0742 0.0000 0.0000 3.5896 0.2404 0.0889
64 4.1217 0.1097 0.0732 0.0000 0.0000 3.6079 0.2282 0.0753

Table C.24: 30000 sync overlap

Dp. Ex. Pack Unpack I. Cal. O. Cal. P. Cal. Mess. Desyn.
1 4.0226 0.2220 0.9951 3.5474 0.0306 0.0000 0.5239 2.1171
2 3.9131 0.1710 0.5179 1.7756 0.0155 1.7736 0.4434 0.9087
4 3.8442 0.1470 0.2394 0.8913 0.0087 2.6658 0.3177 0.4124
8 3.8244 0.1323 0.1167 0.4418 0.0041 3.1172 0.2717 0.1429

16 3.9044 0.1277 0.0764 0.2212 0.0024 3.3463 0.2175 0.1030
32 4.0240 0.1163 0.0746 0.1128 0.0017 3.4770 0.2377 0.0894
64 4.0499 0.1095 0.0736 0.0561 0.0014 3.5523 0.2166 0.0709

Table C.25: 35000 async serial

Dp. Ex. Pack Unpack I. Cal. O. Cal. P. Cal. Mess. Desyn.
1 5.8984 0.2410 0.1225 0.0000 0.0000 4.7400 0.4187 0.2663
2 7.0007 0.1979 0.1043 0.0000 0.0000 4.7485 0.6905 1.1893
4 5.5743 0.1718 0.0895 0.0000 0.0000 4.7490 0.2989 0.2166
8 5.5292 0.1587 0.0840 0.0000 0.0000 4.7586 0.2687 0.2210

16 5.5314 0.1552 0.1110 0.0000 0.0000 4.7657 0.2626 0.2051
32 7.0378 0.1431 0.0949 0.0000 0.0000 4.7927 0.6774 1.3005
64 6.0317 0.1315 0.0855 0.0000 0.0000 4.8491 0.3994 0.5383

Table C.26: 35000 async overlap

Dp. Ex. Pack Unpack I. Cal. O. Cal. P. Cal. Mess. Desyn.
1 5.2316 0.2407 1.3061 4.7430 0.0319 0.0000 0.4347 3.0821
2 5.3028 0.1969 0.6111 2.3786 0.0181 2.3766 0.5110 1.5057
4 5.0974 0.1713 0.3793 1.1869 0.0083 3.5642 0.3108 0.6090
8 5.1035 0.1583 0.1745 0.5953 0.0046 4.1647 0.2817 0.2796

16 5.1542 0.1544 0.1138 0.2977 0.0027 4.4686 0.2452 0.1378
32 6.9506 0.1423 0.0951 0.1496 0.0019 4.6436 0.7042 1.3355
64 5.9905 0.1309 0.0855 0.0754 0.0016 4.7720 0.3921 0.5823

70 R. S. Valen: Analysing Deep Halos on Modern GPUs

Table C.27: 35000 sync serial

Dp. Ex. Pack Unpack I. Cal. O. Cal. P. Cal. Mess. Desyn.
1 5.9476 0.2404 0.1225 0.0000 0.0000 4.7396 0.5107 0.2246
2 5.7473 0.1933 0.1033 0.0000 0.0000 4.7453 0.4449 0.1907
4 5.5049 0.1675 0.0889 0.0000 0.0000 4.7531 0.3184 0.1291
8 5.4251 0.1530 0.0855 0.0000 0.0000 4.7585 0.2730 0.1175

16 5.4470 0.1492 0.1146 0.0000 0.0000 4.7687 0.2572 0.1258
32 5.4440 0.1371 0.0999 0.0000 0.0000 4.7953 0.2624 0.1205
64 5.4405 0.1286 0.0867 0.0000 0.0000 4.8480 0.2586 0.0912

