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Abstract— Using biofeedback in medical therapies has
proven to be effective for adapting patient behaviors while
keeping the patients engaged and motivated in an exer-
cise session. This paper considers general problems in
personalized exercise sessions where the input is oppor-
tune biofeedback and the session goal is to maximize a
particular exercise effect. Due to the individual differences
between patients and their physiological signals, however,
personalized patient models also need to be identified.
With the two objectives: 1) maximize a training effect with
minimal control effort, and 2) identify the individualized
patient model, we have a typical exploration vs. explo-
ration trade-off. Control problems of this form are called
dual control problems. In this paper, we formulate a dual
control problem for a personalized exercise session and
test the approach against classical optimal control and
optimal experimental design approaches in an illustrative
example of performing Kegel exercises where the control
and identification goals conflict with each other.

Index Terms— Optimal control; Identification; Healthcare
and medical systems

I. INTRODUCTION

THE recent abundance of physiological data from easy-
to-use medical devices has led to a surge in the use of

biofeedback in therapy and physical exercise. Non-invasive,
psycho-physiological sensors may provide real-time infor-
mation to monitor and influence users’ behavior, and thus
perform biofeedback actions that can range from adapting
the visual, tactile, or auditory environment of the user [1].
This approach has become an effective tool in the treatment
of stress and anxiety-related disorders [2] as well as chronic
pain [3], irritable bowel syndrome [4], and incontinence [5].
Recently, biofeedback has been adopted in personalizing train-
ing for aerobic fitness [6]. Physical exercising with the aid of
biofeedback devices has the unique advantage of being a non-
pharmaceutical intervention for enabling individuals to control
their bodies in a non-invasive and low-risk way.

On the other hand, biofeedback by itself is not guaranteed
to yield results in medical therapies and exercising, since
improving one’s condition is often achieved only after consis-
tent commitment. The inconsistency of feedback to affirm the
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results of the treatment often leads to high therapy dropout
rates and irregular exercising; in these cases, the exercising
effect is effectively lost. Moreover, for those executing the
exercises incorrectly, often no feedback is available to rectify
their behavior. In essence, there seems to be a need for
improving the efficacy of providing feedback both during an
exercising session (to aid the user to adapt their own behavior
within an individual session and to monitor the effectiveness
of that single exercising session), and across the exercising
season (to aid the user focus towards long-term goals and to
monitor the combined effect of the time series of sessions).

Due to the stark individual differences between patients
and physiological signals, the successful incorporation of
biofeedback within and across exercise sessions requires a per-
sonalized patient model. Such individualized models shall then
be able to account for the fact that, in time, exercising sessions
may evolve, daily form may change, and sensor placement
may vary. Such models shall moreover be identified typically
with a minimal amount of samples. This highlights then a
typical exploration vs. exploitation trade-off: design a series of
exercising sessions whose medical effect is maximal within the
shortest period of time, vs. collecting data maximally useful
for model learning purposes.

Contribution: We propose a model structure that may
aid in designing in-session and across-sessions biofeedback
actions, and for which it is possible to frame the exploration vs.
exploitation problem above as a Dual Control (DC) problem.
We thus propose a model-based exercising sessions-design
methodology for tackling such a trade-off between achieving
a desired exercising effect and identifying the system to aid
in the design of more efficient and effective exercise sessions.

Structure of the manuscript: We first formalize the structure
of the proposed model and define the aims of the exercising
session design as an optimal input design. We follow this
by formalizing the sides of the trade-off above as two sepa-
rate Optimal Control (OC) and Optimal Experimental Design
(OED) problems. Next, we bring the two problems together
and define a general cost function of interest where the trade-
off is captured by a specific weight. Finally, we demonstrate
the effect of trading off between the two objectives in a
numerical example of a validated Kegel exercise model.

Notation: We use uppercase letters for random variables
and the corresponding lowercase letters for realizations.



II. EXERCISE SESSION DYNAMICS

a) Model structure: The majority of systems in medicine
and biology often exhibit highly nonlinear and complex dy-
namical behavior. During exercise sessions, variables such as
sensor placement, daily form, and concentration can cause
time-variant behavior. Linear time-invariant models are com-
monly used in medical and biological systems, but non-
linearities may be important in some cases, requiring lin-
earizable or explicit non-linear system considerations. Notably,
updating the system parameters is crucial to obtaining the best
model for each exercise session.

