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Abstract

In the evolving domain of autonomous marine operations, accurate perception
and representation of the surrounding environment is crucial for safe and effect-
ive execution. This thesis addresses this issue by developing and testing a near
real-time 360 degrees bird’s eye view system for the situations where the ferry,
milliAmpere2, has to be manually controlled by a local operator onboard. The
goal was to aid the operator during the critical phase of docking, by displaying
the surrounding area of the ferry from a bird’s eye view. The bird’s eye view was
made by using inverse perspective mapping on the undistorted images from the
8 cameras onboard.

Implemented in Python, the system aimed to run in real-time, necessitating a
run-time of less than 200ms between each bird’s eye view image. During the code
optimization phase, this goal was reached. However, the slower CPU onboard mil-
liAmpere2 and the overhead of accommodating ROS2 node-structure, combined
with the impact of other processes running concurrently on the ferry’s computer,
resulted in borderline real-time performance during the live experiment.

Despite the system’s shortcomings, such as inaccurate calibration causing im-
age artifacts, and an oversized image of milliAmpere2 in the center of the IPM
image, the operators found the system to be a "useful additional assistance" dur-
ing the docking process. Nevertheless, the system needs further refinement before
it is ready for continuous real-world deployment.
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Sammendrag

Innen det voksende feltet autonom maritim navigasjon, er presis oppfatning og
representasjon av det nærliggende miljøet avgjørende for sikker og effektiv drift.
Denne masteroppgaven bidrar til å løse dette problemet gjennom å utvikle og
teste et system som produserer et "360 graders fugleperspektiv"-bilde i opp imot
sanntid, for situasjoner der fergen, milliAmpere2, må styres manuelt av en lokal
operatør ombord.

Målet var å hjelpe operatøren i den kritiske fasen der fergen legger til kai, ved
å vise området rundet fergen fra et fugleperspektiv. Fugleperspektivet ble laget
ved å bruke "inverse perspective mapping" på de korrigerte bildene fra kameraene
ombord.

Systemet, som er implementert i Python, var designet for å kjøre i sanntid
og måtte derfor ha en kjøretid på mindre enn 200ms mellom hvert fugleper-
spektivbilde. Dette ble oppnådd under kode optimaliseringen fasen. På tross av
måloppnåelsen, førte den tregere CPU-en om bord på milliAmpere2, sammen med
den ekstra belastningen fra ROS2 nodestrukturen og påvirkningen fra andre kjørende
prosesser på fergens datamaskin, til at kjøretiden var i grenseland for sanntidskjøring
under selve eksperimentet.

Selv med systemets svakheter tatt i betraktning, som unøyaktig kamera kalib-
rering og et for stort bilde av milliAmpere2 i midten av fugleperspektivbilde, syntes
operatørene at systemet var et "nyttig verktøy" for å legge til kai. Likevel krever
systemet videre forbedringer før det er klart for bruk i vanlig drift.
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Chapter 1

Introduction

1.1 Motivation

In recent years, there has been a growing demand for sustainable transportation in
cities. However, in cities with rivers and channels, building bridges can be challen-
ging due to various environmental and logistical factors. When the municipality
of Trondheim proposed to build a bridge across one of the canals in Trondheim
in 2016, researchers at the NTNU set in motion a project to find alternatives to
bridges. The result was the prototype milliAmpere (hereby called milliAmpere1),
and the full-scale autonomous passenger ferry milliAmpere2 [1], see Figure 1.1.

Figure 1.1: An image of milliAmpere2 from the side. Image provided by Øystein
Kaarstad Helgesen.

With transportation of people, safety requirements are high. Therefore, it is
possible to manually take control over milliAmpere2 from the controls onboard
[2]. However, the operator’s view fore and aft of the ferry is obstructed by the

1



Chapter 1: Introduction 2

ramp, as shown in Figure 1.2. To improve the operator’s situational awareness,
especially during the critical operation of docking to shore, a bird’s eye view image
created from the images taken by the onboard cameras was proposed.

In my project thesis, a proof of concept of a top-down view using inverse per-
spective mapping (IPM) was presented. In this master thesis, the further develop-
ment of this research will be presented.

(a) The image shows an overview of the op-
erator at the controls of the ferry with the
ramp in view.

(b) The image provides the view of the op-
erator at the controls looking forwards.

Figure 1.2: The figure illustrates how the operator’s forward view of the ferry is
obstructed by the ramp. The same holds true for the aft view of the ferry.

1.2 Background information

In the last years, there has been an increasing interest for urban ferries in many
coastal cities. Within this revival of urban ferries, the concept of autonomous elec-
trical passenger ferries has received recognition as a cost-effective, environment-
ally friendly and flexible transport alternative [3]. In several countries, Norway,
Finland and the Netherlands, autonomous ferry projects have been tested and
demonstrated [1]. One of these projects comes from NTNU, Trondheim, Norway,
and consists of two autonomous passenger ferries: the prototype milliAmpere1,
see Figure 1.3, and the full-scale milliAmpere2. The project has been used extens-
ively in research on marine autonomy by master and PhD students at NTNU, such
as [4], [5] and [6].

In [7] a novel system for multi-camera maritime tracking is proposed. It de-
scribes how detected measurements given by bounding boxes in images can be
converted to measurements on the sea plane, which can be used for tracking.
This is achieved with the combination of information from the navigation system
and statistical modelling of the geometric transformations.
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Figure 1.3: An image of milliAmpere1 from the side. Image provided by Øystein
Kaarstad Helgesen.

1.3 Related work

One of the essential parts to achieve the desired 360-degree bird’s eye view, is in-
verse perspective mapping (IPM). IPM is a technique that transforms images from
the perspective view created by a camera to a bird’s eye view. Most research on IPM
has been done within the automobile industry. The earliest research was direc-
ted towards improving car safety, especially automatic lane tracking and obstacle
avoidance.

In [8] an automatic lane tracking system was presented. The system used IPM
to reverse the perspective view created by the camera, to improve detection of
lane markers. This method was further improved upon by [9]. They introduced
a multimodal IPM, by combining images from a camera and a laser range finder.
Using the data from the laser range finder, all pixels that were above the road could
be removed, and thereby lower the amount of pixels that had to be processed
by the IPM algorithm. Another improvement to the classic IMP algorithm was
proposed by [10] in 2019. They included a convolutional neural network (CNN)
to sharpen the IPM images. This is especially useful for objects that are far away,
due to lower pixel density per object.

Alongside the development of automatic lane tracking, researchers have also
researched how IPM can be used in obstacle avoidance. Using the distorted images
of cars and objects produced by the IPM transformation, [11] was able to create a
robust method for generic obstacle detection and collision warning with no prior
knowledge of the obstacle. It was also able to detect partially covered objects.

Although IPM has received some attention within the maritime industry, the
amount of research in this sector remains lower than within the automobile in-
dustry. [12] presented a path planning and navigation method for autonomous
vessels using CNN and IPM. Each part of the image is categorized by the CNN
as "open water", "partial open water" or "not water". Thereafter, the categorized
image is transformed to a bird’s eye view using IPM to make the path planning
easier.
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A similar method is proposed by [13] to obtain 3D ship detection and tracking.
Each image is processed by a CNN, which detects ships and boats, and places
a bounding box and segmentation mask over each detection. Using the lower
edge (the one closest to the camera) of the segmentation mask, they calculate the
distance to the ship using IPM. To get the height of the ship, they use the geometry
of a pinhole camera, and they set the depth of the ship to be similar to the largest
ship in the harbor.

One of the main challenges with IPM, is the progressively lower pixel density
for objects further away from the camera. Interpolation can decrease the effect
of this problem by filling the empty pixels in the objects with rgb-values from
surrounding pixels.

The research field of image interpolation has taken place in many different in-
dustries: Medical imaging, remote sensing, target detection and recognition, radar
imaging, forensic science and surveillance systems [14]. In addition to covering
a large group of different industries, a large amount of different interpolation
methods has been developed. [15] compared 7 different interpolation methods
for medical imaging in 1999, covering "traditional interpolation methods", such
as nearest neighbor, linear interpolation and Gaussian interpolation with different
kernel sizes.

In recent years, more complex and modern interpolation methods have been
developed. One of these are Super-Resolution, which are able to enhance low-
resolution images or video frames by increasing their spatial resolution [14]. This
technique has also been combined with deep learning: [16] proposed in 2016
an end-to-end mapping between the low and high resolution images using a deep
CNN. Compared to a simpler method, bicubic interpolation, and to more advanced
interpolation methods, it achieves a better peak singal-to-noise ratio and produces
sharper edges in the image.

To be able to create the bird’s eye view images in real-time, the IPM image
pipeline has to process 8 images in less than 200ms. This requires a powerful CPU.
In the last decades, the performance of a CPU has increased some 10000 times,
without a substantial power consumption increase. The information technology
industry has grown to rely on this constant increase in performance, making it an
expectation and a necessity for many applications.

However, as stated by [17], the era of faster and better individual CPUs has
come to an end due to physical limitations of power consumption and heat dis-
sipation. To continue the growth in industry, new approaches to software and
parallelism have to be incorporated. This is further supported by [18], describing
how Intel introduced a new "optimization" phase in their CPU development cycle.
Another approach to continue the growth is to use a dedicated GPU instead of a
CPU. [19] demonstrated this through developing the Python library (pyFFS) for
computing fast Fourier series and interpolation, achieving improvements in the
order of one magnitude better compared to CPU.
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1.4 Problem description and main contributions

To develop a fully functional system from the proof of concept system presented
in my project thesis, several challenges and problems need to be addressed. One
of the primary objectives of this system is to attain real-time functionality, which
demands significant optimization of the proof of concept code. Additionally, an-
other significant challenge lies in adapting the code to run on the onboard system
of milliAmpere2. This requires system and code restructuring to ensure compat-
ibility to the existing autonomy system onboard. By successfully addressing these
challenges, an operational bird’s eye view system can be tested by the operators
in a live, real-world situation.

This thesis’ main contributions are:

• Exploration and implementation of interpolation and optimization methods
in Python.
• Implementation of 360-degree bird’s eye view that is able to run in close

to real-time on the autonomous passenger ferry milliAmpere2 with the full
autonomy system running simultaneously.
• Testing of 360-degree bird’s eye view system with operator on milliAmpere2

in a comparable setting to the intended use case of the ferry.
• Attaining valuable feedback from the operators following the live experi-

ment.

1.5 Outline

Chapter 2 is a theory chapter that provides an overview of the camera model, dis-
tortion and undistortion, inverse perspective mapping and interpolation. Chapter 3
outlines the image processing pipeline, including the recorded dataset used in the
first part of the thesis. The code optimization techniques used to reduce the pro-
cessing time of the pipeline, and the achieved run-times will be presented and
discussed in Chapter 4. In Chapter 5 the experimental setup of the live experiment
will be introduced. The results from the experiment are shown in Chapter 6. Run-
times, images and video results are included. In Chapter 7 a discussion around
the code optimization and the results from the experiment. Lastly, a conclusion
and future work will be presented in Chapter 8.





Chapter 2

Theory

In this chapter, the theory behind camera models, image distortion and undis-
tortion, inverse perspective mapping, and image interpolation will be explained.
These topics are essential for understanding the image processing pipeline presen-
ted in Chapter 3. Camera models are important, since the geometry behind IPM
assumes the images are taken with a camera that follows the pinhole camera
model. Image distortion and undistortion techniques enables us to correct image
distortions made by the camera lens to satisfy the prior assumption. The concept
of inverse perspective mapping is the essential theory to be able to transform the
camera images into a bird’s eye view. Finally, understanding image interpolation
is required to explain how empty pixels in the IPM image are filled with relevant
values.

Parts of this chapter have been taken from my project thesis, with some minor
corrections. These are Section 2.1, Section 2.2, Section 2.3, Section 2.4.1.

2.1 Camera model

A camera is a mapping between the 3D world and a 2D image [20]. There are dif-
ferent models describing cameras, each with their own camera matrix containing
their different properties. In this thesis, the primary camera model is the cent-
ral projection camera, which is a specialization of the general projective camera.
Among projective camera models, there are two major classes: cameras with a fi-
nite center and cameras with the center at "infinity". The main distinction between
these two models is that the camera with center at infinity is able to maintain par-
allel lines, whereas the finite center, will not maintain parallel lines.

One of the finite camera models, is the pinhole model. It maps a point in 3D
space onto a 2D plane. This plane is often called the image plane or the focal plane,
and is represented by the frame FI . The position of the point xI is determined by
the intersection between the image plane and the drawn line from the point XC
to the camera center through the image plane.

The camera center is also the origin of the camera frame Fc . From Figure 2.1,
one can observe that there is triangle similarity that can be used to calculate the

7



Chapter 2: Theory 8

x
Zc

Yc

X c

Fc

y

xI
Xc

FI

Zc

Zc

Yc

Yc
yIFc

y

f

xI
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Figure 2.1: On the left: Illustration of the relative position of the camera frame
FC and the image plane FI . On the right: The geometry of the pinhole camera
view from the side, showing the triangle similarity used to place a point XC onto
the image plane.

x- and y-position on the image plane, given position of X. To make the notation
more explicit, X will be written as Xc . The relationship between xI and Xc is given
by

xI =

�

x I
yI

�

=

�

f X c
Zc

f Yc
Zc

�

(2.1)

To make further calculations easier, homogenous coordinates can be introduced
as x̃. Then Equation 2.1 can be rewritten to

x̃I =





x I
yI
1



=





f 0
f 0

1 0











X c
Yc
Zc
1






(2.2)

and with the concise form

x̃I =
�

K 03×1
�

X̃c (2.3)

Normally a point will not be represented in Fc , but rather in the world co-
ordinate frame, Fw. These two frames are related with a rotation and a trans-
lation. To transform a point from the Fw to Fc , one would translate the offset
distance between the origin of Fc and origin of Fw, represented by C, and rotate
to align the axes of the two frames with the rotation matrix R. This can be written
as Equation 2.4, and can be seen in Figure 2.2, where t = −RcwC. The subscript

CW informs that the transformation is from FW to FC .

