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Abstract: Background: Using artificial intelligence (AI) with the concept of a deep learning-based
automated computer-aided diagnosis (CAD) system has shown improved performance for skin
lesion classification. Although deep convolutional neural networks (DCNNs) have significantly
improved many image classification tasks, it is still difficult to accurately classify skin lesions because
of a lack of training data, inter-class similarity, intra-class variation, and the inability to concentrate
on semantically significant lesion parts. Innovations: To address these issues, we proposed an
automated deep learning and best feature selection framework for multiclass skin lesion classification
in dermoscopy images. The proposed framework performs a preprocessing step at the initial step for
contrast enhancement using a new technique that is based on dark channel haze and top–bottom
filtering. Three pre-trained deep learning models are fine-tuned in the next step and trained using
the transfer learning concept. In the fine-tuning process, we added and removed a few additional
layers to lessen the parameters and later selected the hyperparameters using a genetic algorithm (GA)
instead of manual assignment. The purpose of hyperparameter selection using GA is to improve the
learning performance. After that, the deeper layer is selected for each network and deep features
are extracted. The extracted deep features are fused using a novel serial correlation-based approach.
This technique reduces the feature vector length to the serial-based approach, but there is little
redundant information. We proposed an improved anti-Lion optimization algorithm for the best
feature selection to address this issue. The selected features are finally classified using machine
learning algorithms. Main Results: The experimental process was conducted using two publicly
available datasets, ISIC2018 and ISIC2019. Employing these datasets, we obtained an accuracy
of 96.1 and 99.9%, respectively. Comparison was also conducted with state-of-the-art techniques
and shows the proposed framework improved accuracy. Conclusions: The proposed framework
successfully enhances the contrast of the cancer region. Moreover, the selection of hyperparameters
using the automated techniques improved the learning process of the proposed framework. The
proposed fusion and improved version of the selection process maintains the best accuracy and
shorten the computational time.

Keywords: skin cancer; image processing; deep learning; features fusion; hyperparameters selection;
feature selection; machine learning
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1. Introduction

Skin cancer is one of the most prevalent cancers. For example, more than 5 million
new cases are recorded annually in the United States, and it is anticipated that one in
five persons may experience this illness at some point during their life [1]. It is a common
malignancy that poses a major threat to human health and whose prevalence is rising
annually around the globe [2]. Basal cell (BCC), squamous cell (SCC), and malignant
melanoma are the most common skin malignancies, where the five year survival rate for
BCC and SCC are above 95% [3]. Melanoma, a type of skin cancer, develops in the skin
cells, and primarily is situated outside of the body, which is mainly exposed to ultraviolet
rays from sunshine [4]. The World Health Organization estimates that 2–3 million new
instances of skin cancer are diagnosed worldwide each year [5]. According to the facts,
more than two people in the U.S. die with skin cancer every hour. In the U.S., the estimated
number of new melanoma cases will decrease by 5–6%. The percentage of deaths expected
in 2023 is 4.4%. The new estimated diagnosed cases of melanoma in the U.S. during 2023
will be 186,680. Moreover, the number of deaths in 2023 will be 7990, which have increased
by 27% more than last year’s figures [6]. The typical age to be affected by this cancer is
younger than 40; mainly women. It is hard to cure if it has spread to the other parts of
the human body [7,8]. However, the early-stage diagnosis of melanoma can be treated
quickly and has a good recovery rate [6]. Several techniques have been implemented to
assist with diagnosis.

Conventional skin cancer diagnosis techniques entail a thorough process that includes
a physical examination, medical history-based evaluation, dermatoscopy, imaging exami-
nation, and a pathology report. Several approaches have been introduced in the literature
to differentiate malignant and benign skin lesions such as the ABCD rule [9], seven-points
checklist, and three-point checklist [10]. The ABCD rule of dermatoscopy characterizes
the geometrical and organizational lesion properties. The three-point and seven-point
approaches identify melanoma and BCCs based on three and seven characteristics [9]. All
these steps end with patient treatment [11]. In addition, the consumption of more time,
costs, locations, and healthcare providers are other factors that can delay the diagnosis.
Therefore, it is important to diagnose skin cancer early, which can help decrease the mor-
tality rate and increase the survival percentage. Hence, an automated computer-aided
diagnosis (CAD) system is required to accurately and efficiently diagnose skin cancer from
dermatoscopy images [12]. The dermatoscope is a new non-invasive diagnosis tool for
skin diseases, but it depends on the expertise of the person (doctor). Therefore, employing
the concept of artificial intelligence (CAD) shows the success of addressing the above
problems [13]. The AI-based CAD system can be useful at home or abroad to recognize
skin cancer from the dermatoscopy images [14].

Early CAD systems of skin cancer were based on traditional features [15] such as
texture, shape, and color; however, due to increased training images, these techniques fail to
provide better results [16]. In addition, the CAD systems based on the handcrafted features
faced several challenges, such as similarity in lesion shape, color, and texture, as shown in
Figure 1 [17]. With the advancement of deep learning, AI-based computerized techniques
show much greater success in medical imaging (detection and recognition) [18,19].
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Merkel cell carcinoma; (e) melanocytic nevus/mole; (f) squamous cell carcinoma [20]. 
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Figure 1. Categories of skin lesions: (a) melanoma; (b) actinic keratosis; (c) basal cell carcinoma;
(d) Merkel cell carcinoma; (e) melanocytic nevus/mole; (f) squamous cell carcinoma [20].

In medical imaging, the convolutional neural network (CNN) shows improved recog-
nition performance [15]. By employing the deep backbone of CNN, the deeper layer is
selected for the deep feature extraction [21]. Much research has been conducted in this
domain in the last couple of years incorporating deep learning methods [22]. Despite
this, many challenges still exist in this domain, including low-contrast infected lesions,
variations in the shape of lesions, similarities in the colors of different skin lesion classes,
imbalanced skin classes, and a few more. Based on these challenges, there is room to
enhance lesion detection and multiclass classification accuracy. Hence, in this article, the
following challenges are addressed: (i) imbalanced skin classes increase the probability rate
of a higher number of image classes that impact the prediction performance of other classes;
(ii) the low-contrast skin lesions impact the lesion localization accuracy; (iii) variations in
lesion shape and texture may segment the incorrect region that later extracted the irrelevant
features (incorrect region features, healthy region features, and extra features that are not
required for the classification purpose). In addition, multiclass skin lesions have a high
similarity in shape, color, and appearance; therefore, it is also difficult to recognize a true
class correctly.

Major Contributions: Our major contributions are as follows:

• Proposal of a hybrid contrast enhancement technique using the fusion of top–bottom
filtering and haze reduction technique.

• Fine-tuning of three pre-trained CNN architectures and training using transfer learn-
ing. For the training of deep learning models, a genetic algorithm is employed for the
selection of hyperparameters instead of manual selection.

• Proposal of a serial-controlled positive correlation approach for the fusion of trained
neural nets feature.

• Development of an improved optimization algorithm named Antlion for the feature
selection.

The manuscript is organized so that Section 2 describes the related work based on
skin lesion approaches. Section 3 describes proposed methodology, followed by Section 4,
which elaborates on and discusses the experimental setup, results, and comparisons with
existing methods. Finally, the conclusion is given in Section 5.

2. Related Work

It has been extensively investigated how to automatically diagnose skin cancer [23,24].
Deep learning algorithms show significant success in the area of medical imaging, es-
pecially for the identification of skin cancer [25]. The main components of traditional
automated skin cancer diagnosis approaches are developing handcrafted features and
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using machine learning classifiers for classification [26]. A CAD system consists of a few
important steps, such as preprocessing of original dermoscopy images, lesion detection
using segmentation techniques, handcrafted feature extraction, feature selection, and clas-
sification using machine learning classifiers. Recently, CNNs that can learn hierarchical
features have had considerable success with medical image processing, especially for skin
cancer recognition [27].