Table C.28: 35000 sync overlap

Dp. Ex. Pack Unpack I. Cal. O. Cal. P. Cal. Mess. Desyn.
1 5.2331 0.2415 1.3419 4.7437 0.0319 0.0000 0.5251 2.9566
2 5.1344 0.1931 0.6725 2.3789 0.0181 2.3769 0.4546 1.3358
4 5.0802 0.1673 0.3199 1.1874 0.0083 3.5660 0.3442 0.6210
8 5.0677 0.1526 0.1668 0.5955 0.0046 4.1669 0.3079 0.2293

16 5.1763 0.1487 0.1181 0.2978 0.0027 4.4712 0.2777 0.1267
32 5.3250 0.1364 0.0996 0.1497 0.0019 4.6446 0.2857 0.1291
64 5.3656 0.1283 0.0866 0.0753 0.0016 4.7710 0.2556 0.0966

Chapter C: All benchmark results 71

C.2 V100 Results

Table C.29: 5000 async serial

Dp. Ex. Pack Unpack I. Cal. O. Cal. P. Cal. Mess. Desyn.
1 0.6098 0.1205 0.0496 0.0000 0.0000 0.1604 0.1191 0.0593
2 0.4631 0.0702 0.0371 0.0000 0.0000 0.1609 0.0942 0.0403
4 0.3899 0.0462 0.0289 0.0000 0.0000 0.1613 0.0828 0.0304
8 0.3662 0.0350 0.0236 0.0000 0.0000 0.1630 0.0808 0.0276

16 0.3484 0.0288 0.0209 0.0000 0.0000 0.1654 0.0785 0.0250
32 0.3374 0.0267 0.0199 0.0000 0.0000 0.1693 0.0726 0.0217
64 0.3444 0.0267 0.0194 0.0000 0.0000 0.1765 0.0725 0.0234

Table C.30: 5000 async overlap

Dp. Ex. Pack Unpack I. Cal. O. Cal. P. Cal. Mess. Desyn.
1 0.5257 0.1161 0.0670 0.1655 0.0267 0.0000 0.1197 0.0669
2 0.4140 0.0698 0.0405 0.0825 0.0136 0.0809 0.0930 0.0387
4 0.3562 0.0463 0.0291 0.0403 0.0068 0.1212 0.0812 0.0257
8 0.3524 0.0350 0.0237 0.0203 0.0034 0.1429 0.0842 0.0264

16 0.3370 0.0287 0.0210 0.0101 0.0018 0.1553 0.0774 0.0241
32 0.3289 0.0267 0.0200 0.0050 0.0009 0.1641 0.0721 0.0201
64 0.3396 0.0266 0.0193 0.0025 0.0005 0.1737 0.0733 0.0228

Table C.31: 5000 sync serial

Dp. Ex. Pack Unpack I. Cal. O. Cal. P. Cal. Mess. Desyn.
1 0.6106 0.1206 0.0495 0.0000 0.0000 0.1603 0.1208 0.0582
2 0.4622 0.0723 0.0372 0.0000 0.0000 0.1609 0.0930 0.0386
4 0.3859 0.0484 0.0296 0.0000 0.0000 0.1613 0.0777 0.0290
8 0.3632 0.0366 0.0243 0.0000 0.0000 0.1630 0.0782 0.0253

16 0.3449 0.0305 0.0214 0.0000 0.0000 0.1654 0.0721 0.0261
32 0.3360 0.0286 0.0209 0.0000 0.0000 0.1693 0.0677 0.0226
64 0.3432 0.0286 0.0205 0.0000 0.0000 0.1766 0.0672 0.0246

72 R. S. Valen: Analysing Deep Halos on Modern GPUs

Table C.32: 5000 sync overlap

Dp. Ex. Pack Unpack I. Cal. O. Cal. P. Cal. Mess. Desyn.
1 0.5255 0.1160 0.0641 0.1645 0.0268 0.0000 0.1241 0.0657
2 0.4146 0.0721 0.0402 0.0822 0.0135 0.0809 0.0939 0.0368
4 0.3561 0.0484 0.0298 0.0403 0.0068 0.1213 0.0783 0.0261
8 0.3513 0.0367 0.0244 0.0203 0.0034 0.1429 0.0809 0.0266

