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ABSTRACT

In most manufacturing processes, data related to a product are

collected across several process steps. Ensuring good data qual-

ity is essential for subsequent process modeling, monitoring, and

control. Although data for a given process might already be avail-

able in digitized form in the process control systems or industrial

databases, it is in most cases not so that the data can directly be

used in its original form for process modeling. Pre-processing is

often needed before modeling, which may include operations such

as time alignment by handling di�erent sampling frequencies and

lag time, handling of missing values, and detection of sample out-

liers. Speci�c considerations must be made for processes with both

continuous and batch process steps due to di�erent data structures.

This paper describes an industrial use case for extrusion monitoring

starting from structured raw data and ending up with real-time

multivariate statistical process control (MSPC) applying a sensor-

fusion approach and feature extraction. The MSPC also enables

in-depth analysis for identifying process variables in the case of

samples lying outside of the normal operating conditions (NOC).
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1 INTRODUCTION

In most industrial processes, data related to one product are col-

lected across several process steps, including the characteristics

of the raw materials. Although most data are present in a supervi-

sory control and data Acquisition (SCADA) system, it is not given

that the data are directly suitable for modeling. Optimal data pre-

processing is often application-speci�c and cannot be done by push-

ing a button. Some reasons for this are missing values, uneven

sampling frequencies, (varying) time lags between process steps,

di�erent sensor noise, and di�erent dimensions of the data. Missing

values can be handled by use of various methods for imputation [5],

however, this operation should not be done unsupervised, especially

in the case of weak correlation in time as well as between process

parameters as it may introduce artifacts in the pre-processed data.

Missing values can also be handled directly in multivariate meth-

ods such as PCA (see 2.7), by using e.g. the NIPALS algorithm [4].

The various process steps can have a combination of continuous,

semi-batch, and batch behavior.

The overall objective in sensor fusion for industrial applications

depends on the type of process and sensors. This article presents a

sensor fusion approach with the aim of developing a holistic model

for process monitoring that starts with raw materials and ends with

critical quality attributes (CQA). This can be quantitative prediction

or classi�cation into e.g. pass/fail for the �nal product and, in some

cases, the intermediate product. In this context, Process Analytical

Technology (PAT) has been adopted as a generic methodology,

especially in the pharmaceutical industry, but also in biopharma

and polymer industries [1]. The idea behind PAT and Quality by

Design (QbD) is to ensure that all critical process parameters (CPP)

lie inside the speci�cations throughout the whole process. Ideally,

there should be no need to perform quality control on the produced

units if the process is under control at every step, or reduce this to

a minimum as obtaining the CQAs is often a tedious task involving

laboratory work. In this context, PAT and QbD are closely related

to Zero Defect Manufacturing (ZDM) [2]. The concepts deal with

controlling the process with so-called quality gates after critical

process steps. According to Fragapane et al, in ZDM a majority of

the published articles deal with the detection of defects (60%) or

prediction (24%), whereas only a few articles deal with prevention,

repair, and mitigation. As such, it seems there is still some way to

go for holistic control of industrial processes given changes in raw

materials and other uncontrolled sources of variation.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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There exist many approaches for how to model the various steps

in multi-step processes. Depending on the scienti�c disciplines

one may call it sensor fusion and the actual models for multiblock

models. Assuming that variables from two or more process steps

are present in the data, several methods have been evaluated over

the years [10], [6], [7]. This gives rise to several challenges, how to

simultaneously model both continuous data and batch data; how

to cope with time lags between process steps, which might be

more or less constant; or how to combine univariate sensors with

multichannel sensors and data such as spectroscopy measurements,

time series represented in the frequency domain, and batch process

trajectories of uneven length [9].

The aim of this article is to present important considerations in

sensor-fusion and real-time Multivariate Statistical Process Control

(MSPC) through an industrial use case.

2 MATERIALS AND METHODS

2.1 Data

As an example of data pre-processing, modeling, and real-time

monitoring, a simpli�ed use case including two process steps from

an extrusion process at Benteler, Norway, is selected. In these steps a

billet is pre-heated in a Permanent Magnet Heater (ZPE) before it is

pressed into a pro�le in the extrusion press, this can be represented

in 1. Both the heating process and the press are batch processes,

with a duration of approximately two and four minutes, however, in

the selected dataset the settings for the heaters were always �xed.