Xc = Rcw(Xw −C) (2.4)

Equation 2.4 expanded to homogenous coordinates will give the matrix mul-
tiplication
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Figure 2.2: The transformation between the world and the camera coordinate
frame.

X̃c =







X c
Yc
Zc
1






=

�

Rcw t
01×3 1

�







Xw
Yw
Zw
1






(2.5)

Combining Equation 2.5 and Equation 2.2 leads to the formula

x̃I = K

�

Rcw t
03×1 1

�

X̃w (2.6)

To get the pixel coordinate, u = [u, v]⊺ , in the image, the intrinsic camera
matrix K has to be modified. First, the origin of FI has to be offset. Usually the
origin in an image is in the top, left corner, see Figure 2.3. In addition, scaling and
skew has to be added.

K=





sx f s sx px 0
sy f sy py 0

1 0



=





αx s x0 0
αy y0 0

1 0



 (2.7)

The numbers sx and sy gives the amount of pixels per unit (often mm) for
the image. s is for the skew, which normally is 0. px and py is the principal point
offset, which moves the origin from the center of the image to the top, left corner.
It is also important to note that the v-axis is the opposite direction of y-axis. This
is only due to convention.

This produces the final equation

u= PX̃w (2.8)
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where

P=





αx s x0 0
αy y0 0

1 0











r11 r12 r13 t x
r21 r22 r23 t y
r31 r32 r33 tz

0 0 0 1






(2.9)

yI

xI

u

v

p

Figure 2.3: An image showing the image plane, with the principal point p, the
axes of FI in the middle. In the top left are the offset origin, with the two axes
showing the orientation of the coordinate frame used when describing pixel po-
sition.

2.2 Distortion and undistortion

Li et al. described the task of undistortion as:

An indispensable pre-processing step for image-based 3D reconstruction
or photogrammetry tasks is undistortion, which is employed for correct-
ing the non-linear projection of the surface points of objects onto the
image plane due to lens distortion [21].

The non-linear projection from lens distortion is a deviation from the ideal
projection in the pinhole camera model [22] this thesis is based upon. Therefore,
it is necessary to undistort the images before IPM is done. Undistortion is often
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Figure 2.4: Examples of different lens distortions on a rectangular grid (left):
barrel distortion (middle) and pincushion distortion (right)[22].

done in two steps; first a pixel position transformation, and then an interpolation
of the new pixel coordinates to the image grid.

The first step is often completed with the use of Brown-Conrady model [22]. It
takes the undistorted image coordinates and transforms them into distorted image
coordinates. If only second order radial distortions are included from the model,
the equations would be

ud = un

�

1+ k1r2 + k2r4
�

(2.10a)

vu = cn

�

1+ k1r2 + k2r4
�

(2.10b)

If tangential distortions are also included, such as in OpenCV’s implementation
[23], then Equation 2.10 can be extended to

ud = un

�

1+ k1r2 + k2r4
�

+
�

2p1unvn + p2

�

r2 + 2u2
n

��

(2.11a)

vu = vn

�

1+ k1r2 + k2r4
�

+
�

2p2unvn + p1

�

r2 + 2v2
n

��

(2.11b)

where (ud , vd) are coordinates in the distorted image, (un, vn) are the coordinates

in the undistorted image and r =
Ç

(un − px)
2 +
�

vn − py

�2
. The numbers px and

py are the coordinates of the principal point, while k1 and k2 are radial distortion
coefficients and p1 and p2 are tangential distortion coefficients. If the value of
k1 is negative, then we typically have barrel distortions, and if k1 is positive, we
typically have pincushion distortions [22]. Examples of the two radial distortions
can be seen in Figure 2.4. Tangential distortions are deviations where the principal
point is moved from the center of the image.

With the coordinates un and ud, the second step of undistorting the image,
interpolation, can be conducted. How interpolation work will be explained in sec-
tion 2.4.
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2.3 Inverse Perspective mapping

Inverse perspective mapping is the problem of obtaining the world coordinate
position of a point from a pixel in an image [9]. This is an underdetermined prob-
lem, meaning there are fewer equations than unknowns. In this problem, there
are three unknowns, Xw, Yw, Zw, and two knowns, u, v. To solve this, the plane
where the pixels are projected onto has to be assumed. In this thesis, the model
is assumed to use the sea as the plane, Πsea. The equation for an arbitrary plane
is given by

aX + bY + cZ + d = 0 (2.12)

To address the IPM problem, [9] extended the non-homogenous version of
Equation 2.1, u= K (RCW XW + t), to incorporate the constraints from the plane.







u
v
1
0






=







p11 p12 p13 0
p21 p22 p23 0
p31 p32 p33 0
a b c d













Xw
Yw
Zw
1






+







t x
t y
tz
0






(2.13)

The d-variable can be moved to the translation vector and the Equation 2.13 can
be rearranged to:
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(2.14)

Then the pixel coordinate vector, u, can be included in the P:
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(2.15)

Lastly Equation 2.15 can be rearranged to solve for Xw:
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(2.16)

This solution is valid as long as A in Equation 2.15 is invertible.
Another way to solve the IPM, is to make use of the method described by

Hartley and Zisserman [20]. It is a less general method than the previous, and
requires the plane to always be at a height of zero meter. To get the pixel position
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u from a point Xw on a plane that is aligned with X Y -plane in Fw, Equation 2.17
can be used.
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(2.17)

Since the transformation is to the plane Zw = 0, a = b = c = Zw = 0, and the
Equation 2.17 can be reduced to:
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Rearranging Equation 2.18 solves the inverse perspective mapping problem in-
stead of finding the pixel coordinate given a point Xw in Fw.
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 (2.19)

For this to be a valid solution, P′ has to be invertible.

2.4 Interpolation

2.4.1 Interpolation methods

Interpolation is the process of estimating the intermediate values in a signal at
continuous positions from a set of discrete samples [24]. This process can be em-
ployed in multiple dimensions. However, in this thesis, the focus will be on 2D
interpolation, which is relevant to image interpolation. The three most commonly
used interpolation methods are nearest neighbor, bilinear (also called linear), and
bicubic.

Nearest neighbor interpolation involves determining the value of a pixel based
upon the four nearest pixels. The value of the pixel with the shortest distance to
the target pixel will be the chosen values, as shown in Equation 2.20.

Value(P) =min(dist(A), dist(B), dist(C), dist(D)) =min(a, b, c, d) (2.20)

An example of nearest neighbor interpolation is illustrated in Figure 2.5, where
dist(A) would be the minimum distance, and therefore A would be the value of P.

Bilinear interpolation also considers the four closest pixels values to the target
pixel, but weights them based on their distance from the target pixel. The values
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Figure 2.5: Interpolation: Nearest neighbor method.

are first interpolated linearly in the horizontal direction using Equation 2.21, and
then in the vertical direction using Equation 2.22, as shown in Figure 2.6.

E = a ∗ A+ (1− a)B (2.21a)

F = a ∗ D+ (1− a)C (2.21b)

P = b ∗ F + (1− b)E (2.22)

2.4.2 KD-Tree

A kd-tree is a type of binary tree used for efficient search and retrieval of points
in high-dimensional space. It is particularly useful for range search and nearest
neighbor search operations. The name "kd" stands for "k-dimensional," referring
to the fact that the tree can be constructed for any k number of dimensions.

The structure of a kd-tree is formed by recursively dividing the space contain-
ing the data points into two subspaces at each level of the tree. The split is made
perpendicular to the chosen axis. For example, if the points are in two dimensions,
the axis can be chosen as the x-axis at one level and the y-axis at the next level.



Chapter 2: Theory 15

Figure 2.6: Interpolation: Bilinear method.

Data points in the "left" subspace are represented by the left subtree, while data
points in the "right" subspace are represented by the right subtree. The terms "left"
and "right" represent the two different sides of the split space. The terms could
also have been "A" and "B", or "upper" and "lower", depending on the splitting
axis and the number of dimensions in the space. However, "left" and "right" were
chosen, since they are intuitive in two-dimensional space.

All data points in the left subtree have a lower value than the splitting axis
value. For example, if the splitting axis is x and its value is 10, then all data points
in the left subtree have a x-value of less than (or equal to, depending on splitting
method) 10. The opposite is true for the right subtree. There, all the data points
will have a x-value greater than (or equal to) 10. The process of dividing the
space into subspaces is repeated recursively until there is only one point in each
subspace. There is also the possibility of having 0 points in a subspace, depending
on the splitting method [25].

An example of the method described above, can be seen in Figure 2.7. A set of
points S = {(10, 10), (52, 15), (35,25), (12,38), (55, 42), (20, 50), (2,68), (30,58)},
is show in a 2-dimensional space. It is made into a kd-tree by splitting on the point
closest to the middle of axis of choice in the subspace. First, it is split on x-axis,
then y-axis, then lastly, x-axis again. The splitting line passes through the splitting
point.

There are many ways to decide the splitting point and the axis to split upon,
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Figure 2.7: Illustration of the final product, showing the subdivision of the space
on the left based on the closest point to the middle of the splitting axis. The kd-
tree representation is depicted on the right.

from the method described above, to using the median value of the points in the
space. All methods come with different pros and cons. One of the deficencies of the
two mentioned methods are their handling of points clustered along an axis. For
example, if data points are highly clustered along the x-axis, the splitting methods
will create a deeper tree than necessary.

A better method would be to use the sliding-midpoint splitting method [24].
The advantage of the sliding-midpoint strategy is that it can result in a more bal-
anced tree, with fewer levels and better search performance.

Sliding-midpoint splitting method uses a kd-tree with slight change in struc-
ture. Instead of having the coordinates of a point in each node, the method stores
the axis it splits upon and the axis split value in each node. Only the leaf nodes
contain data points. Moreover, it uses a midpoint rule as the first step of splitting
a subspace. The idea behind the midpoint rule is to split the longest axis of the
subspace in half. However, if this creates a trivial split (meaning one side has 0
data points), it will slide the splitting line towards the data points until it encoun-
ters a data point. It will then make the split on the other side of the data point, see
Figure 2.8, to avoid a trivial split. This method guarantees no trivial splits. Non-
etheless, it does not guarantee a balanced tree, which may result in a deeper tree
than expected. In practice, the tree is rarely deeper than the depth of a balanced
kd-tree [24].
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Figure 2.8: Illustration showing the sliding midpoint rule in action, where the
splitting line is adjusted to the opposite side of the closest data point, effectively
avoiding trivial splits.

2.4.3 Delaunay triangulation

A set of triangles are called a triangulation. This triangulation can be with or
without any restrictions of how the triangles are located or shaped. However, most
of the time restrictions are desired, to be certain some properties are preserved
[26].

To create a triangulation, a finite set of points is used:

P = {pi} ∈ Ω, i = 1, ..., N . (2.23)

Ideally, the domain Ω should be the convex hull of the set. A triangle in a triangu-
lation is made up of three points pi , p j , and pk which correspond to the vertices
vi , v j , and vk respectively. A single triangle t i jk in a triangulation ∆ is spanned by
the vertices vi , v j , and vk. A set of triples I∆ is used to represent all the triangles in
the triangulation∆. Each triple i= (i, j, k) ∈ I∆ refers to the triangle t i jk for some
integer i. See Figure 2.9 for an illustration of a triangulation of a set of points.

While triangulations can be made up of any collection of triangles, certain fam-
ilies of triangulations are more relevant in practice. One of these families, where
Delaunay triangulations are a family member, meet the following requirements
[26]:

1. No triangle t i jk in a triangulation ∆ is degenerate, that is, if (i, j, k) ∈ I∆,
then pi , p j and pk are not collinear.

2. The interiors of any two triangles in∆ do not intersect, that is, if (i, j, k) ∈ I∆
and (α,β ,γ) ∈ I∆, then

Int
�

t i jk

�

∩ Int
�

tαβγ
�

= ;

3. The boundaries of two triangles can only intersect at a common edge or at
a common vertex.
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Figure 2.9: The graphic displays how a domain Ω (to the left) with a set of points
can be triangulated. An example of the triangulation can be seen to the right.

4. The union of all triangles in a triangulation ∆ is equal to the domain over
which the triangulation is defined, that is

Ω= ∪t i jk, (i, j, k) ∈ I∆

5. The domain Ω must be connected.
6. The triangulation shall not have holes.
7. If vi is a vertex at the boundary ∂Ω, then there must be exactly two boundary

edges that have vi as a common vertex. This implies that the number of
boundary vertices is equal to the number of boundary edges.

If a triangulation ∆ fulfills the four first requirements, then it is valid. If the
last three requirements also are fulfilled, then the triangulation is regular.

For many applications, including interpolation, some form of "optimization"
of triangle shape are sought after. Especially, flat and elongated triangles are
undesired. Instead, an optimal triangulation consists of triangles that are near
equiangular. Different criteria have been proposed to obtain such an optimal trian-
gulation. One of these are the criteria of obtaining triangles with the smallest max-
imum (MinMax) angle. Another similar criteria, is the largest minimal (MaxMin)
angle. Given the MinMax criteria, a set of points P can be triangulated in two
different ways, and still satisfy the criteria. Nonetheless, all triangulations are not
equally good. In Figure 2.10, it can be observed that the left triangulation consists
of more poorly shaped triangles compared to the right triangulation. As a result,
the right triangulation is considered more desirable.