Kassem et al. [28] discussed the importance of deep learning for the classification
of skin cancer using deep learning techniques. They discussed extensively the impor-
tance of deep learning for better skin lesion classification, the complexity of deep learning
techniques, and the most current stage of development. Hauser et al. [29] presented an
explainable AI framework for skin lesion diagnosis. Zhang et al. [30] presented an attention
mechanism CNN model for skin lesion recognition. Each attention block jointly used resid-
ual learning to improve representation learning. The experiments were conducted on the
ISIC2017 dataset and showed improved recognition accuracy. Anand et al. [31] presented a
U-NET and CNN architecture fusion for skin lesion detection and classification. They used
U-NET architecture to detect lesions from the input dermoscopy images; however, CNN
architecture was employed for the classification. The HAM10000 dataset was employed
to validate the proposed framework and obtained accuracy above 97%. Fayadh et al. [32]
introduced a wavelet transform and CNN-based architecture to diagnose skin lesions. The
unwanted information was removed by employing the concept of wavelet and max pooling.
Then, a residual neural network is proposed and features are extracted by employing the
concept of transfer learning. The extracted features are classified using an ELM classifier
and obtained improved accuracy on ISIC2017 and HAM10000 datasets.

Simon et al. [33] provided an interpretable deep-learning framework for skin lesion
segmentation and classification. The main strength of this work was categorizing the tissues
into 12 dermatological classes. After that, they trained a deep CNN using these charac-
teristics for final classification. They tested the introduced framework on dermatoscopy
images and compared it with clinical accuracy. During the comparison phase, the clini-
cal method achieved an accuracy of 93.6%, whereas the computerized method attained
97.9%. This shows that the computerized methods have better performance than the
clinical techniques. Javeria et al. [34] introduced an integrated model of preprocessing,
segmentation, feature extraction, and deep feature fusion. Firstly, they resized the im-
ages and converted RGB into a luminance channel, then they used the Otsu algorithm
and biorthogonal 2-D wavelet transform to segment the affected part of the skin. After
that, pre-trained AlexNet and VGG16 were used to extract the deep features. Then, the
optimal feature set was obtained using PCA for further classification. Al-Masni et al. [35]
devised an integrated diagnostic paradigm encompassing skin lesions’ segmentation and
classification. Inception-v3, ResNet-50, Inception-ResNet-v2, and DenseNet-201 were de-
ployed in the DL FRCN framework using dermatoscopic images to segment regions of
interest, followed by classifier over segmentation results. The proposed integrated DL
model works acceptably on different types of skin lesions. The model was evaluated on a
balanced, segmented, and augmented dataset, including the International Skin Imaging
Collaboration (ISIC) and its variants in 2016, 2017, and 2018. Overall weighted prediction
accuracy for Inception-v3, ResNet-50, Inception-ResNet-v2, and DenseNet-201 classifiers is
77.04%, 79.95%, 81.79%, and 81.27% for two ISIC2016 classes, 81.29%, 81.57%, 81.34%, and
73.44% for three ISIC2017, as well as 88.05%, 89.28%, 87.74%, and 88.70 for four ISIC2018
classes. Pacheco et al. [36] used the thirteen best deep-learning networks. Finally, they
concluded that the SE Net convolutional neural network and Adam optimization were
the perfect architecture among all neural networks. The proposed model obtained 91%
performance on the ISIC2019 dataset. Farooq et al. [37] introduced a model to enhance
the classification performance by up to 86% by incorporating Mobile Net and Inception
Net. For these models, Kaggle’s updated dataset of skin cancer was utilized to check their
performances. Esteva et al. [38] conducted a pioneering CNN-based research work to
detect and classify skin lesion datasets. Lui et al. [39] defined a deep learning model with
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Dense Net and Resnet using the MFL module. The proposed work generated an effective
accuracy of 87% on the ISIC2017 database for skin lesion classification. Pedro et al. [40]
proposed a Feedforward Neural Network (FNN) classification model and Linear SVM on
the dermo fit dataset. Their setup produced an accuracy level of 90% on the selected dataset.
Milton et al. [41] depicted a comprehensive study of multiple deep-learning techniques for
skin cancer. They conducted the experiments on the publicly available ISIC2018 dataset,
fed to multiple neural networks, including Inception Resnet-V2, PNASNet-5, SENet-154,
and Inception-V4. The PNASNet-5 model is the best performer at 76% accuracy level.

Khatib et al. [42] presented Resnet-101 architecture for the skin lesions classification.
They fine-tuned the architecture by employing transfer learning (TL) to differentiate the
various forms of skin lesions and achieved an accuracy level of 90% on a well-known
PH2 database. Alizadeh et al. [43] deployed the Vgg19 NN model using kernel principal
components analysis (KPCA) and attained 85.2% accuracy using the ISIC2016 dataset.
Almaraz et al. [44] used the ABCD rule-based technique after extracting handcrafted
features’ color, shapes, and texture. These features were then given to Mobile NetV2 neural
network melanoma categorization. The proposed technique achieved 92.4% accuracy
using the HAM10000 dataset. Reis et al. [45] employed a DL approach for skin lesion
identification and segmentation. The suggested technique was investigated on three widely
accessible datasets, ISIC2018, ISIC2019, and ISIC2020, where prediction accuracy was
enhanced to 90.1, 90.2, and 91.3%. Khan et al. [8] presented an improved subdivision
combinatorial architecture (IMFO) consisting of moth+flame and DL Classification for skin
lesion classification. Furthermore, they extended the model to minimize the time taken in
diagnosing skin cancer. The IMFO architecture was tested on PH2, ISBI 2016, 2017, and 2018
datasets and obtained an accuracy level of 98.70%, 95.38%, 95.79%, and 92.69%, respectively.
The architecture was also tested on the dataset Ham10000, where it reflected a precision level
of 90.67% which represents an improvement. Khan et al. [46] presented another intelligent
system based on deep neural networks for complex skin cancer categories. The authors
suggested a two-stream DNN information fusion framework for classifying multiclass skin
cancer. Firstly, a contrast enhancement technique based on fusion was suggested in which
magnified images were fed to the pre-formed DenseNet201 architecture. These features
were modified utilizing the skewness-controlled moth + flame optimization approach. After
that, stream deep features were captured and down-sampled using fine-tuned MobileNetV2
pre-trained systems and a proposed feature selection structure. The proposed technique
was tested on three unbalanced datasets named as HAM10000, ISBI2018, and ISIC2019, that
produced accuracy levels of 96.5%, 98%, and 89%, respectively. These discussed methods
focused on detection and classification using deep learning and machine learning classifiers.
They did not focus on the fusion of different source features. Also, they ignore the process
of best feature selection that can help in reducing the computational time. To address these
important challenges, a new AI-based fully automated framework is proposed for skin
lesion classification.

3. Proposed Methodology

The proposed methodology is illustrated in Figure 2. Figure 2 reflects that firstly, the
dataset is preprocessed, and then the enhanced dataset is fed to fine-tune the DL model for
training based on transfer learning to extract deep features. Secondly, the extracted features
are passed through the feature fusion process. Finally, an updated Antlion optimization
approach was employed to obtain an optimized feature vector.
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Figure 2. Illustration of the proposed methodology for skin lesion classification.

3.1. Datasets Description

This paper uses two variants of ISIC datasets, including 2018 and 2019, for the experi-
mental process.

ISIC2018: This dataset was generated in the year 2018 by ISIC. It is a collection of
10,014 training images and 55,834 testing images. The dermoscopy technology is employed
for capturing images RGB images. This dataset has seven classes: Akiec, Bcc, Bkl, Df, Mel,
Nv, and Vasc. Table 1 summarizes and highlights the overall class distribution within
the dataset.

