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Sammendrag

I mange vestlige land fører den demografiske utviklingen til at behovet for helset-
jenester øker, mens andelen i arbeidsfør alder stagnerer eller synker. For å op-
prettholde dagens helsetilbud, m̊a vi derfor utnytte ressursene bedre i fremtiden.
Denne avhandlingen omhandler taktisk operasjonsplanlegging, som er et forskn-
ingsfelt innenfor Operasjonsanalyse. I tillegg inneholder avhandlingen et eksempel
p̊a bruk av Operasjonsanalyse i ressursplanlegging av akutt- og mottakstjenester
i forbindelse med COVID-19.

Taktisk planlegging utgjør overgangen fra strategiske m̊alsetninger og beslut-
ninger, til den operasjonelle planleggingen av enkeltpasienter. Det mest stud-
erte problemet innenfor taktisk operasjonsplanlegging er utviklingen av Kirurgiske
Masterplaner (KM). Dette er sykliske blokkplaner hvor et sett av kirurgisek spe-
sialiteter tilordnes til operasjonsrom, hver dag gjennom en planleggingssyklus, med
den hensikt å oppn̊a finansielle m̊alsetninger samt å unng̊a lange ventetider til
utredning og behandling for pasienter.

I den første artikkelen utvikler vi en KM for å understøtte elektiv og akutt
operasjonsvirksomhet. I denne situasjonen m̊a vi veie hensynet til effektiv elek-
tiv virksomhet, mot hensynet til å kunne tilby akuttoperasjoner p̊a kort varsel.
For å kunne gjøre denne avveiningen, utvikler vi en en tostegs stokastisk optimer-
ingsmodell som lager en KM, og som tar hensyn til den usikre ankomsten av, og
sengebehovet for akuttpasienter.

I artiklene to og tre ser vi p̊a samplanlegging av poliklinikk og operasjon.
Pasientene mottar behandling i begge enhetene, og kirurgene utfører b̊ade kon-
sultasjoner og operasjoner. For å fasilitere en effektiv og koordinert ressursbruk,
utvikler vi optimeringsmodeller som lager integrerte masterplaner for poliklinikk
og operasjon, hvor b̊ade spesialteter og aktivitetstyper tilordnes til rom og dager.
Artikkel tre bygger p̊a artikkel to, og vi utvikler et planleggingsrammeverk hvor
deler av masterplanen oppdateres jevnlig for å hensynta varierende vantelister.

Den fjerde artikkelen bygger p̊a et prosjekt som ble utført ved St. Olavs hos-
pital i mars 2020, da sykehuset forberedte seg p̊a COVID-19 pandemien. Det ble
bestemt at alle pasienter som ankom sykehuset med mistanke om COVID-19-smitte
skulle undersøkes i akuttmottaket, og at smittemistenkte pasienter skulle trans-
porteres med ambulanse b̊ade til og fra sykehuset. I denne artikkelen utvikler vi
en diskret-hendelsessimuleringsmodell for å estimere ressursbehovet ved akuttmot-
taket og i ambulansetjenesten ved pandemiens topp.
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Summary

Due to demographic changes, many western countries experience a growing de-
mand for health care and a stagnation in the working-age population. To maintain
the level of care in the future, the health care resources must be better utilized.
This thesis considers tactical surgery planning, a subfield of the more general re-
search areas of Resource Management and Operations Research. It also includes
a case related to emergency care planning during the COVID-19 pandemic.

Tactical decisions facilitate the transfer of strategic objectives and decisions,
to the operational planning of individual patients. The most frequently studied
problem within tactical surgery planning, is the development of the Master Surgery
Schedule (MSS). The MSS is a blueprint schedule where surgical specialties are
assigned to operating room blocks thorough a planning cycle, aiming to achieves
financial goals and serve patients in a timely manner.

In the first paper, we consider the problem of constructing an MSS for both
planned and emergency surgeries. Here, we face the trade-off between an efficient
handling of planned surgeries, while ensuring responsive services for the emergen-
cies. To face this trade-off, we develop a two-stage stochastic optimization model
that accounts for the stochastic arrivals and bed loading of emergency patients
when constructing the MSS.

The second and third paper consider the integrated planning of the outpatient
clinic and the operating theatre. Patients require services in both units, and
the surgeons perform both consultations and surgeries. To facilitate efficient and
coordinated use of resources, we develop optimization models that construct cross-
unit integrated master schedules, where both specialties and different activity types
are assigned to operating room blocks. This allows us to adjust the activity type
assignments, based on the current waiting lists. The third paper extends on the
second paper, and here we propose a planning framework where parts of the master
schedule is periodically refined to account for stochastic waiting lists.

The fourth paper is based on a real-life project performed in March 2020, when
St. Olav’s Hospital was preparing for the COVID-19 pandemic. It was decided that
all emergency patients that entered the hospital with a COVID-19 suspicion should
be screened in the Emergency Department, and that they should be transported
by ambulance both to and from the hospital. In this paper, we develop a discrete-
event simulation model to estimate the impact on the Emergency Department and
the ambulance services during the peak of the pandemic.
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Røsbjørgen, who have shared of their knowledge and provided insights in the
complex planning problems that they face.

I would like to thank my parents and my two sisters for showing interest in
my work, but mostly for drawing my attention away from research. I appreciate
all the dinners, evenings, and relaxing weekends we have had together.

Finally, I want to thank my wife, Ingeborg, for the tireless support and en-
couragement during these four years. Thank you for all the good moments you
bring to my life, every day.

v



vi



Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 St. Olav’s Hospital and the Orthopaedic Clinic . . . . . . . 3
1.1.2 Classification of planning decisions in health care . . . . . . 3
1.1.3 Tactical surgery scheduling . . . . . . . . . . . . . . . . . . 5
1.1.4 Contributions from the OR society during the COVID-19

pandemic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2 Purpose and outline . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.1 Purpose of the thesis . . . . . . . . . . . . . . . . . . . . . . 15
1.2.2 Paper I: Stochastic Master Surgery Scheduling . . . . . . . 16
1.2.3 Paper II: Integrated Master Surgery and Outpatient Clinic

Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2.4 Paper III: A framework for integrated resource planning in

surgical clinics . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2.5 Paper IV: Simulating emergency patient flow during the

COVID-19 pandemic . . . . . . . . . . . . . . . . . . . . . . 18
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.1 Contributions to the research community . . . . . . . . . . 19
1.3.2 Contributions to the industry . . . . . . . . . . . . . . . . . 20
1.3.3 The author’s contributions to each paper in the thesis . . . 21

