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Abstract: Chronic inflammation is linked to carcinogenesis, particularly in the digestive organs, i.e.,
the stomach, colon, and liver. The mechanism of this effect has, however, only partly been focused
on. In this review, we focus on different forms of chronic hepatitis, chronic inflammatory bowel
disease, and chronic gastritis, conditions predisposing individuals to the development of malignancy.
Chronic inflammation may cause malignancy because (1) the cause of the chronic inflammation is
itself genotoxic, (2) substances released from the inflammatory cells may be genotoxic, (3) the cell
death induced by the inflammation induces a compensatory increase in proliferation with an inherent
risk of mutation, (4) changes in cell composition due to inflammation may modify function, resulting
in hormonal disturbances affecting cellular proliferation. The present review focuses on chronic
gastritis (Helicobacter pylori or autoimmune type) since all four mechanisms may be relevant to this
condition. Genotoxicity due to the hepatitis B virus is an important factor in hepatocellular cancer
and viral infection can similarly be central in the etiology and malignancy of inflammatory bowel
diseases. Helicobacter pylori (H. pylori) is the dominating cause of chronic gastritis and has not been
shown to be genotoxic, so its carcinogenic effect is most probably due to the induction of atrophic
oxyntic gastritis leading to hypergastrinemia.

Keywords: carcinogenesis; inflammation; chronic gastritis; gastric cancer; chronic hepatitis; hepatocellular
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1. Introduction

Neoplasia is a type of abnormal cell growth due to an imbalance between cell division
and cell death caused by changes in growth control. In other words, there is always a
dysregulation of cellular turnover in a neoplasia manifesting itself as a tumor. Moreover, it
follows that only cells having the ability to divide/proliferate can give rise to neoplasia.
Malignant neoplasms can grow beyond their natural bounds (invasion) and settle in
discontinuity with the tumor (metastasis), whereas benign tumors lack these properties.
There have been different theories of the cells of origin of neoplasia regarding whether they
originate from stem cells that stop their development at a certain stage or they develop
from mature cells that dedifferentiate [1,2]. The stem cell origin of malignant tumors has
been the prevailing theory during the last few decades [3]. However, it is evident that also
mature cells may develop into malignant tumors, as seen in the gastric oxyntic mucosa,
where continuous gastrin hyperstimulation causes the enterochromaffin-like (ECL) cell
to proliferate and, through stages of ECL cell hyperplasia via a neuroendocrine tumor
(NET), become a highly malignant carcinoma, finally killing the patient [4]. The correct
identification of the cell of origin and its implications have been discussed previously in
connection with the famous Japanese pathologist Soga [5].

Neoplasms are the result of cellular genetic changes that affect growth regulation and
other cellular properties. The genetic changes may be congenital but are most often due to
acquired mutations, which may occur by chance as the result of cell division or induced by
chemicals or irradiation (mutagens). Stimulated cell division to replace damaged/lost cells
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and/or stimulation by hormones or chemicals (mitogens) will necessarily also induce an
increased risk of mutation.

Chronic inflammation is presently accepted as an important mechanism for carcino-
genesis causing hepatocellular carcinoma in patients with hepatitis, cancer of the colon in
inflammatory bowel disease (particularly ulcerative colitis) and gastric cancers secondary
to gastritis as the most typical examples [6]. In this review, we will discuss the mechanisms
involved in carcinogenesis by chronic inflammation in general. Inflammation is a very
complex process involving a variety of different cells and a multitude of molecules. The
innovative aspect of this review will be to assess whether the cause of the inflammation
is directly carcinogenic by itself, whether the carcinogenesis is a consequence of the cell
destruction resulting in accelerated proliferation and whether the tissue changes (scarring)
resulting in changes particularly in the concentrations of mediators regulating proliferation,
are involved. The knowledge gained from life-long research in gastric physiology and
pathology and presented in many publications in the last decade is here extended to other
digestive organs with respect to carcinogenesis.