Different therapies may focus on different parts of the body,
and thus focus on models that may be different since serving
different needs. We assume that the particular model of interest
is within the class of discrete-time systems writable as

xk+1 = f(xk, uk, θ) + wk, (1)
yk = h(xk, uk, θ) + vk, (2)
zk = φ(xk, uk) , (3)

where xk ∈ Rnx are the states of the system (e.g., status
of specific muscles), uk ∈ U ⊂ Rnu are the constrained
inputs (e.g., intensity of the physical activity), and yk ∈
Rny are the measurements (e.g., heart rate, exerted muscular
force). In addition, we assume the designer to have identified
an exercising effect variable, denoted here as zk ∈ Rnz

(e.g., some physical endurance index). zk is assumed to be
a non-measured output equal to a deterministic function of
the current states and inputs. θ ∈ Θ ⊂ Rnθ is the vector
of (unknown) system parameters. Accordingly, the function
f : Rnx × Rnu × Rnθ → Rnx is the state transition function,
h : Rnx × Rnu × Rnθ → Rny is the measurement function;
where the structure is known for both; and φ : Rnx ×Rnu →
Rnz is the function defining the exercising effect z. We
assume the system to be stochastic with process uncertainty
wk ∼ N (0, Q) due to the initial condition uncertainty and
the propagation of uncertainty from the parameter estimation.
Similarly, vk ∼ N (0, R) is the measurement uncertainty. We
assume here additive independent and identically distributed
(i.i.d) Gaussian noise, which is legitimate for certain applica-
tions, but it should be carefully evaluated based on the specific
physiological signals under consideration, see e.g. [7], [8].

We thus assume that the designer works with a specific
instance of the model defined by (1)–(3), referred to in the
remainder of the paper as the exercising session system. We
show later how this may be used to design biofeedback actions
to adapt the user’s actions for a specific instance of the model,
making it applicable for physiotherapy purposes.

b) System dynamics: We assume the initial value X0 fol-
lows a known probability distribution, and at the beginning of
each exercising session, the system parameters θ are unknown.
Also, at any time, some data management system has collected
the information up to and including time k. We denote this
information via D0:k = (X0, U0, . . . , Uk−1, Y1, Y2, . . . , Yk)
with D0 = X0 and dimension nD0:k

.
c) Aim: Find an algorithm to recursively estimate, given

D0:k−1, the inputs that maximize the current exercising ef-
fect zk. Thus find the control policy sequence U0:N−1 =

(U0, U1, . . . , UN−1) for N ≥ 1 such that Uk+1 = µk(D0:k),
where µk : RnD0:k → U .

Such an algorithm has to include the two ingredients of
identifying the system and maximizing the exercising effect
with minimal control effort, which correspond to two classical
paradigms in the control literature, i.e., OC and OED:

Paradigm 1 (OC) Design a minimal (control) effort u that
leads to a session that maximizes the exercising effect z.

Paradigm 2 (OED) Design a maximally informative effort u
that leads to a session for which the estimated exercising effect,
ẑ, may be inferred as statistically accurate as possible.

In the remainder of the paper we proceed as follows: detail
our specific OC problem in Sec. III, formalize our type of
OED problem in Sec. IV, and formulate in Sec. V a method to
combine the two approaches into a single trading-off problem.

III. DESIGNING AN EXERCISE SESSION AS AN OPTIMAL
CONTROL PROBLEM

To formulate a session design problem as an optimal control
one given model (1)-(3), one may consider a general formu-
lation of the loss function as

E

[
GN (ZN ) +

N−1∑
i=k

Gi(Zi, Ui)

]
=: E[H(Zk, Uk:N−1)] (4)

where Gi : Rnz × Rnu → R are the stage cost functionals,
GN : Rnz → R is the terminal cost functional, and the
expected loss is chosen to be a sensible criterion of interest
since exercising effects Zk are stochastic variables.

An optimal control approach would then be finding the
admissible control strategy for system (1)–(3) minimizing (4).
We can use Lemma 3.2 in [9] to find that we shall condition
on the information collected until the decision process, i.e.,

min
Uk:N−1(D0:k)

E

[
GN (ZN ) +

N−1∑
i=k

Gi(Zi, Ui)

]

= min
uk:N−1

E

[
GN (ZN ) +

N−1∑
i=k

Gi(Zi, ui)

∣∣∣∣∣D0:k = d0:k

]
= V (d0:k, k) .

