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Abstract
1.	 Step selection analysis (SSA) is a common framework for understanding animal 

movement and resource selection using telemetry data. Such data are, however, 
inherently autocorrelated in space, a complication that could impact SSA-based 
inference if left unaddressed. Accounting for spatial correlation is standard sta-
tistical practice when analysing spatial data, and its importance is increasingly 
recognized in ecological models (e.g. species distribution models). Nonetheless, 
no framework yet exists to account for such correlation when analysing animal 
movement using SSA.

2.	 Here, we extend the popular method integrated step selection analysis (iSSA) by 
including a Gaussian field (GF) in the linear predictor to account for spatial correla-
tion. For this, we use the Bayesian framework R-INLA and the stochastic partial 
differential equations (SPDE) technique.

3.	 We show through a simulation study that our method provides accurate fixed 
effects estimates, quantifies their uncertainty well and improves the predictions. 
In addition, we demonstrate the practical utility of our method by applying it to 
three wolverine (Gulo gulo) tracks.

4.	 Our method solves the problems of assuming spatially independent residuals in 
the SSA framework. In addition, it offers new possibilities for making long-term 
predictions of habitat usage.

K E Y W O R D S
animal movement, habitat selection, inlabru, spatial statistics, step selection analysis, 
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1  |  INTRODUC TION

Fine-scale animal tracking has become a popular tool in ecology 
and conservation research (Kays et al., 2015; Nathan et al., 2008). 
An important application of animal movement data is to make in-
ference about the effects of environmental resources on movement 
decisions of animals (Thurfjell et al.,  2014). For instance, Marshall 
et al.  (2020) analysed telemetry data of King Cobras in Northeast 
Thailand based on different landscape types. They showed evidence 
that these animals tend to move less on agricultural landscapes. 
Similarly, Prokopenko et al. (2017), studied the influence of roads on 
animal movement behaviour. Their analysis suggests that crossing 
roads was avoided by elk, even when traffic was low. Understanding 
these mechanisms is essential, as it allows humans to identify how 
animals react to disturbance elements or identify important habitat 
features, crucial for effective management and conservation. From 
a basic science perspective, these methods allow ecologists to un-
derstand crucial processes such as species distributions, home range 
formation, and assessing the intensity of species interactions (Fortin 
et al., 2005; Matthews et al., 2020; Thurfjell et al., 2014).

Among the most commonly used statistical tools for analysis  
of animals' habitat selection using telemetry data are resource 
selection analyses (RSA; Boyce et al., 2002; Manly et al., 2007) and 
step selection analysis (SSA; Forester et al., 2009, Fortin et al., 2005). 
The RSA framework is based on resource selection functions (RSF) to 
understand habitat selection. The SSA approach uses RSFs as well 
but they are weighted by a function called the movement kernel, 
which accounts for movement constraints between the consecutive 
locations. Such weighted RSF is also known as a step selection func-
tion (SSF) (Avgar et al., 2016). The main aim of both approaches is 
to understand which landscape features or different habitat types 
influence animal space use and to quantify the intensity of affinity or 
aversion to these explanatory variables. Methodologically, the origi-
nal idea is to compare observed animal locations with a sample of lo-
cations that were available to the animals (Lele et al., 2013). For RSA, 
available locations are typically sampled uniformly over an area that 
is, in principle, deemed accessible to the studied animals, and the 
common practice is to use a logistic regression to make statistical in-
ference on the parameters of the RSF. An inherent assumption of this 
approach is that there are no movement constraints for animals, that 
is the animals could reach any location of the study area between 
consecutive observation times (Fieberg et al., 2021). However, this 
is not plausible if the time interval between consecutively observed 
locations is not large enough to assume their independence, which 
is almost always the case when RSFs are used to analyse movement 
data collected by modern biotelemerty devices (Nathan et al., 2022). 
To better account for this, SSFs instead make inference about con-
secutive steps/locations that connect sequential locations rather 
than treating each location as independent. This is implemented 
through a conditional logistic regression (Fieberg et al., 2021; For-
ester et al., 2009). Over the years, the use of SSFs has been refined, 
including different approaches to sample available steps (Forester 
et al., 2009), a correction for methodological approximations (iSSA; 

Avgar et al.,  2016), and a reformulation of the conditional logistic 
regression approach as Poisson GLM to account for individual-level 
effects on habitat selection strength (Muff et al.,  2020). Now-
adays, many datasets are modelled with help of SSFs rather than 
RSF approaches. A more detailed summary of the development of 
SSA can be found in Northrup et al. (2022). In addition, an extensive 
description of RSA, SSA and many other animal movement models is 
presented in Hooten et al. (2017).

Despite SSA being a well-established inference framework for 
telemetry data, there are some weaknesses. In SSA approaches, the 
predictive quality of the model depends exclusively on the covari-
ates provided by the user. Examples of missing covariates that could 
strongly influence movement include home ranges of species or un-
observed individuals that interact with tracked individuals, which 
are difficult to identify a priori and can have a considerable effect 
on space-use decisions (Börger et al.,  2008; Noonan et al.,  2019). 
Another example of unexplained spatial variation is the concept of 
the landscape of fear in the context of predator–prey relationships. 
The risk of predation may cause prey to avoid certain regions and 
influence their landscape-feature selection. However, the landscape 
of fear is rarely included in analyses since it is nontrivial to quantify 
(Gallagher et al., 2017; Gaynor et al., 2019; Gehr et al., 2017). Nei-
ther SSA nor RSA in their current form have the flexibility to explain 
and compensate for spatial correlation in the residuals caused by 
omitting relevant explanatory spatial variables. Although the SSA 
framework accounts for spatiotemporal autocorrelation of animal 
locations due to the movement process through a first-order Mar-
kov model to some extent (Potts et al., 2014), it assumes residuals to 
be spatially uncorrelated. As such, it does not fully account for the 
spatial nature of the data generating process, as the true process is 
governed by complex behavioural decisions of animals in a hetero-
geneous landscape with potentially many influencing environmental 
factors. Since rarely all factors influencing movement are measured, 
the unexplained spatial variation leads to residual spatial correlation 
beyond what is accounted for in the SSA model. While omitted co-
variates should not generate a strong estimation bias for the fixed 
effects (Clarke, 2005), ignoring this can cause an underestimation of 
the uncertainty of the parameters of interest (Fieberg et al., 2021), 
and underestimation of uncertainly can lead to incorrectly inferring 
statistical significance.