16 0.3360 0.0306 0.0215 0.0101 0.0018 0.1554 0.0737 0.0244
32 0.3318 0.0286 0.0210 0.0051 0.0009 0.1642 0.0691 0.0228
64 0.3335 0.0284 0.0204 0.0025 0.0005 0.1737 0.0659 0.0213

Table C.33: 10000 async serial

Dp. Ex. Pack Unpack I. Cal. O. Cal. P. Cal. Mess. Desyn.
1 1.1516 0.1455 0.0735 0.0000 0.0000 0.6286 0.1186 0.0864
2 1.0198 0.0928 0.0568 0.0000 0.0000 0.6294 0.1089 0.0730
4 0.9902 0.0700 0.0471 0.0000 0.0000 0.6316 0.1148 0.0803
8 0.9423 0.0573 0.0417 0.0000 0.0000 0.6330 0.1043 0.0690

16 0.9126 0.0524 0.0397 0.0000 0.0000 0.6384 0.0922 0.0595
32 0.9101 0.0516 0.0384 0.0000 0.0000 0.6440 0.0906 0.0576
64 0.9884 0.0515 0.0406 0.0000 0.0000 0.6588 0.1071 0.1041

Table C.34: 10000 async overlap

Dp. Ex. Pack Unpack I. Cal. O. Cal. P. Cal. Mess. Desyn.
1 1.0381 0.1424 0.2042 0.6264 0.0286 0.0000 0.1244 0.4105
2 0.9268 0.0931 0.1117 0.3154 0.0143 0.3149 0.1103 0.2089
4 0.8837 0.0701 0.0633 0.1578 0.0073 0.4739 0.1112 0.1067
8 0.8653 0.0576 0.0420 0.0791 0.0038 0.5541 0.1058 0.0640

16 0.8704 0.0526 0.0398 0.0395 0.0020 0.5989 0.0917 0.0559
32 0.8891 0.0519 0.0383 0.0197 0.0012 0.6241 0.0916 0.0560
64 0.9823 0.0519 0.0405 0.0098 0.0009 0.6487 0.1091 0.1065

Table C.35: 10000 sync serial

Dp. Ex. Pack Unpack I. Cal. O. Cal. P. Cal. Mess. Desyn.
1 1.1761 0.1454 0.0736 0.0000 0.0000 0.6286 0.1348 0.0921
2 1.0248 0.0973 0.0583 0.0000 0.0000 0.6295 0.1040 0.0754
4 0.9819 0.0738 0.0490 0.0000 0.0000 0.6317 0.1086 0.0720
8 0.9406 0.0612 0.0429 0.0000 0.0000 0.6331 0.0967 0.0689

16 0.9158 0.0564 0.0418 0.0000 0.0000 0.6384 0.0856 0.0622
32 0.9095 0.0551 0.0409 0.0000 0.0000 0.6441 0.0834 0.0582
64 0.9329 0.0537 0.0426 0.0000 0.0000 0.6589 0.0873 0.0641

Chapter C: All benchmark results 73

Table C.36: 10000 sync overlap

Dp. Ex. Pack Unpack I. Cal. O. Cal. P. Cal. Mess. Desyn.
1 1.0352 0.1427 0.2023 0.6268 0.0287 0.0000 0.1319 0.3996
2 0.9306 0.0974 0.1113 0.3156 0.0143 0.3149 0.1061 0.2109
4 0.8686 0.0739 0.0601 0.1578 0.0073 0.4740 0.1105 0.0914
8 0.8662 0.0612 0.0430 0.0791 0.0038 0.5542 0.0989 0.0656