2. The Mechanisms of the Carcinogenic Effects of Chronic Inflammation

Inflammation occurs as a response to exogenous agents like microorganisms or toxins
or to direct trauma. Acute inflammation is initiated by tissue-resident immune cells that,
upon activation, attracts neutrophilic granulocytes and macrophages. Lymphocytes (T and
B cells) are pivotal in the further inflammatory response and start the defense to remove the
exogenous agent and prepare for healing [7]. Most threats are contained and eliminated by
the acute inflammatory response by phagocytosis and the release of substances that destroy
infectious agents, but sometimes chronic inflammation develops when the exogenous agent
persists, leading to chronic disease. In many chronic inflammatory diseases, the exogenous
agent is not known, which may have led to the concept of autoimmunity. However,
there are reasons to doubt that defaults in our immune apparatus are the main causes
of many of our most important diseases. It appears more probable that we have not yet
identified the foreign agent stimulating the immune cells. Although chronic inflammation is
associated with cancer development, there exist few convincing studies indicating a cancer-
preventive effect of non-steroid anti-inflammatory agents (NSAIDs) [8]. The anticancer
effect of NSAIDs is believed to be due to their inhibition of the cyclo-oxygenase, particularly
cyclo-oxygenase type 2 [9]. A recent study did not confirm the previous belief that non-
aspirin NSAIDs have a protective effect on gastric cancer after H. pylori eradication [10].
Furthermore, the cyclo-oxygenase inhibitor 2 celecoxib did not affect the prognosis in
cancer when given together with standard chemotherapy [11]. Despite the many years that
NSAIDs have been claimed to have a positive effect on cancer, their role in cancer treatment
has not been substantiated clinically since there are no randomized studies that support
results from observational or epidemiological studies. Glucocorticoids also have anti-
inflammatory effects, but long-term use is associated with a higher risk of several cancers,
including liver cancer [12]. The lack of a convincing cancer-preventive effect of the treatment
of chronic inflammatory diseases with corticosteroids or NSAIDs does not support the
view that inflammation is directly carcinogenic, but rather that the secondary changes that
it induces predispose patients to cancer. However, so-called autoinflammatory diseases
related to the innate immunity not involving T and B immune cells are seldom but do
exist, where there seems to be no exogenous cause of the inflammation. Autoinflammation
is often hereditary [13] and is not known to play any role in the chronic inflammation
observed in other diseases.

2.1. Chronic Hepatitis

Chronic viral hepatitis caused by either hepatitis B virus (HBV) or hepatitis C virus
(HCV) both predispose patients to liver cirrhosis as well as hepatocellular carcinoma
(HCC). However, HBV, being a DNA virus, integrates into the host genome and thereby
contributes to hepatocellular carcinogenesis, besides the inflammation itself [14], which
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probably is the sole mechanism for the carcinogenesis caused by HCV [14]. In children
infected with HBV perinatally, fewer have cirrhosis in combination with HCC than those
infected later in life [15]. Human papilloma virus (HPV) causing cervicitis, as well as
cervix cancer, is an example of a virus like HBV that causes cancer via a genotoxic effect,
as well as chronic inflammation [16]. For HCC caused by HBV, the inflammation may
not be the main cause of the neoplasia, but the inflammation and the neoplasia are the
consequences of the infectious agents themselves. Antiviral therapy without maintenance
of a virologic response implies an increased risk of HCC compared with those with a
maintained response [17], and residual viraemia during antiviral therapy is connected
to HCC [18]. Thus, the virus and not the inflammation is central in HBV-driven hepatic
carcinogenesis. The increased risk of HCC in patients with steatohepatitis [19], in contrast
to those with hepato-steatosis [20], on the other hand, demonstrates that inflammation itself
may be the sole carcinogenic factor. However, the risk of HCC in patients with cirrhosis
due to viral hepatitis is higher than in patients with cirrhosis due to other liver diseases [21].
Loss of hepatocytes leading to increased proliferation is the most probable mechanism for
the neoplasia in steatohepatitis and possibly also HCV hepatitis. HCV infection is now
treated with direct activating antivirals, leading to the eradication of the virus (sustained
viral response (SVR)), resulting in a reduced risk of HCC in non-cirrhotic and cirrhotic
livers [22]. However, depending on the degree of liver abnormality (fibrosis, cirrhosis), the
risk of HCC persists in patients with HCV even after virus eradication [23,24]. This may be
explained by the fact that carcinogenesis is a multistage process that progresses with time.
At the time of HCV eradication, liver cells may be at different stages of transformation and
a proportion may spontaneously develop further. Liver fibrosis as well as the extracellular
matrix (ECM) may vary between stages of liver disease, possibly via the activation of
hepatic stellate cells [25], but their role in carcinogenesis is not completely clarified. The
effect of acetylsalicylic acid on the risk of HCC has been studied in a series of observational
studies and an overall risk reduction in the general population has been found in a recent
meta-analysis [26]; this included studies of sub-populations with HBV and HCV. However,
in a meta-analysis, there may be publication bias, and randomized studies are indicated to
clarify the true effects.