To obtain a more precise definition of a Delaunay triangulation for the MaxMin
criteria, an indicator vector I

�

∆k
�

=
�

α1,α2, ...α|T |
�

can be made, where ∆k is a
possible triangulation of a point set P, αi is the smallest interior angle in each
triangle t i jk in ∆k and |T | is the number of triangles in ∆k. If all triangulations
are assumed to have the same border, then there is a fixed amount of triangles |T |
for all ∆k. Arranging each indicator vector I

�

∆k
�

in a non-decreasing order,

I
�

∆k
�

=
�

α1,α2, ...α|T |
�

,αi ≤ α j , i < j.
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Figure 2.10: Comparison of two triangulations of a set of points P. The left tri-
angulation consists of more poorly shaped triangles than the right triangulation.
Therefore, the right triangulation is considered more desirable.

By lexicographically1 ordering all indicator vectors I
�

∆k
�

in a non-decreasing
order, the lexicographically largest indicator vector represent a triangulation that
is considered the optimal triangulation and is "better" than the other triangula-
tions.

This gives one definition of a Delaunay triangulation for MaxMin angle cri-
teria:

A triangulation that is optimal in the sense of the MaxMin angle criterion
and which is defined on the convex hull of a point set is called a Delaunay
triangulation.[26]

However, there are other ways to define Delaunay triangulations that are, from
a practical point of view, more useful than the definition above. A commonly used
definition is the based upon geometry, and more specifically circumcircles of the
triangles in the triangulation ∆. A circumcircle is, as the name suggests, a circle
around something. In this case, it is a circle enclosing a triangle, see Figure 2.11. A
flat and elongated triangle (triangle on the right in Figure 2.11) produce a larger
circle than a close to equiangular triangle (triangle on the left in Figure 2.11).

Using the circumcircle, a new definition of a Delaunay triangulation can be
made:

A Delaunay triangulation ∆ of a set of points P in the plane is a tri-
angulation where the interior of the circumcircle of any triangle in ∆
contains no point from P. [26]

A larger example of Delaunay triangulation with circumcircles can be seen in
Figure 2.12.

1A vector va is lexicographically larger than a vector vb if for some integer m, va
i = vb

i for i =
1, ..., m− 1, while va

m > vb
m [26].
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Figure 2.11: An illustration showing how the shape of the triangle affects the
circumcircle of the triangle. The right triangle, which is flat and elongate, creates
a larger circle compared to the left triangle, which is close to equiangular.

Figure 2.12: An illustration of a Delaunay triangulation with circumcircles.

2.4.4 Barycentric coordinates

Barycentric coordinates are a mathematical system used to specify the position of
a point relative to the vertices in a space. This space is often of a triangle in a two-
or three-dimensional space. Higher dimensions are possible, but not as common.

Consider a simpler space than a triangle: A segment represented by two points
A and B. The position of an arbitrary point P on the line can be represented by

P = A+ t (A− B) = (1− t)A+ tB, (2.24)

or given a+ b = 1,
P = aA+ bB. (2.25)

Point P is on the segment if, and only if, 0 ≤ a ≤ 1 and 0 ≤ b ≤ 1. For
a segment, the barycentric coordinates for A and B are respectively (1, 0) and
(0,1). Bary comes from Greek, and means weight. In the previous example, a and
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b was the weights of point A and B, positioned on the points. The point P can be
expressed by the ratio a : b.

Going back to the two-dimensional triangle, the position of a point P inside a
triangle tABC is expressed as a weighted sum of the positions of the three vertices A,
B, and C , where the weights a, b, and c are proportional to the distances between
the point P and the three vertices of the triangle. The barycentric coordinates of
the vertices A, B, and C are respectively (1,0, 0), (0, 1,0) and (0,0, 1). A point P,
with the barycentric coordinates (a, b, c), is inside, or on the edge of, the triangle
if and only if, 0 ≤ a, b, c ≤ 1 and a + b + c = 1. This gives the parametriza-
tion with vertex A as the origin, Equation 2.26a, and the general parametrization,
Equation 2.26b.

P = A+ b (B − A) + c (C − A) (2.26a)

P = aA+ bB + cC (2.26b)

Undeniably, barycentric coordinates contains redundancy, since there are three
components to describe a position on a surface (only two components are needed).
However, this is kept for the reason of symmetry.

An example of a triangle and different points inside or on the edge of a triangle
can be seen in Figure 2.13. If any of the weights a, b, and c are larger than 1 or
negative, then the point P is outside the triangle. If one of the weights are 0 and
the two other is equal to 1, then the point is on the edge opposite of the vertex
represented by the weight equal to 0. And lastly, if one weight is equal to 1, then
the point is the vertex represented by the weight equal to 1.

Figure 2.13: A triangle with a variety of its barycentric coordinates printed on.





Chapter 3

Image processing pipeline and
recorded dataset

In this chapter a description of the camera equipment, the frames and coordinate
systems, and the different steps in the image processing pipeline used to make the
IPM images is given.

Parts of this chapter have been taken from my project thesis, with modific-
ations to conform to the change from milliAmpere1 to milliAmpere2. These are
Section 3.1, Section 3.2, Section 3.3.2 and Section 3.3.4.

3.1 Equipment

On milliAmpere2, there are installed 8 electro-optical cameras, 4 facing front and
4 facing aft. All the cameras are of the type FLIR Blackfly S 50-S5C, see Figure 3.1a,
equipped with a 6mm lens, and capture images in 1224px × 1024px at a rate of
5Hz. The images are recorded in raw Bayer format. Each camera has a field of
view (FOV) of 77.8◦, and the covered area can be seen in Figure 3.2. However,
due to the cameras’ positions and orientations, full near-range coverage is not
achieved due to blind zones on the port and starboard sides.

3.2 Frames and coordinate systems

To create the IPM image, multiple reference frames are required. In this approach,
two primary frames were utilized, namely the camera frame Fc and the vessel
frame Fv . In addition, two image coordinate frames are needed: The image frame
of the camera Ic , and the image frame of the IPM image II PM . Each camera frame
Fc and image frame Ic can be specified to each of the 8 individual cameras on
the ferry. Their names are, from front port to starboard aft position: fp_p, fp_f,
fs_f, fs_s, ap_p, ap_a, as_a and as_s, and the position of the 4 cameras in front are
pointed at by red arrows in Figure 3.1b. In the names of the cameras, the "f" and
"a" stands for "front" and "aft", while "p" and "s" stands for "port" and "starboard".

23
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(a) An image of the FLIR
Blackfly S 50-S5C camera
used on milliAmpere2.
Image courtesy of Edmund
Optics, Inc [27].

(b) An image of milliAmpere2 with red arrows pointing at 4 of
the camera positions. Photo taken from the thesis proposition
web page, hosted by AUTOFERRY [28].

Figure 3.1

3.3 Image Processing Pipeline

The main steps of the image processing pipeline are presented in Figure 3.3. The
steps will be further explained in the sections below.

Two notes regarding the image processing pipeline: 1) The images are demo-
saiced (transformed from raw Bayer format to a full color, normal image format)
before the undistortion step. 2) The undistortion method presented below, is rel-
evant for code optimization phase in Chapter 4. During the live experiment, the
autonomy system on milliAmpere2 was responsible for the undistortion. This is
illustrated in Figure 3.3 by the box named External system.

3.3.1 Distortion and undistortion

To get the undistorted image from each camera, OpenCV’s function undistort()
was used. The distorted image, the intrinsic camera matrix Ki and a vector di con-
taining the distortion coefficients for camera i are given as the input to the func-
tion. The information was read from calibration files, named name_calib.yaml,
where "name" is replaced by the name of each camera. The values of the distor-
tion coefficients used can be seen in Table 3.1. An example of a distorted and
undistorted image can be seen in Figure 3.4.

3.3.2 Inverse Perspective Mapping

In practice, the IPM was solved with the function georeference_point_eq()which
was provided by Øystein Kaarstad Helgesen [7]. It is presumed that the target
plane Πsea, has Z = 0 in accordance with the assumption made to derive Equa-
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Figure 3.2: Illustration of each coordinate frame and how the bird’s eye view
is made by combining all 8 camera views. The upper part of the image shows
the position of all the coordinate frames. The positions are not exactly as in the
real world, but rather meant to convey where the coordinate frames are relative
to each other. The bottom part illustrates how the 360-degree bird’s eye view is
split between the eight cameras, and how much each camera’s FOV overlap the
neighboring camera’s FOV.



Chapter 3: Image processing pipeline and recorded dataset 26

Undistorted
image

Calculate
pixel
pos in Fv

Calculate
pixel
pos in II PM

Stitch images
and
interpolate

8x - One for each camera

Bird’s eye view systemExternal system

Figure 3.3: The main steps in the image processing pipeline.

(a) (b)

Figure 3.4: Showing image with the horizon visible to showcase distortion and
undistortion: a) the distorted image; b) the undistorted image. Images are taken
with milliAmpere1, since milliAmpere2 did not have any footage of an unobstruc-
ted horizion.

tion 2.18. The function uses Equation 2.18 to find the X v and Yv . This is done by
multiplying the last row of Equation 2.18, [1= p31X v + p32Yv + tz], by u and v to
get Equation 3.1a and 3.1b.

u= u(p31X v + p32Yv + tz) (3.1a)

v = v(p31X v + p32Yv + tz) (3.1b)

and substituting Equation 3.1a and Equation 3.1b into the two top rows in Equa-
tion 2.18. This gives Equation 3.2.

u(p31X v + p32Yv + tz) = p11X v + p12Yv + t x (3.2a)

v(p31X v + p32Yv + tz) = p23X v + p22Yv + t y (3.2b)
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Table 3.1: All distortion coefficients vectors di used.

Camera name di

fp_p [−0.018605,0.042917,−0.001832,−3.870074e− 05]
fp_f [−0.018673,0.047078,−0.001220, 0.000400]
fs_f [−0.022843,0.049915,−0.002009, 0.001255]
fs_s [−0.021118,0.051208,−0.002408, 0.001388]
ap_p [−0.015409,0.043337, 0.002489, 0.001675]
ap_a [−0.017589,0.044218, 0.001240, 0.001164]
as_a [−0.019606,0.052677, 0.001692, 0.0007788]
as_s [−0.012545,0.038147, 0.001048,−9.807762e− 05]

Rearranging to gather X v and Yv on one side:

(up31 − P11)X v + (up32 + p12)Yv = t x − utz (3.3a)

(vp31 − P21)X v + (vp32 + p22)Yv = t y − vtz (3.3b)

For easier calculations, can Equation 3.3 be converted to matrix form:

�

up31 − P11 up32 + p12
vp31 − P21 vp32 + p22

�

︸ ︷︷ ︸

A

�

X v
Yv

�

=

�

t x − utz
t y − vtz

�

(3.4)

Which can be solved as long as A is invertible.

�

X v
Yv

�

=

�

up31 − P11 up32 + p12
vp31 − P21 vp32 + p22

�−1 �
t x − utz
t y − vtz

�

(3.5)

After calculating the Fv coordinates for all pixels in the image, a filter re-
moving all points with a distance of outside the range minx < X < max x and
miny < Y < max y is applied. These distances were chosen after experimenta-
tion with different distances, and deemed to be the best tradeoff between visual
quality and range. The distances that were used are given below.

max x 10m
minx −10m
max y 10m
miny −10m

3.3.3 Interpolation

Different methods were used to interpolate the IPM image. This is the step in the
image processing pipeline that takes the longest time to complete, and therefore
the part of the process that can be improved the most. Two different interpolation



Chapter 3: Image processing pipeline and recorded dataset 28

methods from the SciPy library will be presented and explained in this section.
Both methods are based "traditional interpolation methods": Nearest neighbor and
linear interpolation.

Nearest neighbor interpolation

The scipy.interpolation.NearestNDInterpolator() (from now on called
NearestNDInterpolator()) is based upon the method described by [25]. First,
a kd-tree is constructed from the data points using the sliding midpoint splitting
rule. The kd-space, in this thesis a 2D image, is iteratively split into "left" and
"right" subspaces. Each subspace is a left or right child node in the kd-tree. If the
child node is a leaf node, then it contains the data point in that subspace. If the
child node is not a leaf node, then the node will contain the splitting axis and the
value of where the split of the subspace takes place.

In Figure 3.5, an example of this process is illustrated. On the left is the data
points (pixel coordinates) in the image, while on the right side the correspond-
ing kd-tree is constructed. The nodes do not display the splitting axis value for
simplification of the illustrations.

To find the nearest neighbor to a new data point, the algorithm first finds the
approximately nearest neighbor. After that, it iterates through the tree, measur-
ing if a new node or subspace is closer in distance than the so far closest data
point. This continues until the algorithm can conclude that all other data points
are further away than the so far closest data point. This is the value of the new
data point (in this case, a pixel and its RGB-value). An example of the process is
visualized and described in Figure 3.6.

Linear interpolation

There are different types of linear interpolation algorithms. One of the commonly
used algorithms are scipy.interpolate.LinearNDInterpolator() (from here
on called LinearNDInterpolator()) [29]. The algorithm can be described in four
steps:

1. Triangulating the irregular input data (pixel positions) using Delaunay tri-
angulation from the scipy.spatial.qhull.

2. For every point in the new grid, the triangulation is searched to identify the
simplex (a triangle) that encompasses the point.

3. The barycentric coordinates of each new grid point are calculated relative
to the vertices of the surrounding simplex.