16 0.8793 0.0564 0.0419 0.0395 0.0020 0.5990 0.0897 0.0606
32 0.8887 0.0551 0.0408 0.0197 0.0012 0.6243 0.0817 0.0587
64 0.9227 0.0540 0.0427 0.0098 0.0009 0.6487 0.0887 0.0633

Table C.37: 15000 async serial

Dp. Ex. Pack Unpack I. Cal. O. Cal. P. Cal. Mess. Desyn.
1 2.0278 0.1708 0.0940 0.0000 0.0000 1.3722 0.1432 0.1487
2 1.9404 0.1183 0.0780 0.0000 0.0000 1.3754 0.1518 0.1553
4 1.8716 0.0926 0.0654 0.0000 0.0000 1.3745 0.1454 0.1452
8 1.7852 0.0815 0.0615 0.0000 0.0000 1.3782 0.1138 0.1119

16 1.7718 0.0781 0.0579 0.0000 0.0000 1.3882 0.1101 0.1062
32 2.1147 0.0797 0.0577 0.0000 0.0000 1.4008 0.2012 0.3470
64 2.5477 0.0765 0.0574 0.0000 0.0000 1.4217 0.3299 0.6352

Table C.38: 15000 async overlap

Dp. Ex. Pack Unpack I. Cal. O. Cal. P. Cal. Mess. Desyn.
1 1.8670 0.1672 0.4116 1.3584 0.0305 0.0000 0.1437 0.9859
2 1.8000 0.1191 0.2382 0.6875 0.0164 0.6879 0.1833 0.4765
4 1.7274 0.0942 0.1220 0.3436 0.0082 1.0315 0.1450 0.2715
8 1.6642 0.0837 0.0755 0.1723 0.0046 1.2065 0.1161 0.1375

16 1.6856 0.0805 0.0586 0.0864 0.0027 1.3020 0.1151 0.0958
32 2.1608 0.0800 0.0579 0.0432 0.0018 1.3571 0.2268 0.4107
64 2.6239 0.0767 0.0576 0.0215 0.0014 1.3995 0.3552 0.7079

Table C.39: 15000 sync serial

Dp. Ex. Pack Unpack I. Cal. O. Cal. P. Cal. Mess. Desyn.
1 2.0291 0.1709 0.0938 0.0000 0.0000 1.3721 0.1502 0.1427
2 1.9190 0.1242 0.0811 0.0000 0.0000 1.3754 0.1464 0.1316
4 1.8381 0.0983 0.0673 0.0000 0.0000 1.3746 0.1274 0.1228
8 1.7854 0.0871 0.0643 0.0000 0.0000 1.3781 0.1079 0.1107

16 1.7688 0.0827 0.0616 0.0000 0.0000 1.3883 0.0999 0.1056
32 1.7742 0.0828 0.0620 0.0000 0.0000 1.4008 0.0993 0.1010
64 1.7990 0.0771 0.0618 0.0000 0.0000 1.4216 0.1081 0.1037

74 R. S. Valen: Analysing Deep Halos on Modern GPUs

Table C.40: 15000 sync overlap

Dp. Ex. Pack Unpack I. Cal. O. Cal. P. Cal. Mess. Desyn.
1 1.8537 0.1667 0.4108 1.3585 0.0305 0.0000 0.1477 0.9725
2 1.7513 0.1242 0.2151 0.6867 0.0163 0.6879 0.1470 0.4846
4 1.6800 0.0980 0.1181 0.3435 0.0081 1.0315 0.1245 0.2479
8 1.6571 0.0870 0.0764 0.1723 0.0045 1.2065 0.1079 0.1364

16 1.6872 0.0829 0.0620 0.0863 0.0026 1.3020 0.1014 0.1051
32 1.7245 0.0829 0.0621 0.0432 0.0018 1.3571 0.0984 0.0960
64 1.7707 0.0771 0.0617 0.0215 0.0014 1.3996 0.1057 0.1003