2.2. Inflammatory Bowel Disease

The most prevalent form of colonic cancer develops via adenomas polyps, whereas
the cancers related to inflammatory bowel disease (IBD) start as flat dysplasia. Moreover,
genetic changes also differ between these two types of colonic cancer [27]. Ulcerative colitis
(UC) predisposes patients to cancer of the colon after long-term disease. This relationship
has been recognized for decades [28] and is one of the strongest arguments for an important
role of inflammation in carcinogenesis. The mechanism of this carcinogenesis is not known,
which is not surprising since the cause of ulcerative colitis is also unidentified. However,
the cancer risk is increased compared to the background population in UC patients in whom
most of the colon is affected (total colitis), whereas the risk increase is neglectable in patients
with inflammation restricted to the rectum [29]. Patients with primary sclerosing cholangitis
(PSC) accompanying UC are particularly at risk of colonic cancer localized to the proximal
colon, which may show only subclinical inflammation [30]. The fact that UC predisposes
patients to colonic cancer and PSC to cholangiocarcinoma indicates that the cause of
inflammation and not local factors is carcinogenic. Although colon cancer may develop in
patients after decades of inactive UC, there is agreement that chronic active inflammation
increases the risk [31–33]. The cause of UC could, for instance, be a virus [34,35], which
could itself contribute to the carcinogenesis. Interestingly, bacteriophages have also been
discussed in the etiology of IBD [36]. Moreover, patients with Crohn’s disease (CD) have
an increased risk of colorectal cancer when the inflammation affects this organ, although
at a lower risk than in those with UC [37]. Nonetheless, since CD may have a segmental
distribution with frequent involvement of the mesentery, the etiology of the inflammation
could be connected to the nerves, probably infection of the ganglions [34]. A role of the
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mesentery with its nerves and blood vessels [38], as well as the enteric glial cells [39], has
been discussed in the pathogenesis of CD. The onset of IBD in the elderly does not imply
any increased risk of colonic cancer [40], possibly due to the latency of more than 8–10 years
between the onset of colitis and the diagnosis of cancer [41]. The relatively recent strategy
of inducing “deep” or histological remission is interesting, but its effect on carcinogenesis
cannot be evaluated over several years. Finally, concerning the etiology, the association of
pyoderma gangrenosum [42] and alopecia areata [43] with IBD may hopefully in the future
be explained.

Microscopic colitis is a more recently defined disease characterized by chronic in-
flammation in the colon. There has been interest in the risk of colon cancer. Despite
long-term inflammation, the risk of colon cancer seems to be decreased or similar to the
background population in numerous epidemiological studies [44]. Thus, the increased risk
of colonic cancer in patients with chronic long-term inflammation depends on the cause of
inflammation, which unfortunately is not yet known.

2.3. Chronic Gastritis and the Carcinogenic Effect of Helicobacter pylori

For clarity, the distribution of the cell types central in gastric carcinogenesis, as well as
the regulation of gastric acid secretion, is depicted in Figure 1.
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Gastric cancer may be caused by inborn errors [46,47] as well as by Epstein–Barr
virus [48] belonging to the herpes group, known to be generally carcinogenic due to
the incorporation of its DNA into the human genome [49]. Gastric cancer secondary to
Epstein–Barr virus has been reported to occur more often in males and have a proximal
location [50]. However, the main cause of gastric cancer is the bacterium H. pylori, which,
as the first bacterium, was recognized as a class 1 human carcinogen by the WHO in
1994. In the next paragraph, we will discuss the mechanism of the carcinogenic effect of
H. pylori infection in detail. H. pylori infection induces acute inflammation, often with a
short symptomatic period, in the antrum, spreading to the oxyntic area by establishing itself
in the mucous layer. After a short period, the symptoms as well as the acute inflammation
subside. Nevertheless, a chronic infection persists in the antrum, which, over years, spreads
to the oxyntic mucosa, where it induces atrophy, which finally can lead to the complete
destruction of the glandular mucosa [51].