1.4 Concluding remarks and future research . . . . . . . . . . . . . . . 22

2 Stochastic Master Surgery Scheduling 31
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3 Problem description for the MSSP . . . . . . . . . . . . . . . . . . 37

2.3.1 The elective MSSP . . . . . . . . . . . . . . . . . . . . . . . 37
2.3.2 Considering emergency patients in the MSSP . . . . . . . . 38
2.3.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4 Simulation-optimization approach . . . . . . . . . . . . . . . . . . . 39
2.4.1 The optimization model . . . . . . . . . . . . . . . . . . . . 41
2.4.2 The discrete-event simulation model . . . . . . . . . . . . . 46
2.4.3 The scenario generation procedure . . . . . . . . . . . . . . 47

vii



2.4.4 Stopping criterion . . . . . . . . . . . . . . . . . . . . . . . 49
2.5 Computational study . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.5.1 Implementation and setup of study . . . . . . . . . . . . . . 49
2.5.2 The value of the stochastic solution . . . . . . . . . . . . . 50
2.5.3 Managerial insight . . . . . . . . . . . . . . . . . . . . . . . 52
2.5.4 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.7 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

A Appendices 65
A.1 The Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . 65
A.2 Input parameters for the optimization model . . . . . . . . . . . . 67
A.3 Input for the simulation model . . . . . . . . . . . . . . . . . . . . 72
A.4 The case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3 Integrated Master Surgery and Outpatient Clinic Scheduling 77
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.2.1 Tactical OR planning . . . . . . . . . . . . . . . . . . . . . 79
3.2.2 Tactical OC planning . . . . . . . . . . . . . . . . . . . . . 80

3.3 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.4 The mathematical model . . . . . . . . . . . . . . . . . . . . . . . . 85
3.5 The simulation model . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.5.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.5.2 Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.6 Computational study . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.6.1 Case descriptions . . . . . . . . . . . . . . . . . . . . . . . . 95
3.6.2 The results from the optimisation model . . . . . . . . . . . 95
3.6.3 The simulation study . . . . . . . . . . . . . . . . . . . . . 99

3.7 Managerial insights . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

A Appendices 111
A.1 Algorithms for describing the DES model . . . . . . . . . . . . . . 111
A.2 Data for the base case . . . . . . . . . . . . . . . . . . . . . . . . . 113
A.3 Initial conditions for the DES model . . . . . . . . . . . . . . . . . 117

4 A framework for integrated resource planning in surgical clinics 121
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.2 Literature review and contribution . . . . . . . . . . . . . . . . . . 124
4.3 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.3.1 The two-level planning procedure . . . . . . . . . . . . . . . 128
4.4 The mathematical model . . . . . . . . . . . . . . . . . . . . . . . . 129

4.4.1 Cyclic room constraints . . . . . . . . . . . . . . . . . . . . 130
4.4.2 Cyclic flexible slot constraints for ORs . . . . . . . . . . . . 130

viii



4.4.3 Room constraints . . . . . . . . . . . . . . . . . . . . . . . . 131
4.4.4 Surgeon constraints . . . . . . . . . . . . . . . . . . . . . . 131
4.4.5 Activity constraints . . . . . . . . . . . . . . . . . . . . . . 132
4.4.6 Ward constraints . . . . . . . . . . . . . . . . . . . . . . . . 133
4.4.7 Patient flow constraints . . . . . . . . . . . . . . . . . . . . 133
4.4.8 Waiting list constraints . . . . . . . . . . . . . . . . . . . . 134
4.4.9 Objective function . . . . . . . . . . . . . . . . . . . . . . . 134
4.4.10 Variable domains . . . . . . . . . . . . . . . . . . . . . . . . 135

4.5 Evaluating the planning framework . . . . . . . . . . . . . . . . . . 135
4.5.1 The evaluation procedure . . . . . . . . . . . . . . . . . . . 136
4.5.2 Rolling horizon heuristic . . . . . . . . . . . . . . . . . . . . 137

4.6 Computational study . . . . . . . . . . . . . . . . . . . . . . . . . . 137
4.6.1 Technical study of the optimization model . . . . . . . . . . 138
4.6.2 Validating the optimization model and the objective function 142
4.6.3 Evaluating the planning framework . . . . . . . . . . . . . . 143

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

A Appendices 151
A.1 The notation related to the LMSP . . . . . . . . . . . . . . . . . . 151
A.2 Input data for the LMSP . . . . . . . . . . . . . . . . . . . . . . . 153

5 Simulating emergency patient flow during the COVID-19 pan-
demic 161
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
5.2 Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
5.3 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.3.1 The objectives of the study . . . . . . . . . . . . . . . . . . 165
5.3.2 Basic assumptions . . . . . . . . . . . . . . . . . . . . . . . 165
5.3.3 The logic of the models . . . . . . . . . . . . . . . . . . . . 167
5.3.4 Data and experimentation . . . . . . . . . . . . . . . . . . . 171

5.4 Implementation and the setup of the sensitivity analysis . . . . . . 175
5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

5.5.1 Results for the ED case . . . . . . . . . . . . . . . . . . . . 177
5.5.2 Results for the ambulance case . . . . . . . . . . . . . . . . 177
5.5.3 Results for the combined case . . . . . . . . . . . . . . . . . 180
5.5.4 Managerial implications . . . . . . . . . . . . . . . . . . . . 183

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

A Appendices 187
A.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
A.2 Calculating the expected number of suspects and transports . . . . 189

ix



x



Chapter 1

Introduction

Due to demographic changes, many western countries experience a growing de-
mand for health care, while the number of people in the working-age stagnates. In
2021, there were slightly more than three Europeans of working-age for every Eu-
ropean aged 65 and above. This is a 50% higher coverage compered to 2050, when
there will be less than two working-age adults for each elderly person(European
Commission, 2023). Norway is facing similar chellenges as the EU countries. From
2000 to 2020, the number of people exceeding 80 years increased from 190 000 to
230 000. However, from 2020 to 2040 this population will more than double, ex-
ceeding 250 000. During the same period, starting from the mid 2030s, the number
of people in the working-age will decrease in absolute numbers (Norges Offentlige
Utredninger, 2023).