Table C.41: 20000 async serial

Dp. Ex. Pack Unpack I. Cal. O. Cal. P. Cal. Mess. Desyn.
1 3.2332 0.1992 0.1175 0.0000 0.0000 2.4862 0.1525 0.1805
2 3.1920 0.1421 0.0948 0.0000 0.0000 2.4869 0.1826 0.2161
4 3.0695 0.1153 0.0837 0.0000 0.0000 2.4906 0.1594 0.1721
8 2.9960 0.1060 0.0799 0.0000 0.0000 2.4985 0.1297 0.1433

16 2.9843 0.1039 0.0770 0.0000 0.0000 2.5012 0.1278 0.1428
32 3.6921 0.1045 0.0830 0.0000 0.0000 2.5061 0.3249 0.6429
64 4.3841 0.1035 0.0746 0.0000 0.0000 2.5411 0.5231 1.1130

Table C.42: 20000 async overlap

Dp. Ex. Pack Unpack I. Cal. O. Cal. P. Cal. Mess. Desyn.
1 3.0767 0.1945 0.7181 2.4522 0.0330 0.0000 0.1585 1.8348
2 2.9746 0.1431 0.4070 1.2431 0.0162 1.2432 0.1898 0.8805
4 2.9159 0.1170 0.2046 0.6216 0.0089 1.8682 0.1639 0.4890
8 2.9022 0.1079 0.1223 0.3105 0.0056 2.1863 0.1333 0.2898

16 2.8418 0.1063 0.0815 0.1559 0.0035 2.3455 0.1302 0.1431
32 3.5035 0.1052 0.0829 0.0774 0.0025 2.4280 0.2949 0.5624
64 4.0007 0.1048 0.0747 0.0387 0.0020 2.5015 0.4089 0.8821

Table C.43: 20000 sync serial

Dp. Ex. Pack Unpack I. Cal. O. Cal. P. Cal. Mess. Desyn.
1 3.3086 0.1997 0.1175 0.0000 0.0000 2.4861 0.1700 0.2215
2 3.1914 0.1509 0.0987 0.0000 0.0000 2.4869 0.1624 0.2079
4 3.0811 0.1231 0.0863 0.0000 0.0000 2.4906 0.1440 0.1801
8 3.0214 0.1136 0.0844 0.0000 0.0000 2.4985 0.1246 0.1551

16 3.0050 0.1102 0.0829 0.0000 0.0000 2.5014 0.1160 0.1570
32 3.0171 0.1073 0.0882 0.0000 0.0000 2.5061 0.1240 0.1592
64 3.0331 0.1039 0.0822 0.0000 0.0000 2.5411 0.1230 0.1517

Chapter C: All benchmark results 75

Table C.44: 20000 sync overlap

Dp. Ex. Pack Unpack I. Cal. O. Cal. P. Cal. Mess. Desyn.
1 3.1008 0.1946 0.7194 2.4523 0.0330 0.0000 0.1617 1.8449
2 3.0450 0.1507 0.3681 1.2425 0.0162 1.2433 0.1672 0.9804
4 2.8826 0.1230 0.1990 0.6215 0.0088 1.8684 0.1451 0.4770
8 2.8556 0.1134 0.1235 0.3105 0.0056 2.1865 0.1222 0.2584

16 2.8346 0.1100 0.0845 0.1560 0.0035 2.3458 0.1159 0.1416
32 2.9448 0.1072 0.0878 0.0774 0.0024 2.4281 0.1220 0.1629
64 2.9967 0.1037 0.0819 0.0387 0.0020 2.5018 0.1262 0.1514

Table C.45: 25000 async serial

Dp. Ex. Pack Unpack I. Cal. O. Cal. P. Cal. Mess. Desyn.
1 4.8830 0.2281 0.1428 0.0000 0.0000 3.8586 0.1877 0.3369
2 5.0046 0.1691 0.1141 0.0000 0.0000 3.8633 0.2738 0.4971
4 4.6530 0.1444 0.1019 0.0000 0.0000 3.8590 0.1917 0.2967
8 4.5447 0.1337 0.0981 0.0000 0.0000 3.8673 0.1523 0.2446