4. An interpolated value is computed for each grid point using the barycentric
coordinates as weights and the RGB-values at the three vertices of the en-
closing simplex, performing linear interpolation.

An illustration of step 1-3 is presented in Figure 3.7. Step 4 is calculated with
Equation 2.26b.
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Figure 3.5: The figure illustrates the step-by-step process to make kd-tree from a
space containing data points using the sliding midpoint rule.

(a) First, the space is divided in the middle along the y-axis. The choice of first splitting
axis is chosen randomly. The root node saves the slitting axis and splitting value (only the
splitting axis is illustrated in the figure). A child node is made for each new subspace.

(b) The left node is further split along the x-axis and the splitting axis is saved in the
node.

(c) The "left" subspace is split, with one data point in each subspace. This creates two leaf
nodes, each with the values of one data point.
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(d) As the last node has two leaf nodes and cannot be further divided, the algorithm
ascends to the previous level and continues down the right path of the node. One subspace
contains a single data point, which becomes a leaf node, while the other subspace still
requires one more division.

(e) The "left" subspace is divided entirely into subspaces, each containing only one data
point. The algorithm then returns to the root node and proceeds to iterate through the
"right" subspace.

(f) The initial split along the x-axis results in a subspace with a single data point, forming
a leaf node as the left child. Meanwhile, the "right" subspace requires further division.
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(g) The final subspace, which initially contains multiple data points, is split into two
subspaces, each with only one data point. This results in the creation of two leaf nodes,
completing the construction of the kd-tree.

3.3.4 Stitching of images

Once the IPM has been applied to the images captured by all 8 cameras, the next
step is to stitch them together. For each pixel in each image, the IPM provides the
position of the corresponding point Xv = [X v , Yv , Zv , 1]⊺ in Fv . These positions
can be used to place all the pixels in their correct position in Fv , and later be
transformed to one combined IPM image. To make it easier to transform these
positions into a image of arbitrary resolution, a normalization of all the points Xv
was performed. Since Xv has Z = 0 on the plane Πsea, the normalization matrix
can be written as a 3× 3-matrix.

X̂v =





sx 0 t x
0 sy t y
0 0 1









X v
Yv
1



 (3.6)

where

sx =
2

max x −minx
t x = −sx minx − 1

sy =
2

max y −miny
t y = −sy miny − 1

The normalization transforms Xv from the range
�

−10m, 10m
�

to X̂v with the
range
�

−1, 1
�

. The final step, to go from X̂v to uI PM , was to multiply X̂v with the
"intrinsic" matrix KI PM , where resx and resy is the resolution of the II PM .

uI PM =

�

uI PM
vI PM

�

= KI PM X̂v =





resx
2 − 1 0 resx

2
0 − resy

2 − 1
resy

2
0 0 1









X̂ v
Ŷv
1



 (3.7)
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Figure 3.6: The figure illustrates the step-by-step process to find the nearest
neighbor to the new data point (marked by an x).

(a) In the first step, the approximately closest data point is found by looking at what data
point "owns" the subspace the new data point (marked by an x in the figure) is located
in. To illustrate the so far closest neighbor, the data point is colored green. The circle
surrounding the new point indicates areas where it is possible to find closer points.

(b) Next, the distance to the so far closest data point is compared to the distance to the
axis split value of the parent node. This comparison checks if it is necessary to check all
points in the yellow shaded area.

(c) Since the distance to axis split value was larger than that of the so far closest data point,
the whole subspace is discarded. This is illustrated by being grayed out. In addition, since
the subspace is discarded, there is no need to check the child nodes. The algorithm then
continues up one level, and does the same check.
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(d) Again, the area is discarded, and the algorithm goes one level up in the kd-tree. The
next level node has an axis split value that can produce a data point that is closer than
the so far closest data point. Therefore, the algorithm goes down one level in the new
branch, and does a new distance check to the subspace shaded in yellow.

(e) Since the distance to axis split value was larger than that of the so far closest data
point, the subspace is discarded. The other branch is then checked, and a distance check
against the yellow colored data point is done, since it is possible it is the nearest neighbor.

(f) The distance to the data point is further than the so far closest data point, and therefore
discarded. The last subspace (the whole right side) are also checked.
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(g) Since the distance to the axis split value is larger than the distance to the so far closest
data point, the whole right subspace is discarded. The algorithm has found the nearest
neighbor, marked in green, to the new data point.

Given the cameras’ FOV and position, some of the cameras observe the same
area. Due to different viewing angles and local light conditions, this overlap cre-
ates unwanted noise in the IPM image, see image Figure 3.8a.

To remove the noise, a three-step process was made. To illustrate the process,
the overlapping area between camera fp_f and fs_f is used. Point r1 is the right
most, closest pixel to the center of IPM image, while point r2 is the rightmost and
the furthest pixel from the center of the IPM image. Both r1 and r2 are pixels from
camera fp_f. Point q1 and q2 are the same, but for camera fs_f and most left points
instead of right. These 4 points create 2 vectors: r and q. The intersection of these
two vectors can be found by solving (r2 − r1)s + (q1 − q2)t = r1 − q1, which can
be rewritten to matrix form

�

r2 − r1 q1 − q2
�

︸ ︷︷ ︸

A

�

s
t

�

︸︷︷︸

x

=
�

r1 − q1
�

︸ ︷︷ ︸

b

(3.8)

Equation 3.8 can be solved as a linear system of equations Ax = b with
scipy.linalg.solve(A,b). The point of intersection between r and q can be ex-
pressed as i = r1 + (r2 − r1)[s, t]⊺. Apart from the intersection point i, we also
need to locate the midpoint m. This midpoint, denoted as m, is the midpoint of
the vector q2r2. By connecting i and m with a line, we can form a left triangle L
and a right triangle R, as shown in Figure 3.8b.

Utilizing these two triangles, we can proceed to eliminate pixels from the cam-
era fp_f within the right triangle and pixels from the camera fs_f within the left
triangle. Consequently, all pixels from the right camera that lie on the left side of
the vector im will be removed, and similarly, pixels from the left camera on the
right side of the vector im will be removed.

To check if a pixel is inside a triangle, barycentric coordinates were used. The
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Figure 3.7: The figure illustrates the 3 first steps of LinearNDInterpolator().

(a) Step 1: Triangulating the irregular input data using Delaunay triangulation.

(b) Step 2: Identify the simplex the new red point is located in.

B

C

A a

c

b

P

(c) Step 3: Calculate the barycentric coordinates of the point relative to the vertices of
the surrounding simplex.
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pixel position and the triangle corner positions were transformed into barycentric
coordinates, and the value of a, b and c were tested to be in the range

�

0, 1
�

.
Equation 3.9 was used to find a, b and c.

a =
(y2 − y3)(x − x3) + (x3 − x2)(y − y3)
(y2 − y3)(x1 − x3) + (x3 − x2)(y1 − y3)

(3.9a)

b =
(y3 − y1)(x − x3) + (x1 − x3)(y − y3)
(y2 − y3)(x1 − x3) + (x3 − x2)(y1 − y3)

(3.9b)

c = 1− a− b (3.9c)

In Equation 3.9, x1, x2, x3 and y1, y2, y3 are the x- and y-values of the 3
corners of the triangle, while x and y represent the pixel. If the pixel were in-
side the triangle, it was removed from the IPM image.

The coordinates of points r2 and q2 depicted in Figure 3.8b do not correspond
to their actual positions. In reality, these points were located far beyond the bor-
ders of the IPM image, yet aligned with the line connecting the illustrated points.
This discrepancy arose because the distance limit was not applied to the pixels at
this point in the process. The result of the removal of overlapping camera FOVs
can be seen in Figure 3.8c.
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Figure 3.8: Showing the effect of removing the overlapping FOVs between front
facing cameras. a) shows the unprocessed IPM image, while c) shows the same
IPM image after camera overlapping areas has been resolved. b illustrates the
position of the objects in the method described above. IPM image is a cropped
version of frame 1 from rosbag2_2022_10_09-08_02_54_80.db3.

(a) A cropped IPM image showing the overlapping camera FOVs, noticeable by the pres-
ence of visual noise along the FOV edges.

(b) An illustration of where each part in the method to remove the overlap between
cameras are positioned. Illustration is an example for the overlap between camera fp_f
and fs_f.

(c) IPM image without overlapping camera FOVs, and therefore less visual noise.





Chapter 4

Code optimization

The final result of my project thesis was a video showing the bird’s eye view of
milliAmpere1. The code was not designed with any thought of efficiency; only to
prove that the underlying method and technology was possible to use on the cam-
era setup of milliAmpere1. However, for this thesis, one of the goals were to be
able to produce the top-down view in real-time on milliAmpere2. As a result, the
project thesis code needed to be adopted from ROS1 to ROS2, and made signi-
ficantly faster. The change from ROS1 to ROS2 was necessary, since milliAmpere2
use ROS2. Furthermore, the code also had to be modified to process images from
8 cameras, instead of the 5 cameras on milliAmpere1. Given that the cameras cap-
ture images at a rate of 5Hz, a time of less than 200ms per IPM image was set as
a goal.

This chapter is a complete description of the code optimization process. It
includes the different methods and improvements to the code, their respective
run-times, and a discussion around the results and observations.

4.1 Code optimization setup

For this thesis, the same computer as for the project thesis was used. The com-
puter was set up with Ubuntu 20.04 and an Intel Core i7-8700 CPU with a base
clock frequency of 3.20GHz, max clock frequency of 4.60GHz, 6 cores and 12
threads. It was running Python version 3.8.10, NumPy version 1.23.2, SciPy
version 1.9.1 and ROS 2 Foxy Fitzroy. All image results made during the code
optimization were made from the two files presented in Table 4.1.

The run-time data presented in section 4.2 were captured through running
the main() function with cProfiler, a profiler library that measures elapsed time
during all function calls. The reported run-times were the average run-time of
the function make_BEW(), which contain the interpolation function that was used
to produce the IPM image. The timer started after the make_BEW()-function had
received all 8 undistorted images, and ended when the IPM image was made. It is
important to note, that the presented run-time does not include reading the ros-
messages, transforming the images from raw Bayer format to OpenCV format and

39
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Table 4.1: Name and description of the files used in Chapter 4.

Filename Information about the file
File 1: rosbag2_2022_10_06-
13_50_07_0.db3

Initial file provided by advisor Øystein
Kaarstad Helgesen. Contained images from
7 cameras. Images from camera fp_p is miss-
ing.

File 2: rosbag2_2022_10_09-
08_02_54_80.db3

File provided by advisor Øystein Kaarstad
Helgesen. Contained images from all 8 cam-
eras.

undistorting the images. These functions were excluded from the measurement,
because they were either handled by the autonomy system on milliAmpere2 or the
functions were not present in the version of the system running on the ferry. The
initial run-time data were from the construction of 10 IPM images.

4.2 Optimization steps and results

The initial performance benchmark for this thesis was based on the runtime of the
code from my project thesis, but used with ROS2. The make_BEW()-function was
using scipy.interpolation.griddata()(from here on griddata()) with bilin-
ear interpolation on 3000px × 3000px , and the run-time was 34s. As mentioned
earlier, this program was not written with efficiency in mind.

4.2.1 Exploration of interpolation methods

From this initial performance, different options regarding interpolation methods
and a reduction of resolution were tested. The resolution was set to 1500px ×
1500px and using griddata()with nearest neighbor produced a run-time of 13.57s.
An important observation regarding the number of pixels that needed to be inter-
polated was made at this stage. In Figure 4.1 there is a large black area in the
middle that is void of pixel data. All these pixels are supposed to be black, since
there is no camera coverage here. However, since the pixels were empty instead
of black, the interpolation function calculated a new RGB-value for all the empty
pixels. This situation was as severe in my project thesis, since most of the IPM
image were covered by the 5 cameras, see Figure 4.3.

Due to this discovery, an image with black pixels that filled the void area were
added to the data given to griddata(). The image was made from a manually
created mask, see the red area in Figure 4.2. With the same resolution as before
and using griddata() with nearest neighbor, a significant improvement in run-
time was achieved: 3.226s.

After the prior improvement, a deep dive into how griddata() work behind
the scenes was conducted. griddata() is only a wrapper-function for different
scipy.interpolation-methods. In addition, the function can take a pre-calculated
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Figure 4.1: A bird’s eye view image from the initial ros-file, and therefore missing
camera fp_p. Made with griddata() and a resolution of 1500px × 1500px .

Figure 4.2: Showing the red mask used to make the black image to fill the void
area in Figure 4.1.
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Figure 4.3: A bird’s eye view image from my project thesis made by using grid-
data() with a resolution of 3000px × 3000px .

scipy.spatial.Delaunay-object, instead of the pixel positions. The pre-calculation
does not affect the result, since one of the first steps of griddata() is to calculate
the Delaunay triangulation. Furthermore, since the camera parameters are con-
stant after the program initialization, all pixel positions from the IPM calculations
are fixed as well.

With these three discoveries, pre-calculating the Delaunay triangulation of the
pixel position and using NearestNDInterpolator() with a resolution of 1500px×
1500px and the filled black area, a new time of 3.132s was achieved. The scipy-
function NearestNDInterpolator() is the same function griddata() calls upon
when the interpolation method is set to nearest neighbor.

To make the previous method, using NearestNDInterpolator(), work as de-
sired, the interpolation step had to be split into one function call for each RGB-
color. These 3 function calls were in the previous method, run in succession. To im-
prove this, multiprocessing using the python library multiprocessing was tested.
The attempt was to run the 3 function calls of NearestNDInterpolator() in par-
allel. The run-time was 5.801s, which was higher than that of the serial method.