Table 1. ISIC2018 Skin dataset description.

Class No. of Images

Akiec (Actinic keratosis) 326
Bcc (Basal Cell Carcinoma) 514

Bkl (Benign keratosis) 1099
Df (Dermatofibroma) 115

Mel (Melanoma) 1113
Nv (Nevus) 6705

Vasc (Vascular) 142

ISIC2019: This dataset was generated in the year 2019 by ISIC. It is a collection
of 20,685 training images and 47,514 testing images. The dermatoscopy technology is
employed for capturing images RGB images. This dataset has seven classes: AK, BCC, BKL,
DF, MEL, NV, and VASC. Table 2 summarizes and highlights the overall class distribution
within the dataset.

Table 2. ISIC2019 Skin dataset description.

Class No. of Images

AK (Actinic keratosis) 3469
BCC (Basal Cell Carcinoma) 3232

BKL (Benign keratosis) 3200
DF (Dermatofibroma) 3232

MEL (Melanoma) 3072
NV (Nevus) 2112

SCC (Squamous cell carcinoma) 3200
VASC (Vascular) 2240
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3.2. Novelty 1: Lesion Enhancement

In this work, a hybrid technique is employed for contrast enhancement. In the first
step, a haze reduction technique is employed, where the input image is refined, followed
by applying top–bottom filtering to improve local and global contrast [47]. The step-wise
haze reduction process is given below.

Step 1: The haze image model is given below:

I(x) = J(x)T(x) + L(1− T(x)) (1)

where I, J, L, and T represent the intensity, scene radiance, atmospheric light, and map
transmission, respectively. The scene radiance is recovered using the algorithm [48]; how-
ever, other factors, including J from the estimated light of the atmosphere and the map
transmission, are computed as follows:

J(x) = (I(x)−A)/(max(t(x), t0)) + A (2)

Step 2: Consider λ(x, y) is an input image of dimension N×M×K where N = M = 256

and K = 3. Let,
∼
λnz(x, y) determine the haze reduction image having the same dimen-

sions. The top hat filtering is proposed and computed using the following mathematical
formulation:

λTop(a, b) = (λ(a, b) ◦ s)− λ(a, b) (3)

λBot(a, b) = (λ(a, b) ◦ s)− λ(a, b) (4)

∼
λ(a, b) = ∑

i=1

(
λTop, λBot

)
−λBot(a, b) (5)

T = Max
(∼

λ(a, b)
)

(6)

F =


∼
λ(a, b) f or

∼
λ(a, b) ≥ T

λlos(a, b) f or
∼
λ(a, b) < T

(7)

The visual output of this process is illustrated in Figure 3.
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3.3. Data Augmentation

This is a process in which the data/data points are artificially increased using the
existing data for better training, identification, and classification in the later stages. The
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advantage of data augmentation is that it improves model learning by providing a huge
amount of data. Also, the cost of operations related to data collection will be reduced. The
detail given in Tables 2 and 3 shows that the total number of original images are 20,685.
Before data augmentation, the contrast of the real images is improved using the proposed
contrast-enhanced technique. After applying augmentation, the selected datasets were
updated and are shown in Tables 3 and 4. A few sample augmented images are illustrated
in Figure 4.

Table 3. Updated ISIC2018 Skin dataset images after data augmentation.

Class Before Augmentation After Augmentation

Akiec (Actinic keratosis) 326 7821
Bcc (Basal Cell Carcinoma) 514 7201

Bkl (Benign keratosis) 1099 6593
Df (Dermatofibroma) 115 7360

Mel (Melanoma) 1113 6678
Nv (Nevus) 6705 15,637

Vasc (Vascular) 142 4544

Table 4. Updated ISIC2019 Skin dataset after data augmentation.

Class Before Augmentation After Augmentation

AK (Actinic keratosis) 3469 6938
BCC (Basal Cell Carcinoma) 3232 6464

BKL (Benign keratosis) 3200 6400
DF (Dermatofibroma) 3232 6464

MEL (Melanoma) 3072 6144
NV (Nevus) 2112 4224

SCC () 3200 6400
VASC (Vascular) 2240 4480
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3.4. Modified Models

In this work, different DL models were fine-tuned to obtain high-performance accuracy.
These are explained in detail:

Fine-Tuned DarkNet19: The model is fine-tuned by eliminating linked, softmax,
classification, and final four average-pool layers. The original model is shown in Figure 5.
It is all because it is pre-trained on 1000 classes belonging to the ImageNet dataset. Hence,
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during the fine-tuning process, four new layers are added, including the average-pooling
2D-layer, fully connected layer, softmax layer, and classification layer. The Darknet19 model
is trained through transfer learning. In the training process, several hyper-parameters are
adjusted, i.e., the learning rate is 0.001, the minimum-batch size is 20, the momentum is
0.07, the optimizer is stochastic gradient descent, and the maximum epochs are 100. Finally,
the trained model extracts features adopting the gap layer.
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Figure 5. Architecture of DarkNet19 model.

Fine-Tuned ResNet18: The ResNet18 DL model consists of 18 layers. The architecture
has a fully connected combination of softmax, convolutional, pooling, and classification
layers. This model uses a pooling layer named ‘pool5’ for feature extraction. From the
ImageNet dataset, more than a million images will be trained on the network when you
load the pre-trained version. The architecture of ResNet18 is depicted in Figure 6. The last
four layers, termed the average—layer, are deleted during the fine-tuning phase, along
with the fully connected, softmax, and classification layers. The previous fully connected
layer was trained on an ImageNet dataset with 1000 item types.
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Furthermore, four more layers are added in a fine-tuning process. These are average-
pooling 2D-layer, fully connected-layer, softmax layer, and classification layer. The ResNet18
model is trained using TL. Numerous hyper-parameters are initialized and adjusted during
training, such as learning rate to 0.001, mini-batch size to 20, momentum to 0.07, stochastic
gradient descent optimizer, and a maximum number of epochs to 100. Finally, the trained
model extracts features from the pool5 layer.

Fine-tuned InceptionV3: The InceptionV3 DL model consists of 48 layers. The archi-
tecture contains a fully connected combination of softmax, convolutional, pooling, and
classification layers. A pooling layer named the ‘avg-pool layer’ was used for feature
extraction. This model was previously trained on over one million photos in the ImageNet
dataset. This model is mostly used for image recognition and has a 78.1% accuracy rate.
The architecture of the fine-tuned InceptionV3 is depicted in Figure 7. The last four av-
erage pool layers, along with the fully connected, softmax, and classification layers, are
deleted during the fine-tuning phase. The previous fully connected-layer was trained on
an ImageNet dataset with 1000 item types. Next, in a fine-tuning procedure, four new
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layers are added. These are the average-pooling 2D-layer, a fully connected layer, a softmax
layer, and a classification layer followed by TL to train the Inceptionv3 model. Numerous
hyper-parameters are initialized and adjusted during the training process, such as learning
rate to 0.001, minimum batch size to 20, momentum to 0.07, optimizer of stochastic gradient
descent, and maximum number of epochs to 100. Finally, the trained model is used to
extract features from the avg-pool-layer.
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Transfer Learning: In this section, TL [50] is discussed for this work. The domain,
denoted by F = {Z, R(Z)}, is made up of two parts, i.e., a feature space Z and a marginal
probability distribution R(Z), whereas Z = {z|zi ∈ Z, i = 1, · · · , M} and M is a dataset
containing M occurrences.

After that, the task is defined; when presented with a particular domain F, the task is
represented as T = {W, f (.)} including two factors such as label-space W and a mapping
function f (.), whereby W = {w|wi ∈W, i = 1, · · · , M}, and M is a label set for the relevant
instances in F. The mapping function f (.), generally known as f (z) = R(w|z), is a non-
linear indirect function that could bridge the gap between the anticipated judgment derived
from the proposed datasets and the input instance. The label spaces between these tasks
also allow for the specification of different goals. Different fault classes and categories
might be conceived of as distinct tasks.