16 4.6375 0.1327 0.0967 0.0000 0.0000 3.8772 0.1768 0.3187
32 5.4622 0.1283 0.0946 0.0000 0.0000 3.9036 0.4053 0.8960
64 6.6466 0.1232 0.1041 0.0000 0.0000 3.9626 0.7231 1.6926

Table C.46: 25000 async overlap

Dp. Ex. Pack Unpack I. Cal. O. Cal. P. Cal. Mess. Desyn.
1 4.5644 0.2224 1.1050 3.8005 0.0368 0.0000 0.1883 2.8704
2 4.5470 0.1685 0.6170 1.9303 0.0199 1.9324 0.2490 1.4450
4 4.4101 0.1440 0.3063 0.9648 0.0120 2.8953 0.1897 0.8005
8 4.3818 0.1335 0.1776 0.4827 0.0067 3.3844 0.1510 0.4769

16 4.5627 0.1336 0.1147 0.2421 0.0044 3.6350 0.1978 0.4335
32 5.0276 0.1268 0.0940 0.1210 0.0033 3.7817 0.3195 0.6727
64 6.9599 0.1246 0.1047 0.0607 0.0026 3.9007 0.8332 1.9633

Table C.47: 25000 sync serial

Dp. Ex. Pack Unpack I. Cal. O. Cal. P. Cal. Mess. Desyn.
1 5.0249 0.2285 0.1424 0.0000 0.0000 3.8585 0.2297 0.4205
2 4.7286 0.1780 0.1174 0.0000 0.0000 3.8631 0.1888 0.2992
4 4.6855 0.1516 0.1051 0.0000 0.0000 3.8590 0.1642 0.3326
8 4.5643 0.1400 0.1045 0.0000 0.0000 3.8671 0.1379 0.2647

16 4.5515 0.1381 0.1048 0.0000 0.0000 3.8772 0.1325 0.2617
32 4.5430 0.1297 0.1034 0.0000 0.0000 3.9033 0.1393 0.2369
64 4.5942 0.1239 0.1118 0.0000 0.0000 3.9623 0.1423 0.2227

76 R. S. Valen: Analysing Deep Halos on Modern GPUs

Table C.48: 25000 sync overlap

Dp. Ex. Pack Unpack I. Cal. O. Cal. P. Cal. Mess. Desyn.
1 4.6655 0.2225 1.0865 3.8006 0.0368 0.0000 0.2350 2.9150
2 4.4667 0.1772 0.5610 1.9291 0.0199 1.9326 0.1927 1.4837
4 4.3731 0.1515 0.2983 0.9648 0.0120 2.8955 0.1667 0.7892
8 4.4004 0.1397 0.1800 0.4827 0.0067 3.3846 0.1384 0.4930

16 4.3462 0.1375 0.1200 0.2421 0.0044 3.6353 0.1311 0.2839
32 4.4218 0.1299 0.1035 0.1210 0.0033 3.7818 0.1392 0.2338
64 4.5265 0.1236 0.1115 0.0607 0.0026 3.9007 0.1425 0.2176

Table C.49: 30000 async serial

Dp. Ex. Pack Unpack I. Cal. O. Cal. P. Cal. Mess. Desyn.
1 6.9935 0.2592 0.1622 0.0000 0.0000 5.7602 0.1947 0.4813
2 6.9671 0.1908 0.1321 0.0000 0.0000 5.7600 0.2564 0.5349
4 6.7406 0.1693 0.1253 0.0000 0.0000 5.7814 0.1799 0.4217
8 6.6485 0.1603 0.1169 0.0000 0.0000 5.7669 0.1746 0.3844

16 8.6766 0.1621 0.1177 0.0000 0.0000 5.7706 0.7299 1.8618
32 9.4751 0.1530 0.1178 0.0000 0.0000 5.7924 0.9589 2.4167
64 10.3928 0.1511 0.1163 0.0000 0.0000 5.8350 1.2159 3.0378