(5)

Since the dimension of D0:k increases with k, and since that
conditional expectation may become numerically intractable,
we can simplify (5) by conditioning on our best state es-
timate given the data D0:k instead. Thus, letting x̂k|k =
E [Xk|D0:k = d0:k] and ẑk = E

[
φ(Xk, Uk)|Xk = x̂k|k

]
, we

consider the new objective

W (x̂k|k, k) = (6)

min
uk:N−1

E

[
GN (ZN ) +

N−1∑
i=k

Gi(φ(Xi, ui), ui)

∣∣∣∣∣Xk = x̂k|k

]
.

From computational perspectives, x̂k|k has a constant dimen-
sion as k increases. We note that it is not necessary to restrict
x̂k|k to be a specific type of filter.

Remark In [9], it is shown for Linear Quadratic Gaussian
(LQG) problems, that x̂k|k is a sufficient statistic given the



data D0:k, i.e., V (D0:k, k) = W (x̂k|k, k); however, equality
does not hold generally.

IV. DESIGNING AN OPTIMAL EXPERIMENTAL DESIGN FOR
AN EXERCISING SESSION

If one wishes to be able to compute estimates ẑ as precisely
as possible, one may wish to promote data informativity by
means of OED techniques. This means that, given an appropri-
ate model structure and measurement data, y0:N , one wishes to
ensure low uncertainty about some Key Performance Indicator
(KPI). Given our model choice, we consider the classical case
of additive, normally distributed, uncorrelated measurement
error, for which the maximum likelihood estimate

θ̂ML =argmax
θ

pY |θ(y1:N |x̂0:N , u0:N−1, θ)

= argmin
θ

N

2
log(2π) +

1

2
log |R|+ 1

2

N∑
k=1

e⊤k R
−1ek ,

(7)

where ek = yk − h(xk, uk, θ) and pY |θ is the conditional
probability density function (pdf) of the measurements given
the parameters, is of statistical relevance [10].

A. Information matrix and optimality criteria

Given the parametric estimation problem of estimating θ
in (1)-(2), we consider the classical focus on the optimal,
unbiased estimate with minimal covariance. In other words,
letting θ∗ be the (assumed existing) true parameters vector
and M

(
θ̂, u

)
be the Fisher Information Matrix (FIM)

M
(
θ̂, u

)
= E

[
L⊤L

∣∣
θ=θ̂

]
, L :=

∂ log pY |θ(y1:N |θ)
∂θ

,

(8)
the Cramer-Rao inequality [10]

E
[(

θ̂ − θ∗
)⊤ (

θ̂ − θ∗
)]

≥ M
(
θ̂, u

)−1

, (9)

follows, stating that the covariance of the estimation er-
ror cannot be smaller (in a positive definite sense) than
the inverse of the FIM. To achieve the lower limit – the
minimum variance unbiased estimator – several optimality
criteria based on the FIM have been proposed, including the
so-called A-criteria given by the trace ΦA

(
M

(
θ̂, u

))
=

tr

(
M

(
θ̂, u

)−1
)

, the D-criteria, given by the determinate

ΦD

(
M

(
θ̂, u

))
= det

(
M

(
θ̂, u

)−1
)

, and the modified

E-criteria as ΦmE

(
M

(
θ̂, u

))
=

λmax

(
M(θ̂,u)

−1
)

λmin

(
M(θ̂,u)

−1
) , where

λmax and λmin are the maximum and minimum eigenvalues
of the inverse of the FIM, respectively.