Transfer learning, supplied with a source domain Fs = {Zs, Rs(Zs)} with the source
task Ts = {Ws, f s(.)} and a target domain FT =

{
ZT , RT(ZT)} with the target task

TT =
{

WT , f T(.)
}

, is looking for a better mapping function f T(.) for the target task TT

utilizing transferable knowledge from the source domain Ds and task Ts. Unlike traditional
ML and DL, where the domain and job of the source and target situations are identical,
i.e., Fs = FT and Ts = TT , TL solves challenges where the source and destination situations’
domains and/or tasks diverge, i.e., Fs 6= FT and/or Ts 6= TT .

Deep TL may be defined as follows based on the above concept: Deep TL aims to
comprehend the mapping function f S→T(.) Given a transfer learning challenge, leverage
the sophisticated DL model that is DNN f S→T(.): ZT →WT based on [FS,FT ,TS,TT].

Proposed Work Process: The process of transfer learning for feature extraction of
this work is depicted in Figure 8. Al three selected fine-tuned models are trained on the
skin datasets using the concept of transfer learning. Deep features are extracted from the
global average pooling layer of each model and obtained different dimensional feature
vectors. During the training of the deep models, the hyperparameters such as learning rate,
momentum, L2RegularizationFactor, and mini-batch size are selected through GA. The
resultant values are given in the above section. The extracted features are further fused
using a novel fusion technique (presented in the next Section 3.5).
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3.5. Novelty: Features Fusion and Optimization

Deep extracted features are fused using a serial correlation-based approach in this
work. The main purpose of this approach is to first serially fuse all the features and then
find the correlation based on the pairs. A total of four steps were performed for the fusion
of this approach:

Serially fused all vectors, as shown in Figure 3
Obtained a combined vector of dimension N × K
Find the correlation of each row feature vector and consider the most highly corre-

lated features
Check the fitness of each row using the Fine-KNN classifier
In the end, the positively correlated and weakly correlated features are again serially

fused in separate vectors. Both vectors are analyzed in terms of fitness function and the best
one with better accuracy. This complete process is defined under the following Algorithm 1:

Algorithm 1. Input: Original feature vectors

φ1 ← Fine-tune DarkNet features
φ2 ← Fine-tune Resnet18 features
φ3 ← Fine-tune InceptionV3 features
Step 1: Fused all vectors in a serial-based fashion

φ4 =

φ1
φ2
φ3


(N×k1+N×k2+N×k3)

Step 2: Make sets of φ4 using 2× 2 window size.
Step 3: Find the correlation of each set using the following equation:

r =
n(∑ φiφj)−(∑ φi)(∑ φj)√

[n ∑ φi
2−(∑ φi)

2]
[
n ∑ φj

2−(∑ φj)
2
]

Step 4: Consider features of positive correlation in a feature vector φ5k and
weak correlation in φ6k
Step 7: Fuse φ5k and φ6k separately in two new feature vectors and find the fitness of each.
Step 8: Based on the fitness, consider the highest accuracy feature set for further process.
Output: Positive correlation vector (higher accuracy value in this work) ← φ 5k

The fused feature vector is further refined using a nature-inspired improved algorithm.
Antlion Optimization with Mean Deviation(ALO-MD).
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Mirjalili [36] developed a novel enacted optimization approach called antlion optimiza-
tion (ALO). The ALO algorithm is constructed around the inherent hunting mechanism of
ant lions.

Motivation: Antlions (doodlebugs) are classified as Myrmeleontidae and Neuroptera [51].
They often hunt as larvae, while the adult stage is used for reproduction. As they dive
deep into the sand, antlion larvae move in a circular motion and spew sand from their
large lips. After excavating the trap, larvae sleep under the cone’s bottom, waiting for bugs,
particularly ants, to be entrapped in it. The antlion attempts to seize any prey it discovers
in the snare.

On the other hand, insects try to avoid captivity and are occasionally not immediately
captured. Antlions expertly pour sand towards the hole’s edge, enabling the prey to sink
to the bottom. A victim trapped in the mouth is eaten underneath. Antlions fling the
victim’s remains outside the hole after devouring the victim and prepare the hole for
their subsequent hunt. A further interesting aspect of antlion conduct is the relationship
involving trap size and two variables: hunger level and moon shape.

Antlion optimization (ALO): Mirjalili [36] developed a novel enacted optimization
approach called antlion optimization (ALO). The ALO algorithm is constructed around the
inherent hunting mechanism of antlions.

Artificial Antlion
Using the prior depiction of antlions, Mirjalili devised the following criterion through-

out optimization:

• Ants, as prey, wander across the search space utilizing various random walks.
• Antlion traps influence random walks.
• Antlions may dig holes in accordance to their size. The greater the fitness, the larger

the hole.
• Antlions are more likely to capture ants if their holes are wider.
• An antlion with the highest fitness level in each cycle can catch any ant.
• The random walk’s span is adaptively reduced to simulate ants sliding toward antlions.

Input
A searchable area, a fitness feature, a quantity of ants, antlions, iterations, and antlions (T)
Output
The fitness of the elitist antlion:

1. Make an irregular population of n ant positions and n antlion positions
2. Determine the fitness of each ant and antlion.
3. Find the elite that is the finest antlion.
4. t = 0
5. while(t ≤ T)

for each Ant I, do

• Choose an opponent using a roulette wheel (making trap).
• Bring the ants nearer to the antlion; considering Equations (2) and (3).
• For this Ant I, build and balance a random walk; check Equations (5) and (6) for model

trapping, Equation (7) for the random walk, and Equation (9) for walk normalization.
• end

6. Evaluate each ant’s fitness
7. If an antlion grows fitter (catching prey), replace it with its equivalent ant (7).
8. If an antlion becomes fitter than the elite, update it.
9. end while

Method 1: Antlion Optimization Algorithm (ALO)

• If an ant grows stronger than an antlion, the antlion will grab it and drag it beneath
the sand.

• After each hunt, an antlion repositions itself near the most recently caught prey and
digs a hole to maximize its chances of catching new prey.
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• Under the conditions above, an antlion optimizer can be built in the following.
• Method 1.

Building trap: The hunting skill of antlions is modeled using a roulette wheel. Ants
are believed to be restricted to a single antlion. The ALO algorithm must select antlions
throughout optimization depending on their fitness using a roulette wheel operator. This
technique increases the likelihood of stronger antlions catching ants.

Catching prey and re-building the hole:
In the final step of the hunt, the antlion consumes the ant. It is thought that when ants

increase physical fitness in relation to their comparable antlion, they penetrate the sand and
attempt to catch prey. An antlion must modify its posture to match the latest whereabouts
of the chasing ant in order to maximize its potential for finding new victims. In this sense,
sentence (1) is proposed.

Antlion(t
j) = Ant(t

i) is better than f
(

antilon(t
i)
)

, (1) where t indicates the most recent

revision, Antlion(t
j) represents the position of the choose j− th antlion at t− th iteration,

and Ant(t
i) represents the location of the I− th Ant at the t− th iteration.

Antlion optimizer, according to the algorithm, performs the following stages on each
particular ant:

Sliding ants towards Antlion:
Sand is thrown from the hole’s center when an antlion finds an ant inside the trap.

The imprisoned ant’s attempt to escape is impacted by this action. The radius of the ants’
random walk hyper-sphere is reduced adaptively to represent this behavior numerically;
see Equations (8)–(10).

as =
as

I
, (8)

where as is the component that has the least impact on t− th iteration and i is a ratio.

bs =
bs

I
, (9)

where bs is the highest value for all variables at t− th iteration and I is a ratio that is defined as:

I = 10u s
S

, (10)

where s is the latest iteration; S the highest number of iterations; and u a constant specified
by the current iteration (u = 2 f or s > 0.1S, u = 3 otherwise). When s exceeds 0.5S, w
equals 4. When s > 0.75S and u = 5, when s > 0.9S, u = 6, and when s > 0.95S, u = 6.
Essentially, the constant u can vary the amount of exploitation precision.