In the approach of utilizing NearestNDInterpolator() in succession, only the
Delaunay triangulation is calculated beforehand in the initialization. However, the
interpolation weights for each pixel would be possible to calculate once in the
initialization, since the positions of the pixels in the IPM image are fixed. Only the
RBG-values change from one IPM image to the next. During the design phase, the
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approach of LinearNDInterpolator() from Section 3.3.3 was used as inspiration.
The steps are repeated below.

1. Triangulating the irregular input data (pixel positions) using Delaunay tri-
angulation from the scipy.spatial.qhull.

2. For every point in the new grid, the triangulation is searched to identify the
simplex (a triangle) that encompasses the point.

3. The barycentric coordinates of each new grid point are calculated relative
to the vertices of the surrounding simplex.

4. An interpolated value is computed for each grid point using the barycentric
coordinates as weights and the RGB-values at the three vertices of the en-
closing simplex, performing linear interpolation.

The first three steps can be completed during the initialization, leaving only
the last step to be calculated during the execution. This method resulted in a run-
time of 617.1ms, and a significant improvement towards the goal of 200ms.

A summary of the different methods and their run-times are presented in Fig-
ure 4.4 and Table 4.2.
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Figure 4.4: A summary of the different methods tested in Section 4.2.1. Descrip-
tion of each method can be found in Table 4.2.

4.2.2 Improving performance through problem-solving

After achieving a run-time of 617.1ms, down from the initial run-time of 34s, a
major restructure of the code was undertaken. Two major problems were solved:
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Table 4.2: Description of the different interpolation methods shown in Figure 4.4.

Method Run-time Description
1 34.0s griddata() with linear interpolation and a resolu-

tion of 3000px × 3000px .
2 13.57s griddata() with nearest neighbor interpolation and

a resolution of 1500px × 1500px .
3 3.226s griddata() with nearest neighbor interpolation, the

empty, black area in the middle of the image filled
with black pixels, and a resolution of 1500px ×
1500px .

4 3.132s NearestNDInterpolator() with the empty, black
area in the middle of the image filled with black
pixels, pre-calculated Delaunay triangulation, and a
resolution of 1500px×1500px . RGB-values interpol-
ated in succession.

5 5.801s NearestNDInterpolator() with the empty, black
area in the middle of the image filled with black
pixels, pre-calculated Delaunay triangulation, and a
resolution of 1500px×1500px . RGB-values interpol-
ated in parallel with multiprocessing library.

6 0.6171s Pre-calculated interpolation weights with linear in-
terpolation, the empty, black area in the middle of
the image filled with black pixels, and a resolution of
1500px × 1500px .

1) Due to the erroneous installation of the cameras on milliAmpere2, part of
the images were covered up by the hull surrounding the cameras, see Figure 4.5a.
This created visual artifacts/noise in the IPM image. The visual artifacts were
especially prominent in areas with overlapping camera FOVs. This was because
these areas were mainly covered by the edges of the images, where the hull was
visible. The problem was solved by manually creating masks for each camera that
removed all parts of the image containing walls, see Figure 4.5b.

2) In my project thesis, an oversight occurred regarding the omission of a dis-
tance check for pixels exceeding the desired maximum distance. Although this
omission did not produce any visible errors due to Python’s image handling cap-
abilities, it led to the inclusion of pixels outside the intended range in the interpol-
ation function. As a result, the run-time was negatively affected due to additional
calculations. To resolve this, a solution was implemented by performing a distance
check for each pixel’s position in the x- and y-direction, removing any pixels out-
side the specified range. The outcome of this check resulted in an additional mask
that was later merged with the existing wall-mask.

Finally, by relocating the wall-mask generation, the distance check, and com-
bining of the two masks to the initialization stage of the code, the run-time was
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reduced to 338.8ms.

(a) (b)

Figure 4.5: Showing an arbitrary image from camera fs_f. In a) the hull surround-
ing the camera is visible on the left side. The mask to remove the hull from the
IPM image is the area covered by red in b).

The next improvement of the code, was to add a function to address the areas
of the IPM covered by two cameras, as described in Section 3.3.4. This improve-
ment should not have a significant impact on the run-time, since it only removes a
few pixels from being interpolated. The function is more important for the visual
quality of the product. The new run-time was 320.7ms.

4.2.3 Expanding code from 7 to 8 cameras

In order to improve the code’s functionality and prepare it for testing on milli-
Ampere2, an expansion was incorporated to accommodate images from all 8 cam-
eras. The testing of this expansion was made possible by the availability of a new
rosbag-file, see File 2 in Section 4.1, which contained images captured by all cam-
eras. Combined with the previous improvements, a new run-time of 355.8ms was
achieved. An IPM image with all 8 cameras and correct handling of overlapping
areas can be seen in Figure 4.6. The mask for filling the void area in the middle
was also updated, see Figure 4.7. The increase in run-time was expected, since 1
more image had to be processed in the pipeline.

4.2.4 Final performance tuning

The run-time at this point in time was closing in on the goal of less than 200ms
per IPM image. Improvements would therefore be in milliseconds, and small run-
time variances per IPM image could affect the average run-time results in a greater
degree. To be more certain the average run-time was accurate and representative,
the number of IPM images the run-time data was collected from was increased
from 10 to 100 images. On top of that, an extra, stand-alone test code was made
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Figure 4.6: Image showing an arbitrary frame with the pier from File 2. All 8
cameras included. Overlapping camera FOVs are resolved.

for each function change. The extra test code was made to be as similar as possible
to the main code, having the same input and the same output. The run-times from
these test were collected from 500 function calls, and served as an indicator of the
reasonability of the performance gain in the main code.

To find where potential improvements could be made, the profiler-file made
by cProfile was investigated with snakeviz. Functions with a high cumulative
run-time were investigated first, since the potential for large improvements were
greater.

The first discovery was found in the function interpolate(). It used numpy.ta-
ke(), which is easier to read and use than NumPy’s advanced array indexing (AAI),
but much slower. From the stand-alone test, the change from numpy.take() to AAI
showed a promising decrease of 15.8ms per function call. Since interpolate()
contains one numpy.take(), and the function is called 3 times, the test indicated a
decrease of around 47.4ms. After implementing the AAI instead of numpy.take(),
the new run-time was 292.1ms. A decrease of 63.7ms, and better result than ex-
pected from the stand-alone test result.

With the new knowledge, that numpy.take()was slower than AAI, other NumPy-
indexing functions were searched for. In the function calculate_rgb_matrix_for-
_BEW(), a numpy.all()was used. From the stand-alone test, a change from numpy.all()
to AII resulted in a reduction of 16.61ms per function call. Since calculate_rgb_-



Chapter 4: Code optimization 47

Figure 4.7: Image showing the new, updated red mask to create the black pixels
to fill the void in the middle of the IPM image.

matrix_for_BEW() contains one numpy.all(), and is called 8 times during the
IPM image production, the result from the external test indicated a decrease of
132.9ms. In the main program, the change resulted in a run-time decrease of
91.1ms, and a new run-time of 201.0ms. While the improvement was not as large
as expected compare to the result of the stand-alone test, it still was a significant
improvement in performance.

The last necessary improvement, to reach the goal of less than 200ms per
IPM image, was to change all numpy.flatten() in the function make_BEW() to
numpy.ravel(). Both functions collapse a numpy-array of N -dimensions into a one-
dimensional array. The difference is that numpy.flatten() makes a copy of the
given array and returns a flatten copy of it, while numpy.ravel() returns a flat-
ten view of the given array. Since numpy.flatten() needs to allocate memory for
the copy, it is slower than numpy.ravel(). From the stand-alone test, this differ-
ence was 3.96ms per function call. A total of 5 numpy.flatten() was called in
make_BEW(), indicating a run-time improvement of 19.8ms. After implementation
of numpy.ravel(), the run-time was decreased by 21.3ms to 179.7ms, and below
the goal of 200ms.

An additional test was conducted to test how low the run-time could go while
maintaining a reasonable resolution. A resolution of 1100px×1100px was tested,
and the average run-time was 130.0ms.
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A summary of all the improvement steps and their run-time can be seen in
Figure 4.8. Since there were no visual improvements in the last code optimization
part, the final image result can be viewed in Figure 4.6.
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Figure 4.8: A summary of all the improvements, illustrated in a line chart, after
method 6 from Section 4.2.1 was developed. A description of each improve-
ment step and the respective run-time can be found in Table 4.3. Resolution was
1500px × 1500px if not specified.
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Table 4.3: The run-time and description of each improvement step presented in
Figure 4.8.

Step Run-time Description
0 617.1ms The best method (number 6) in Section 4.2.1 and the

baseline for this part of the code optimization.
1 338.8ms Wall-mask generation, distance check, and the genera-

tion of the final image-masks were moved to the initial-
ization of the program.

2 320.7ms Added function to fix overlapping FOVs in the IPM image.
3 355.8ms Adopted code from 7 to 8 cameras.
4 292.1ms Replaced numpy.take() with AAI in the interpolate()

function.
5 201.0ms Replaced numpy.all() with AAI in the calcu-

late_rgb_matrix_for_BEW() function.
6 179.7ms Replaced numpy.flatten() with numpy.ravel() in the

make_BEW() function.
7 130.0ms An extra test with the resolution lowered to 1100px ×

1100px .





Chapter 5

Experimental setup

In this chapter, a description of the experimental setup, including the operational
area, technical specifications of the ferry and its onboard systems will be given.
Furthermore, the necessary code adaptations required to execute the code on mil-
liAmpere2 will also be presented.

5.1 Area of operation

The experiment was conducted on the 10th of May 2023. It took place in Trond-
heim, Norway, in the canal between Fosenkaia and Ravnkloa as reflected in the
red area in Figure 5.1. The black and blue path in Figure 5.1b is the approximate
path driven by milliAmpere2 during the experiment.

5.2 Technical specifications

The ferry milliAmpere2 was used to capture images, and all 8 FLIR Blackfly S 50-
S5C optical cameras were used. To run the program on the ferry, the computer
owned by Zeabuz was used. The computer was set up with an AMD EPYC 7313P
“MILAN” CPU with a base clock frequency of 3.0GHz, max clock frequency of
3.7GHz, 16 cores and 32 threads [30]. The code was in running in a Docker
container on the computer using Ubuntu 22.04 and ROS 2 Humble Hawksbill.
Unfortunately, the Python, NumPy and SciPy versions were not written down,
but following the required versions for ROS 2 Humble on Ubuntu 22.04, Python
version 3.10.13, NumPy version 1.21.5 and SciPy version 1.10.1 can be as-
sumed was used. The general specifications of milliAmpere2 can be found in Table 5.1.

5.3 Plan of action

The ferry was operated locally by Egil Eide (project leader and builder of milli-
Ampere2) and Øystein Kaarstad Helgesen. In addition to the recording of the IPM
images, a GoPro camera was set up inside the cockpit of the ferry. It recorded the
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Figure 5.1: Map data is provided by the Norwegian Mapping Authority
(©Kartverket).

(a) Map centered on Trondheim city center. The main experimental area used in this
thesis is marked by the red polygon.

(b) A zoomed in view of the area of operation. The black and blue path is the approxim-
ate path taken by milliAmpere2 during the experiment. Fosenkaia is marked by 1, while
Ravnkloa is marked by 2.
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Table 5.1: General specifications for milliAmpere2 [2].

Specification milliAmpere2
Length 8.5m
Beam 3.5m
Draft 0.3m
Max pax 12
Propulsion 4 azimuth thrusters
Operation speed 3 knots
Max speed 5 knots
Energy Electric 48V DC
Batteries Lead-Acid VR 48kWh
Power 4× 10kW
Sensors IR camera, camera,

RADAR, LIDAR, ultrasonic

steering console and the operator. Lastly, a drone with a camera was operated by
Marcus Lerfald (a fellow Master student at NTNU. The drone footage captured
the ferry movements from the outside. Images from the different point of views
will be presented later.

The plan for the experiment was to cross the canal two times, with a total
of four dockings. The experiment had two main goals: To verify the real-time
performance of the system on milliAmpere2 while the onboard autonomy system
was running, and to evaluate the system’s usefulness for the operator, specific-
ally during docking operations. The IPM images were recorded using the built-in
recording in ROS2, ros2 bag record.

5.4 Code adoption to ROS2

In order to run the code on milliAmpere2, the code used in Chapter 4 was adopted
to the ROS2 node-structure. Each node in ROS2 has one purpose, for example, un-
distorting images from cameras or making an IPM image. The nodes communicate
over topics, where messages can be sent. A message could contain for example an
image or text. A node can send messages through its publisher service and receive
through its subscribers service.

To be able to communicate and function together with the autonomy system
running on milliAmpere2, the code was adopted to run as a node called BEW_maker
with the task to convert 8 undistorted images to one IPM image. The node was
subscribed to all 8 camera topics, where the node received undistorted images.
When an image from all cameras were received, the node ran the make_BEW()-
function (the same function as used and timed in Chapter 4) to make the bird’s
eye view image, before it published the image on the topic im_BEW. An overview
over the node and the topics used in the system can be seen in Figure 5.2.
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milliAmpere2

##_#

System on

8×

Camera BEW_maker

/rgb_cam_##_#
/image_rectify /im_BEW

Figure 5.2: Illustration of the relevant nodes and topics used during the exper-
iment on milliAmpere2. The blue circle, BEW_maker, is the node the bird’s eye
view images are made in. The images are published on the topic /im_BEW. The
orange circle represent the node for each camera, where ##_# are replaced by
camera name. On milliAmpere2 there are 8 cameras, which are represented by the
8× below the node. From the camera nodes, the undistorted images are sent on
the topics /rbg_cam_##_#/image_rectify, which the BEW_maker-node are sub-
scribed to. As for the node name, ##_# are replaced by camera name.