Currently, disruptions caused by the recent COVID-19 pandemic applies pres-
sure on health care systems globally. From 2019 to 2020, the number of elective
surgeries performed across the EU countries fell by 16.5%, generating backlogs
of patients on waiting lists (OECD Publishing, 2022). During the same period,
the mean waiting times for somatic patients within the specialist health services
increased from 61 to 65 days in Norway (Helsedirektoratet, 2021). Many EU coun-
tries have taken actions to address the backlogs by providing additional funding to
increase supply of surgery. However, the main constraint in increasing the volume
of activities has been the health care workforce (OECD Publishing, 2022).

Current and future challenges impose strain on the health care sector. If we
want to maintain, or possibly increase, the level of care in the future, we must
utilize the resources more efficiently.

The work presented in this thesis is inspired by resource planning problems
faced by departments in our collaboratory hospital, St. Olav’s Hospital. The first
three papers concentrate on surgery planning, encountering problems faced by
the Orthopaedic Clinic. All these papers extend on the so called Master Surgery
Scheduling Problem (MSSP), where surgical specialties are assigned to operating
rooms (OR) on each day of a planning cycle, with the aim to facilitate efficient use
of the ORs, surgeons and hospital beds. The resulting blueprint schedule is referred
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to as the Master Surgery Schedule (MSS). The final paper demonstrates a real-
life application of Operations Research applied to the Department of Emergency
Medicine and Prehospital Services when preparing for the increased number of
COVID-19 related admissions in March 2020.

In Paper I, we face a planning context where the operating theatre (OT) ca-
pacities are shared between planned elective surgeries and unplanned emergency
surgeries, and we aim to construct an MSS that reserves capacity for both surgery
types. To account for the stochastic arrivals and bed loading of emergency pa-
tients, we propose a simulation-optimization approach consisting of a two-stage
stochastic optimization model and a discrete-event simulation model. The simula-
tion model is used to generate realistic scenarios for the optimization model, while
the optimization model generates an MSS that balances efficiency and responsive-
ness when serving planned elective surgeries and high-priority emergencies.

In Paper II, we consider the integrated planning of the OC and the OT. The
patients require services in both units, and the surgeons perform both OC consulta-
tions and surgeries. The main objective in the problem is to maximize the number
of initial consultations that can be performed, while ensuring that downstream
capacities can cope with the derived demand. We develop an optimization model
for generating an integrated master schedule, and use discrete-event simulation to
evaluate the schedules across different scheduling policies.

Paper III extends on Paper II, and we develop a more sophisticated optimiza-
tion model that considers the waiting lists to all OC consultation types and surgery
types. The optimization model constructs an integrated master schedule, and we
aim to provide short waiting times for all activity types. The master schedule can
be separated in one cyclic high-level schedule, and one non-cyclic low-level sched-
ule, and we propose a two-level planning framework that utilizes the structure of
the master schedule. First, we construct the entire master schedule for the upcom-
ing planning horizon. Then, to account for stochastic waiting lists, we frequently
refine the low-level schedule. Finally, we evaluate the planning framework under
different planning strategies.

Paper IV demonstrates a real-life application of Operations Research applied to
the Department of Emergency Medicine and Prehospital Services when preparing
for the increased number of COVID-19 related admissions in March 2020. At
this point in time, it was decided that all patients that enter the hospital with
a COVID-19 suspicion should be screened in the Emergency Department, and
that they should be transported by ambulance both to and from the hospital.
In addition, it was proposed that all patients who were not screened upon arrival
would require an ambulance when leaving the hospital. Based on these policies, we
develop three simulation models to estimate the additional Emergency Department
beds required to house patients that are screened, and the number of additional
ambulances required to obtain prepandemic response times for the most urgent
patients.

2



1.1 Background

In this section, we present background on topics that are relevant to the thesis.
First, a brief introduction of St. Olav’s Hospital, and the Orthopaedic Clinic is
provided. Then, we present a classification of planning decisions in health care,
allowing us to position our work in the larger picture. Following this, we review
relevant literature on tactical surgery scheduling, before presenting contributions
made by the Operations Research society during the COVID-19 pandemic.

1.1.1 St. Olav’s Hospital and the Orthopaedic Clinic

St. Olav’s Hospital is a university hospital, located in Trondheim. It is the largest
hospital in the Regional Health Authority of central Norway, and it accommodates
approximately 1000 beds. In 2022, the hospital’s 11 000 employees served more
than 60 000 inpatients and performed 660 000 outpatient clinic (OC) consultations
(stolav.no, 2023). The hospital has a decentralized organization with 20 clinics,
where each clinic covers a specific medical field. In line with the decentralized
organization, all clinics that perform surgery manage their own OT, and there
is no central OT. The two main surgical clinics at St. Olav’s Hospital are the
Clinic of Surgery and the Clinic of Orthopaedy, Rheumatology and Dermatology
(referred to as the Orthopaedic Clinic). The Orthopaedic Clinic performs activities
in different centers and locations in the hospital, but mainly in the Center of
Movement (Bevegelsessenteret).

The Department of Orthopaedic Surgery (referred to as the Orthopaedic De-
partment) is organized under the Orthopaedic Clinic, and the orthopaedic OC
and the orthopaedic OT are subordinate units of the department. In the Center of
Movement, the department manages eight ORs and eight OC rooms. In addition,
the department serves two emergency ORs located in the Emergency Department.
During the weekdays, the departments operates 59 beds, and 43 beds are available
during the weekends. The department performs about 26 000 OC consultations
and 6000 surgeries every year. Almost 50% of the surgeries are emergencies.

1.1.2 Classification of planning decisions in health care

Hulshof et al. (2012) develop a taxonomic classification of planning decisions in
health care, extending on the framework by Hans et al. (2012). The taxonomy
composes of two axes, and can be seen in Figure 1.1. The vertical axis reflects the
hierarchical nature of decision making, including strategic, tactical and off- and
online operational decisions. On the horizontal axis the authors position major
health care services, including ambulatory, emergency, surgical, inpatient, home
care and residential care services. The two latter services are not relevant to this
thesis and will not be further introduced.