In a variety of modelling contexts, a common approach to account 
for spatial, temporal or spatiotemporal correlation is to incorporate a 
continuous-space Gaussian field (GF) into the linear predictor. A spa-
tial GF is a random effect which follows a multivariate Gaussian dis-
tribution with mean zero and spatial dependent covariance matrix, 
which is typically dominated by two hyperparameters, the spatial 
range and the standard deviation. Based on a flexible combination of 
these hyperparameters, the GF can take different shapes, and thus 
capture various patterns of spatial dependence in the data (Lindgren 
et al., 2011). Including a GF in statistical models plays a fundamental 
role in present spatial statistics (Gelfand & Schliep, 2016; Lindgren 
et al., 2011, 2022) and is becoming popular in species distribution 
modelling (Engel et al.,  2022; Lezama-Ochoa et al.,  2020; Renner 
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et al., 2015; Ward et al., 2015). Although such species distribution 
models are somewhat related to SSA models for telemetry data, the 
latter need to account for the additional sequential nature of the 
data. Perhaps due to this added difficulty, GFs have not yet been 
implemented in SSA models.

Incorporating random effects into SSA models has long been 
restrictive due to the lack of existing software to fit the resulting 
mixed conditional logistic regression model. Fortunately, as Muff 
et al.  (2020) point out, the conditional logistic regression model 
is a special case of a multinomial model and thus, it is likelihood-
equivalent to a conditional Poisson model (conditioned on the num-
ber of observed events being fixed). In addition, Aarts et al. (2012) 
showed in the context of RSA that the maximum likelihood estima-
tors of the slope parameters of a conditional non-homogeneous Pois-
son process (NHPP) are equivalent to the ones from the unconditional 
NHPP. Thus, a conditional NHPP can be fitted as an unconditional 
Poisson model with strata-specific intercepts (Aarts et al.,  2012). 
Using the Poisson specification puts us in the Generalized Linear 
Models framework and therefore, random effects can be naturally 
incorporated (Muff et al., 2020). However, Muff et al. (2020) did not 
include the movement kernel in their implementation. Here, we com-
bine the contributions of Aarts et al. (2012) and Muff et al. (2019) to 
show analytically that the movement kernel can be also included in 
the Poisson implementation. In addition, we extend this to make use 
of the spatial nature of telemetry data and to account for missing 
spatial variation, by adding a spatial GF to the SSA framework. We 
take advantage of the fact that incorporating a GF is nothing else 
than including spatial random effects in the model. Although con-
ceptually straightforward, the implementation of this is more com-
plex, since we are fitting a hierarchical spatial model.

A popular inference method in the Bayesian framework is using 
the integrated nested Laplace approximation (INLA). In general, when 
fitting hierarchical models, INLA offers a faster alternative to Markov 
chain Monte Carlo (MCMC) approaches. Unlike MCMC sampling 
methods, INLA is based on deterministic approximations of the mar-
ginal posterior distributions of fixed- and random effects as well 
of hyperparameters (Rue et al., 2009). Here, we use the R package 
inlabru, which is based on INLA (Bachl et al., 2019). This package is 
specialized in dealing with spatially structured data and is particu-
larly convenient when fitting point processes. Simpson et al. (2016) 
illustrate the benefits of using a mesh-based approach known as 
stochastic partial differential equations (SPDE) when fitting an uncon-
ditional NHPP with random intensity. For this reason, we use the 
SPDE approach from Lindgren et al. (2011). An unconditional NHPP 
with random intensity is known as a log Gaussian Cox process (LGCP) 
(Diggle et al., 2013). We show analytically that we can use an LGCP 
to incorporate spatial random effects into SSA models. Note that 
this use of SPDEs is not to be confused with stochastic differential 
equation models for individual animal movement from e.g. Brillinger 
et al. (2002), Preisler et al. (2004) or Hanks et al. (2017).

We name our model Gaussian field integrated step selection anal-
ysis (GF-iSSA). With our method, we model unexplained spatial 
variation in the data, allowing users to account for missing spatial 

covariates, to make more reliable inference about the fixed effects 
and to improve model predictions. We demonstrate the utility of our 
approach by applying it to simulated data and real data from three 
female wolverines (Gulo gulo).

2  |  MATERIAL S AND METHODS

2.1  |  Model description

Telemetry data consist of time series of animal locations st. At each 
time point, we specify the probability to observe an animal at a 
location, given where we observed it at the previous two times. In 
the classical step-selection model (Forester et al., 2009), this is done 
based on two aspects:

1.	 The general movement tendency of an animal in the absence 
of habitat selection, modelled by a movement kernel �, also 
termed selection-free movement kernel (Fieberg et al.,  2021).

2.	 Selection behaviour of the animal with respect to environmental 
variables, modelled by a RSF �.

The spatial density of observing an animal at location st at time 
point t, given the last two observed locations st−1, st−2 and a landscape 
X, is then modelled as (Forester et al., 2009; Hooten et al., 2017):

where S represents the spatial domain over which the animal may pos-
sibly move.

The selection function � is modelled analogously to a RSF as

Here, Xi, i = 1, … , n, are spatial covariates, and we are interested in 
making inference about their effects on movement decisions. The 
term u represents a GF, which accounts for the spatial variation not 
explained by the fixed effects �

(
st
)
. Thus, u follows a multivariate 

Gaussian distribution with covariance matrix C:

where the hyperparameters rs and � represent the spatial range and 
the standard deviation, respectively.

The movement kernel � is commonly modelled via a product of 
probability density functions for step lengths (SL) and turning angles 
(TA), and it depends on the parameter vector �. This requires a trans-
formation from polar to Euclidean coordinates through the change-
of-variable technique, which results in an extra factor corresponding 
to the reciprocal of the step length (Schlägel & Lewis, 2016). Similar 

(1)
f
(
st| st−2, st−1; � ,�

)
=

Movement kernel
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to Avgar et al.  (2016), we assume a gamma and a von Mises distri-
bution for step lengths and turning angles, respectively. However, 
any distribution from the exponential family would work in our  
approach. Note that the movement kernel � depends on st−1 for 
calculating the step lengths and additionally on st−2 for the turn-
ing angles. Due to the special form of densities belonging to the 
exponential family, we can express the movement kernel as (Avgar 
et al., 2016; Munden et al., 2021):

Here �p+1 and �p+2 are linked to the shape and rate parameters � and 
� of the gamma distribution, respectively. In addition, �p+3 represents 
the concentration parameter � of the zero-mean von Mises distribu-
tion. A detailed derivation of Equation (4) can be found in the supple-
mentary material section A.