The e�ect of the heating is represented by distributed tempera-

ture measurements of the billets prior to loading onto the extruder.

Every second billet is heated using alternating ZPEs installed in the

production hall. The total energy during heating in kWh is included

among the variables. All variables related to the extrusion and the

exit temperature have a timeline trajectory and should ideally be

analyzed as a 3D data structure (batch, time, and variable). How-

ever, by graphical inspection of these variables, they are almost

constant within the time interval for the extrusion of individual

billets. Therefore, only the stem pressure is considered as a time

series in the pre-processing and analysis steps. See Appendix A.4

for the full list of variables and their abbreviations.

2.2 Matching the Various Sets of Variables

A time-matching algorithm was employed as there is a time lag

between the two process steps. The available raw data for the

temperatures after heating the billet were not given with billet IDs

but by time stamps for the time of measurement. Continuous time

series for the heating process itself was not available for analysis. As

the extrusion data had both billet IDs and time stamps per second,

matching the time stamps including an o�set between billet loading

and the start of the extrusion enabled data alignment. The sensor

for the extruder exit temperature was positioned approximately

two meters after the end of the extrusion compartment. Given the

speed of the ram, this allowed time alignment from the continuous

time stamps for subsequent analysis.

Figure 1: Schematic view of the heating and extrusion process

steps

As these sensor data were acquired every second, time stamp

matching was employed by �nding the nearest point of time. A

maximum o�set in terms of seconds was employed to avoid spu-

rious time alignment in the time series due to e.g. a change in the

billet alloy or product on the extrusion line.

2.3 Aligning Extruder Press Curves

A function for aligning the stem pressure curves was implemented.

The function calculates the di�erence between adjacent points in

time to detect the start of a new cycle from the raw data. An example

of the raw data is shown in Figure 2. As seen, the time gaps between

the cycles, as well as the duration, are not constant. The function

detects a new cycle when the di�erence between two consecutive

points in time exceeds a given threshold. Another approach that

was evaluated was to search for the maximum correlation between

segments of the raw data based on an initial splitting. However,

due to the rapid increase in pressure in the �rst seconds, this did

not produce well-aligned data.

Stem pressure for selected samples after applying the procedure

for �nding the start and end of the individual cycles and reordering

them into a data table for the two sample sets is shown in Figures

2 and 3. The duration of the press cycles varied from 240 to 300

seconds, with a one-second sampling rate. The most interesting

part of the curve is at the start of the cycles, therefore the length of

the curves was set to 220 points in time to avoid missing data. One

could always time-warp the extrusion curves to a common length,

however, this would introduce unwanted artifacts.

Figure 2: Stem pressure after alignment of the samples with

normal trajectory

10



Data Pre-processing and Sensor Fusion for Multivariate Statistical Process Control of an Extrusion Process SEA4DQ ’23, December 4, 2023, San Francisco, CA, USA

Figure 3: Stem pressure after alignment of the new samples

2.4 Feature Extraction

The aligned curves can be analyzed with multivariate methods

directly or after extracting features from the curves. However, to

improve the robustness of the following analysis, a layer of feature

extraction is added. After investigation of the press curves as shown

in Figure 2, the following features were derived:

• Standard deviation

• Maximum value

• Index of max value

• Sum of di�erences

• Max value of di�erences

• Number of positive di�erences

• Entropy

The derived features from the stem pressure curves are listed as

variables 20-26 in Appendix A.4.

2.5 Final Sample Set and Selected Variables

Of 65 initial billet IDs, matching data were found for 61 billets after

time alignment. Thus, the data available for the analysis consisted

of 59 billets (“samples”) from the extrusion process. For each of the

individual time stamps the billet heating, time series per second for

the extrusion process, and exit temperature are extracted during

the pre-processing as described above, the variables are listed as

numbers 15-19 in the table in Appendix B. The raw and derived

temperature measurements of the billet after heating and the total

energy during heating are listed as numbers 1-15. The delta from

the set points is chosen rather than the actual temperatures for the

sensors placed along the billets. A typical billet length is 1.2 meters.