Strategic planning involves structural, long-term decision making, such as di-
mensioning, and facility layout and location. Tactical planning translates strategic
decisions to guidelines that facilitate operational planning decisions. At this level,
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Strategic
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Offline
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AmbulatoryEmergency SurgicalInpatient Home Residential

Figure 1.1: The taxonomy for resource capacity planning in health care,
proposed by Hulshof et al. (2012)

patient groups are characterized based on disease type, urgency and resource re-
quirements, and the resource capacities settled at the strategic level are divided
between the patient groups. Blueprint schedules that assign patient groups to a
set of resources are typically developed at the tactical level. Operational planning
involves the short-term decision making related to the execution of the services.
Following the tactical blueprints, execution plans are designed at the individual
patient and resource level. Offline operational planning concerns the advanced
planning of operations, while online operational planning involves reacting to un-
planned events (Hulshof et al., 2012).

In ambulatory care services, patients are served without requiring a room or a
bed. In hospitals, the OCs are the major providers of these services. Emergency
care services involve examination and initial treatment of urgent medical problems
caused by accidents, traumas or sudden illness. The Emergency Department is
the main facility to provide emergency care services in hospitals. Surgical care
services, mainly executed in the OTs, provide surgical procedures to patients,
while inpatient care services treat hospitalized patients in the intensive care units
and general wards (Hulshof et al., 2012).

Considering the taxonomy by Hulshof et al. (2012), tactical planning within
surgical services is most relevant to this thesis. In the following, we provide a
short introduction to the most relevant planning problems faced at each of the
hierarchical decision levels within surgical services.

At the strategic level, the case mix is settled and capacity dimensioning is
performed to match the case mix. The case mix involves the number and types of
surgical cases that are performed at a facility, and a target case mix is chosen with
the objective to optimize net contribution while considering several internal and
external factors. Internal factors include the limited resource capacities, while ex-
ternal factors include the expected demand for services in the facility’s catchment
area and the restricted budgets and service agreements in government-funded sys-
tems (Hulshof et al., 2012). In Norway, the financing of public hospitals is split
in two: roughly 60% is a basic grant, and the rest (the so called ”Innsatsstyrt
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finansiering” (ISF)) is based on the activities performed by the hospitals. The ISF
is founded on a classification system of diagnosis and procedures, the Diagnosis
Related Groups (DRG). All treatments performed at a hospital is assigned a DRG
depending on the diagnosis of the patient and the performed procedures, and the
ISF covers roughly 40% of the average costs related to the DRG (Helsedirektoratet,
2023).

At the tactical level, plans for capacity allocation and admission control are
made. The most common way to perform capacity allocation in surgical care ser-
vices is through block scheduling, and the construction of the MSS. The MSS is
a cyclic blueprint schedule where a number of surgical specialties are assigned to
operating room blocks on each day of the planning cycle. The schedule is period-
ically repeated to cover a planning horizon, and it is constructed to facilitate the
operational scheduling of patients such that the case mix targets can be achieved.
It is common to consider both the surgeon- and bed capacities when construct-
ing the MSS. Admission control is the process of deciding the number of patients
from different patient groups to admit for treatment over a period of time. The
specialties considered for the MSS are disaggregated into finer groups, and the
admissions of different groups are limited by the assignments of specialties in the
MSS. Objectives relevant to admission control are related to patient waiting times.

At the offline operational level, surgery case scheduling is performed. This is
the process of assigning individual patients to individual resources on specific days.
This also involves sequencing the patients during a day, and assigning starting
times to the surgical cases. Online operational scheduling involves the scheduling
of emergency patients that enter on the day of execution, and the rescheduling of
surgeries.

A patient’s pathway typically includes several care stages performed by various
health care services. Therefore, in the perspective of the presented taxonomy, a
strong horizontal interaction can be recognized, in addition to the vertical inter-
action. As a consequence, planning that concentrates on isolated services tends to
be suboptimal, while planning that facilitates flexibility, and integrated decision
making for multiple care services show great potential (Hulshof et al., 2012).

1.1.3 Tactical surgery scheduling

The main topic of this thesis is tactical surgery scheduling, and in particular we
extend on the Master Surgery Scheduling Problem (MSSP). In this section, we
first give a brief overview of the history of Operations Research applied to surgery
scheduling, before presenting the state-of-the-art on the MSSP, concentrating on
contributions from the past ten years. While the main focus is the MSSP, we also
highlight a few relevant contributions on related problems.

A brief overview of the history on surgery scheduling

Surgery scheduling has been a topic of study since the 1950s (Cardoen et al., 2010).
While early research was mainly concerned with aspects of operational scheduling,
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Blake and Carter (1997) suggested that further research should be directed to-
wards solving scheduling issues at strategic and tactical (”administrative”) levels.
They also suggested to develop models for integrating operating room scheduling
with other hospital operations. In the early 2000s, the body of research on surgery
scheduling expanded, and the number of scientific contributions almost doubled
in ten years (Cardoen et al., 2010). During the same period, many contributions
were made on surgery scheduling at the strategic and tactical levels. Rahimi and
Gandomi (2021) reviewed the literature on operating room and surgery schedul-
ing, indicating that the number of publications within the field has been steadily
growing for the past ten years. Research in the past decade has mainly focused on
elective patients, and most authors consider aspects of uncertainty, where the un-
certain surgery duration is most frequently studied. While the research on surgery
scheduling has largely expanded over the past 20 years, there are very few contri-
butions that demonstrate real-life implementations of the models. The absence of
real-life implementation was addressed in Magerlein and Martin (1978), and the
concern has been repeated by others (Samudra et al., 2016; Razali et al., 2022).

Defining the MSS

To the best of our knowledge, the term MSSP was first introduced by Testi and
Tànfani (2009). However, the term is not consistently adopted in the literature,
and the problem is not properly defined. In this thesis, we use the term MSSP for
all problems where the MSS is an outcome of solving the problem. When taking
this broad approach, Blake and Donald (2002) and Blake et al. (2002) were the
first ones to study the MSSP.

While there is no clear definition of the MSS (Cardoen et al., 2010), it is often
referred to as a cyclic schedule where a set of surgical subgroups are assigned
to operating room blocks throughout the planning cycle. Razali et al. (2022)
characterize the MSS based on three properties: the definition of surgery groups,
the length of the planning horizon and the schedule cyclicity. While most authors
define the surgery groups based on surgical specialties, it is not uncommon to
further divide the groups based on resource consumption related to the expected
length of stay and surgery duration. The most commonly considered planning
horizons span from seven to 27 days, however there are examples of schedules
that cover periods up to a year, and less than a week. The vast majority of
contributions construct a cyclic MSS, but a few authors (Agnetis et al., 2012;
Santos and Marques, 2022) experiment with constructing a non-cyclic schedule.