Combining the movement kernel (Equation  2) and selection 
function (Equation 4), we can express the likelihood (Equation 1) as 
follows:

This is the likelihood function of a conditional NHPP (Aarts 
et al., 2012). Classic approaches to SSA first approximate the inte-
gral from Equation  (1) by sampling integration points from an em-
pirically parameterized movement kernel �∗ based on the observed 
step lengths and turning angles (Fieberg et al.,  2021; Forester 
et al., 2009). The resulting equation has consequently the form of 
a conditional logistic likelihood with discrete space. In contrast to 
this, we interpret telemetry data at each time point directly as an 
observation from a conditional NHPP. From a practical perspective, 
however, it is more convenient to implement an unconditional NHPP. 
This can be achieved by using at each time point an unconditional 
NHPP with an additional intercept. It has been shown that for such 
a model, the maximum likelihood estimator of the slope parame-
ters are equivalent to the ones from the conditional NHPP (Aarts 
et al., 2012; Muff et al., 2020). This equivalence can also be shown 
in a Bayesian framework for the posterior distribution of our param-
eters (Supplementary material section B). Therefore, the joint log-
likelihood of our model for a total of T − 2 time points (The first two 
locations are used to calculate the first TA and SL of the first step) 
results in the following:

where �0t, t = 3, … , T represent the time dependent intercepts which 
allow us to use the unconditional NHPP at each time point. Note 

that the intensity function Λ
(
st| st−1, st−2,X

(
st
))

 is stochastic due to 
the presence of spatial random effects u

(
st
)
, making it a hierarchical 

model. This flexible model is known as a LGCP. Given a realization of 
Λ
(
st| st−1, st−2,X

(
st
))

, at each time point the model is a NHPP (Diggle 
et al., 2013).

The interpretation of the parameters � of the selection function 
is the same as the one presented by Fieberg et al. (2021). For exam-

ple, given two locations su and sv that are equally available (based on 
the movement kernel) and have the same spatial resources but only 
vary by one unit of X1, then the relative use of these two locations is 
equal to exp

(
�1

)
 (Fieberg et al., 2021).

2.2  |  Model fitting

We performed Bayesian inference with the inlabru package (Bachl 
et al., 2019). To fit the model specified in Equation (6) to data, the 
integral from Equation  (6) was computed numerically over discre-
tized space. Using the SPDE method, the model needs an approxi-
mation of the GF. This is achieved via linear basis functions applied 
at integration points defined by all the nodes of the mesh (Simpson 
et al.,  2016). The mesh is a triangulation of the domain (Lindgren 
et al., 2011). The purpose of this is to capture all the spatial effects 
not included in the fixed effects. We therefore approximated Equa-
tion (6) by

for suitable integration points qt,j and weights wt,j. For this, we defined 
a uniform mesh over the study area (Figure 1) and used the nodes of 
the mesh both as integration points and to approximate the GF by a 
Gaussian Markov random field (Simpson et al., 2016). Thus, the model 
can be reformulated to a single Poisson model with time-specific inter-
cepts. Since we are not interested in making inference about them and 
for numerical reasons, we apply the solution of Muff et al. (2020) and 
specify them as random intercepts with a large fixed variance in order 
to avoid shrinkage.

The use of a deterministic integration scheme instead of a ran-
dom Monte Carlo integration approach has two motivations. First, 
the integration scheme needs to capture the full range of freedom of 
the random field components in order to give a valid approximation 
of the likelihood. Second, for spatial dimensions lower than four, the 
numerical bias in a basic deterministic integration scheme decreases 
faster than the standard deviation of a Monte Carlo integration 
scheme, for an increasing number of integration points. By placing 

(4)

�
(
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)
=�SL

(
st−1, st ;�SL

)
�TA

(
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)
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(
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)
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�
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.
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)
+u
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)
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�
(
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(
qt
)
+� (st−2, st−1, qt)

)
dqt
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(
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))
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S
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(
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.

(6)

T∑
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(
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=
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log

(
Λ
(
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(
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(
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(
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)
)exp
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)
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(7)

T∑
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log(Λ(st|st−2, st−1,X
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−

T∑

t=3

nt∑
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an integration point at each mesh node, both aspects are taken into 
account.

To reduce computational burden, we restricted the domain of 
availability S and hence integration points at each time point to a disk 
around the observed location st with a radius at least equal to the 
maximum observed step length over the entire dataset (Figure 1). 
This means that we essentially truncated the kernel � at a distance 
for which the probability of observing a step became negligible. The 
integration points serve a similar purpose as the available steps in 
the classical SSA framework, i.e. computing numerically an approx-
imation to the integral from Equation  (1). The weights were calcu-
lated based on the integrals of the piecewise linear basis functions 
used to represent the spatially discretized GF model. This generated 
non-zero weights for all triangle vertices of triangles that intersect 
the corresponding availability disk (Figure  1), computed via dense 
deterministic sampling within each triangle (Jullum, 2020). This step 
was automatically performed with help of the inlabru package. A 
code example of our approach can be found in the supplementary 
material.

For all parameters of the selection function and movement 
kernel, we used the default R-INLA reference priors, that is a 
Gaussian distribution with mean equal to zero and a large vari-
ance. Furthermore, we used the penalized complexity priors for our 
hyperparameters as explained in Gómez-Rubio (2020). Consequently, 
the penalized complexity priors are defined as probability beliefs:

1.	 P
(
rs < r0

)
= prs.

2.	 P
(
𝜎 > 𝜎0

)
= p𝜎.

(Fuglstad et al.,  2019). Thus, the users can assign their prior beliefs 
through r0, prs, �0 and p�, respectively. Notice that rs represents the 
practical range, which is the distance at which the spatial correlation 
is around 0.139 (Krainski et al., 2018). When setting the probabilities 
prs and p� equal to 0.05, Fuglstad et al. (2019) suggest to assign a value 
�0 which is 2.5 to 40 times the true value of the standard deviation. In 
addition r0 can be set to a value which should be between 1

10
 and 2

5
 of 

the true range. This specification leads to stable inference results of 
the marginal posterior distributions (Fuglstad et al., 2019).

2.3  |  Simulation study

We simulated animal tracks based on the step-selection model 
defined by the conceptional likelihood from Forester et al.  (2009) 
(Equation  1). For this, we discretized space, using a fine grid over 
the whole study area represented by a raster object of resolution 
1000 × 1000 and assigning at each time point a likelihood value for 
each grid cell.

For the movement kernel, we specified a gamma distribution for 
the step lengths with shape � and rate � parameters equal to 4 and 
2, respectively. In addition, we specified for the turning angles a von 
Mises distribution centred at 0 with concentration parameter � set 
to 1. Thus, these animals had a slight tendency to move in a straight 
direction.