Trapping in Antlion’s holes
The slide ant is captured by simulating the food movement towards the targeted

antlion’s hole. Alternatively, the location of the selected antlion now determines how far
the ant can travel. Adjusting the range of the ant’s random journey to the antlion’s location
in five equations can be depicted using Equations (11) and (12):

a
(

s
i

)
= as + Antlion

(
s
j

)
(11)

b
(

s
i

)
= bs + Antlion

(
s
j

)
(12)

where as is the least significant variable at the t− th iteration; bs is the vector containing all
variables with the highest values at the t− th iteration; a(s

i) is the least significant factor for
the i− th ant; b(s

j) is the maximum of all variables for the i− th ant; and Antlion(s
j) shows

the location of the chosen j− th antlion at the t− th iteration.



Diagnostics 2023, 13, 2869 14 of 25

Random walks of ants:
Equation (13) underpins all random walks.

y(s) = [0, cumsum(2p(s1)− 1); cumsum(2p(s2)− 1); . . . ; cumsum(2p(sS)− 1)] (13)

where the cumulative amount is calculated by cumsum; (S) is the maximum number of
iterations, where iteration here refers to the random walk step; and p(s) is Equation (14)
for a stochastic function (8).

p(s) =
{

1 i f rand > 0.5
0 i f rand ≤ 0.5,

(14)

where s is the random walk step iteration in this research and rand is a random integer
produced with a homogenous distribution in the range [0, 1] as per Equation (15):

V
(

s
i

)
=

(
v(s

i)− xi
)
×
(
bi − a(s

i)
)(

z(s
i)− xi

) + xi (15)

where xi is the random walk in the least of the i − th variable; bi is the random walk’s
maximum value in the i− th variable; a(s

i) is the lowest of the i− th variable at the t− th
iteration; and b(s

i) is the peak of the i− th variable at the t− th iteration.
Elitism
The best solution(s) should be maintained throughout iterations by employing elitism.

The chosen antlion and the elite antlion lead the ant’s random walk in this scenario;
therefore, moving a given ant takes the form of the average of both random walks; see
Equation (16).

Ant
(

s
i

)
=

(
P( s

A) + P( s
F)
)

2
(16)

where P( s
A) is the picked antlion’s random stroll about the roulette table, and P( s

F) is the
shambling around the roulette wheel of the elite antlion.

4. Results and Discussion

With an emphasis on the inefficiency of other classifiers, test design, data collection,
recall value, quantitative data, graphical representations, and tables, this section will
analyze and show the findings based on various performance indicators.

4.1. Experimental Setup

On the dataset, 10-fold cross-validation was used to perform the calculations. The
training rate is set to 0.05, the mini-batch range is restricted to 32, and 100 iterations are
required for CNN architecture learning. The best among them is validated based on
performance measurements such as accuracy, time taken, sensitivity rate, precision rate,
number of observations, FNR, Fowlkes–Mallows index, and F1-Score. Several classifiers are
utilized to validate the suggested approach with the greatest accuracy and minimum time
consumed. MATLAB 2022a was employed to execute the simulation studies on a personal
desktop pc Core-i7 having a memory of 16GB as well as an 8 Gigabyte graphics card.

4.2. Results and Analysis

ISIC2018 Dataset Results: Table 5 contains the classification outcomes for the ISIC2018
dataset using the DarkNet19 deep model. The fine-tuned model was trained using the
enhanced dataset, which was also used to extract features from the second-to-last feature
layer. Several classifiers were used, but Quadratic SVM outperformed them with an
accuracy of 86.3%, a recall rate of 87.27%, a precision rate of 87.2%, F1 score of 87.24%, and
an AUC value of 0.98%. Each classifier’s computational time is also calculated, as shown in
Table 5. The Fine Tree classifier’s least recorded time is 108.46 s, while the Medium Neural
Network’s greatest recorded time is 2978.1 (s).
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Table 5. Classification results of fine-tuned darknet19 and ResNet18 models on augmented ISIC2018
skin dataset.

Classifier

Classification Results of Fine-Tuned Darknet19 Model on Augmented ISIC2018 Skin Dataset

Sensitivity
(%)

Precision
Rate (%)

F1 Score
(%)

Area Under
Curve

Fowlkes–
Mallows

Index

Accuracy
(%)

Time
(s)

Fine Tree 56.53 58.8 57.64 0.84 57.65 59.1 108.46
Quadratic SVM 87.27 87.2 87.24 0.98 87.23 86.3 2740.8
Medium KNN 83.84 81.79 82.81 0.98 82.81 82.5 1923.7
Weighted KNN 86.91 85.41 86.154 0.96 86.16 85 2657.1

Bagged Tree 80.84 82.2 81.52 0.96 81.52 81.0 604.7
Narrow Neural Network 81.21 80.24 79.74 0.94 80.72 79.5 2701.3
Medium Neural Network 84.3 83.89 84.1 0.95 84.09 82.8 2978.7

Bi-Layered Neural Network 81.66 80.71 81.18 0.94 81.18 79.9 2809.8

Classifier

Classification Results of Fine-Tuned Resnet18 Model on Augmented ISIC2018 Skin Dataset

Sensitivity
(%)

Precision
Rate (%)

F1 Score
(%)

Area Under
Curve

Fowlkes–
Mallows

Index

Accuracy
(%)

Time
(s)

Fine Tree 61.91 62.69 62.3 0.87 62.30 62.9 52.616
Quadratic SVM 89.39 89.13 89.26 0.98 89.26 88.3 868.55
Medium KNN 87.17 86.01 86.58 0.98 86.59 85.4 429.95
Weighted KNN 89.3 88.39 88.84 0.97 88.84 87.4 428.64

Bagged Tree 83.76 84.37 84.06 0.97 84.06 83.5 145.55
Narrow Neural Network 85.46 84.56 85 0.96 85.01 83.8 985.98
Medium Neural Network 85.84 85.63 85.74 0.98 85.73 84.5 1112.6

Bi-Layered Neural Network 85.3 84.51 84.9 0.96 84.90 83.6 1065

Classifier

Classification Results of Fine-Tuned inceptionV3 Model on Augmented ISIC2018 Skin Dataset

Sensitivity
(%)

Precision
Rate (%)

F1 Score
(%)

Area Under
Curve

Fowlkes–
Mallows

Index

Accuracy
(%)

Time
(s)

Fine Tree 89.614 89.04 89.32 0.98 89.33 87.9 129.68
Quadratic SVM 92.63 92.03 92.32 0.99 92.33 90.9 2425.5
Medium KNN 92.14 90.99 91.56 0.99 91.56 90.0 1780.6
Weighted KNN 91.21 90.54 90.88 0.97 90.87 89.2 1872.2

Bagged Tree 90.53 90.29 90.4 0.98 90.41 89.1 314.74
Narrow Neural Network 90.89 90.57 90.72 0.99 90.73 89.3 3566.7
Medium Neural Network 89.99 89.99 89.98 0.99 89.99 88.6 4601.7

Bi-Layered Neural Network 91.34 90.74 91.04 0.99 91.04 89.5 3565.7

The classification outcomes of the ISIC2018 dataset for the Resnet18 deep model are
shown in Table 5 (second half). Numerous classifiers have been used for the classification
process but Quadratic SVM performed better, achieving an accuracy of 88.3%, a recall rate
of 89.39%, a precision rate of 89.13%, an F1 score of 89.26%, and an AUC value of 0.98%.
Moreover, the computational time is also computed for each classifier, as shown in Table 5.
Compared with experiment 1 (Table 5), it is observed that the maximum accuracy for this
experiment is 88.3%, whereas for the first experiment, the maximum obtained accuracy
was 86.3%. Hence, it can be summarized that the fine-tuned Resnet18 model gives better
accuracy. The least noted time is 52.616 s for the Fine Tree classifier, whereas the maximum
observed time is 1112.6 s for the medium neural network.