There are strong dependencies between the decision levels presented by Hul-
shof et al. (2012). The tactical level spans wide, and the transitions to the strategic
and operational levels are rather vague. While most authors define the MSS as a
tactical schedule, others choose different perspectives and decision levels when con-
structing the schedule (Cardoen et al., 2010). Traditionally, the MSS is strongly
linked to the strategic case mix decisions, however it is popular to construct sched-
ules that consider the current waiting lists, or even a set of individual patients to be
scheduled. As a consequence, some schedules are primarily governed by budgets,
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while others are closely linked to the current demand for surgeries.
Both Fügener et al. (2014) and Santos and Marques (2022) assign surgical

specialties to each operating room block in the MSS, and they link the demand
for each specialty to the case mix settled at the strategic level. Considering the
low level of granularity applied by the authors, both offer a relatively high-level
decision support. Also Rachuba et al. (2022) ensure that the assignments made in
the MSS align with the case mix decisions. However, accounting for a fluctuating
demand, the authors assign a fractional number of the different surgical groups
each week. At the operational stage, the scheduler can then vary the assignments
between weeks, while making sure that it adds up over time. To evaluate the
framework, the authors simulate a planning horizon of one year. Schneider et al.
(2020) group surgeries that share the same surgical specialty, and similar surgery
duration and length of stay. To construct the MSS, the authors assign a number
of surgeries from each group to each operating room block. They assume that
all waiting lists are inexhaustible and introduce constraints to make sure that a
minimum number of surgeries from each group is assigned. By scheduling patients
in accordance with the groups in the MSS, the scheduler can ensure efficient use of
the resources. In contrast to Rachuba et al. (2022), the authors assign an integer
number of surgeries from each group, leaving less flexibility at the operational
stage. The lack of flexibility may require a more frequently updated MSS. When
testing the model, the authors consider a planning horizon of 14 days.

Several authors construct the MSS based on current waiting lists and thus
strengthen the link to the operational scheduling of patients. Both Banditori et al.
(2013) and Cappanera et al. (2014) consider the waiting list of patients when con-
structing the MSS, but they do not consider the individual patients. In line with
Schneider et al. (2020) they divide the surgeries into categories based on resource
consumption, and assign a number of surgeries from each category to each oper-
ating room block. While Banditori et al. (2013) categorize surgeries based only
on the expected surgery duration, Cappanera et al. (2014) also consider the pa-
tient’s expected length of stay when performing the categorization. Banditori et al.
(2013) mainly apply a planning horizon of 28 days when testing the model, while
Cappanera et al. (2014) consider a planning horizon of 14 days. Some authors
(Agnetis et al., 2014; Spratt and Kozan, 2016; Moosavi and Ebrahimnejad, 2020;
Mazloumian et al., 2022; Makboul et al., 2022) simultaneously address the MSSP
and the Surgical Case Assignment Problem (SCAP), by scheduling individual pa-
tients from the waiting lists when constructing the MSS. All authors that integrate
the MSSP and SCAP consider a one-week planning horizon.

To summarize the discussion above, we propose Figure 1.2 to categorize the
different settings in which the MSS can be constructed. To the left, we illustrate
that the tactical level spans from the strategic to the operational decision level. In
the middle, we present how the demand is typically defined when we construct the
MSS at different decision levels. To the right, we indicate what types of problems
that are defined and solved to construct the MSS at the different levels. Here, AC
refers to Admission Control.

In Papers I to III, we divide the surgical specialties into finer groups, based
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Figure 1.2: The MSS can be constructed at different decision levels. Based
on the decision level at which we construct the MSS, we face different
definitions of demand and problems to solve.

on resource consumption. In Paper I, we define, for each group, a target number
of surgeries to be performed each week. These targets are related to the case mix
targets settled on the strategic level. In Papers II and III, demand is directly
linked to the waiting lists. The planning horizons considered in Papers I and II
are half a year, and we consider static master schedules. In Paper III, we consider
a planning horizon of 12 weeks, and we allow to make adjustments in the master
schedule as time passes. The following sequence positions Papers I to III from a
strategic to an operational connection: Paper I, Paper II, Paper III.

Objectives

There are multiple objectives that have been proposed when constructing the MSS.
Many authors apply objective functions related to the downstream ward activities.
Schneider et al. (2020), Mazloumian et al. (2022) and Cappanera et al. (2014) mini-
mize the variation in bed occupancy, while Fügener et al. (2014) minimize the costs
of operating the downstream wards. Another example is Banditori et al. (2013)
who minimize the occurrences of patients resting in beds that are not meant for
them. Objectives related to the waiting list management is also frequently con-
sidered in the literature (Oliveira et al., 2021; Moosavi and Ebrahimnejad, 2020;
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Mazloumian et al., 2022; Banditori et al., 2013). A third recurring objective is re-
lated to throughput. Kumar et al. (2018) aim for a high production by maximizing
the number of patients scheduled, while minimizing the the expected number of
patients that have to be cancelled due to bed shortages. Other authors, like Spratt
and Kozan (2016) and Makboul et al. (2022) maximize the gains from assigning
surgeries in the schedule. Finally, many authors consider a variety of objectives,
either in isolation or combined, when constructing the MSS (Penn et al., 2017;
Banditori et al., 2013; Schneider et al., 2020; Mazloumian et al., 2022; Moosavi
and Ebrahimnejad, 2020; Britt et al., 2021).

Uncertainty

There are several sources of uncertainty that can be considered when creating
the MSS. The three most frequently studied factors of uncertainty are surgery
duration, length of stay or bed availability, and emergency arrivals (Razali et al.,
2022).

Several authors apply robust optimization to account for uncertain surgery
duration (Moosavi and Ebrahimnejad, 2020; Mazloumian et al., 2022; Makboul
et al., 2022), while others apply chance constraints to avoid operating room over-
time (Rachuba et al., 2022; Schneider et al., 2020). Rachuba et al. (2022) calculate
the probability that a surgery of a patient group lasts at least a number of time
slots, and use a chance constraint formulation to adjust the proximity of consecu-
tive surgeries. Schneider et al. (2020) approximate the sum of the surgery durations
within an operating room with a normal distribution, and use this in combination
with a chance constraint logic to adjust the risk of running into overtime. Bandi-
tori et al. (2013) investigate the trade-off between efficiency and robustness when
creating the MSS. Given an availability of ORs and beds, they aim to obtain a
robust schedule by running the optimization model on a set of instances with less
resources than what is actually available. The schedules are then implemented in
a discrete-event simulation model to guide the scheduling of patients in a system
with the original OR and bed capacities. Based on the simulations, the authors
evaluate the operational consequences of each MSS related to resource utilization,
and the number of executed and cancelled surgeries.