B. Computing the Fisher information matrix in practice

As noticed in [11] the criteria above may suffer from issues
due to variable scaling, leading to poor estimates of parameters

with larger values. We thus propose to consider solving the
scaled OED variant

min
u0:N−1

Φ
(

diag
(
θ̂
)
M

(
θ̂, u

)
diag

(
θ̂
))

. (10)

Moreover from (7) it follows that (8) can be written as

M
(
θ̂, u

)
=

N−1∑
k=0

[(
dhk

dθ

)⊤

R−1

(
dhk

dθ

)]∣∣∣∣∣
θ=θ̂

, (11)

where hk = h(xk, uk, θ). It is then possible to define the
sensitivities of the states and outputs as

sk =
dxk

dθ

∣∣∣∣
θ=θ̂

,
dhk

dθ
=

∂h

∂x

dxk

dθ

∣∣∣∣
θ=θ̂

+
∂h

∂θ

∣∣∣∣
θ=θ̂

. (12)

Considering then that
d

dθ
xk+1 =

d

dθ
f(xk, uk, θ) , (13)

and the chain rule it follows that

sk+1 =
∂f

∂x
sk +

∂f

∂θ
. (14)

We note that these sensitivities shall be used not just for
computing both FIM, but also the sensitivity of the loss of
optimality in the following section IV-C.

C. An adapted OED approach, specific for model (1)–(3)
Standard OED formulations aim to design inputs that max-

imize the accuracy of parameter estimators. Our most relevant
estimand is, though, a function of the states, i.e., the exercising
effect z. Given this specific focus, we adapt the standard
OED formulation. With respect to the existing literature, the
proposed approach has contact points with [12], where authors
formulate a weighted A-criteria approach for simultaneously
solving (offline) an experimental design and trajectory tracking
problem. The α weight in [12] is, though, tailored specifically
for trajectory tracking. Our work connects also with [13],
proposing a weighted G-criterion for a dual Nonlinear Model
Predictive Control (NMPC) problem, and presenting a statisti-
cal method for tuning the parameter α specifically for NMPC
formulations. [12] and [13] are meaningful approaches, but
not appropriate for a setup (as the one we consider) where
a) no trajectory for the wished exercise effect is defined, but
rather a terminal maximization of the effect, and b) high model
uncertainty is expected, something that may render NMPC
formulations too sensitive to such modeling errors and thus
perform poorly. The dual control approach is yet to be applied
to an exercise session dynamical systems of our formulation.

In our approach, we form a loss of optimality for the OC
problem in (6), which is specific for the exercise session
system in (1)–(3) where we focus on the exercise effect z.

Consider then the proposed optimal control problem in
Section III, focusing on finding u∗

k:N−1 (e.g., the current
intensity of a suggested physical activity) that solves (6).
However, since the parameters defining model (1)–(3) are only
estimates, (6) is actually solved using θ̂ and not the (assumed
existing) true parameters. This leads to a hypothetical loss of
optimality, i.e.,

∆Hk

(
θ̂
)
= H

(
Zk, u

∗, θ̂
)
−H (Zk, u

∗, θ∗) . (15)



From intuitive standpoints, we let the proposed OED approach
try to minimize the expected loss with respect to the state
estimates, i.e., E

[
∆Hk

(
θ̂
)]

. Then, Taylor-expanding this

expectation around the unknown true parameters θ̂ = θ∗ yields

E
[
∆Hk

(
θ̂
)]

≈ E

∆Hk (θ
∗) +

d∆Hk

(
θ̂
)

dθ̂

∣∣∣∣∣∣
θ̂=θ∗

dθ

+
1

2
dθ⊤

d2∆Hk

(
θ̂
)

dθ̂2

∣∣∣∣∣∣
θ̂=θ∗

dθ

 .

(16)

The first term in (16) is H (Zk, u
∗, θ∗) − H (Zk, u

∗, θ∗) =
0. As for the second term, first-order optimality conditions
(assuming smoothness of such cost and optima that belong to

the interior of the domain) require
dH(Zk,u

∗,θ̂)
dθ̂

∣∣∣∣
θ̂=θ∗

= 0 .

Here we can use (15) to compute the sensitivity of the loss to
be

dH(Zk, u
∗, θ)

dθ
=
dGN (ZN )

dθ
+

N∑
i=k

dGi(Zi, u
∗
i )

dθ

=

N∑
i=k

dGi(φ(Xi, u
∗
i , θ), u

∗
i )

dθ

=

N−1∑
i=k

∂Gi

∂φ

∂φ

∂X

dXi

dθ
=

N−1∑
i=k

∂Gi

∂φ

∂φ

∂X
Si ,

(17)

where Si are the sensitivities of the states. We will denote the
sensitivities of the loss in (17) as ∇θHk(θ). Since traces have
the cyclic property and are equal to the scalar if applied to a
scalar, the expected loss of optimality is