The classification outcomes for the ISIC2018 dataset for the InceptionV3 deep model
are shown in Table 5 (third section). Although several classifiers were used, Quadratic SVM
outperformed them all with an accuracy of 90.9%, a recall rate of 92.63%, a precision rate of
92.03%, an F1 score of 92.32%, and an AUC value of 0.99%. Each classifier’s computing time
is also calculated, as shown in Table 5. It was found that the maximum accuracy for this
experiment is 90.9%, compared to experiments 1 and 2. Meanwhile, for the first experiment,
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the maximum obtained accuracy was 86.3%, and for the second experiment, the maximum
accuracy was 88.3%. Hence, it can be summarized that the fine-tuned InceptionV3 model
provides better accuracy. The minimum noted time is 129.68 s for the Fine Tree classifier,
whereas the maximum observed time is 4601.7 s for the medium neural network.

The classification outcomes of the proposed fusion technique on the enhanced ISIC2018
skin dataset are given in Table 6. Many classifiers were used; however, Quadratic SVM
outperformed them all with an accuracy of 96.1%, a recall rate of 96.93%, a precision rate of
96.33%, an F1 score of 96.62%, and an AUC value of 0.98. Each classifier’s computational
time is also calculated, as shown in Table 6. Compared with previous experiments (Table 5),
it is observed that the maximum accuracy for this experiment is 96.1%, whereas for the
first experiment, the maximum obtained accuracy was 86.3%, for the second experiment,
the maximum accuracy was 88.3%, and for the third experiment the maximum accuracy
was 90.9%. Hence, the fusion process increases accuracy more than individual deep model
components. The minimum noted time is 290.756 s for the Fine Tree classifier, whereas the
maximum observed time is 8693 s for the medium neural network. The confusion matrix
of this experiment is also shown in Figure 9.

Table 6. Classification results of fusion on augmented ISIC2018 skin dataset.

Classifier Sensitivity
(%)

Precision
Rate (%)

F1 Score
(%)

Area Under
Curve

Fowlkes–
Mallows

Index

Accuracy
(%)

Time
(s)

Fine Tree 91.03 90.41 90.72 0.98 90.72 89.8 290.756
Quadratic SVM 96.93 96.33 96.62 0.98 96.63 96.1 6034.85
Medium KNN 95.69 94.44 95.06 0.99 95.06 93.8 4134.25
Weighted KNN 96.24 94.94 95.58 0.99 95.59 94.3 4957.94

Bagged Tree 94.24 93.93 94.08 0.99 94.08 93.5 1064.99
Narrow Neural Network 95.2 95.07 95.14 0,98 95.13 94.6 7253.98
Medium Neural Network 95.5 95.31 95.4 0.99 95.40 94.8 8693

Bi-Layered Neural Network 95.04 94.9 94.96 0.99 94.97 94.4 7440.5
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Table 7 shows the proposed feature selection technique results using the enhanced
ISIC2018 dataset. The Quadratic SVM classifier outperformed them all with an accuracy
of 96.0%, a recall rate of 96.86%, a precision rate of 96.3%, an F1 score of 96.56%, and an
AUC value of 0.99%. Each classifier’s computational time is also calculated, as shown
in Table 7. Moreover, the confusion matrix is illustrated in Figure 10, which shows the
correct prediction rate for each class. The highest accuracy for this experiment is 96.0%,
compared with experiments 1, 2, and 3 (Table 5). Although the maximum accuracy for the
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first experiment was 86.3%, the maximum accuracy for the second experiment was 88.3%,
the maximum accuracy for the third experiment was 90.9%, and the maximum accuracy
for the fourth experiment was 96.1%.

Table 7. Classification results of proposed optimization algorithm on augmented ISIC2018 skin
dataset.

Classifier
Sensitivity

Rate
(%)

Precision
Rate (%)

F1-Score
(%)

Area Under
Curve

Fowlkes–
Mallows

Index

Accuracy
(%)

Time
(s)

Fine Tree 90.67 90.21 90.44 0.98 90.44 89.7 130.94
Quadratic SVM 96.92 96.35 96.64 0.99 96.63 96.1 1464.4
Medium KNN 95.79 94.47 95.12 0.99 95.13 93.9 2525.7
Weighted KNN 96.33 94.99 95.66 0.99 95.66 94.4 2120

Bagged Tree 93.91 93.66 93.78 0.99 93.78 93.2 268.03
Narrow Neural Network 94.57 94.6 94.58 0.98 94.58 94.0 963.51
Medium Neural Network 95.16 94.97 95.06 0.99 95.06 94.5 430.84

Bi-Layered Neural Network 94.41 94.33 94.36 0.98 94.37 93.8 1562.8
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In conclusion, it can be said that when comparing Table 5, it is shown that the opti-
mization time increases accuracy and decreases computing time; however, it can be seen
that the accuracy only changed a little, but the computational time changed significantly
compared to the previous experiment. Hence, overall, the proposed framework and the
optimization process show improvement. The least noted time is 130.94 s for the Fine Tree
classifier, whereas the maximum observed time is 2525.7 (s) for medium KNN.

ISIC2019 Dataset Results: The classification outcomes of the ISIC2019 dataset using
the DarkNet19 deep model are shown in Table 8. The fine-tuned model was trained using
the supplemented dataset, which was also used to extract features from the second-to-
last feature layer. Weighted KNN outperformed other classifiers used for classification,
achieving an accuracy of 99.7%, a recall rate of 99.73%, a precision rate of 99.71%, an F1
score of 99.72%, and an AUC value of 1.00%. Each classifier’s computing time is also
calculated, as shown in Table 8. The Fine Tree classifier’s minimum noted time is 245.51 s,
whereas the bi-layer neural network’s highest recorded time is 2123.6 (s).

The classification outcomes of the ISIC2019 dataset for the Resnet18 deep model are
shown in Table 8 (second half). Several classifiers have been used; however, Weighted KNN
outperformed them all with an accuracy of 99.5%, a recall rate of 99.53%, a precision rate
of 99.59%, an F1 score of 99.56%, and an AUC value of 1.00%. Each classifier’s processing
time is also calculated. This experiment obtained a maximum accuracy of 99.5% compared
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to the previous experiment. The classification outcomes of the ISIC2019 dataset for the
InceptionV3 deep model are shown in Table 8 (third section). Many classifiers have been
used; however, Weighted KNN outperformed them all with an accuracy of 99.7%, a recall
rate of 99.66%, a precision rate of 99.69%, an F1 score of 99.36%, and an AUC value of 1.00%.
Overall, this experiment’s performance is better than previous experiments.

Table 8. Classification results of the ISIC2019 skin dataset.