2.6 Modeling Strategy

To demonstrate modeling and monitoring of industrial processes,

38 samples were assigned for establishing the model (training set)

whereas 21 samples were assigned as a test set for monitoring. An

initial analysis was performed on all samples so that the 38 samples

selected for modeling were inside the normal operational range,

thereby establishing the “basic” model for future projection and

identi�cation of out-of-speci�cation situations. When starting from

unformatted raw data, the overall pipeline for this use case is as

follows:

(1) Retrieve data from the SCADA system for all relevant process

variables, ref. Figure 1

(2) Match the various sets of variables using available categorical

information (billet IDs), timestamps and known time lags

between the measurements

(3) Align the press curves to have a common start point and

length

(4) Extract features from the press curves

(5) Perform time-matching between the sets of variables

(6) Calculate the mean value for all other process variables that

are observed per second in the extrusion cycles

(7) Combine all process variables and features in one table

(8) Develop a model on “good” batches/runs to represent the

normal operating conditions (NOC)

(9) Project new samples onto the model and detect deviations

for individual samples as well as variables for on-line MSPC

2.7 Methods

2.7.1 Principal Component Analysis (PCA). PCA is a multivari-

ate method for decomposing a data matrix into underlying latent

variables or principal components (PCs). [3] The criterion is to

maximize the variance for the direction of each PC. Although PCA

in itself is a simple mathematical operation and in some scienti�c

communities merely used for noise �ltering and yielding an orthog-

onal basis for further purposes, the underlying latent variables are

often interpretable when applying domain knowledge. The general

form of the PCA model is:

X = T�P
)
� + E (1)

The columns in T are called scores and can be visualized as a

“map” of the samples. The score vectors are simply linear combina-

tions of the original variables for the various principal components.

The rows in P are called loadings and represent how the variables

contribute to each principal component. The loadings can be vi-

sualized for interpretation of the partial correlations between all

variables in the so-called correlation loading plot. Once a PCA

model has been established on a training data set, a new sample

G=4F may be projected onto this model, giving the projected score

for each component a:

Ĉ=4F,0 = x=4Fp0 (2)

The projection of a new sample is the basis for detecting out-of-

control situations in MSPC. Critical limits for outlier detection can

be estimated once a model has been established. For multivariate

methods such as PCA, one distinguishes between two types of

outliers: i) Inside the model space, ii) In the residual space. The

so-called Hotelling’s T2 statistic is applied for identifying outliers

of the �rst type whereas residual analysis is performed with the

use of Q- or F-residual statistics. Given these limits, samples that

deviate from the normal situation can be detected.

2.7.2 Multivariate Statistical Process Control (MSPC). The principle

of Multivariate Statistical Process Control (MSPC) is to utilize the

strength of analyzing many process parameters simultaneously [3].
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It is known that applying individual SPC limits for many parameters

will not detect outliers in a multivariate context, i.e., one will fail to

detect process anomalies in some scenarios. The use of multivariate

methods also produces “maps” of both the sample and variable

space that give information about the similarities of the samples

and (partial) correlation of the variables. In addition, critical limits

for detecting outliers can be estimated, both within the model space

and with respect to residuals. The most applied method for MSPC

is Principal Component Analysis (PCA). A short description of PCA

is given in Appendix A.1.

2.7.3 Sensor fusion and multiblock modeling. As mentioned in the

Introduction, various approaches to sensor fusion and subsequent

multiblock modeling can be relevant, depending on the structure

of the input data and the target objective. In this study, we will not

consider various alternatives for �nding the unique and common

information in the two blocks. The main objectives are to present

options for how to handle the di�erent number of variables in

the blocks and how to represent the time series for each extruder

cycle. Of special interest is the extrusion stem pressure trajectory.

As mentioned above, one could simply keep 220 points of time,

however, having many more variables for the press trajectory than

all the individual variables combined will need some kind of block-

weighting. The common approach is to give all blocks of variables

the same possible impact in the model by weighting the blocks

by the square root of the number of variables. However, there are

other aspects to consider, e.g., if the various sets of variables should

be scaled to unit variance or not. The extrusion curves variables

have the same unit and might not need scaling but only to be mean-

centered, whereas the variables representing the billet temperature

are given both in the original unit and the delta temperature, thus

scaling to unit variance is the best option.