E
[
∆H

(
θ̂
)]

≈

≈ E
[
1

2

(
θ̂ − θ∗

)⊤
∇θH0

(
θ∗

)⊤ ∇θH0
(
θ∗

) (
θ̂ − θ∗

)]
= E

[
1

2
tr

((
θ̂ − θ∗

)⊤
∇θH0

(
θ∗

)⊤ ∇θH0
(
θ∗

) (
θ̂ − θ∗

))]
= tr

(
∇θH0

(
θ∗

)
E
[(

θ̂ − θ∗
)(

θ̂ − θ∗
)⊤

]
∇θH0

(
θ∗

)⊤)
.

(18)

Since the true parameter values are unknown, we suggest
using the approximation ∇θH0 (θ

∗) ≈ ∇θH0

(
θ̂
)

and in-
equality (9) to formulate the approximate expected loss of
optimality

E
[
∆H

(
θ̂
)]

≈ tr

(
∇θH0

(
θ̂
)
M̃(θ̂, u)−1∇θH0

(
θ̂
)⊤

)
.

(19)

This leads to the possibility of finding the sought inputs via
the optimization problem

min
u0:N−1

tr

(
∇θH0

(
θ̂
)
M̃(θ̂, u)−1∇θH0

(
θ̂
)⊤

)
. (20)

Remark The modified OED problem in (20) is a scaled
version of the A-criteria in the standard OED problem.

V. COMBINING THE OPTIMAL CONTROL AND OPTIMAL
EXPERIMENTAL DESIGN APPROACHES

We now combine the formulations in Sections III and IV
into an approach that trades off the two Paradigms 1 and 2 by
means of an optimization problem that combines the OC cost
in (6) and the associated loss of optimality in (19), i.e.,

Wb

(
x0|0, 0 ; α

)
=

= min
u0:N−1

E

[
GN (ZN ) +

N−1∑
i=0

Gi(Zi, ui)

∣∣∣∣∣ X0 = x0|0

]

+ αtr

(
∇θH0

(
θ̂
)
M̃(θ̂, u)−1∇θH0

(
θ̂
)⊤

)
.

(21)

with α acting as a weighting or trading-off between the two
paradigms.

This formulation can then be laddered to formulate different
exercise design algorithms. For instance, Algorithm 1 exem-
plifies how to use information from a certain physical exercise
session to do a batch design of the next one.

Algorithm 1 Batch-designing a physical exercising session

1: Assume the input output data
(
u−
0:N−1, y

−
1:N

)
from a

previous exercising session is available
2: Compute the maximum likelihood estimate θ̂− of the

model before starting the next session via (7), and the
corresponding state estimates x̂−

1:N =
{
x̂−
k|k

}
k=1,...,N

via

any filter of choice (e.g., an EKF)
3: Compute the corresponding sensitivities of the states ŝ−

1:N

via (12)
4: Compute the loss sensitivities ∇θH0

(
θ̂−

)
using u−

0:N−1

in (17)
5: Solve the dual optimization problem in (21) given the state

estimates x̂−
1:N and obtain the new exercising input profile

u∗
0:N−1

The presented algorithm works for any general, possibly
nonlinear, system of the form in (1)–(3); importantly, for
systems where some exercise effect, rather than the actual
states themselves, is of interest. We continue by applying the
proposed algorithm, Algorithm 1, to a case study of interest
where the exercise session system is an affine-input system.

Remark In Algorithm 1 we propose to use an Extended
Kalman Filter (EKF) for state estimation. For noise that is
not i.i.d Gaussian noise and for highly nonlinear systems, one
could use a sigma-point or particle filter.

VI. A CASE STUDY – DESIGNING KEGEL EXERCISES

We test the capabilities of our approach via simulations
where we use the pelvic floor muscles model in [14] for
modeling the dynamics of fatiguing in Kegel exercising. The
proposed compartmental model is an extension of the work
in [15] and involves active muscles ma, fatigued muscles mf ,
and resting muscles mr, where the total number of muscular
units is M . Note that the underlying true system is considered
to be the more complex model derived in [16] where cramping



muscles mc are additionally used to capture a particular
dynamic often observed when people perform Kegel exercises,
which is a more realistic situation where the underlying system
is more complex than the proposed model. We consider here,
however, the original model in [14], where the discrete-time,
time-invariant, control-affine system is given by

mf
k+1 = ϕfamf

k + (1− ϕaf)ma
k

ma
k+1 = ϕafma

k + (1− ϕfa)mf
k + ϕramr

kuk

− ϕarma
k(1− uk)

mr
k+1 = M −ma

k+1 −mf
k+1

yk = ma
k + wk .