Gastric cancer was previously one of the most prevalent types of cancer. Although
its frequency has declined substantially during the last few decades due to the decline
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in Laurén [52] intestinal-type cancers, the stomach is still an important site of cancer lo-
calization due to high mortality, which has shown only a slight reduction. Moreover,
there are great geographical differences in the occurrence of gastric cancer [53]. Gastric
cancer is unique in that a bacterial infection, H. pylori, causes gastritis [54], which is the
dominating factor in subsequent carcinogenesis [55]. Since H. pylori may be eradicated by
treatment with a combination of antibiotics and drugs, markedly reducing gastric acidity,
this opens opportunities for the prevention of gastric cancer. However, the relationship
between H. pylori gastritis and gastric cancer is complex, since H. pylori does not predis-
pose patients to cancer before having induced oxyntic atrophy [56]. When the gastritis
only involves the antral mucosa, it predisposes patients to duodenal ulcer but protects
against gastric cancer development [57]. Moreover, autoimmune gastritis (AG), which
affects only the oxyntic mucosa, leading to atrophy, also predisposes patients to gastric
cancer [58,59], further strengthening the relationship between oxyntic atrophy and gastric
cancer. There is no doubt that inflammation causes the oxyntic atrophy both in H. pylori
and autoimmune gastritis. Thus, oxyntic gastritis leading to oxyntic atrophy is common
to the two most important causes of gastric cancer, which suggests that H. pylori does not
have a specific carcinogenic effect besides causing inflammation leading to gastric atrophy.
A recent attempt to indicate that H. pylori infection could have occurred at an early phase of
autoimmune gastritis [60] was not persuasive [61]. A paper by Usui et al. [62] with a com-
mentary [63] in the New England Journal of Medicine described that germline pathogenic
variants of known cancer-predisposing genes contributed to gastric cancer by having an
additive effect on H. pylori carcinogenesis. Carcinogenic factors are expected to interact,
but the authors found that this was particularly true for homologous recombination genes
and speculated that the carcinogenic effect of H. pylori gastritis was due to a genotoxic
effect of CagA, leading to errors in DNA repair [62]. The most important finding of their
study was the demonstration of a continuous functional risk in carcinogenesis based on the
genetic structure, explaining the well-known high occurrence of cancer in some families
hitherto without an established genetic cause. The additive carcinogenic effect of the genetic
variants and the H. pylori infection is, however, not proof of a direct genotoxic effect of
H. pylori. In the Usui et al. study, H. pylori infection was assessed by H. pylori antibodies
and reduced pepsinogen I (PG I) as a marker of atrophic gastritis presumed to be due
to H. pylori infection [62]. Unfortunately, PG I reduction does not discriminate between
oxyntic atrophy caused by H. pylori and autoimmune gastritis. Moreover, serum PG I is not
a sensitive marker of oxyntic atrophy since incomplete atrophy with some remaining chief
cells will lead to normal values [64], which may explain the surprisingly low frequency of
pathological serum PG I in patients with H. pylori infection and gastric cancer [62]. Prefer-
ably, oxyntic atrophy should be assessed by gastrin elevation, which also would allow the
evaluation of the role of gastrin versus H. pylori in combination with the genetic variations.
A direct carcinogenic effect of H. pylori does not explain the essential role of oxyntic atrophy
in H. pylori-induced gastritis [56] or that antral gastritis causing duodenal ulcer protects
against gastric cancer [57]. Moreover, as written in a review in 2014, “Despite a close causal
link between H pylori infection and the development of gastric malignancies, the precise
mechanisms involved in this process are still obscure” [65]. Interestingly, patients having
lost H. pylori at a stage of oxyntic atrophy still have an increased risk of developing gastric
cancer decades after having lost H. pylori [66]. H. pylori gastritis seems not to predispose
patients to gastric cancer of the cardia [67,68]. Besides gastric cancer, H. pylori gastritis also
predisposes patients to gastric lymphoma of the so-called mucosa-associated lymphoid
tissue (MALT) [69].