In addition to adopting the code to a ROS2 node, a few new functions were
added. Firstly, a logging-function was added. This function writes to a log-file
with the setup: camera_name;time_since_last_image;message. Each time an
image is received or published on a topic, it logs the camera name and time (in
mill iseconds) since the last image was received or published. The "message"-part
is only used if the node detects there is a delayed camera, which will be explained
below. For example, when an image is received from camera ap_p, it will log
rgb_cam_ap_a;240.916611;.

Secondly, the code now continuously tracks how long it is since it last received
an image from one of the 8 cameras. If the time since last image passes a set time
limit, it will be written in the log: rgb_cam_fp_p;0;Delayed. Using last image.
This time limit has to be set manually in the configuration file. When the time limit
is passed, it will use the last image from that camera until it receives a new image.
When it receives a new image from the delayed camera, it will, as normally, write
the time since the last image was received rgb_cam_as_s;33337.420608;. This
fail-safe system was implemented to increase the fault tolerance of the system
in instances where one or more cameras fail to send images, while the others
continue to work as intended.

Lastly, a bird’s eye view image of milliAmpere2 was placed in the center of the
IPM image, see Figure 5.3. The position in the IPM image is manually set before
code initialization, and the image of the ferry is added to all IPM images during
the processing pipeline.
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Figure 5.3: An image showing an IPM image with a cutout of milliAmpere2 seen
from a bird’s eye view, added to the center of the image. The image of the ferry is
manually positioned in the IPM image before code initialization, and the image
of the ferry is added to the IPM images during the processing pipeline.





Chapter 6

Results

In this chapter, the results of the conducted experiment will be presented. The
chapter includes a presentation of both the image results and the run-time res-
ults. The experiment was carried out following the proposed plan outlined in
Chapter 5.

6.1 Run-time results

During the experiment, the log-function described in Section 5.4 was used to cap-
ture the run-time between each creation and publishing of the IPM image. Due
to some startup errors in the communication system on the ferry during the first
docking, a few starts and restarts of the program were needed. This created sev-
eral log-files with a few different average run-times and distributions. However,
the last log-file that was made contained the most run-times by a significant mar-
gin (a few of hundred vs 14752 data points) and therefore is the one used to
represent the run-time of the program.

The run-times presented in this section is the run-time between each pub-
lishing of the IPM images on the topic im_BEW. This includes the make_BEW()-
function, conversion between ROS2 messages and OpenCV image format and any
other overhead in the system. Note, the final runtime presented in Chapter 4 was
the run-time of only the make_BEW()-function. During the startup of the experi-
ment, it was quickly observed that a resolution of 1500px×1500px was too high
for real-time operation. With a resolution of 1500px × 1500px the average run
was 341ms, see Figure 6.1. The resolution was lowered to 1100px × 1100px for
the rest of the experiment, and will be the resolution that is later discussed. The
run-times were rounded to the nearest integer, and two outliers of 23075ms and
33135ms were removed from the data set.

The run-times are presented in Figure 6.2 and in Figure 6.3. In Figure 6.2 the
14750 run-times are presented in a histogram. Each bin represents a millisecond.
The main density of data points are between 200ms and 265ms, with less than
1% of the data points above 275ms. The average run-time was 233.2ms, and rep-
resented by a red dashed line in the histogram. The goal of 200ms is represented
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Figure 6.1: IPM image resolution of 1500px × 1500px .
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(a) A histogram showing the distribution of
run-times to make the bird’s eye view image
during the experiment. Run-times are roun-
ded to the nearest integer. The x-axis is the
run-time in ms, while the y-axis shows how
many times a runtime occurred. The goal
of 200ms is shown as a dashed green line,
while the average run-time is show with a
dashed red line. The data is from the ROS2-
logger function.

0 1 2 3 4 5 6
Elapsed time [min]

200

250

300

350

400

Ru
n-

tim
e 

[m
s]

Goal

Avg:341

1103 data points. IPM resolution: 1500px×1500px
Fluctuation of the run-time during the experiment

(b) A line graph showing the fluctuation of
the run-time during the experiment. The x-
axis is the elapsed time during the experi-
ment in minutes, while the y-axis is the run-
time in ms. The goal of 200ms is shown as a
dashed green line, and the average run-time
is show with a dashed red line. The data is
from the ROS2-logger function.

by a green dashed line. From the profiler-file made by cProfiler, the average
run-time of 233.2ms can be allocated to specific functions in the program, see
Table 6.1.

In Figure 6.3, the fluctuation of the run-times during the experiment are dis-
played. The total time of the log-file is 57.3 minutes. As in Figure 6.2, the average
run-time is displayed by a red dashed line and the goal by a green dashed line.

6.2 Video and image results

The visual result from the live experiment are presented in two ways. The main
result is a video made with the footage captured during the experiment. The video
shows three views: The bird’s eye view, the drone view and the footage of the
operator. The bird’s eye view was recorded to a rosbag-file during the experiment,
and therefore had to be extracted and converted into a .mp4-format. This was
done in Python with the libraries OpenCV and rosbags. The frame rate of the video
was set to match the average run-time.

The video shows two docking situations, where in the first one, the operator
is docking the ferry using the bird’s eye view on an external monitor. The video
are available on YouTube, and must be watched to get the best impression of the
results.

In addition to the video presented above, multiple images from the video are

https://www.youtube.com/watch?v=aN2jtBRpnqk
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Figure 6.2: A histogram showing the distribution of run-times to make the bird’s
eye view image during the experiment. Run-times are rounded to the nearest
integer. The x-axis is the run-time in ms, while the y-axis shows how many times
a runtime occurred. The goal of 200ms is shown as a dashed green line, while
the average run-time is show with a dashed red line. The data is from the ROS2-
logger function.
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Figure 6.3: A line graph showing the fluctuation of the run-time during the ex-
periment. The x-axis is the elapsed time during the experiment in minutes, while
the y-axis is the run-time in ms. The goal of 200ms is shown as a dashed green
line, and the average run-time is show with a dashed red line. The data is from
the ROS2-logger function.
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Function name Time [ms]
Percentages of the
average run-time 233.2ms

make_BEW() 179.9 77.14%
cv_to_msg 19.73 8.98%
msg_to_cv (8×) 8.36 3.80%
logger (9×) 9.324 4.24%
publish 2.507 1.14%
Sum 219.8 95.30%

Table 6.1: The table presents how the average run-time of 233.2ms is allocated to
each function. The time of msg_to_cv and logger are multiplied by the number
of times they are called during the making of 1 IPM image, respectively 8 and 9
times. Data from cProfiler-file with 14750 IPM images.

included in the thesis. A frame from the video can be seen in Figure 6.4a and the
enlarged IPM image can be seen in Figure 6.4b. Figure 6.5 showcases how the
operator (to the right) was able to see the IPM image on a monitor (to the left)
while operating the ferry towards the dock in front.

During the first docking, the connection between the cameras and the com-
puter disconnected due to an unknown error. This resulted in that the system did
not receive any new images to make the IPM images. The effect of how the system
handled the disconnection can be viewed in Figure 6.6. In Figure 6.6a the IPM im-
age should have shown the dock, since the ferry is next to the dock (see view 2
in Figure 6.6a). However, the IPM image only displays open sea. One IPM image
later, in Figure 6.6b, half the dock can be observed after the cameras started to
reconnect to the computer. One more IPM image later, all the cameras had recon-
nected, and the IPM images shows the whole dock as expected, see Figure 6.6c.
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Figure 6.4

(a) Image is a frame from the video result. There are three views, the bird’s eye view (1),
the drone view (2) and the view of the operator (3). The image shows a docking situation
where the operator can see the bird’s eye view image in real-time on an external monitor
in front of him.

(b) Figure shows a larger image of the bird’s eye view from Figure 6.4a.
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Figure 6.5: An image of how the operator (to the right) was able to see the IPM
image on a monitor (to the left) while operating the ferry towards the dock in
front.
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Figure 6.6: Showing how the system handled the disconnection between the
cameras and the computer during the first docking. The sub figures display 3
consecutive IPM images. The total time between Figure 6.6a and Figure 6.6c was
about 233ms. During this time period, it can be observed in view 2 that the ferry
did not move significantly.

(a) The IPM image shows open sea, instead of the dock in front of the ferry, due to a
disconnection between the cameras and the computer.

(b) The IPM image now shows the right half of the dock, since the cameras started to
reconnect to the computer.

(c) The whole dock can now be observed in the IPM image, as all cameras had reconnec-
ted.



Chapter 7

Discussion

In this chapter, discussion around the results and methods will be presented. The
chapter will be divided into two parts: One for the code optimization and the run-
times of both the live experiment and the pre-recorded setup, and one about the
visual accuracy and operator usefulness in a real environment.

7.1 Run-time and optimization

One of the primary influencers of the run-time was the choice of programming
language. This master thesis is based on the work done in my project thesis, which
were written in Python. Given that there was an unknown factor of how a real-
time version of that system would look like, and what the run-time limits of Python
were, the choice were made to continue developing the 360-degree bird’s eye view
system in Python. The programming language was chosen, despite its reputation
of being a slow and inefficient language, since it provides a solid platform for
fast implementation and testing of code. A sought-after trait for programming
languages used in research and development. The initial assumption was that a
run-time of less than 200ms could be achieved, despite the reputation of Python.
This was later proven to be true, at least during the code optimization phase.

To further improve the capabilities of Python, numerous options exist to boost
its efficiency. Many of them were tested and used during the experimentation in
Chapter 4. Among them were multiprocessing techniques and the utilization of
Python libraries capable of executing code in faster programming languages such
as Fortran, C, and C++. While these libraries offer a convenient Python interface
with run-times comparable to faster languages, their performance did not achieve
the desired run-time goal. As a result, the code was refined to use AAI and array
transforming operations in a custom-made interpolation method.

Despite achieving a run-time below the desired threshold of 200ms during
the code optimization phase, the performance was not matched while running
on milliAmpere2. This is shown by the average run-time in Figure 6.2. There are
several reasons why this was the case:
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1) The CPU on milliAmpere2 is 19.6% slower (3.7GHz vs 4.6GHz) than the
computer used during the code optimization. This is assuming both CPUs were
working at maximum clock frequency. Since the program is mainly executed on a
single core, it can be assumed to have a direct increase of 24.3% to the run-time.
This can be observed in the performance of the make_BEW()-function, which had
an average run-time of 130.0ms with a resolution of 1100px × 1100px during
the code optimization phase. However, when running on milliAmpere2 with the
same resolution, the run-time increased to 179.9ms, reflecting a 38.4% increase
that exceeded the estimated impact of a slower CPU.

2) The adaptation of the code from the code optimization phase into a ROS2
node-structure, in order to be able to run on milliAmpere2, resulted in increased
overhead and subsequently higher run-time. From the data in Table 6.1, it is ap-
parent that this overhead accounted for 22.86% of the average run-time. While
certain functions were identifiable as sources of overhead, there were also uniden-
tified sources that impacted the run-time. Notably, the recording of data from mul-
tiple sensors during the execution of the bird’s eye view system had a significant
impact on the run-time. A decision to only recorded the IPM images to the rosbags
were taken to minimize this effect.

From an analysis of Figure 6.2, one can argue there is a presence of two dens-
ity peaks, with one peak centered around 250ms and another around 215ms. This
finding is further supported by the data in Figure 6.3, where there are two distinct
periods. Prior to the 35-minute mark, the average run-time is around 250ms, while
after 35 minutes, there is a noticeable reduction to approximately 215ms. Addi-
tionally, a closer analysis of Figure 6.3 reveals an increase in spikes with higher
run-times occurring after the 30-minute mark. Lastly, there are two significant
drops in run-times at approximately 11 minutes and 31 minutes. Determining the
exact reasons behind these fluctuations and changes are challenging due to the
lack of data regarding concurrent systems or potential changes in the recording of
data. Nevertheless, it is evident that the performance of the 360-degree bird’s eye
view system is significantly impacted by other processes and programs running
on the computer.

It is also worth highlighting the change in the way run-times were determined
and presented in the results. Initially, in Chapter 4, the run-time was defined as
the processing time of the make_BEW()-function. The decision was made, due to
it being the only known part of the system that would later be executed on mil-
liAmpere2. Moreover, it was also assumed to take the majority of the run-time,
therefore reducing it would have the largest positive impact on the run-time dur-
ing the experiment. During the live experiment, the focus was shifted to measuring
the total time between each IPM image published on the im_BEW topic, since the
frame rate during the experiment was more important than the run-time of an
individual function.

Throughout the research and development process of the system, the doc-
umentation of each improvement and the resulting IPM image were of varying
levels of quality. This was primarily due to the limited experience in document-
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ing code optimization procedures and the broad variety of optimization options
available. Furthermore, due to the pipeline-design of the code, the whole system
had to work to be able to time the execution. This lead to some gaps in the optim-
ization documentation. Nevertheless, the available documentation is sufficient to
describe the major improvement steps that were taken.

Although the documentation was at times lacking during the initial part of the
research, there was a notable increase in quality during the research outlined in
Section 4.2.4. This was parts due to more experience, and parts due to a narrower
scope of possible improvements, making it easier to track progress and maintain a
well-structured approach. This can for instance be observed in the extra external
tests were performed to validate the effectiveness of the implemented improve-
ments.