Classifier Sensitivity
(%)

Precision
Rate (%)

F1 Score
(%)

Area Under
Curve

Accuracy
(%)

Fowlkes–
Mallows

Index

Time
(s)

Fine Tree 80.95 81.06 81.0 0.96 80.5 81.00 245.51
Quadratic SVM 99.34 99.36 99.34 1.00 99.3 99.35 547.26
Medium KNN 99.19 99.24 99.22 1.00 99.2 99.21 1951.8
Weighted KNN 99.73 99.71 99.72 1.00 99.7 99.72 1916.6

Bagged Tree 99.11 99.2 99.16 1.00 99.2 99.15 8373
Narrow Neural Network 99.59 99.6 99.58 1.00 99.6 99.59 1793.8
Medium Neural Network 99.61 99.61 99.6 1.00 99.6 99.61 3073

Bi-Layered Neural Network 99.5 99.54 99.52 1.00 99.5 99.52 2123.6

Classifier

Classification Results of Fine-Tuned Resnet18 Model on Augmented ISIC2019 Skin Dataset

Sensitivity
(%)

Precision
Rate (%)

F1 Score
(%)

Area Under
Curve

Accuracy
(%)

Fowlkes–
Mallows

Index

Time
(s)

Fine Tree 63.78 66.54 65.14 0.88 63.9 65.15 102.59
Quadratic SVM 98.53 98.6 98.56 1.00 98.5 98.56 466.99
Medium KNN 98.51 98.81 98.66 1.00 98.7 98.66 1675.7
Weighted KNN 99.53 99.59 99.56 1.00 99.5 99.56 1612.6

Bagged Tree 96.89 96.89 96.88 1.00 97.2 96.89 7982.8
Narrow Neural Network 98.26 98.35 98.3 0.99 98.3 98.30 2934.5
Medium Neural Network 98.34 98.45 98.4 0.99 98.4 98.39 4256.6

Bi-Layered Neural Network 98.29 98.4 98.34 0.99 98.4 98.34 6263.8

Classifier

Classification Results of Fine-Tuned inceptionV3 model on augmented ISIC2019 Skin Dataset

Sensitivity
(%)

Precision
Rate (%)

F1 Score
(%)

Area Under
Curve

Accuracy
(%)

Fowlkes–
Mallows

Index

Time
(s)

Fine Tree 96.2 96.26 96.22 0.99 96.3 96.23 112.15
Quadratic SVM 99.19 99.24 99.22 1.00 99.2 99.21 595.26
Medium KNN 99.05 88.61 93.54 1.00 99.0 93.68 1348.2
Weighted KNN 99.66 99.69 99.68 1.00 99.7 99.67 1361.8

Bagged Tree 99.35 99.39 99.36 1.00 99.4 99.37 4002.9
Narrow Neural Network 98.49 99.51 98.98 0.98 99.5 99.00 4175.2
Medium Neural Network 99.49 99.5 99.5 0.98 99.5 99.49 5605.7

Bi-Layered Neural Network 99.33 99.34 99.36 1.00 99.3 99.33 4694.9

The classification outcomes for the enhanced ISIC2018 skin dataset are given in Table 9.
Many classifiers have been used; however, Medium KNN outperformed them all with an
accuracy of 99.9%, a recall rate of 99.86%, a precision rate of 99.88%, an F1 score of 99.88%,
and an AUC value of 1.00%. Each classifier’s processing time is also calculated, as shown
in Table 9. Moreover, Figure 11 shows the Medium KNN’s confusion matrix to verify the
correct prediction rate. Compared with the previous three experiments of the proposed
fusion process, it is observed that the accuracy of this experiment is significantly improved.
After the fusion process, we employed the proposed feature selection technique.
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Table 9. Classification results of the proposed fusion on augmented ISIC2019 skin dataset.

Classifier Sensitivity
(%)

Precision
Rate (%)

F1 Score
(%)

Area Under
Curve

Accuracy
(%)

Fowlkes–
Mallows

Index

Time
(s)

Fine Tree 95.99 96.05 96.02 0.99 96.1 96.02 460.25
Quadratic SVM 99.54 99.54 99.56 1.00 99.6 99.54 1609.51
Medium KNN 99.86 99.88 99.88 1.00 99.9 99.87 4875.7
Weighted KNN 99.93 99.94 99.94 1.00 99.9 99.93 4891

Bagged Tree 99.38 99.44 99.42 1.00 99.4 99.41 8903.5
Narrow Neural Network 99.76 99.78 99.76 1.00 99.8 99.77 8903.5
Medium Neural Network 99.83 99.84 99.84 1.00 99.8 99.83 12,935.3

Bi-Layered Neural Network 99.79 99.79 99.78 1.00 99.8 99.79 13,082.3
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Several classifiers have been used; however, Weighted KNN outperformed them
all with an accuracy of 99.9%, a recall rate of 99.89%, a precision rate of 99.89%, an F1
score of 99.88%, and an AUC value of 1.00%. Each classifier’s computing time is also
calculated, as shown in Table 10. Moreover, Figure 12 also shows the Weighted KNN
confusion matrix. By employing Figure 12, we can verify the correct prediction rate of each
cancer class. In contrast to Experiment 1, Experiment 2, Experiment 3, and Experiment 4
(Tables 8 and 9), it is noted that the maximum accuracy for this experiment is 99.9%. In
contrast, the maximum accuracy for the first experiment was 99.7%, the maximum accuracy
for the second experiment was 99.5%, the maximum accuracy for the third experiment was
99.7%, and the maximum accuracy for the fourth experiment was 99.9%. Overall, it is noted
that the accuracy of the fusion process is improved, but computational time is significantly
reduced for the feature selection technique.

Table 10. Classification results of proposed optimization algorithm on augmented ISIC2019 skin
dataset.

Classifiers Sensitivity
(%)

Precision
Rate (%)

F1 Score
(%)

Area Under
Curve

Accuracy
(%)

Fowlkes–
Mallows

Index

Time
(s)

Fine Tree 98.29 94.8 96.52 0.99 94.6 96.53 33.252
Quadratic SVM 99.6 99.6 99.6 1.00 99.6 99.60 142.73
Medium KNN 99.8 99.84 99.82 1.00 99.8 99.82 279.97
Weighted KNN 99.89 99.89 99.88 1.00 99.9 99.89 283.46

Bagged Tree 98.78 98.85 98.82 1.00 98.8 98.81 1018.1
Narrow Neural Network 99.61 99.65 99.64 1.00 99.6 99.63 61.565
Medium Neural Network 99.73 99.71 99.72 1.00 99.7 99.72 62.441

Bi-Layered Neural Network 99.59 99.59 99.58 1.00 99.6 99.59 83.467
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In the end, the comparison is conducted regarding time for the middle steps on
selected datasets. Table 11 presents the computational time-based comparison of the
ISIC2018 dataset. This table shows that the time noted by the Resnet18 model is less
than the Darknet19 and InceptionV3, except for the Bagged Tree classifier. However, after
the fusion process, it jumped and almost doubled this time, which is a drawback of this
framework. This drawback was resolved through a proposed optimization approach that
maintains accuracy and reduces the computational time significantly compared to the
fusion process. For Darknet19, the minimum time is 108.46 s for the Fine Tree classifier,
and the maximum time is 2978.7 s for the Medium Neural Network. For Resnet18, the
minimum time is 52.616 s for the Fine Tree classifier, and the maximum time is 1112.6 s
for the Medium Neural Network. For InceptionV3, the minimum time is 129.68 s for the
Fine Tree classifier, and the maximum time is 4601.7 s for the Medium Neural Network.
For fusion, the minimum time is 290.756 s for the Fine Tree classifier, and the maximum is
8693 s for the Medium Neural Network. For optimization, the minimum time is 130.94 s
for the Fine Tree classifier, and the maximum time is 2525.7 s for the Medium KNN.
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Table 11. Computational time-based comparison for ISIC2018 skin dataset.