Santos and Marques (2022) state that a cyclic MSS does not imply cyclic bed
requirements, and they apply stochastic programming to account for fluctuating
bed demands. They formulate a two-stage stochastic model, where the bed re-
quirements from assigning a specialty to a block and a day are represented by the
stochastic parameters. In the first stage, the assignments of specialties to blocks
are made, and in the second stage the over-consumption of beds is penalized.
Kumar et al. (2018) are inspired by stochastic programming when accounting for
uncertain bed requirements. Instead of introducing parallel scenarios for the length
of stay of patients, they apply a consecutive number of planning cycles where all
the patients in each cycle have a randomly sampled length of stay. The authors
explicitly impose non-anticipativity constraints by demanding a consistent order
of patients to be scheduled and cancelled in each planning cycle. Moosavi and
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Ebrahimnejad (2020) present a scenario-based robust formulation to account for
the uncertain length of stay of patients, while Makboul et al. (2022) apply a stan-
dard robust formulation to model the number of beds available in the ICU each
day. Vanberkel et al. (2011) develop a method for calculating the steady-state
distribution of the number of patients resting in a ward resulting from an MSS.
On a given day following surgery, a patient is present in the ward with a given
probability. This behaviour can be described as a Bernoulli trial, and the distri-
bution of the number of patients still present in the ward resulting from assigning
a given specialty to a given day is binomially distributed. To calculate the total
distribution of the number of patients still present in the ward, the authors apply
discrete convolution to add the distributions from all specialties that were assigned
on the given day. Finally, to account for patients that have a length of stay that
exceeds one planning cycle, the authors again apply discrete convolution to add the
days exceeding one cycle. A number of authors have applied, or extended on this
framework (Fügener et al., 2014; Fügener, 2015; Schneider et al., 2020; Rachuba
et al., 2022).

Both Moosavi and Ebrahimnejad (2020) and Mazloumian et al. (2022) apply
a scenario-based robust formulation to account for the emergency demand. Each
scenario states the time required to serve emergency patients on each day of the
planning horizon. Rachuba et al. (2022) consider the expected number of emer-
gency arrivals on each day of the planning cycle, and assign operating room and
bed capacities accordingly.

In Paper I, we consider the uncertain arrivals and bed loading of emergency
patients, and we develop a two-stage stochastic model to account for the uncer-
tainties. In Papers II and III, we do not explicitly model uncertainty, but we
introduce different planning policies to account for stochastic waiting lists.

Up- and downstream processes

Several authors state that operating room scheduling should not be made in iso-
lation, and call for the inclusion of up- and downstream processes (Blake and
Carter, 1997; Cardoen et al., 2010; Hulshof et al., 2012). While there exist con-
tributions on the MSSP that consider the operating rooms in isolation (Agnetis
et al., 2014; Spratt and Kozan, 2016), the vast majority of authors consider adja-
cent processes when constructing the MSS. The most common processes to include
are downstream wards, either the Intensive Care Unit (ICU) or the medical wards.
Fügener et al. (2014) build on the framework developed by Vanberkel et al. (2011)
for calculating the distribution of patients resting in the downstream ward on each
day of the planning cycle. However, they extend the model formulation to also
include an intermediate stay in an ICU before being transferred to the ward. This
framework is adopted by other researchers (Fügener, 2015; Schneider et al., 2020).
While the inclusion of downstream wards is most common, some contributions like
Moosavi and Ebrahimnejad (2020); Oliveira et al. (2021) also consider that some
patients require a stay in a ward before surgery.
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Schneider et al. (2020) propose the inclusion of the OC as a direction for future
research on the MSSP. The integration of the OC and the OT can be regarded as
a multi-appointment system, and be linked to the planning of care processes. The
term care process is used for a set of consecutive care stages followed by patients
through a hospital. It is the complete path of a patient through the hospital, such
as a visit to the OC, a visit to an X-ray, and a revisit to the OC (Hulshof et al.,
2016). To the best of our knowledge, the literature on multi-appointment schedul-
ing is developed around outpatient systems, such as the OC or day surgery, and do
not consider systems where the patients require a bed following an intervention.
Furthermore, the majority of research on multi-appointment scheduling is related
to operational scheduling (Marynissen and Demeulemeester, 2019), however a few
contributions exist on the tactical level (Hulshof et al., 2013; Bikker et al., 2015;
Hulshof et al., 2016).

Hulshof et al. (2013) develop a model for tactical resource allocation and elec-
tive patient admission planning in care processes. In the model, the care processes
are modelled as a set of consecutive queues, and patients move from one queue to
the next with a given probability. To serve a patient in a given queue, a set of
resource capacities are required, and since the resource capacities are limited, so
is the flow of patients. The main decisions to make is the number of patients to
admit from each queue in each time period, and the objective is to minimize the
weighted number of patients in each queue, giving higher weights to long wait-
ing times. Hulshof et al. (2016) extend on Hulshof et al. (2013), and introduce
stochastic patient arrivals and transmissions between queues. To solve the prob-
lem, the authors propose an approximate dynamic programming model. Bikker
et al. (2015) study the care process of radiation treatment. All patients that are
referred for treatment require a given sequence of examination consultations be-
fore the radiation treatment can begin. The aim of the study is to develop a
cyclic schedule for the doctors who examine the patients, as a mean to minimize
the access time between referral and treatment for all patients. In the schedule,
each doctor is assigned to a task and a location on each day he or she is available
to work. Instead of modelling queues, the authors calculate the minimum access
time of one arriving patient in a system without already scheduled appointments,
representing the shortest access time possible for the patient. This calculation is
made for each patient type, arriving on each referral day in each location, and the
objective is to determine the doctor schedule that minimizes the total access time
of all patient types.

In both Papers II and III, we extend on the current literature, constructing
integrated master schedules that cover both the OC and the OT. This allows us to
level the activities across the two units, and promote a coordinated use of resources.