(22)

Here the input uk, called the brain force, is a normalized
amount of effort (i.e., relative to some pre-defined maximum)
exerted by the person performing the exercises at time k.
Moreover, wk ∼ N (0, 0.25), ϕfa is the recovery rate from
a fatigued to an active state, ϕaf is the fatiguing rate, ϕar is
the rate of relaxation, and ϕra is the activating rate from a
rested state to an active state. We should note that the model
in [14] is only validated for maximum effort or no effort,
i.e., one or zero. However, Hill-type models are commonly
used in biomechanics to model muscular contractions, where
the normalized excitation input u can range between zero and
one [15]. For notation, we will use mk =

[
mf

k ma
k

]⊤ ∈ R2.
To be able to use OED for parameter identification, we need
to have an identifiable model. We know from [14] that ϕ =[
ϕfa ϕaf ϕar ϕra

]⊤
are identifiable parameters for known

M = 1.

A. Defining a suitable exercising effect z

Our approach focuses on a generic exercising effect, a
variable that is missing in the original model formulation. We
thus augment (22) with the discounted accumulated output
zk =

∑k
t=0 γ

kyk, a medically relevant extra state that intu-
itively corresponds to how much the person has been active
during the physical exercising session (the discount γ = 0.999
having been added for stability reasons). We then consider the
augmented system with xk =

[
mk ȳk

]⊤
as

xk+1 =

 ϕfa (1− ϕaf) 0
(1− ϕfa) ϕaf − ϕar 0

0 T (1− Tγ)

xk

+

 0
ϕra(M −mf

k −ma
k) + ϕarma

k

0

uk + w̄k

=A(ϕ)xk + B(ϕ, xk)uk + w̄k ,

(23)

where T is the length of the discretization period and x0 =[
0 0 0

]⊤
. Moreover, the new measurements model is

yk = ma
k =

[
0 1 0

]
xk + vk = Cxk + vk . (24)

The exercising effect is thus given by

zk = ȳk =
[
0 0 1

]
xk = Exk , (25)

while the state sensitivities may be computed via the discrete-
time system

sk+1 =
∂f(xk, uk, ϕ)

∂x
sk +

∂f(xk, uk, ϕ)

∂ϕ

=A(ϕ)sk +

 mf
k −ma

k 0 0

−mf
k ma

k b23 b24
0 0 0 0

 ,

(26)

where b23 = ma
k(1− uk), b24 = (M −ma

k −mf
k)uk.

B. Control Problem Setup
To maximize the exercising effect and penalize the control

effort (in this case the overall physical demand required to the
person), we consider the LQG cost

W (x0, 0) = min
u0:N−1

E
[
− Z⊤

NGNZN

+

N−1∑
i=0

−φ(Xi, ui, θ)
⊤Gzφ(Xi, ui, θ) + u⊤

i Guui

]
,

(27)

with GN ≻ 0, Gz ≻ 0, Gu ≻ 0, and where the fact that the
expectation is conditioned on the estimated states is omitted
for brevity. Moreover, the sensitivities of the loss (17) for the
exercising effect in (25) are

∇θH0(θ) =

N−1∑
i=0

−Gz(EXi)
⊤ESi (28)

and the FIM in (11) is

M(θ, u) =

N−1∑
i=0

(
∂h

∂X

dXi

dθ

)⊤

R−1

(
∂h

∂X

dXi

dθ

)

=

N−1∑
i=0

(CSi)
⊤R−1(CSi) .

(29)

From the ingredients above one may then build the final scaled
cost Wb

(
x0|0, 0 ; α

)
as in (21).

C. Simulation Results
Our goal is to compare the results one obtains by varying

α in Wb

(
x0|0, 0 ; α

)
, i.e., investigate which exploration vs.

exploitation trade-offs may emerge in the design of personal-
ized physical exercise sessions via the proposed methodology
with GN = Gz = 10 and Gu = 1 in (27).