Drawing from the insights of the linearNDInterpolator() description for the
custom-made interpolation method turned out to be a smart choice. Not only did
it speed up the development process by using an existing technique, but it also
granted higher reliability and quality of the interpolation result. By utilizing a
well-established approach, it saved time and effort that could be devoted to pre-
paring for the live experiment. Moreover, this decision made image comparison
easier throughout the development phase, especially during the testing of differ-
ent interpolation methods.

7.2 Visual accuracy and operator usefulness in a real en-
vironment

Accurate camera calibration, both intrinsic and extrinsic, is of paramount import-
ance in achieving optimal bird’s eye view images. Camera calibration plays a cru-
cial role in undistorting images, to ensure adherence to the pinhole camera model,
and accurately transforming pixel positions from the image plane FI to the sea
Πsea. Having a good calibration is therefore essential to produce accurate IPM
image.

Unfortunately, there was not an accurate camera calibration available during
the research. An attempt to calibrate the cameras were done before the experi-
ment, but due to lack of access to the correct systems on milliAmpere2 and little
experience with the practical side of calibration, a new and more accurate calibra-
tion was not achieved. Instead, the CAD-model of milliAmpere2 was used for the
extrinsic parameters, and an older intrinsic calibration of the cameras.

The consequences of the inaccurate calibration can be observed in multiple
examples of the bird’s eye view. One example can be seen in Figure 7.1a, where the
straight lines on the dock do not form a continuous straight line across the dock.
Instead, they exhibit abrupt steps when crossing the edges of the cameras’ FOV.
This is visible across all three FOV edges. Furthermore, it can be seen in Figure 7.2b
that the docking station (inside the red and white square) are duplicated across
the cameras’ FOV. The docking station should have appeared as one single object.
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This duplication is most noticeable when the ferry is far away from the dock and
gradually diminishes to non-continuous straight lines as the ferry approaches, as
shown in Figure 6.4a.

To illustrate the difference of the camera calibration used in this thesis and
an accurate one, a bird’s eye view made with milliAmpere1 are compared to the
bird’s eye view of milliAmpere2 in Figure 7.3. The ferries are positioned at about
the same distance from the same dock. In Figure 7.3a the straight lines on the
dock are non-continuous, while they are continuous in Figure 7.3b. In addition,
the edges between the cameras’ FOVs are a lot less visible in the IPM image made
with milliAmpere1. This probably also due to less brightness difference between
the cameras on milliAmpere1 when the image was taken.

A few other notable image artifacts exist. There are two areas where the black
fill area (made in Section 4.2.1) intersect the area covered the cameras, pointed at
by the red arrows in Figure 7.4. This issue arose from opting for a slightly different
extrinsic parameter file during the setup of the experiment, as it produced slightly
straighter lines in front of the ferry. Unfortunately, due to time constraints, it was
not possible to correct the problem prior to carrying out the experiment, since
it had to be done manually. Automating the black fill area creation could have
prevented these image artifacts.

Another area that could have been improved, was the division of the IPM into
FOV-sections for each camera. The three-step process explained in Section 3.3.4
did not work as intended without manual intervention in adjusting the values
of r1, r2, q1, and q2. It was attempted to make a universal function capable of
handling all the different image overlaps, but it was difficult due to the irregularity
of the input data. One of the factors contributing to this issue was the variation
in the horizon position across each undistorted image, which the function used to
decide the input data. In hindsight, it would have been better to set the positions
of r1, r2, q1 and q2 manually right from the beginning, as it would have been a one-
time job and would not have been affected by future calibrations. Furthermore, it
would also have made it easier in the future to adjust the FOV-sections in the IPM
image.

There is one physical limitation to the system on milliAmpere2 that affects the
quality of objects in the IPM image and the practical max distance that can be
viewed: The camera placements. More precisely, the camera elevation. The cam-
eras are placed at a height of about 1.2m above the sea, which is low compared
to milliAmpere1, where the cameras’ height is about 3.7m. This is further suppor-
ted by the results in my project thesis, where it was concluded that: The higher
the camera placement, the better the bird’s eye view. However, this system was
designed to aid the operator in docking situations, where distances are relatively
short. As answered by Øystein Kaarstad Helgesen in the questionnaire (which can
be found in the appendix, A.2), the viewing distance was perfect for docking situ-
ations.

Furthermore, the camera position and rotation also influence how close to the
ferry that can be observed. There is a blind zone within the last meter, which could
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Figure 7.1

(a) Image is a frame from the video result. In view 1, one can observe that the straight
lines on the dock does not align across the different camera FOVs. A closer view can be
seen in Figure 7.1b.

(b) Cropped and zoomed in image of view 1. The image shows how the straight lines on
the dock does not make a continuous straight line across the different camera FOVs.
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Figure 7.2

(a) The image is a frame from the video result. In view 1, one can observe that the docking
station is duplicated in the FOVs of camera ap_a and as_a. A closer view can be seen in
Figure 7.2b.

(b) A cropped and zoomed in image of view 1. The image shows that the docking station
is duplicated in the FOVs of camera ap_a and as_a, instead of one single docking station.
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Figure 7.3: Two images comparing the bird’s eye view created with milliAmpere1
and with milliAmpere2. In a) the straight lines on the dock are non-continuous,
while they are continuous in b). Both images are taken of the same dock from
the approximately same distance. In a) there are 3 FOV edges dividing the dock,
while there is one FOV edge in b).

(a) IPM image created with milliAmpere2.

(b) IPM image created with milliAmpere1. Image taken from my project thesis.
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Figure 7.4: Image showing the area (pointed at by the red arrows) where the
black fill area, made in Section 4.2.1, are overlapping part of the IPM image that
is covered by images from the cameras.



Chapter 7: Discussion 73

have been problematic. However, according to Helgesen’s feedback, this was not
a concern as the operator at that point had already aligned the ferry correctly
and could navigate the final distance. To provide a visual representation of what
the operator can view during docking, an image from the view of the operator
is shown in Figure 7.5. The ferry ramp covers the dock from the operator’s view,
whereas it is clearly visible on the monitor with the bird’s eye view to the left.

Figure 7.5: An image showing the operator’s view during docking. Clearly, it is
difficult to observe the dock behind the ramp. However, on the bottom part of
the monitor on the left-hand side of the image, the dock can be observed by the
operator in the bird’s eye view image.

The bird’s eye view also have two large blind zones on the port and starboard
sides, as seen in Figure 6.4a. Nevertheless, this issue is considered minor or non-
existent due to the ferry’s docking procedure, which involves docking fore and aft.
Furthermore, the operator has a significantly better view of the sides of the ferry
compared to the fore and aft sections, thereby minimizing the need for assistance.

To further improve the operator’s situational awareness, a top-down image of
milliAmpere2 was incorporated into the center of the IPM image. The positioning
and size of the ferry were determined manually. However, this led to an inaccurate
representation of the ferry’s scale, as seen in Figure 7.6. Specifically, Figure 7.6c
highlights the issue, with the red and white line indicating the dock’s edge and
illustrates how the ferry extends into the dock. To provide a visual reference of
the actual distance between the ferry and the dock, a zoomed-in view from the
drone perspective is presented in Figure 7.6b. These observations clearly indicate
the need to scale down the size of the ferry in the image. Nonetheless, Helgesen
expressed positive feedback, emphasizing that it was a "very positive" addition to
the system.
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(a) The image is a frame from the video result. In view 1, one can observe that the inserted
image of milliAmpere2 clips into the dock.

(b) A cropped and zoomed in image of view
2. The distance between the dock and the
ferry can be observed inside the red and
white square.

(c) A cropped and zoomed in image of view
1. The red and white line indicates where
the edge of the dock is in reality. It is clear
that the image of milliAmpere2 is place in-
correctly, as it clips into the dock.

Figure 7.6: The figure shows how the inserted image of milliAmpere2 clips into
the dock, even though the ferry in reality is right next to the dock.
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Despite the program successfully handling the disconnection of the cameras
during the first docking, there was no immediate response from the operator or
other individuals on board. The fail-safe system wrote the correct error message
to the terminal, but the terminal was not visible to the operator. A far more ef-
fective and visually intuitive solution would have been to highlight the areas of
the IPM image that were not being updated, as demonstrated in Figure 7.7. This
visual indication would have likely grabbed the operator’s attention, with the red
markings signaling that something was wrong. Even without knowing the specific
error, the operator would have been incited to respond to the situation.

Figure 7.7: An image showing a better solution to alerting the operator that two
cameras have not been updated. The camera FOVs that are surrounded by red
are displaying old images of, while the other camera FOVs are updated.

Despite the run-time being on average above the real-time goal of 200ms,
the system was still considered fast enough to provide useful aid. The slower
speed at which the ferry navigates during docking mitigated the impact of the
slightly longer run-time. This was also supported by Helgesen’s feedback, where
he answered that the refresh rate of the bird’s eye view was deemed high enough
to avoid a significant negative impact on docking. However, he also noted that
higher refresh rates would be beneficial, and indicated that image synchroniza-
tion could have improved consistency in the IPM images.

Lastly, it should be noted that the presented system can be utilized on any
surface vessel running ROS2 with cameras, not only milliAmpere2. An important
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feature if the system were to be commercialized. To successfully be utilized by
another vessel, a few adjustments to the code, and new extrinsic and intrinsic
parameter files are required.



Chapter 8

Conclusion and future work

8.1 Conclusion

In this thesis, a 360-degree bird’s eye view system for milliAmpere2 with border-
line real-time performance was presented. Python was chosen as the programming
language for its fast implementation and testing capabilities, despite its reputation
for being slow. Initially, the desired run-time goal of less than 200ms was reached
during the code optimization phase, due to efficient implementation of the inter-
polation function. Though, the run-time goal was not fully achieved in the live
experiment with milliAmpere2 due to a slower CPU and increased overhead from
the full autonomy system running simultaneously.

Moreover, it can be concluded from the observed fluctuations in run-time that
the run-time is significantly influenced by other processes running on the com-
puter simultaneously. Throughout the course of the experiment, there were in-
stances where the run-time approached 250ms, whereas in other instances, it
neared 215ms, and close to the desired goal of 200ms.

The inaccurate camera calibration had a negative impact on the quality of
the bird’s eye view images. Straight lines appeared discontinuous across the FOV
edges, and the dock was duplicated at far distances. The maximum view distance
with reasonable quality was also limited by the height of the camera. However,
from the feedback of the operator, the distance limitation was regarded as non-
existent. The addition of a top-down image of the ferry in the center of the IPM
image proved beneficial, although scaling down the size of the ferry image would
improve the helpfulness.

Despite the shortcomings of the system, the operators found it "provided use-
ful additional assistance" during the docking process. Further refinement should
however be conducted before deployed in real use.
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8.2 Future work

One potential improvement is rewriting the code in a faster programming lan-
guage, such as C or C++, which has the potential to significantly enhance efficiency
and achieve run-times well below the target of 200ms. Additionally, another area
to explore is utilizing a dedicated GPU, known for its efficiency in performing
interpolation tasks.

An additional area for improvement lies in optimizing the initialization pro-
cess of the system. During the initialization, the program calculates the new pixel
position in the IPM image for all the pixels in the 8 images taken by the cameras.
Considering the high resolution of these images, the total number of pixel posi-
tions to be calculated exceeds 10 million, resulting in a high initialization time.
Although the efficiency of the initialization was not prioritized in this thesis’s, a
faster initialization process would be advantageous for potential commercial ap-
plications. Utilizing libraries like Numba with jit could potentially yield significant
improvements, due to the repetitive nature of the calculations in the initialization.

To improve the visual aspect of the system, the inclusion of an automatic cam-
era calibration could greatly improve the accuracy and quality of the IPM image.
Moreover, with auto-calibration of the cameras, an automatic system to generate
the black fill area would be also be necessary. Additionally, having synchronized
cameras would also improve the accuracy of the IPM image.

Lastly, to improve the utility of the bird’s eye view for the operator, the addition
of distance lines at intervals of 1m, 2m, and 5m for and aft of the ferry could be
implemented. This could further aid the operator’s distance estimation to objects
in the vicinity.
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Abstract. In the evolving domain of autonomous marine operations, accurate perception and
representation of the surrounding environment are crucial for safe and effective execution. This
paper addresses this issue by developing and testing a near real-time 360-degree bird’s eye view
system for the situations where the ferry, milliAmpere 2, has to be manually controlled by a
local operator onboard. The goal was to aid the operator during the critical phase of docking,
by displaying the surrounding area of the ferry from a bird’s eye view. The bird’s eye view
was made by using inverse perspective mapping on the undistorted images from the 8 cameras
onboard. The system was implemented in Python, and aimed to reach a run-time of less than
200ms. This goal was reached during the initial phase of the work. However, during live testing,
only near real-time performance was achieved. Despite some shortcomings, the operators found
the system to be a ”useful additional assistance” during the docking process.

1. Introduction
The growing demand for sustainable transportation in cities has posed challenges for building
bridges over rivers and channels. Trondheim’s municipality faced similar obstacles when
proposing a bridge construction project in 2016. As a result, researchers at NTNU embarked
on a project to find alternative solutions, leading to the development of the milliAmpere 2, an
autonomous passenger ferry.

Inverse perspective mapping (IPM) is a well-studied technique in the automotive industry
for lane tracking and obstacle avoidance [1, 2, 3, 4]. While IPM has been primarily explored in
that domain, its application in the maritime industry is still emerging. Some notable studies
have investigated the use of IPM in different maritime contexts.

In [5], a path planning and navigation method for autonomous vessels using a convolutional
neural network (CNN) and IPM is presented. A similar method is proposed in [6] to obtain 3D
ship detection and tracking.