Flexibility and dynamic planning

Creating more planning flexibility in decision making demonstrates great potential
(Hulshof et al., 2012). The topic of planning stability and flexibility is highly rel-
evant in the context of designing an MSS. Here, stability refers to an MSS where
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all assignments are identical in each planning cycle, and thus offers predictability
for the staff. Furthermore, a stable schedule allows for a more predictable pattern
in terms of resource consumption. Flexibility concerns the ability to dynamically
adapt the plan to the evolution of the waiting lists, allowing for shorter patient
waiting times. Stability and flexibility are conflicting, since the former pushes to-
wards having a constant MSS, while the latter seeks variation if necessary. Clinics
should aim to find the right trade-off between stability and flexibility (Agnetis
et al., 2012). Several authors investigate the value of introducing flexibility in tac-
tical scheduling both related to surgery scheduling (Agnetis et al., 2012; Oliveira
et al., 2021) and OC scheduling (Laan et al., 2018). They all find that introduc-
ing a very limited degree of flexibility in the master schedule improves resource
efficiency and patient waiting times. Furthermore, Agnetis et al. (2012) conclude
that small but frequent changes perform better than large but infrequent changes,
and Oliveira et al. (2021) find that a static, non-cyclic MSS outperforms its cyclic
counterpart.

In Paper II, we consider a static master schedule, but we investigate the value
of imposing flexibility in the operational scheduling of patients. In Paper III, we
introduce both flexibility and dynamic planning as part of the proposed planning
framework. We use the term dynamic to describe the frequency by which the
schedule can be adjusted, while flexibility refers to the amount of change that
can be made in each adjustment. Furthermore, we extend the current literature
by introducing the term Agile planning. By agile, we refer to the delay in time
between the time of planning and the time of executing a schedule.

Real-life implementation

According to Samudra et al. (2016), less than 7% of the methods developed for
scheduling operating rooms are applied in practice. The authors point to a few
examples of models that have been applied in real-life, but these are all tools for
operational planning. Regarding the MSSP, no studies exist that demonstrate a
real-life use of the developed model (Razali et al., 2022).

1.1.4 Contributions from the OR society during the COVID-
19 pandemic

The first outbreak of COVID-19 was observed as a cluster of pneumonia cases in
the city of Wuhan, China late in December 2019. On the 20th of January 2020, the
first cases of COVID-19 outside China were announced, and in the following weeks
the disease spread to many countries. Then, on the 26th of February, the first case
of disease was reported in Norway. On the 12th of March, societal restrictions such
as closing down public institutions and instructing social distancing, were imposed
by the Norwegian government (Tjernshaugen et al., 2023).

In mid March 2020, the management at St. Olav’s Hospital decided that all
patients that entered the hospital with a COVID-19 suspicion should be screened in
the Emergency Department, and that they should be transported by ambulance
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both to and from the hospital. In addition, it was proposed that all patients
who were not screened upon arrival would require an ambulance when leaving the
hospital. On the 17th of March, we became part of a team that was established to
predict the resource requirements related to the new guidelines for screening and
transportation of patients. On the 12th of March 2020, the Norwegian Institute
of Public Health (NIPH) had released a recommended planning scenario for the
evolvement of the COVID-19 pandemic in Norway. The planning scenario was used
as a starting point of our analyses, and when an updated scenario was provided
on the 24th of March, this was used to update our predictions.

Similar groups were established world-wide to provide decision support for the
health services during the pandemic. People from the Operations Research society
contributed in many initiatives, and a large body of literature on pandemic-related
planning and scheduling emerged. While reviewing the literature on this topic is
far beyond the scope of this introduction, we present relevant contributions to
serve as a background for positioning our own work.

Currie et al. (2020) discuss how simulation can be used to support decision
makers in making informed decisions during the COVID-19 pandemic. The au-
thors identify three main categories of decisions where simulation can provide
decision support: decisions affecting disease transmission and interventions, de-
cisions regarding resource management, and decisions about care. Furthermore,
they propose a framework to indicate the geographic and time scale over which
the decisions are made. The geographic scale includes the global, national, organ-
isational and individual levels. For the time scale, the authors use the disaster
operations management framework by Altay and Green (2006) that splits deci-
sions into four phases: mitigation - activities to prevent the onset of disaster or
reduce its impact; preparedness - plans to handle an emergency; response - imple-
mentation of plans, policies and strategies from the preparedness phase; recovery
- long-term planning actions to bring the community back to normality. Decisions
regarding resource management, categorized as organisational on the geographical
axis, and within preparedness or response on the time scale are most relevant to
this thesis. Currie et al. (2020) identify two types of decisions that fall within this
category: capacity of inpatient hospital beds and critical care, and staffing.

Several authors apply discrete-event simulation to identify the impact of COVID-
19 patients on the ward capacities (Garcia-Vicuña et al., 2020; Le Lay et al., 2020;
Wood et al., 2020). Both Garcia-Vicuña et al. (2020) and Wood et al. (2020)
concentrate on the COVID-19 patients, disregarding the other patients. Garcia-
Vicuña et al. (2020) consider the case where patients are transferred between levels
of care depending on the severity of their condition. Simulation is used to model
the flow of patients through the system, from hospitalization to discharge, and
the results are used to predict the requirements of beds in the upcoming days and
weeks. Wood et al. (2020) only consider the patients that require intensive care,
and estimate the number of capacity-dependent deaths at a hospital in England un-
der different governmental isolation policies and for different ward capacities. The
authors model the intensive care ward as a loss system, implying that patients
arriving when no beds are available will be rejected, increasing the probability
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of death. Le Lay et al. (2020) consider the hospital-wide flow of patients when
predicting the bed requirements in the multi-purpose recovery ward for the case
hospital. Based on a set of simulation experiments, the authors conclude that a
daily arrival rate of five COVID-19 patients will overcrowd the recovery ward, and
propose a temporary increase of the ward capacity.

Dai et al. (2022) and Melman et al. (2021) propose new strategies for manag-
ing the wards to avoid the interruption of high-priority elective surgeries during
the pandemic. Dai et al. (2022) propose a so called buffered clustered configu-
ration of beds. Clustered refers to the establishment of a clustered ward where
a number of beds from each specialized ward is clustered together to serve low-
priority patients, leaving the remaining beds for high-priority patients. The buffer
wards are additional beds established to accommodate non-elective patients that
must be isolated and tested for COVID-19. The authors develop a mathematical
model for assigning elective patients from the waiting list to an operating room
day and a ward. Melman et al. (2021) apply discrete-event simulation to evaluate
three different resource allocation strategies imposed on the critical care wards of
the case hospital: proactive cancellation of elective surgery, reactive cancellation
of elective surgery, and ring-fencing OT capacity. In the proactive strategy, the
elective OT is closed throughout the pandemic wave, dedicating the critical care
capacity to the COVID-19 patients. In the reactive and ring-fencing strategies,
the surgery capacities are adjusted dynamically based on the current demand for
critical care. According to the ring-fencing strategy, a limited number of elec-
tive operating rooms are kept open throughout the pandemic, independently of
the critical care demand. This is not the case in the reactive strategy. The au-
thors find that the ring-fencing strategy outperforms the others when balancing
the conflicting goals of maximizing the number of elective surgeries performed and
minimizing the number of non-elective rejections.