3 RESULTS AND DISCUSSION

The PCA model for the samples de�ned as normal based on the

extrusion curves gives scores and correlation loadings as shown in

Figures 4 and 5. Based on the cross-validated explained variance

and interpretation of the correlation loadings, a total of six principal

components were needed to capture the information in the data.

This summed up to 78% of the total variance. Interpretation of the

individual PCs revealed that the various subsets of variables span

di�erent underlying dimensions. E.g., the derived variables from

the extrusion curves do not correlate with the billet heating temper-

ature variables. Adding meta-information to the data is important

for the interpretation of the model and increased understanding of

the process. This is typical qualitative information such as batch

number, sensor, production line, and equipment that can be repre-

sented as categorical information. However, one should be careful

in adding these variables as input for modeling for example by

one-hot decoding them into 0/1 variables.

Figure 4: Score plot for PC1 vs. PC2

Figure 5: Correlation loadings plot for PC1 vs. PC2

The reason is that one cannot include e.g., a 0/1 numerical vari-

able for production line and make the model “better” if line A

performs better than line B. However, concluding that there is a

di�erence might lead to increased knowledge, troubleshooting, and

optimization of this product line. An example of this is given in

Figure 4, where the samples are grouped according to which mag-

netic heater (ZPE) was in use. As can be seen, there is a systematic

di�erence. The variables that represent these groups can be iden-

ti�ed in the corresponding correlation loading plot. The variables

pertaining to the billet temperature are grouped, which shows that

the ZPEs are not heating the billets uniformly.

To evaluate the detection capability of the model, the 23 samples

de�ned as a test set were projected onto the model to illustrate a

real-time performance as well as outlier detection and for drilling

down to identify anomalies. A combined plot of Hotelling’s T2 and

the residual statistics with critical limits at the 99% level is shown

in Figure 6. Samples inside the lower left rectangle lie inside the

multivariate critical limits on both criteria. As can be seen, four

samples lie outside one or two of the critical limits. An alternative

visualization of the two-dimensional plot in Figure 6 is a plot over

time for the two outlier statistics as shown in Figure 7, which

is relevant for time-dependent processes. This visualization can
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supersede individual control charts while maintaining the chosen

signi�cance level due to the multivariate approach [3].

Figure 6: In�uence plot for new samples

Figure 7: New samples and critical limits at the 99% level

The next step in the visualization of outlying samples is shown

in the so-called contribution plot, Figure 8, see section A.3 in the

Appendix for details. This plot, shown for sample 39, identi�es the

variables contributing to the Hotelling’s T2 statistic for a particular

sample. As can be seen, the variables extracted as features from

the extrusion curves are the ones of interest. This corresponds well

with the visual interpretation in Figure 3. A plot of the individual

residuals is shown in Figure 9. In addition to that the pattern for

some of the extracted features deviates from the samples in the

training set, and the value for the total energy during heating is

higher than expected. This was con�rmed by inspecting the raw

data.

Figure 8: Contribution plot for new sample 39

Figure 9: Residuals for new sample 39

The approach in this article can be generalized to most multi-step

processes, where there are di�erent time- and position-dependent

variables that need to be aligned to enable robust process control

or prediction.

The presented approach for aligning data based on time stamps

does not take into account outliers or transients in the time series.

Thus, some �ltering of the raw data might be bene�cial for making

this unsupervised procedure more robust. There is a wide range

of potential methods for sensor fusion and process monitoring,

both within and outside of multivariate methods. The choice of

methods depends heavily on the properties of the data and the

domain challenges. Most processes can be handled using simple

linear methods, such as PCA [3] or ICA [8]. In some settings, non-

linear kernels or deep neural networks can improve performance.

However, the authors of this article would strongly advocate for

methods that enable detailed interpretation and identi�cation of

important variables for anomaly detection, and that allow real-time

evaluation of model �t.

4 CONCLUSION

Ensuring good data quality is essential as a basis for process model-

ing, monitoring, classi�cation, prediction, and closed-loop control.
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Pre-processing the data involves several steps and requires process

knowledge at the sensor and modeling level. Ideally, the person

responsible for gathering the data should also be involved in the

analysis and interpretation.