For the selection function, we used three fixed effects: A con-
tinuous variable x1, a discrete covariate x2 and the distance to home 
range centre cen. Their corresponding selection coefficients were 
set to 1.5, 1 and − 0.04. The variable cen implements a centralizing 
tendency that accounts for home ranging behaviour of animals 
(Figure 2). In real applications x1 could for example represent ele-
vation and x2 could describe a variable representing different land-
scape types. In addition, we included as a raster layer a sample of a 
GF with a Matérn covariance function with help of the geoR package 
(Ribeiro Jr et al., 2020) and incorporated it in the linear predictor. 
The GF represents the spatial variation not explained by the fixed 
effects. We simulated in total nine scenarios using different com-
binations of spatial ranges rtrue (30, 40, 50) and standard deviations 
�true (1, 2, 3) hyperparameters for the GF. The geoR package was also 
used to generate the environmental covariates. For each scenario, 
we simulated 25 animals leading to 225 individual tracks. Each track 
consists of 1000 observed locations. We made sure that there is no 
high correlation (∣ 𝜌 ∣ < 0.10) between the GF and the fixed effects 
to avoid confounding results. In order to test the performance of the 
GF-iSSA on a larger parameter space, we included two additional 
simulation settings in the supplementary material section C. These 
results support the findings of this manuscript.

We fitted separate models to each individual track. In order to 
specify the models, the radius of the domain of availability at each 
time point was set to 1.25 times the maximum observed step length. 
Since the theoretical mean of the step length distribution is equal to 
2 spatial units, we preferred to use a mesh resolution lower than this. 
Thus, we defined our meshes to have a maximum edge length of 1 

F I G U R E  1  Domains of availability for two time points. The birds 
represent the observed animal locations. The nodes of the mesh 
are used as integration points with their corresponding weights 
based on linear basis function integrals. The yellow boundary 
represents the domain of interest and the nodes outside it are used 
to avoid boundary effects.
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spatial unit. This mesh is surrounded by a coarser mesh (maximum 
edge length equal to 5 spatial units) to avoid boundary effects. For 
the hyperparameters of the GF, we used the penalized complexity 
priors as follows:

1.	 P
(
rs <

rtrue

4

)
= 0.05.

2.	 P
(
𝜎 > 4𝜎true

)
= 0.05.

The choice of these priors was based on Fuglstad et al.  (2019) 
and thus, other prior choices would work properly as well.

To compare our new approach to the most commonly used one, 
we also fitted iSSA models (Avgar et al., 2016) to all simulated tracks, 
using three approaches. First, we fitted the model with the sampled 
GF used in the simulations as a known covariate, i.e. we treated the 
GF as a fixed effect (Full-iSSA). This scenario is, however, utopian 
for real data applications. Second, we fitted the iSSA sampling in-
tegration points from an initial movement kernel (iSSA). Third, we 
fitted a model using the same deterministic integration points and 
weights as the GF-iSSA but without including a GF in the linear 
predictor (NHPP). This can be understood as the iSSA model from 
Muff et al. (2020) but with deterministic integration points instead 
of random integration points. These models were chosen in order to 
observe how they react to missing spatial covariates. We applied the 
iSSA and NHPP methods excluding the GF and compared the results 
with our GF-iSSA approach. Both the Full-iSSA and the iSSA were 
fitted using a conditional logistic regression. For this, we sampled 
500 available locations per used location from the initial movement 
kernel parametrized based on the observed step lengths and turning 
angles using the R package amt (Signer et al., 2019). The NHPP and 
the GF-iSSA were fitted as a Poisson GLM. We compared the mean 
estimates of the fixed effects of all four models. In addition, since 
the general purpose of making inference is quantifying uncertainty, 
we calculated the coverage properties of the GF-iSSA in comparison 
to the NHPP and iSSA approaches. Thus, for all simulations, we cal-
culated for each fixed effect the rate for which the true value was 
covered by the corresponding 95% credible intervals and confidence 

intervals, respectively. Finally, we investigated how the contribution 
of the GF can increase the predictive quality of the model by com-
paring the GF-iSSA with the NHPP. This comparison is most suitable 
since both approaches use exactly the same integration points. For 
both models, we computed squared errors (SE-Score) and Dawid-
Sebastiani predictive scores (DS-Score; Gneiting & Raftery,  2007) 
using as predictive target the normalized RSF based on the ‘true’ 
parameter values from the simulation, arguing that for prediction 
purposes in habitat selection studies the RSF part of the model 
is typically the main interest. We calculated the predictive scores 
at the centroids of the grid cells used to simulate the data. Then, 
for each track we computed the average of the scores over all grid 
cells. The scores were calculated by sampling 100 realizations of the 
estimated posterior distribution of the RSF. Lower scores indicate a 
higher predictive quality.

2.4  |  Case study

As exemplary case study, we applied our method to GPS collar data 
from three female wolverines in Arctic Alaska (Glass et al.,  2021). 
The data were collected between March 2017 and February 2019 
in the vicinity of Toolik Field Station (68.63° N, 149.60° W). Wolver-
ines were equipped with GPS collars, programmed to obtain location 
coordinates every 40 min. For more details, see Glass et al.  (2021). 
All wolverine capture and handling procedures were approved by 
University of Alaska Fairbanks Institutional Animal Care and Use 
Committee protocol 847,738 and Alaska Department of Fish and 
Game scientific permit 18-085.

We here used as spatial covariates two of the environmental 
variables from the habitat selection analysis of Glass et al. (2021): 
(i) distance to streams and rivers and (ii) distance to lake edges. 
Glass et al. (2021) also included a terrain ruggedness index as a lin-
ear and quadratic effect, as well as snow depth, density and melt 
as spatiotemporal explanatory covariates. We omitted these vari-
ables in our analysis and instead tested the GF's ability to adjust for 
them and any other missing information. We fitted first both the 

F I G U R E  2  Environmental covariates of the simulation. Continuous covariate x1 (left), discrete covariate x2 (middle) and distance to home 
range centre cen (right).
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GF-iSSA and the NHPP, keeping in mind that the NHPP does not 
account for missing spatial covariates. After this, we fitted again 
the NHPP but including the linear and quadratic effects of the ter-
rain ruggedness index (NHPPterrain) to see how the NHPP model re-
acts when including this covariate. Similar to Glass et al. (2021), all 
covariates were standardized. As interest often centres around in-
ference at the population rather than the individual level, we illus-
trate how our model extension can be used to account for multiple 
individuals, similar to Muff et al. (2020). To this end, we included 
individual random slope effects for the distance to streams and 
rivers, while the distance to lake edges was only modelled as a 
population-level effect. Note that the GF summarizes in this case 
all the missing spatial variation at a population-level scale. In total, 
we had 3439 observed animal locations in our analysis.