We thus use a discretization period length of T = 0.1
seconds for a session length of N = 1201 (two minutes), and
compare simulation results for the following situations over
10 runs:

1) performing a pure OC without any OED objective,
2) performing a standard OED with the A-criteria for the

first half of the experiment to re-estimate the parameters,
followed by performing OC for the last half of the
experiment with the new parameter update,

3) performing the DC problem in (21) with α = 0.1, 1, 10,
to test different levels of tradeoffs.

Table I presents a selection of results from the simulations:
the terminal exercise effect, the final expected loss of optimal-
ity, the total cost, the control effort, and the estimation error.



TABLE I
A COMPARISON OF THE DIFFERENT CONTROL SCHEMES FOR THE ACHIEVED EXERCISE EFFECT, FINAL EXPECTED LOSS OF OPTIMALITY, THE TOTAL

COST, THE CONTROL EFFORT, AND THE ESTIMATION ERROR. THE VALUES ARE GIVEN AS MEANS AND STANDARD DEVIATIONS OVER THE TEN RUNS.

Control type final exercise effect final loss of optimality total cost control effort estimation error

1) OC (without noise) 19.57 (1.49) 3.34 (1.14) −6.11 (0.218) 3.38 (0.769) 9.27 (3.12)
2) 1

2
OED 1

2
OC 20.08 (2.31) 7.21 (16.02) −6.07 (0.400) 4.16 (0.695) 8.36 (3.25)

3.1) DC α = 0.1 12.79 (2.26) 0.866 (0.321) −1.44 (1.74) 2.10 (0.16) 3.26 (1.92)
3.2) DC α = 1 9.31 (1.00) 0.338 (0.073) 1.34 (1.39) 1.85 (0.549) 1.40 (0.578)
3.3) DC α = 10 8.11 (2.29) 0.219 (0.184) 29.08 (65.53) 2.72 (1.06) 0.766 (0.732)
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Fig. 1. The exercise effect z over the simulation period for the different
control scenarios. Only one run was chosen from each control scenario
for illustrative purposes.

Moreover, Figure 1 illustrates the difference in the exercise
effect over the optimal exercising session for the different
control scenarios. The OC and half OED / half OC scenarios
have the best overall exercising effect but have high associated
control efforts (i.e., demands to the person that is exercising)
and expected loss of optimality. The different DC trade-offs
act as expected, where the control effort is higher for a higher
weight α on the informativity of the data, additionally yielding
estimation error and a lower loss of optimality. The trade-off
α acts also as an excitement variable since the OED aspect
pushes the input to be more exciting leading to less predictable
inputs and more engaging biofeedback for the user.

VII. CONCLUSION

We presented a dual control (simultaneous OC and OED)
method for the design of physical exercising sessions suitable
when the goal is to simultaneously estimate a personalized
model of the exerciser while maximizing the medical effect the
sessions are having on the person. The strategy considers that
in medical settings one may define the overall exercising effect
as a specific KPI. We thus provided the theoretical background
for solving OC and OED problems on such a KPI, based on
investigating the sensitivity of the loss in the OC problem as
opposed to the sensitivity of the output. We have then been
proposing to include a weight α in the problem formulation,
that can be used to trade-off between these two factors as
wished. We then applied the technique to a case study for
Kegel exercises where we considered the unique objective of
maximizing accumulated muscle activation, thereby address-
ing a previously unexplored aspect of exercise science.

The formulated approach considers, for now, batch offline
designs. Using recursive parameter identification and a reced-
ing horizon control, one may easily make the strategy for
computing the inputs recursively. The problem of adapting

α in time, i.e., prioritizing OC versus OED more and more
throughout the experiments, is a non-trivial extension. In other
words, an adaptive α may intuitively prioritize the OED
when the person starts their therapy, improve the quality of
the parameter estimates, and later in the treatments prioritize
maximizing their effect.

We also note that the current formulation has no constraints
on unrealistic control inputs. Physical exercise is indeed con-
strained by biological factors (e.g., how fast one may run and
recovery times). In other words, the approach does not account
for what physiotherapists may consider optimal from a medical
perspective. Another extension may, thus, enable users and
physiotherapy constraints to influence how much the control
can excite the system.
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