2.3.1. H. pylori Virulence and Direct Carcinogenic Effects

With the acceptance of H. pylori as a class 1 carcinogen, the WHO indirectly recognized
that H. pylori was itself carcinogenic, causing not only gastric carcinoma but also MALT
lymphoma. Inflammation has been claimed to induce DNA damage [70] and the immune
microenvironment to be important in gastric carcinogenesis [71], although this has not
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been shown experimentally. The fact that antral affection apparently protects against
gastric cancer and that there is no increase in cardia cancer does not suggest a direct
carcinogenic effect. The extensive and long-term negative search for a direct carcinogenic
factor of H. pylori supports this view. Nevertheless, Cag pathogenicity island positivity
(CagA+) increases the risk of gastric cancer [72,73], although H. pylori CagA negative
(CagA−) also predisposes patients to gastric cancer [74]. The mechanism of the increased
risk of gastric cancer when infected with CagA+ H. pylori was recently reviewed, with
the conclusion that there is much to be clarified [75]. Of interest is the difference in
CagA motives between people from Western and Eastern countries, the latter with high
incidence of gastric cancer [76,77]. Interestingly, CagA positivity increases the severity
of the inflammation [78] and the risk of atrophic gastritis [79], further supporting the
connection between H. pylori, atrophic gastritis and gastric cancer. On the other hand,
H. pylori gastritis predisposes patients to gastric MALT lymphoma independently of the
occurrence of atrophic gastritis [80], indicating different pathogeneses for these two gastric
malignancies secondary to H. pylori gastritis. Furthermore, this fits well with the fact that
there is no report of increased gastric MALT lymphoma in patients with autoimmune
gastritis. Moreover, CagA status does not play any separate role in the pathogenesis of
gastric MALT lymphoma [81]. However, not only autoimmune gastritis [82] but also
H. pylori gastritis [83,84] predisposes patients to gastric NETs. The higher incidence of
NETs in autoimmune gastritis compared with H. pylori gastritis may be explained by
the more rapidly developing complete oxyntic atrophy and antral sparing, resulting in
more pronounced hypergastrinemia [85]. It may accordingly be concluded that it is not
definitively shown that H. pylori is a direct carcinogen.

2.3.2. Inflammatory Host Factors

It is evident that H. pylori gastritis is a major cause of gastric cancer. Since no direct car-
cinogenic factor has been identified in H. pylori, El-Omar and co-workers studied whether
there were genetic differences in the inflammatory response between those with and with-
out cancer. Interleukin-1 gene cluster polymorphisms presumed to increase interleukin-1
beta were associated with both reduced gastric acidity and gastric cancer [86]. Thus, genetic
host factors did not distinguish between the consequences of gastritis, hypoacidity and
gastric cancer. The relationship between genetic differences in inflammation and gastric
cancers was later substantiated [87–89]. A genetic polymorphism of the interleukin-8 gene
has also been reported to affect the risk of the severity of oxyntic gastritis as well as gastric
cancer [90]. Of great relevance to the role of cytokines in the development of cancer was a
recent description of a reduction in lung cancer after the inhibition of interleukin-1beta [91].
Neither by differences in H. pylori nor host inflammatory factors is it thus possible to sever
the connection between inflammation and gastric cancer.