This case study presents a procedure of how to pre-process data

prior to Multivariate Statistical Process Control for real-time pro-

cess monitoring. Once the data structure has been de�ned and

detailed knowledge about the sensors, time lags, and the data struc-

ture is acquired, the procedure can be applied unsupervised in

real-time for in-depth analysis of new samples down to the indi-

vidual variables. Feature extraction can be applied as a compressed

way of representing trajectories in batch processes as an alternative

to multi-block models. The outlier detection in both the model and

residual space enables a single plot for troubleshooting regardless

of the number of variables in the model. Furthermore, drilling down

into plots of individual variables gives detailed information on why

one speci�c sample lies outside the normal operating conditions

(NOC).

The main contribution of this paper is to outline important con-

siderations for sensor fusion and process analysis in ZDM and pro-

cess monitoring use cases. The paper addresses holistic modeling

of a multi-step extrusion process using transparent and inspectable

machine-learning methods that allow for robust detection results.
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A APPENDICES

A.1 Outlier Statistics in the Model Space for

PCA

The Hotelling’s ) 2 statistic is a multivariate generalization of the

Student t-test. The form of the Hotelling’s ) 2 statistic for methods

that are based on principal components is as follows.

�>C4;;8=6′B ) 2

8 = (

�∑

0=1

C80 (t
)
0 t0)

−1
C)80)/(� − 1) (3)

, where:

C0 is the score vector for principal component a

C80 is the score value for sample i for principal component a

The Hotelling’s ) 2 statistic is approximately F-distributed:

��,�,U ∼ ) 2 (� −�)

�(� − 1)
(4)

where I is the number of training samples

A.2 Outliers in the Residual Space for PCA

While the Hotelling’s ) 2 statistic detects if samples are extreme

within the model space, the X-residual statistic detects samples

that have a deviating pattern for the variables. The residuals are

calculated as follows:

48:,� = G8: −

�∑

0=1

C80?̂
)
:0

(5)

The sample residuals, �8,� , are the mean of the squared residuals

of all variables for each sample after A principal components:

�8,� = (

�∑

8=1

48:,�
2)/ (6)

The critical limits for the residuals are calculated from the stan-

dard F-distribution:

�2A8C∼ (U, 1, �CA08=8=6) (7)

A.3 Contribution Plot

Furthermore, the contribution plot gives detailed information about

which variables have changed when an outlying sample has been

identi�ed[10]Ṫhe contribution values per variable are the individ-

ual contributions to the Hotelling’s T2 statistic. This often gives

important insight into the causality of a process. The calculation for

a new sample is shown in equation 8 For more details see Jackson

�8: =

�∑

0=1

(−100 Ĉ=4F,0G=4F,8:?0,8: (8)

A.4 List of variables

Table 1: List of variables and their units

Number Full name Abbreviation Unit

1 Total energy in ZPE heater TotEnergy kWh
2 Temp Head of billet T-Head °C
3 Temp Tail of billet T-Tail °C
4 TC Head Delta T-Head-delta °C
5 TC 1 Delta T1-Delta °C
6 TC 2 Delta T2-Delta °C
7 TC 3 Delta T3-Delta °C
8 TC 4 Delta T4-Delta °C
9 TC 5 Delta T5-Delta °C
10 TC 6 Delta T6-Delta °C
11 TC 7 Delta T7-Delta °C
12 TC 8 Delta T8-Delta °C
13 TC 9 Delta T9-Delta °C
14 TC Tail Delta T-Tail-Delta °C
15 ContainerTempZone1StemSideTop CTZ1Stem °C
16 ContainerTempZone2StemSideBottom CTZ2Stem °C
17 ContainerTempZone3DieSideTop CTZ3Die °C
18 ContainerTempZone4DieSideBottom CTZ4Die °C
19 Extruder exit temperature ExitTemp °C
20 Std. deviation of extrusion curve StdCurve Tons
21 Maximum value of extrusion curve MaxVal Tons
22 Index of maximum of extrusion curve Index of max value N/A
23 Sum di�erences of extrusion curve SumDi� Tons
24 Maximum di�erence of extrusion curve MaxDi� Tons
25 No. of positive di�erences of extrusion curve nPosdi� N/A
26 Entropy of extrusion curve Entropy N/A
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