Although we here analysed only three individuals (‘F6’, ‘F11’, 
‘F12’), the procedure is the same as when applying it to a greater 
number of individuals. The Full-iSSA could not be applied here 
since the true data generating process is unknown. Given that we 
observed some large outliers in the observed step lengths, we de-
fined the radius for the domain of availability as the 0.99-quantile 
of the observed step lengths (5125 m). Observed steps that fell out-
side the domain of availability were removed from the analysis. This 
had no significant impact on the likelihood estimation and the model 
assumptions were not violated. The resulting gaps in the step time 
series were handled analogously to other missing observations and 
in the same way as in other implementations of SSA (see e.g. Signer 
et al., 2019). However, users who wish to include these outliers in 
the model could extend the corresponding disks of these particu-
lar time steps to have a radius equal to the respective outliers step 
lengths while keeping the radius of the remaining disks of availability 
at a smaller value. This way users can ensure that the outliers remain 
in the integration domain without having to extend the disks of avail-
ability for all steps to an unnecessarily large area. In addition, since 
the SL distribution was right-skewed with many short step lengths, 
we assumed an exponential distribution with rate parameter � for 
the SL kernel. All other model fitting specifications were analogous 
to the simulation study.

3  |  RESULTS

3.1  |  Simulation study

Overall, the GF-iSSA reliably estimated the posterior means of the 
fixed effects. The estimates of the selection coefficients were on 
average estimated without any noticeable bias in any direction 
(Figure  3). The estimated posterior mean selection coefficients of 
our method deviated absolutely on average by 0.10 from the simu-
lated values. In addition, our approach seemed not to be overconfi-
dent given that the box-plots cover in general the true values. This 
was also true for the movement kernel parameters, for which our 
model performed well despite the presence of missing spatial vari-
ation (Figure 3). Here, the average absolute deviation from the true 

movement kernel parameters was 0.08. In one out of the 225 animal 
tracks our method failed or crashed numerically, presumably due to 
unsuitable prior specification of the GF. Therefore, the results in-
clude 224 animal tracks. We calculated the running times for the 
GF-iSSA approach. Our models had a median running time of around 
24 min per track. The 25%-quantile and the 75%-quantile were equal 
to around 17 and 36 min. In addition, the maximum running time was 
1.5 h. We used a Debian GNU/Linux 11 cluster specifying one core 
for each model.

When comparing the GF-iSSA to both the NHPP and iSSA, we 
found that in general all methods returned similar mean estimates 
in case of the environmental parameters. However, the GF-iSSA 
showed in general wider box-plots suggesting that the GF-iSSA 
is more conservative in presence of spatial autocorrelation (Fig-
ure 3). When the standard deviation of the GF was low (SD = 1), 
all methods estimated the coefficients stably. However, when 
the standard deviation hyperparameter increased, all approaches 
seemed to show slightly more variability across the estimated 
selection coefficients compared to the Full-iSSA. A difference 
between our method and both the NHPP and iSSA methods was 
that the GF-iSSA tended to sometimes overestimate the selection 
strength while both iSSA models occasionally underestimated 
it. In general, all methods estimated the mean estimates of the 
selection coefficients decently under missing spatial variation. 
The marginal effect of the integration points was negligible. Both 
the NHPP and the iSSA returned very similar estimates and bias 
directions.

The mean estimates of the movement kernel parameters were, 
however, noticeably less biased in case of the GF-iSSA. Here, we 
could also clearly observe that the estimates of the iSSA and NHPP 
approaches were systematically underestimated with an increasing 
standard deviation of the GF while the ones from the GF-iSSA re-
mained more centred to the corresponding true values (Figure  3). 
This was true for the shape parameter � and the concentration pa-
rameter �. Despite being biased, the box-plots did not show a large 
variation suggesting that the iSSA is overconfident at estimating 
these parameters. As expected, the utopian Full-iSSA remained sta-
ble and did not show any noticeable bias for all the fixed effects.

On average, for all the simulations of the nine scenarios, the 
iSSA, NHPP and GF-iSSA returned decent mean estimates of the 
fixed effects, which did not deviate significantly from the true 
values (Table  1). However, the posterior mean estimates of the  
GF-iSSA showed slightly larger variation compared to the iSSA and 
NHPP estimates based on the 2.5%- and 97.5%-quantile of the 
mean estimates. In addition, the coverage results of the GF-iSSA 
were better than the ones from the iSSA and NHPP methods. For 
all the fixed effects with the exception of the coefficient for �, our 
method had a higher coverage than the models with unexplained 
spatial variation. In addition, our method had a mean coverage of 
around 92% while the NHPP and iSSA had a mean coverage of  
80% and 81%, respectively (Table  1), meaning that in presence  
of missing spatial variation the uncertainty of the iSSA and NHPP 
parameters was underestimated compared to the uncertainties 
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estimated from the GF-iSSA, which was closer to the expected 
95% coverage.

The posterior mean estimates of the hyperparameters (pa-
rameters of the GF) were slightly underestimated in case of the 
standard deviation. This occurred for two out of the three true val-
ues. They were near, but not surrounded by the lower- and upper 
quartiles (Figure S3). The three spatial range hyperparameters did 
not show any large bias. However, we simulated the GF for the 
whole study area and not for the effective study area, which was 
the one after joining the domains of availability with help of the 
aforementioned disks. Thus, is it natural to have a slightly lower 
variability of values of the GF within this smaller study area. This is 
reflected by a slightly underestimated posterior mean of the stan-
dard deviation.

The inlabru package can easily provide a map of the GF. The 
GF-iSSA approach estimated the GF well. It was able to detect the 
high and low impact areas and therefore effectively account for 

missing spatial covariates. We show illustratively the true GF, the 
estimated posterior mean distribution of the GF and a sample of it 
for one of our animal tracks (Figure 4). Here we can observe that 
for the effective study area, the SD is well estimated and explains 
the missing spatial variation of the study area decently. In addition, 
the GF can have a large contribution to the linear predictor where 
missing covariates have a large effect on animal movement. When 
displaying the contribution to the linear predictor of the spatial co-
variates without the GF, the estimated selection function did not 
match the observed animal locations. However, when additionally 
including the GF this mismatch became much lower (Figure 4).

The improved predictive ability of GF-iSSA was also supported 
by the SE-Score and DS-Score results. For all nine scenarios, the 
SE-Score suggested a better predictive performance of the GF-iSSA 
over the NHPP. This was supported by the DS-Scores, which indi-
cated again a better predictive performance of the GF-iSSA over the 
NHPP for all nine scenarios (Table 2).

F I G U R E  3  Mean estimates of fixed effects in the simulation study. Comparison of (a) selection coefficients for the three covariates 
x1, x2 and cen, and (b) movement kernel parameters (shape �, rate �, concentration �), for various combinations of the hyperparameters 
(standard deviation and spatial range) of the simulated Gaussian field. The non-homogeneous Poisson process (NHPP) and the integrated 
step selection analysis (iSSA) do not account for the missing spatial variation. The green horizontal lines represent the true values of the 
parameters.