2.3.3. Accelerated Cell Death, Proliferation and Mutation Risk Caused by Inflammation

Increased cell division was suggested as an important cause of human cancer many
decades ago [92]. Furthermore, increased gastric mucosal proliferation without an ac-
companying increase in apoptosis has been found to be correlated with the severity of
gastritis in CagA and VacA H. pylori-infected subjects [93]. Tomasetti and Vogelstein have
hypothesized that the variation in cancer risk between different tissues could be explained
by the number of cell divisions of the stem cells [94]. Similarly, an important mechanism of
the carcinogenesis of H. pylori could be the stimulation of proliferation to replace cells lost
due to cell destruction secondary to inflammation. Such a mechanism may be the same for
carcinomas as well as MALT lymphomas. However, it does not explain the fundamental
role of oxyntic atrophy in gastric carcinogenesis [56] or the occurrence of gastric carcinomas
in patients with oxyntic atrophy decades after the loss of H. pylori and gastritis [66], which
is best explained by the consequences of gastric hypoacidity.
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2.3.4. Lack of Acid Secretion

The main function of the oxyntic mucosa is to produce acid and the enzyme pepsin,
both participating in the killing of swallowed microorganisms and thus preventing many
infections [95]. Pepsin activity is lost at a pH above 4.0 [96], the same value at which
bactericide activity is abruptly reduced [97]. The most important regulator of gastric acidity
is gastrin [98], produced by the G-cell located in the antral mucosa. The G-cell senses
directly or indirectly, via the somatostatin producing D-cell [99], the H+ concentration
of the gastric content and adjusts its gastrin release accordingly in order to maintain
adequate acidity. Hypoacidity secondary to oxyntic atrophy will therefore take away a
very important biological function, the killing of swallowed microorganisms, which is,
in this situation, in vain, counteracted by maximal gastrin release. If H. pylori-induced
oxyntic atrophy should predispose patients to gastric cancer via changes in microbes, one
would expect similarly increased occurrence throughout the stomach. However, H. pylori
does not increase the frequency of cancer localized to the cardia [100]. Curiously, although
there are different mucosae in the corpus/fundus and antrum, it has not been possible
to discriminate between gastric cancers localized to these mucosae. This may partly be
due to fact that the border between the oxyntic and antral mucosae is not sharp, with
the oxyntic glands found in the antrum [45]. Nevertheless, we found that patients with
hypergastrinemia had an increased risk of gastric carcinoma only localized to the oxyntic
mucosa [101]. However, it is possible that the viral contamination of a stomach without
acid also could have a carcinogenic effect. Oxyntic atrophy with gastric hypoacidity leads
to hypergastrinemia, known since the early days of gastrin immunoassays [102].

2.3.5. The Role of Gastrin in Gastric Carcinogenesis

Hypoacidity was recognized early on to be connected to gastric cancer [103,104].
Similarly, gastritis was known to predispose patients to gastric cancer [105,106]. Thus, the
description of H. pylori as the most important cause of chronic gastritis [54] and gastric
cancer [55] connected these factors together. Approximately 70 years ago, neuroendocrine
differentiation in gastric cancers was described [107], and approximately 50 years ago, it
was reported that the ECL cell gives rise to the NETs occurring in patients with atrophic
gastritis with pernicious anemia [108]. In the middle of the 1980s came reports describing
ECL-derived oxyntic tumors in rodents after long-term dosing with efficient inhibitors
of gastric acid secretion belonging to the proton pump inhibitor (PPI) group [109] or
being an insurmountable histamine-2 receptor blocker [110] giving rise to the gastrin
hypothesis [111]. Interestingly, ECL cell differentiation occurs rather commonly in gastric
carcinomas also in humans and particularly in the diffuse type [112,113]. By applying
immunohistochemistry with increased sensitivity using tyramide signal amplification, we
detected that more gastric cancers overall displayed neuroendocrine differentiation [114]
and that virtually all cancers related to hypergastrinemia did so [115]. Gastric cancer
classified as signet ring cell cancer (a subgroup of cancers of diffuse type) was shown
to express neuroendocrine markers including ECL cell-specific markers [116] but not
mucin [117]. Interestingly, signet ring cell carcinomas have been described in patients with
multiple endocrine neoplasia type I (MEN1) with gastrinoma, indicating an important role
of gastrin in the pathogenesis [118]. Furthermore, the gastrin receptor may be detected
by immunohistochemistry or in-situ hybridization in an important proportion of gastric
cancer cells [119]. It may accordingly be concluded that the target cell of gastrin, the ECL
cell, plays an important role in gastric carcinogenesis via gastrin [120].