Table C.50: 30000 async overlap

Dp. Ex. Pack Unpack I. Cal. O. Cal. P. Cal. Mess. Desyn.
1 6.6035 0.2497 1.6260 5.6680 0.0413 0.0000 0.2021 4.3423
2 6.5524 0.1906 0.9040 2.8806 0.0202 2.8803 0.2642 2.1918
4 6.4593 0.1691 0.4476 1.4460 0.0133 4.3351 0.1841 1.2501
8 6.4168 0.1607 0.2506 0.7194 0.0080 5.0464 0.1762 0.7307

16 7.8384 0.1618 0.1530 0.3600 0.0053 5.4102 0.5670 1.5007
32 9.0869 0.1541 0.1180 0.1798 0.0040 5.6112 0.9009 2.2684
64 10.2025 0.1510 0.1165 0.0898 0.0032 5.7438 1.2064 2.9539

Table C.51: 30000 sync serial

Dp. Ex. Pack Unpack I. Cal. O. Cal. P. Cal. Mess. Desyn.
1 6.9822 0.2592 0.1624 0.0000 0.0000 5.7600 0.2416 0.4489
2 6.7820 0.1998 0.1359 0.0000 0.0000 5.7601 0.2013 0.4104
4 6.7005 0.1780 0.1313 0.0000 0.0000 5.7813 0.1679 0.3904
8 6.6360 0.1676 0.1252 0.0000 0.0000 5.7667 0.1525 0.3818

16 6.6282 0.1671 0.1276 0.0000 0.0000 5.7703 0.1460 0.3836
32 6.6384 0.1556 0.1294 0.0000 0.0000 5.7922 0.1540 0.3739
64 6.6132 0.1495 0.1295 0.0000 0.0000 5.8346 0.1581 0.3112

Chapter C: All benchmark results 77

Table C.52: 30000 sync overlap

Dp. Ex. Pack Unpack I. Cal. O. Cal. P. Cal. Mess. Desyn.
1 6.5524 0.2498 1.5990 5.6678 0.0412 0.0000 0.2434 4.2877
2 6.4895 0.1999 0.8235 2.8796 0.0202 2.8805 0.2084 2.2659
4 6.4556 0.1777 0.4481 1.4461 0.0133 4.3353 0.1724 1.2478
8 6.3969 0.1674 0.2547 0.7193 0.0079 5.0464 0.1539 0.7228

16 6.3963 0.1668 0.1639 0.3600 0.0053 5.4105 0.1468 0.4697
32 6.4429 0.1556 0.1292 0.1798 0.0040 5.6115 0.1558 0.3571
64 6.5187 0.1497 0.1296 0.0898 0.0032 5.7439 0.1601 0.3056

Table C.53: 35000 async serial

Dp. Ex. Pack Unpack I. Cal. O. Cal. P. Cal. Mess. Desyn.
1 8.9236 0.2834 0.1801 0.0000 0.0000 7.5056 0.2196 0.5916
2 8.8956 0.2187 0.1545 0.0000 0.0000 7.5275 0.2855 0.6245
4 8.6245 0.1936 0.1424 0.0000 0.0000 7.5121 0.1941 0.5240
8 8.6583 0.1879 0.1368 0.0000 0.0000 7.5276 0.1896 0.5519

16 10.6126 0.1882 0.1650 0.0000 0.0000 7.5387 0.7450 1.9414
32 13.1461 0.1813 0.1502 0.0000 0.0000 7.6005 1.4660 3.7111
64 14.2242 0.1746 0.1414 0.0000 0.0000 7.7438 1.6991 4.4346