 2041210x, 2023, 10, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.14208 by N
orw

egian Institute O
f Public H

ealt Invoice R
eceipt D

FO
, W

iley O
nline L

ibrary on [23/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  2647Methods in Ecology and Evolu
onARCE GUILLEN et al.

3.2  |  Case study

The results of the GF-iSSA applied jointly to the three wolverine 
tracks demonstrate the utility of the GF-iSSA. Despite our analy-
ses not including the terrain ruggedness index and snow layers as 
covariates, which were known from Glass et al. (2021) to influence 
movement of wolverines, our model was able to estimate selection 
coefficients of the two effects related to water sources that were 
consistent with the findings of Glass et al. (2021) (Table 3). Both the 
GF-iSSA and the NHPP indicated strong evidence for an effect of 
the distance to steams and rivers based on the 95% credible inter-
vals. However, the GF-iSSA suggested a slightly larger overall effect 
of this covariate compared to the NHPP. The difference between the 
models becomes more apparent in the estimated effect for distance 
to lakes. This was larger for the GF-iSSA than for the NHPP, where 
the latter did not suggest any evidence for this effect, while our 
model indicated moderate evidence for it. Thus, while the GF-iSSA 
model suggested an affinity for both water sources, the NHPP only 
revealed evidence that distance to rivers matters. In addition, the 

random slope's precision parameter � was smaller for the GF-iSSA 
compared to the NHPP, indicating that some of its variation was 
absorbed by the GF (Table  3). In addition, the uncertainty of this 
parameter was larger for the NHPP. Estimates of the step length 
parameter revealed a further difference between the models. The 
GF-iSSA and the NHPP indicated a rate parameter equal to 2.113 
and 2.944, resulting in a corresponding average SL of around 469 
and 340 meters, respectively. Finally, the concentration parameter 
mean estimates were negative, which is outside of the theoretical 
domain of this parameter. However, the observed turning angles for 
these animals indicate that they were more likely to turn abruptly 
rather than travelling in a straight line (Figure S4). Thus, returning 
a negative concentration parameter indicates that the mean of the 
von Mises distribution was not necessarily 0, as expected for data 
with relatively large time intervals between consecutive locations 
(here every 40 min).

When including the terrain variable in the analysis, the NHPPterrain 
model returned very similar estimates as the NHPP model. However 
it still returned a positive coefficient for the distance to lakes with 

TA B L E  1  Mean estimates of fixed effects.

Parameter Method Mean True value 0.025-quantile 0.975-quantile Coverage (%)

�x1 Full-iSSA 1.515 1.500 1.319 1.702 0.973

�x1 GF-iSSA 1.558 1.500 1.262 2.016 0.871

�x1 NHPP 1.456 1.500 1.127 1.776 0.739

�x1 iSSA 1.450 1.500 1.132 1.774 0.741

�x2 Full-iSSA 1.001 1.000 0.792 1.195 0.960

�x2 GF-iSSA 1.045 1.000 0.730 1.395 0.853

�x2 NHPP 0.972 1.000 0.695 1.247 0.838

�x2 iSSA 0.965 1.000 0.724 1.207 0.848

�cen Full-iSSA −0.038 −0.040 −0.080 0.004 0.969

�cen GF-iSSA −0.036 −0.040 −0.162 0.037 0.973

�cen NHPP −0.018 −0.040 −0.055 0.030 0.829

�cen iSSA −0.026 −0.040 −0.064 0.023 0.893

� Full-iSSA 3.995 4.000 3.706 4.287 0.964

� GF-iSSA 3.946 4.000 3.636 4.235 0.951

� NHPP 3.895 4.000 3.552 4.222 0.905

� iSSA 3.899 4.000 3.580 4.240 0.911

� Full-iSSA 1.991 2.000 1.795 2.194 0.924

� GF-iSSA 1.968 2.000 1.814 2.124 0.938

� NHPP 1.988 2.000 1.825 2.151 0.955

� iSSA 1.986 2.000 1.789 2.182 0.920

� Full-iSSA 1.005 1.000 0.909 1.115 0.951

� GF-iSSA 0.990 1.000 0.882 1.103 0.933

� NHPP 0.902 1.000 0.715 1.057 0.545

� iSSA 0.901 1.000 0.718 1.053 0.554

Note: The results of each parameter are based on 224 tracks, summarized from all nine simulation scenarios. The quantiles are those of the mean 
estimates. The coverage represents the percentage for which the corresponding true values were covered by the 95% credible intervals (GF-iSSA) 
and Wald confidence intervals (iSSA), respectively.
Abbreviations: GF-iSSA, Gaussian field integrated step selection analysis; iSSA, integrated step selection analysis; NHPP, non-homogeneous Poisson 
process.
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very little evidence for an effect (Table 3). In their original analysis, 
Glass et al. (2021) reported negative effects for both the distance to 
rivers and lakes with the absolute effect larger for the distance to 
rivers (acknowledging that our analysis was limited to three of the 
original 21 individuals). This is more in line with the reported results 
from the GF-iSSA model.

Given the estimated standard deviation of the GF, the population-
level effect of the unexplained spatial variation was rather large for 
the wolverine data (Figure  S5). For our three tracks, the GF-iSSA 
estimated on average a spatial range of 2130 m and a standard de-
viation of 1.47. This result was expected since the model did not ex-
plicitly include the terrain ruggedness index, which had a large effect 
based on Glass et al. (2021).

4  |  DISCUSSION

Here, we introduced an approach for incorporating and estimat-
ing spatial random effects in step selection analyses. This method, 
which we term GF-iSSA, helps to resolve a perennial problem in 

animal movement analyses by accounting for residual spatial auto-
correlation arising from unobserved spatial effects in habitat se-
lection analyses via a continuous-space GF. Rather than being an 
alternative model, the GF-iSSA extends iSSA to account for miss-
ing spatial covariates. Incorporating random effects leads to more 
conservative estimates of fixed effects parameters, which in current 
SSA frameworks may be contaminated by unaccounted spatial co-
variates. In addition, the estimate of the GF itself can be biologically 
interpreted and help to identify hitherto unknown causes of spatial 
autocorrelation in observed movement (e.g. landscape features). We 
have shown that our approach works on both simulated and empiri-
cal data. Our model estimated fixed effects means and uncertain-
ties reliably. Including spatial random effects in analyses of spatially 
structured data has become a common practice in the last decade; 
analyses of animal movement data should not be an exception.