One of the main challenges with IPM is the progressively lower pixel density for objects
further away from the camera. Interpolation can decrease the effect of this problem by filling
empty pixels with rgb-values from surrounding pixels.

The research field of image interpolation has taken place in many different industries: Medical
imaging, remote sensing, target detection and recognition, radar imaging, forensic science,
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Figure 1. An image of milliAmpere 2 from the side.

and surveillance systems [7]. In addition to covering a large group of different industries, a
large amount of different interpolation methods have been developed. [8] compared 7 different
interpolation methods for medical imaging in 1999, covering ”traditional interpolation methods”,
such as nearest neighbor, linear interpolation, and Gaussian interpolation with different kernel
sizes. In recent years, more complex and modern interpolation methods have been developed.
One of these is Super-Resolution, which is able to enhance low-resolution images or video frames
by increasing their spatial resolution [7].

This work addresses the challenges of implementing a real-time 360-degree visualization
system for use on the milliAmpere 2 autonomous ferry. A proof-of-concept system is
demonstrated on milliAmpere 2 with operators in a scenario comparable to the ferry’s intended
use and evaluated based on both real-time performance and operator feedback. This paper is
based upon the Master thesis [9] written by author 1.

2. Theory
2.1. Camera model
A camera is a mapping between the 3D world and a 2D image [10]. In this work, the primary
camera model was chosen to be the pinhole camera model. It maps a point in 3D space onto
a 2D plane. This plane is often called the image plane or the focal plane and is represented by
the frame FI . The position of the point xI is determined by the intersection between the image
plane and the drawn line from the point Xc to the camera center through the image plane. From
the geometry of the camera model, the relationship between a point Xc and u can be expressed
in homogenous coordinates as

u = K [R|t] X̃c (1)

2.2. Inverse Perspective mapping
Inverse perspective mapping is the problem of determining the world coordinate position of
a point based on its pixel location in an image. This is an underdetermined problem, where
Xv, Yv, Zv are unknown and u, v is known. In a maritime context, the ocean surface can be
modeled as a flat plane with a known elevation where the pixels originate from. It is assumed
the plane (Πsea) has the elevation Zv = 0. A method to solve the IPM is described by [10].
With the flat plane assumption, the solution is given by Equation 2.
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For this to be a valid solution, P′ has to be invertible.

2.3. Interpolation
Interpolation is the process of estimating the intermediate values in a signal at continuous
positions from a set of discrete samples [11]. The three most commonly used interpolation
methods are nearest neighbor, bilinear (also called linear), and bicubic. For image data, nearest
neighbor interpolation involves determining the value of a pixel based on the four nearest pixels.
The value of the pixel with the shortest distance to the target pixel will be the chosen value.
Bilinear interpolation also considers the four closest pixel values to the target pixel, but weights
them based on their distance from the target pixel.

3. Image processing pipeline
MilliAmpere 2 is equipped with 8 electro-optical cameras of the type FLIR Blackfly S 50-S5C
with a 6mm lens. Images are provided at a rate of 5Hz with resolution 1224px × 1024px.
Each camera has a field of view (FOV) of 77.8◦. However, due to the cameras’ positions and
orientations, full near-range coverage is not achieved due to blind zones on the port and starboard
sides.

3.1. Image Processing Pipeline
The main steps of the image processing pipeline are presented in Figure 2. In practice, the
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Calculate
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Stitch images
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8x - One for each camera

Bird’s eye view systemExternal system

Figure 2. The main steps in the image processing pipeline.

IPM was solved according to [12]. The system solves Equation 2 to find Xv and Yv, with the
assumption that the target plane Πsea has Z = 0.After calculating the Fv coordinates for all
pixels in the image, a filter removed all points with a distance further out than 10m from the
center of Fv. The interpolation method used in this work is custom-made and inspired by [13].
The algorithm can be described in four steps:

(i) Triangulating the irregular input data (pixel positions) using Delaunay triangulation.



(ii) For every point in the new grid, the triangulation is searched to identify the simplex (a
triangle) that encompasses the point.

(iii) The barycentric coordinates of each new grid point are calculated relative to the vertices of
the surrounding simplex.

(iv) An interpolated value is computed for each grid point using the barycentric coordinates
as weights and the RGB values at the three vertices of the enclosing simplex, performing
linear interpolation.

After applying IPM to the images from all 8 cameras, the next step was to stitch them
together. The IPM provides the position of each pixel in the captured images, represented as
Xv = [Xv, Yv, Zv, 1]

⊺ in Fv. To facilitate transformation into an image of arbitrary resolution,
normalization of the points Xv was performed, mapping them the range [−1, 1]. The final

step involved multiplying X̂v by the ”intrinsic” matrix KIPM , where resx and resy denote the
resolution of IIPM , to obtain uIPM .
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Given the cameras’ FOV and position, some of the cameras observe the same area. Due to
different viewing angles and local light conditions, this overlap creates unwanted noise in the
IPM image and was therefore removed.

4. Code optimization
To function in real-time operations, the system must be able to generate bird’s eye view images
at a rate no slower than the provided input images. For milliAmpere 2, the cameras capture
images at a rate of 5Hz which imposes a run-time requirement of less than 200ms per IPM
image. This section describes the equipment used during the first phase of the research and the
optimization steps and methods used with their respective run-times. For detailed descriptions,
see [9].

4.1. Code optimization setup
The computer used for this phase had Ubuntu 20.04, ROS 2 Foxy Fitzroy and an Intel
Core i7-8700 CPU with a base clock frequency of 3.20GHz, max clock frequency of 4.60GHz,
6 cores, and 12 threads. The run-time data presented in section 4.2 were captured by using
cProfiler on main() function. The presented run-times are the average run-time of the
function make BEW(), which produces the IPM image. The timer starts after the make BEW()-
function has received all 8 undistorted images, and ends when the IPM image is made. Overhead,
such as undistortion, is excluded.

4.2. Optimization steps and results
The initial performance benchmark for this paper was bilinear interpolation with a resolution
of 3000px× 3000px, and the average run-time was 34s. During the initial phase of the research,
multiple interpolation methods were tested and benchmarked.

The most important methods and their run-time are presented in Figure 3 where the first
method was based on linear interpolation with a resolution of 3000px×3000px. Method 2 reduced
the resolution to 1500px× 1500px and switched to nearest neighbor interpolation. In method 3,
the center of the image was filled with black pixels and removed from the interpolation process.
Method 4 introduced Delaunay triangulation which was combined with parallel processing for
method 5. Finally, method 6 introduced the custom interpolation method described in section



3.1. This resulted in a run-time reduction from the original 34.0s using method 1 to 0.6s for
method 6.
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Figure 3. Run-times of the tested interpolation methods.

Additional optimization was then conducted to achieve the required run-time of < 200ms with
results shown in Figure 4. From the baseline, step 1 moved the image masking and distance
checking to program initialization. Step 2 removed overlapping pixels present in two cameras
from the process. In step 3 the final 8th camera was introduced while step 4 optimized the
indexing function in the interpolation. Step 5 did the same for the function that extracts
relevant areas from individual images. Finally, step 6 introduced in-place processing for certain
calculations, removing the previous copy-based methods. This reduced the run-time from the
original 617ms to 179ms yielding real-time performance. Step 7 was then performed as an
additional test with resolution reduced from 1500px × 1500px to 1100px × 1100px, further
reducing run-time to 130ms.

5. Experimental setup
The ferry milliAmpere 2 was used to capture images, and all 8 FLIR Blackfly S 50-S5C optical
cameras were used. The computer was set up with an AMD EPYC 7313P “MILAN” CPU
with a base clock frequency of 3.0GHz, max clock frequency of 3.7GHz, 16 cores and 32 threads
[14]. The code was running in a Docker container using Ubuntu 22.04 and ROS2 Humble
Hawksbill. The experiment took place on May 10, 2023, in the canal between Fosenkaia and
Ravnkloa in Trondheim, Norway, and the system was tested with two operators. The experiment
involved crossing the canal twice with four dockings and had two main goals: assessing the real-
time performance of the system onboard milliAmpere 2 and evaluating its usefulness for the
operator during docking operations.

6. Run-time results
The run-times of the visualization system during live testing are presented in Figures 5 and 6
using a resolution of 1100px× 1100px for the bird’s eye view. The main density of data points
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Figure 4. Run-times for the additional optimization steps based on method 6.

is between 200ms and 265ms, with less than 1% of the data points above 275ms. The average
run-time was 233.2ms which is shown as a red dashed line in the figures.
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the entire experiment.

For the sake of fast and convenient prototyping, the system was implemented in Python.
At the onset of the project, we assumed that a run-time of less than 200ms could be achieved,
which would be sufficient for the purpose of using the birds-eye view as a navigation aid. In the
pre-recorded setting this was indeed achieved. In the real-time experiment, this did not hold,
as shown by the run-time histogram in Figure 5. There are several reasons for this. The CPU
clock speed of milliAmpere 2 is about 20% slower than the computer used for code optimization
and the integration of the code in the onboard ROS2 system resulted in increased overhead.

Analysis of Figure 5 reveals two peaks, centered around 250ms and 215ms. This is supported
by the data in Figure 6, which shows two distinct periods. Prior to the 35-minute mark, the



average run-time is around 250ms, followed by a noticeable reduction to approximately 215ms
thereafter. The exact reasons for these fluctuations and changes are challenging to determine
due to limited data on concurrent systems and potential data variations. However, it is clear that
the performance of the system is significantly affected by concurrent processes and programs.
For further details, see [9].

Figure 7. Bird’s-eye view (1), drone footage (2), and operator footage (3). Bird’s-eye view is
shown on a monitor in front of operator.

7. Visual accuracy and operator usefulness
Accurate camera calibration, both intrinsic and extrinsic, is crucial for optimal bird’s eye view
images. Unfortunately, due to time constraints, precise calibration was not achieved during the
research. Instead, the extrinsic parameters relied on the CAD model of milliAmpere 2. The
consequences of this inaccurate calibration are evident in various bird’s eye view examples. In
Figure 7 for instance, the straight lines on the dock appear discontinuous, exhibiting abrupt
steps when crossing the edges of the cameras’ FOV. The position and size of the inserted
ferry visualization were determined manually which resulted in slight inaccuracies in scale.
Nonetheless, operator feedback emphasized that it was a very positive addition to the system.

Despite the run-time being on average above the real-time goal of 200ms, the system
was still considered fast enough to provide useful aid. The slower speed at which the ferry
navigates during docking mitigated the impact of the slightly longer run-time. The operator’s
questionnaire feedback indicated that the refresh rate of the bird’s eye view was deemed high
enough but that higher refresh rates would be beneficial in addition to camera synchronization.
A video from the experiment with the birds-eye view and operator footage is available. 1

8. Conclusion and future work
In this work, a 360-degree bird’s eye view system written in Python for milliAmpere 2 was
presented. The run-time goal was not fully achieved on the ferry due to CPU speed and overhead
in the autonomy system. Despite some shortcomings, the operators reported that the system
provided useful additional assistance during the docking process.

1 https://www.youtube.com/watch?v=aN2jtBRpnqk



Further refinement should however be conducted before the system is deployed for actual
operations. Rewriting the code in a faster programming language like C or C++ can significantly
improve run-time. Additionally, leveraging a dedicated GPU for interpolation tasks can further
optimize the system. Enhancing the visual aspect involves automatic camera calibration and
synchronized cameras for improved accuracy. Adding distance lines at regular intervals can
enhance the utility of the bird’s eye view for operators, aiding their spatial awareness.
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Questioner to the operators of milliAmpere2 during the experiment 
 

Your name: Øystein Kaarstad Helgesen 

  

How was it to dock the ferry with the aid of the bird's eye view (BEW) images on 

an external monitor?  

It felt like the system provided useful additional assistance for positioning the 

ferry. Without this system the ramps had to be partially lowered to create better 

visibility from the operator station. With the system this was not required. 

 

  

Did the BEW images make it easier to dock the ferry?  

Yes, the images provided a better overview of the ferry position and distance 

relative to the dock than what was observable from the operator station. 

  

Was the refresh rate of the BEW images high enough to not have a significantly 

negative impact when using the BEW images to dock the ferry? 

Yes, but higher refresh rates would be beneficial. Synchronization of the cameras 

would also help to ensure consistency. 

  

Did the image see far enough (in distance) in front (or rare) of the ferry, or should 

it have displayed objects that were further away? 

For docking assistance the distance felt perfect. 

  

How limiting was it to not be able to see directly in front of the ferry (the blind 

zones of the cameras), where the ferry contacted the dock? 
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Not that limiting, the ferry could be positioned quite accurately before the 

cameras lost view of the dock. Thrusting in from this position was not difficualt. 

  

Was the inserted image of milliAmpere2 in the middle of the BEW image a 

positive, neutral, or negative addition to the system? 

Very positive, it gave a much better sense of where in the image the ferry was 

located. The insterted image was slightly too large which made it a bit more 

difficult to estimate the distance to the dock. 

  

Were the miss alignments of lines and objects across the different camera FOVs 

small enough to not have a significantly negative impact when using the BEW 

images to dock the ferry? 

It was slightly harder to dock in the docking adapter on the Fosenkaia side which is 

much narrower, a better calibration would have made it appear more consistent. 

Otherwise no issues. 

  

In your opinion, would it have helped to have lines indicating distance on the BEW 

images? For example, red lines at 1m, 2m, and 5m in front (or rare) of the ferry. 

Yes, very useful, especially if the inserted image of milliAmpere could be scaled 

down to its correct size. This would make it much easier to estimate the distance 

to the dock in the final phase of docking. 
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