Gastrin is a peptide hormone and can directly only affect cells expressing its recep-
tor, but indirectly it can also influence other cells via stimulation of the release of signal
substances such as the regenerating (Reg) protein from ECL cells [121]. The Laurén classifi-
cation of gastric carcinomas into intestinal and diffuse types seems to reflect an important
biological difference since the two types do not differentiate into one another [52]. More-
over, the decline in the occurrence of gastric cancer seen during the last few decades is
mainly due to a fall in the incidence of the intestinal type [122]. To our knowledge, our
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explanation of the role of gastrin in stimulating the ECL cell directly and thereby predispos-
ing patients to gastric carcinomas of the diffuse type, and the stem cell via the stimulation
of the release of mediators from the ECL cell leading to gastric carcinomas of the intestinal
type, is presently the only plausible theory of gastric carcinogenesis secondary to oxyntic
atrophy (Figure 2) [123,124]. Moreover, every condition with long-term hypergastrinemia
in humans causes gastric neoplasia, mainly carcinomas of ECL cell origin [47,115,125,126].
Gastric carcinoma in patients with gastrinoma has, on the other hand, rarely been described,
whereas ECL cell NETs occur often in patients with gastrinoma, whether being secondary to
MEN1 [127] or of the spontaneous type [128,129]. A case report describing that the removal
of all gastrinomas in a patient with MEN1 caused the gastric NETs to disappear showed that
gastrin is the dominating cause of these tumors also in this condition [130]. The reason that
only a few gastric carcinomas in patients with gastrinoma have been described is probably
the short lifespan with hypergastrinemia in these patients, taking into consideration the
long latency required for cancer to develop [47]. The important role of gastrin in human
carcinogenesis is also strongly supported by the fact that long-term hypergastrinemia
predisposes patients to gastric neoplasia in all species examined [131,132]. Thus, gastric
hypoacidity stimulates gastrin release, which stimulates the release of signal substances
including histamine and Reg protein [121] from the ECL cell, which, at the same time,
is stimulated to divide, thereby increasing the risk of neoplasia (NETs and carcinomas
of diffuse type), whereas the signal substances from the ECL cell stimulate the stem cell
towards proliferation and neoplasia [123]. The ECL cell is situated at the bottom of the
oxyntic glands, close to the basal membrane, and avoids destruction during gastritis. The
expression of ECL cell markers including the gastrin receptor in gastric cancers strongly
supports the dominating role of gastrin in gastric carcinogenesis.
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The role of the different mechanisms of inflammation in carcinogenesis of the major
digestive organs is shown in Table 1.
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Table 1. The mechanisms for tumorigenesis/carcinogenesis related to inflammation in the major
digestive organs.

Organ Pathogenesis Disease/Agent Mechanism of Carcinogenesis

Causative Agent
Is Carcinogenic

Increased
Proliferation

Secondary
Hormonal Changes

Liver
HBV ++ +
HCV ? ++

Steatohepatitis ++

Colon Ulcerative colitis ? +
Crohn’s disease ? +

Stomach Oxyntic atrophy Helicobacter pylori gastritis + ++
Autoimmune gastritis + ++

Epstein-Barr virus + +

+ and ++: degree of involvement in carcinogenesis; ?: uncertain or possible.

3. Conclusions—Chronic Inflammation and Cancer

Chronic inflammation is present in several organs in the gastrointestinal tract in condi-
tions associated with an increased risk of cancer. Inflammation seems to be a phenomenon
paralleling or being secondary to more important processes in the liver, colon, and stom-
ach. Like other bacteria, H. pylori is not a direct carcinogen. The carcinogenesis due to H.
pylori gastritis is a consequence of the damage caused by the destruction of the oxyntic
mucosa secondary to the inflammation that it induces, and therefore inflammation and
carcinogenesis will be closely connected between different strains. The hypoacidity due
to oxyntic atrophy induces hypergastrinemia, which stimulates the ECL cell to release
signal substances as well as to proliferate. The stimulation of the ECL cell’s proliferation
predisposes patients to ECL cell-derived neoplasia, including ECL cell NETs and gastric
carcinomas of the diffuse type, whereas the stimulation of the release of ECL cell signal
substances including Reg protein predisposes patients to carcinomas of the intestinal type
via their stimulation of stem cell proliferation.
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