Based on a simulation study, we have shown that the GF-iSSA 
reliably estimates fixed-effects for various simulation settings. 
Overall, our method produced accurate estimates for both the se-
lection coefficients and the movement kernel parameters. In partic-
ular, GF-iSSA estimates of the movement-kernel parameters were 

F I G U R E  4  Visualization of the Gaussian field (GF) for one track and its predictive contribution. (a) Comparison between the true GF (left), 
the mean estimates of the GF (middle) and a sample of it (right). (b) Contribution to the linear predictor of the spatial covariates (left), the 
estimated GF (middle) and the combined effect (right). The black dots represent the observed animal locations.
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consistently close to the underlying simulated parameter values, in 
contrast to estimates from the iSSA and NHPP, which showed a ten-
dency to underestimate the shape and concentration parameters. 
This may be due to these models trying to adjust for the unexplained 
small step lengths by underestimating the shape parameter �. Large 
step lengths are not likely to occur since the tracks are also con-
trolled by the centralizing tendency cen. In addition, the GF that was 
added to the simulated data leads to more variability in the observed 

turning angles, inducing the model to detect that the animal is less 
likely to travel in a straight line and, ultimately, to the underestima-
tion of the concentration parameter �. Regarding the habitat selec-
tion parameters, the difference in mean estimates from GF-iSSA and 
iSSA was less pronounced, showing some robustness of the iSSA 
under missing spatial variation. In general, for both the GF-iSSA and 
the iSSA, variability in the mean estimates increased as the standard 
deviation of the GF increased. However, not accounting for spatial 
correlation (i.e. using iSSA) resulted in an underestimated uncer-
tainty of these parameters. Thus, based on the coverage results, the 
GF-iSSA quantifies uncertainty more reliably and is therefore more 
likely to prevent underestimating the uncertainty and resultant in-
creased risk of spurious statistical support. In addition, our method 
estimated the GF accurately and is therefore able to represent the 
underlying spatial process in its entirety.

The SE and DS scores show that our method estimates the RSF-
part of the model more accurately than the iSSA approach. However, 
these scores can only be calculated when the true RSF is known. 
Therefore, for real data, we recommend using the deviance informa-
tion criterion (DIC) as a measure of goodness of fit. Similar to AIC, 
a model with a lower DIC should be preferred (Gómez-Rubio, 2020; 
Spiegelhalter et al.,  2002). R-INLA provides these scores in the 
model output but they are based on the unconditional NHPPs like-
lihood that contain the time-dependent intercepts. Although this 
model yields the correct estimates for our model as defined through 
Equation (1), it may not return the exact corresponding value of the 
joint likelihood function. As an alternative, the DIC can be calcu-
lated manually for the series of conditional NHPPs, defined through 
the original likelihoods (Equation 1) for all steps, using a numerical 
approximation to the integral. For computational reasons, this is out 
of the scope of this paper but we show a minimal example code of 
the DIC calculation in the supplemental material.

In the wolverine case study, the GF-iSSA recovered the pa-
rameters of the static habitat features from the original analysis 
of Glass et al.  (2021), even though we omitted known influential 
covariates (snow and terrain ruggedness). This indicates that the 
GF-iSSA could explain most of the spatial variation of the missing 

TA B L E  2  Predictive performance of the GF-iSSA and NHPP 
models.

Range SD Method
Median 
(DS-score)

Median 
(SE-score)

30 1.00 GF-iSSA −0.98 1.06

30 1.00 NHPP 3.84 1.19

30 2.00 GF-iSSA 0.33 2.83

30 2.00 NHPP 37.68 5.69

30 3.00 GF-iSSA 0.11 5.63

30 3.00 NHPP 111.49 15.31

40 1.00 GF-iSSA −0.66 1.18

40 1.00 NHPP 16.36 1.54

40 2.00 GF-iSSA 0.32 1.81

40 2.00 NHPP 54.48 3.66

40 3.00 GF-iSSA 0.71 4.04

40 3.00 NHPP 349.60 9.45

50 1.00 GF-iSSA −1.52 0.87

50 1.00 NHPP 1.53 1.02

50 2.00 GF-iSSA −0.90 2.16

50 2.00 NHPP 13.99 2.84

50 3.00 GF-iSSA −0.04 2.74

50 3.00 NHPP 37.55 3.90

Note: The first two columns represent the nine hyperparameter 
combinations of the GF. The scores represent the median of the 
corresponding scores of 25 animal tracks.
Abbreviations: GF-iSSA, Gaussian field integrated step selection 
analysis; NHPP, non-homogeneous Poisson process.

TA B L E  3  Estimates of fixed effects for movement tracks of the three female wolverines simultaneously.

Parameter

GF-iSSA NHPP NHPPterrain

Estimate CI 0.025 CI 0.975 Estimate CI 0.025 CI 0.975 Estimate CI 0.025 CI 0.975

�rivers −1.153 −2.195 −0.111 −1.056 −1.918 −0.193 −1.110 −1.894 −0.326

� lakes −0.256 −0.538 0.026 −0.003 −0.152 0.147 0.026 −0.136 0.188

�terrain — — — — — — 1.086 0.984 1.188

�terrain2 — — — — — — −0.027 −0.046 −0.008

� random slope 1.182 0.941 1.457 1.925 0.262 6.274 2.379 0.305 7.936

� 2.133 2.032 2.234 2.944 2.841 3.048 2.985 2.874 3.096

� −0.139 −0.191 −0.087 −0.155 −0.206 −0.105 −0.169 −0.222 −0.116

Note: Selection was estimated with respect to distance to rivers and streams (rivers), and distance to lakes (lakes) for of the GF-iSSA and the NHPP. 
The NHPPterrain includes additionally linear and quadratic effects of the terrain ruggedness index (terrain). CI 0.025 and CI 0.975 represent the 2.5% 
and 97.5% credible intervals. The � parameter represents the rate parameter of the assumed exponential distribution for the SL kernel.
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covariates, allowing for reliable inference of the fixed effects that 
were included. Additionally, from the GF-iSSA model fit, we can 
derive suggestions for potentially missing effects in the analy-
sis. The estimated selection-free movement tendency (i.e. inde-
pendent of habitat or other preferences) of the wolverines was 
estimated to be larger by the GF-iSSA compared to the models 
without GF. In other words, the GF-iSSA indicates a stronger con-
straint of movement due to animals' preferences compared to the 
models without GF, suggesting that the inclusion of the GF in the 
model allowed us to capture habitat-selection (in a wide sense) 
effects on movement beyond the included covariates. One pos-
sibility may be home-ranging behaviour and individuals prefer-
ring more familiar locations in the environment (Spencer,  2012), 
restricting their observed movements compared to their a priori 
movement abilities. Notice that for simplicity and computational 
reasons, we preferred to omit the snow layers from the analysis 
since they were spatiotemporal covariates.