Table C.54: 35000 async overlap

Dp. Ex. Pack Unpack I. Cal. O. Cal. P. Cal. Mess. Desyn.
1 8.5908 0.2719 2.1093 7.3984 0.0465 0.0000 0.2157 5.7663
2 8.5083 0.2181 1.1400 3.7642 0.0290 3.7646 0.2934 2.9580
4 8.3482 0.1939 0.5732 1.8775 0.0154 5.6348 0.1933 1.6733
8 8.3555 0.1878 0.3212 0.9399 0.0098 6.5863 0.1894 1.0110

16 9.9226 0.1878 0.2119 0.4710 0.0069 7.0680 0.6416 1.7676
32 11.7161 0.1810 0.1498 0.2361 0.0046 7.3629 1.1272 2.8537
64 14.2427 0.1743 0.1416 0.1193 0.0036 7.6227 1.7710 4.4996

Table C.55: 35000 sync serial

Dp. Ex. Pack Unpack I. Cal. O. Cal. P. Cal. Mess. Desyn.
1 9.0193 0.2832 0.1801 0.0000 0.0000 7.5056 0.2645 0.6405
2 8.7932 0.2287 0.1585 0.0000 0.0000 7.5277 0.2226 0.5722
4 8.6428 0.2036 0.1505 0.0000 0.0000 7.5122 0.1806 0.5376
8 8.6122 0.1956 0.1477 0.0000 0.0000 7.5274 0.1685 0.5260

16 8.6445 0.1932 0.1765 0.0000 0.0000 7.5393 0.1717 0.5285
32 8.6954 0.1825 0.1634 0.0000 0.0000 7.6004 0.1753 0.5382
64 8.7728 0.1743 0.1487 0.0000 0.0000 7.7433 0.1793 0.4974

78 R. S. Valen: Analysing Deep Halos on Modern GPUs

Table C.56: 35000 sync overlap

Dp. Ex. Pack Unpack I. Cal. O. Cal. P. Cal. Mess. Desyn.
1 8.4969 0.2719 2.0800 7.3980 0.0465 0.0000 0.2770 5.6630
2 8.4750 0.2286 1.0752 3.7631 0.0289 3.7646 0.2281 3.0436
4 8.3366 0.2030 0.5737 1.8777 0.0154 5.6352 0.1860 1.6631
8 8.3460 0.1947 0.3267 0.9399 0.0098 6.5866 0.1687 1.0088

16 8.3488 0.1932 0.2239 0.4710 0.0069 7.0679 0.1704 0.6475
32 8.4254 0.1823 0.1628 0.2360 0.0046 7.3633 0.1750 0.5083
64 8.6524 0.1740 0.1484 0.1193 0.0036 7.6229 0.1775 0.4962

	Original Problem Description
	Abstract
	Sammendrag
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Listings
	Nomenclature
	Introduction
	Research Questions
	Contributions
	Outline

	Background
	General Purpose GPU Programming
	MPI
	MPI Datatypes

	CUDA
	Memory transfers
	CUDA streams

	Stencil computations
	Laplacian operator
	Domain decomposition
	Halo Exchanges
	Deep halo
	Pack/Unpack

	Overlapping calculation and communication

	Creating a 2D Halo Exchange Benchmark for the GPU
	Initialisation
	Input parameters
	MPI domain decomposition
	Topology
	Height and length adjustment
	Domain initialisation
	Border buffers
	Initialising the GPU

	CUDA functions
	Primary computations and inner compute
	Outer compute
	Packing and Unpacking
	Measuring time for CUDA Kernels

	Communication
	Asynchronous halo exchange
	Synchronous halo exchange

	Overlapping communication and computation
	Iteration loop

	Measurements
	Challenges
	POSIX threads
	Desynchornisation issues
	Fetching borders before or after inner compute

	Experimental setup
	The Idun Testbed
	Compilation
	Modules

	Launch parameters

	Results & Discussion
	Significant outliers
	Execution time
	Message time
	Packing and Unpacking time
	Overlapping

	Conclusions & Future Work
	Future Work

	Bibliography
	Running guide
	Code snippets
	All benchmark results
	A100 results
	V100 Results