Classifier Darknet19 Resnet18 InceptionV3 Fusion Optimization

Fine Tree 108.46 52.616 129.68 290.756 130.94
Quadratic SVM 2740.8 868.55 2425.5 6034.85 1464.4
Medium KNN 1923.7 429.95 1780.6 4134.25 2525.7
Weighted KNN 2657.1 428.64 1872.2 4957.94 2120

Bagged Tree 604.7 145.55 314.74 1064.99 268.03
Narrow Neural Network 2701.3 985.98 3566.7 7253.98 963.51
Medium Neural Network 2978.7 1112.6 4601.7 8693 430.84

Bi-Layered Neural Network 2809.8 1065 3565.7 7440.5 1562.8

Table 12 presents the computational time-based comparison of the ISIC2019 dataset.
This table shows that the time noted by the Resnet18 model is less than the Darknet19 and
InceptionV3 except for Medium KNN, Weighted KNN, Medium Neural Network, and
Bi-Layered Neural Network classifier. However, after the fusion process, it jumped and
almost doubled this time, which is a drawback of this framework. This drawback was
resolved through a proposed optimization approach that maintains accuracy and reduces
the computational time significantly compared to the fusion process. For Darknet19, the
minimum time is 245.51 s for the Fine Tree classifier, and the maximum time is 8373 s for
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Bagged Tree. For Resnet18, the minimum time is 102.59 s for the Fine Tree classifier, and the
maximum time is 7982.8 s for Bagged Tree. For InceptionV3, the minimum time is 460.25 s
for the Fine Tree classifier, and the maximum time is 5605.7 s for the Medium Neural
Network. For fusion, the minimum time is 460.25 s for the Fine Tree classifier, and the
maximum is 13082.3 s for the Bi-Layered Neural Network. For optimization, the minimum
time is 33.252 s for the Fine Tree classifier, and the maximum is 1018.1 s for Bagged Tree.
Finally, the proposed framework’s accuracy is compared with several recent studies, as
presented in Table 13. Based on this table, it is observed that the proposed framework
accuracy is significantly improved. In addition, a few AI-based dermatoscopy techniques
(publicly available) are compared with the proposed method. In [52], they obtained an
AUC value of 0.970 on ISIC2019 and 0.932 on ISIC2018 dataset using the ADAE technique.
However, our method obtained 0.99. In [53], they obtained an accuracy of 96.10%, whereas
the proposed method obtained 99.8%.

Table 12. Computational time-based comparison for the ISIC2019 skin dataset.

Classifier Darknet19 Resnet18 InceptionV3 Fusion Optimization

Fine Tree 245.51 102.59 112.15 460.25 33.252
Quadratic SVM 547.26 466.99 595.26 1609.51 142.73
Medium KNN 1951.8 1675.7 1348.2 4875.7 279.97
Weighted KNN 1916.6 1612.6 1361.8 4891 283.46

Bagged Tree 8373 7982.8 4002.9 8903.5 1018.1
Narrow Neural Network 1793.8 2934.5 4175.2 8903.5 61.565
Medium Neural Network 3073 4256.6 5605.7 12,935.3 62.441

Bi-Layered Neural Network 2123.6 6263.8 4694.9 13,082.3 83.467

Table 13. Comparison of the proposed framework with recent computerized AI techniques.

Authors/Reference Method
Dataset Accuracy

(%)
Time

(s)

ISIC18 ISIC19

Nawaz, Marriam [54] A deep learning CornerNet and
Fuzzy-Means Clustering Algorithm 3 99.63%

Alsaade [55] Deep Learning and Traditional Machine
learning based AI system 3 98.35%

Babu [56] Support vector machine and HOG
features-based AI system 3 76%

Alizadeh [57] Combining CNN and Traditional Features of
AI System 3 97.5%

Ichim [58] Multiple Connected Neural Network
Architecture 3 97.5%

El-Khatib [42] Simple Deep Learning Method 3 93%
Monika [59] Machine learning-based system 3 96.25%

Our Proposed System 3 96.1% 1464.4
Our Proposed System 3 99.9 283.46

Table 14 presents the summary of all best results based on the additional performance
measures such as Fowlkes–Mallows index, MCC, and Kappa. Overall, the proposed
method shows the improved accuracy.
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Table 14. Proposed classification results for ISIC2018 and ISIC2019 datasets based on all performance
measures including MCC, Kappa, and Fowlkes–Mallows index.

Classification results of fine-tuned darknet19 model on augmented ISIC2018 skin dataset

Quadratic SVM
Sensitivity

(%)
Precision
Rate (%)

F1 Score
(%)

Area Under
Curve

Fowlkes–Mallows
index

Accuracy
(%) MCC Kappa

87.27 87.2 87.24 0.98 87.23 86.3 84.93 44.33

Classification results of fine-tuned resnet18 model on augmented ISIC2018 skin dataset

Quadratic SVM 89.39 89.13 89.26 0.98 89.26 88.3 87.16 51.92

Classification results of fine-tuned inceptionV3 model on augmented ISIC2018 skin dataset

Quadratic SVM 92.63 92.03 92.32 0.99 92.33 90.9 90.44 61.92

Classification results of fusion on augmented ISIC2018 skin dataset.

Quadratic SVM 96.93 96.33 96.62 0.98 96.63 96.1 95.93 84.09

Classification results of proposed optimization algorithm on augmented ISIC2018 skin dataset.

Quadratic SVM 96.92 96.35 96.64 0.99 96.63 96.1 95.94 84.10

Proposed classification results for ISIC2019 dataset

Classification results of fine-tuned darknet19 model on augmented ISIC2019 skin dataset

Weighted KNN
Recall

(%)
Precision
Rate (%)

F1 Score
(%)

Area Under
Curve

Accuracy
(%)

Fowlkes–
Mallows

index
MCC Kappa

99.73 99.71 99.72 1.00 99.7 99.73 99.68 98.63

Classification results of fine-tuned Resnet18 model on augmented ISIC2019 skin dataset

Weighted KNN 99.53 99.59 99.56 1.00 99.5 99.53 99.45 97.78

Classification results of fine-tuned InceptionV3 model on augmented ISIC2019 skin dataset

Weighted KNN 99.66 99.69 99.68 1.00 99.7 99.66 99.62 98.37

Classification results of fusion on augmented ISIC2019 skin dataset.

Weighted KNN 99.93 99.94 99.94 1.00 99.9 99.93 99.91 99.63

Classification results of proposed optimization algorithm on augmented ISIC2019 skin dataset.

Weighted KNN 99.89 99.89 99.88 1.00 99.9 99.89 99.90 99.60

5. Conclusions

Today, serious issues include the deaths of patients due to the late or incorrect diag-
nosis of cancer cases. Early diagnosis of cancer cases using a CAD system can help in the
reduction in the death rate. When an appropriate CAD system is employed, this can com-
plement the work of dermatologists in classifying skin lesions (benign or melanoma). This
work proposes a deep learning- and optimization-based end-to-end framework for multi-
class skin lesion classification. Initially, a contrast enhancement technique was proposed
based on the dark channel haze and top–bottom filtering that improved image quality and
the strength of deep features. Hyperparameters of the fine-tuned model were initialized
using a genetic algorithm instead of manual initialization. After that, deep features were
extracted and fused with the information using a serial correlation approach. The fusion
process improved the accuracy, but computational time increased. A selection technique
called improved antlion optimization was developed to make the framework more efficient
in terms of time. The best features are selected using this approach and classified using
machine learning classifiers. The experimental process was conducted on two publicly
available datasets, ISIC2018 and ISIC2019, and obtained improved accuracy of 96.1% and
99.9%, respectively.
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5.1. Limitations

- A detailed analysis is required for the max pooling operation of sizes 2 × 2, 3 × 3, and
4 × 4 of the weights preprocessing process.

- The augmentation process improved the accuracy, but on the other hand, it signifi-
cantly increased the redundant features.

- KNN classifiers drop the classification accuracy that needs the proper analysis.
- The fusion process improved the accuracy, but computational time also increased due

to the enlarged number of predictors.

5.2. Future Directions

A residual block-based attention network will be designed in the future, and more
layers will be added based on the GradCAM approach. This will allow max-pooling layer
weights to be analyzed to help improve the proposed model. In addition, the experimental
process will be conducted on the ISIC2020 dataset.
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