From a methodological perspective, the case study revealed 
that using deterministic integration points via a mesh and there-
fore estimating the parameters of the movement kernel directly 
(GF-iSSA, NHPP) could lead to estimates that are outside their 
theoretical domains (e.g. negative values for the concentration 
parameter of the von Mises distribution). Nonetheless, this would 
also be the case if the user fits the iSSA with deterministic integra-
tion points. Thus, this problem does not arise from the added GF, 
but rather from the integration strategy. In addition, although less 
likely, the same problem may also occur even when sampling inte-
gration points from an initial movement kernel (traditional iSSA) 
and is therefore inherent to the model formulation. Accounting 
for this model behaviour with restrictive priors led to numerical 
issues that prevented model fitting. Thus, we opted to allow the 
movement kernel parameters to be estimated without constraint. 
Enforcing parameter space constraints, in addition to introduc-
ing numerical issues, may also result in incorrect inference in 
case of the concentration parameter � since there is no unique 
parametrization,

Thus, a negative concentration parameter � is an indicator that the 
underlying von Mises distribution was not centred at zero, as usually 
assumed for simplicity in iSSA. However, this has no impact on the in-
ference of the other model parameters. For this reason, restricting the 
concentration parameter � without additionally estimating the mean 
parameter �, may not represent well the underlying Von Mises distri-
bution. In case of the SL kernel parameters, with inlabru, users could 
restrict these to their theoretical domains by specifying non-Gaussian 
priors. Nonetheless, this may not be numerically as stable as not con-
straining these parameters. In addition, with this package users could 
specify movement kernel distributions that do not belong to the expo-
nential family. However, this is out of the scope of this paper.

Despite all presented advantages of the GF-iSSA, it comes with 
a higher computational cost than some conventional alternatives, 
depending upon the desired resolution of the mesh. A finer mesh 

requires more integration points and commensurately longer com-
putation times for model fitting. Fitting LGCPs is generally com-
putationally expensive but the aforementioned advantages, in our 
opinion, justify the relatively modest numerical expenditures here 
(median fitting time is about 24 min).

For our simulation study, we assumed that the GF is independent 
of the fixed effects. This is a strong assumption, since in real situa-
tions the spatial effects represented by the GF are likely to affect 
both the dependent variable and the observed spatial covariates si-
multaneously. If this assumption is not met, this could lead to biased 
inference results given the potential high correlation between the GF 
and some spatial covariates (Thaden & Kneib, 2018). This problem, 
commonly known as spatial confounding, may however be present 
in any real data, irrespective of whether we use iSSA or GF-iSSA and 
does not arise with the inclusion of the GF. A future avenue for de-
velopment that might resolve this issue could be to use flexible spa-
tial confounding approaches like Spatial+ from Dupont et al. (2020) 
or the Geoadditive Structural Equation Model approach from Thaden 
and Kneib  (2018). These approaches require first accounting for 
missing spatial variation in the linear predictor. Thus, the GF-iSSA 
opens new horizons for addressing these confounding issues. None-
theless, it is not yet clear how to adapt and formally implement these 
approaches in a Bayesian framework. Spatial confounding in species 
distribution modelling has however, been already discussed by van 
Ee et al. (2022).

We emphasize that our model, as well as other SSA framework 
models, do not make inference about the true movement process of 
the animals since the data are discrete in time. Rather, it describes 
the observational process of animals at constant, discrete time in-
tervals. However, methods using non-constant time intervals like 
the time-varying iSSA (tiSSA) from Munden et al.  (2021) could be 
extended to include a GF as a spatial random effect in the linear 
predictor. For this, the domains of availability could be defined as 
disks where the radius equals the time difference multiplied by the 
maximum observed speed. In addition, our method can also be ap-
plied for making inference about tracks of multiple animals simul-
taneously using random effects as proposed by Muff et al. (2020).

For the future, it would be interesting to account for missing spa-
tiotemporal covariates in the covariance matrix of the GF. Thus, the 
model presented here could be extended using a non-separable spa-
tiotemporal correlation matrix instead of the purely spatial Matérn 
correlation matrix. However, this is a numerical challenge. Another 
modification of this idea could be to use circular time instead of lin-
ear time. Circular time is convenient when making inference about 
patterns in a repeating time window. In our case, the time window 
could be a 24-h diel cycle, such as that used by Shirota and Gel-
fand (2017). Although their model was used for crime data, a similar 
approach could be used for telemetry data. For instance, Benoit-Bird 
et al. (2009) analysed the effect of nocturnal light on the diel migra-
tion of micronekton in the water column. In our case, the model of 
Shirota and Gelfand  (2017) could account for the missing sunlight 
covariate, supposing that the sunlight had an impact on movement 
decisions, but the users do not dispose of this variable.

(8)�cos(TA − 0) = − �cos(TA − �).

 2041210x, 2023, 10, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.14208 by N
orw

egian Institute O
f Public H

ealt Invoice R
eceipt D

FO
, W

iley O
nline L

ibrary on [23/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  2651Methods in Ecology and Evolu
onARCE GUILLEN et al.

In summary, our study demonstrates how to use the GF-iSSA to 
account for unobserved spatial effects in habitat selection analyses. 
This approach has three advantages. The first and largest advantage 
is an appropriately estimated uncertainty, which is key to correct 
biological inference. Second, our method has a high predictive qual-
ity compared to methods not accounting for spatial autocorrela-
tion. Via the GF, the GF-iSSA formally estimates unobserved spatial 
random effects, and can use these effects in addition to observed 
fixed effects to make predictions. Users additionally interested in 
predictions (rather than inference regarding the effects of particular 
habitat types on movement and space use) would thus benefit from 
the GF-iSSA. Although not representing the whole linear prediction, 
since the movement kernel is not included, the selection function 
of the GF-iSSA and other SSAs is used for predicting long-term 
movement and space use of animals (Potts & Schlägel, 2020; Signer 
et al., 2017). Consequently, we encourage users aiming to make such 
long-term predictions to use the GF-iSSA, since the predictions that 
account for unobserved spatial variation are likely to have better 
predictive power than analyses that cannot account for this varia-
tion. Third, based on our simulation study, the mean estimates of 
the movement kernel are slightly less biased including a GF in the 
model. Nonetheless, as expected, the selection coefficients esti-
mates do not deviate meaningfully from those fitted using a normal 
iSSA. However, we recommend the users to focus not only on the 
mean estimates but also on their uncertainty, which in our simulation 
study was better estimated by GF-iSSA than iSSA.
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