The increased hospital workload during the pandemic causes physical and psy-
chological strain on the health care professionals (Güler and Geçici, 2020). At the
case hospital studied by Güler and Geçici (2020), three bed departments are es-
tablished to handle COVID-19 positive patients, and these require the presence
of physicians around-the-clock. Most of the physicians must cover shifts in the
new departments in addition to the shifts covered in their regular departments,
and the authors develop a mathematical model to solve the physician scheduling
problem. To decrease the spread of virus among health care professionals, Kluger
et al. (2020) propose to optimize staff scheduling to minimize interactions between
the workers and limit the patient pool to which each employee is exposed. The
authors find that longer nursing shifts and scheduling designs in which teams of
nurses and doctors co-rotate no more frequently than every three days can lead to
fewer infections.

The pandemic also affects the outpatient services. To prevent the spread of
disease, Otten et al. (2023) aim to reduce the number of patients present simul-
taneously in the waiting area. The authors consider patient types that require
multiple appointments on the same day, and that return to the waiting area be-
tween appointments. To avoid crowding in the waiting area, the authors develop
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an integer linear programming model to construct a blueprint schedule where the
different appointment types are assigned to resource blocks through a day. A
Monte Carlo simulation model that considers uncertain patient arrival times and
appointment durations is developed to evaluate the performance of the blueprint
schedule. If the schedule causes excessive crowding, the capacity parameters are
decreased before running the optimization model over again. These iterations are
repeated until the chances of crowding is below a given threshold.

The Operations Research society has contributed to solve a large variety of
problems related to resource planning in hospitals during the pandemic. While it is
possible to find similarities between some of the cases presented in the literature, all
seem to have distinct characteristics that make them different from the other cases.
This is probably due to the urgency under which many projects were established,
and the current policies adopted by the different hospitals. The case presented in
Paper IV is yet another distinct case that adds to the large body of contributions
made by our society.

1.2 Purpose and outline

In this section, we first describe the main purpose of the thesis, and provide
the background and motivation behind solving the problems faced in each paper.
Then, we outline each of the papers, and present each paper’s main contribution.

1.2.1 Purpose of the thesis

The main purpose of the thesis is to make advances in the field of Operations
Research on tactical surgery scheduling, while making sure to solve problems that
are of relevance to practitioners. Papers I to III contribute to the main purpose
of the thesis, and while describing generic problems, they all originate from chal-
lenges faced by the Orthopaedic Department at St. Olav’s Hospital. Paper IV
does not contribute to the main purpose of the thesis, but it demonstrates the
application of Operations Research methodology to solve real-life problems at a
state of uncertainty.

At St. Olav’s Hospital, there are dedicated operating room facilities for emer-
gency surgeries, serving both orthopaedic and surgical emergencies. Surgical emer-
gencies tend to be more urgent than the orthopaedic cases, and in times of high
demand, the orthopaedic emergencies experience long waiting times. A main con-
cern faced by the management at the Orthopaedic Department at the time we
established contact, was the excessive waiting times of orthopaedic emergencies,
and especially the suburgent cases. To reduce the waiting times, the management
considered to reserve some capacity in the elective operating rooms to serve the
suburgent surgeries. The question was how much capacity to reserve, and this was
the starting point and motivation behind Paper I.

Papers II and III originate from another challenge faced by the Orthopaedic
Department: to level the activities performed in the OC and the OT, to achieve
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Figure 1.3: Positioning the four papers according to the taxonomy by Hul-
shof et al. (2012).

stable workloads and short waiting times for patients. The patients require services
in both units, and the surgeons perform both consultations and surgeries. To
provide specialized services, the surgeons are organized according to orthopaedic
specialties, and each specialty accommodates a set of different activity types and
corresponding waiting lists. It is challenging to coordinate the use of resources
across the two units, and the management state that they experience significant
variations in surgery workload. In these papers, we construct master schedules
that integrates the planning of the two units.

The problem faced in Paper IV was motivated by the management’s desire to
estimate the impact of COVID-19 admissions on the Emergency Department, and
the ambulance services during early stages of the pandemic.

In Figure 1.3, we position the four papers according to the taxonomy pro-
vided by Hulshof et al. (2012). All the papers consider tactical resource planning,
covering at least two care services.

1.2.2 Paper I: Stochastic Master Surgery Scheduling

In this paper, we consider the problem of constructing an MSS that reserves ca-
pacity for both elective and emergency surgeries. In addition to elective-dedicated
operating room slots, flexible slots are assigned to handle the fluctuating demand
of emergency patients. If the reserved flexible capacity is insufficient, elective surg-
eries will be cancelled to free operating room capacity. Most emergency patients
require a bed, both while waiting for surgery and while recovering from surgery,
and elective surgeries are cancelled if no more beds are available.

To model and solve the MSSP, we propose a two-stage stochastic optimiza-
tion model, where the stochastic parameters represent the number of emergency
patients that must be served each week, and the bed requirements imposed by
emergency patients. In the first stage, the MSS is constructed, and in the second
stage the scheduling of emergency surgeries and potential elective cancellations are
performed. Furthermore, we develop a discrete-event simulation model, and pro-
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pose a simulation-optimization procedure where the simulation model generates
scenarios for the optimization model.

The main contribution of the paper is the two-stage stochastic optimization
model that generates an MSS which balances efficiency and responsiveness when
serving planned elective surgeries and high-priority emergencies in the same facili-
ties. Furthermore, we demonstrate how a simulation model can be used to generate
scenario data that represents alternative planning strategies. Finally, we design a
case study to compare the optimized MSS with the existing one, demonstrating
the value of our work.

1.2.3 Paper II: Integrated Master Surgery and Outpatient
Clinic Scheduling

In this paper, we aim to coordinate the use of resources across the OC and the
OT. The inherent demand of the problem is imposed by the new referrals entering
the system, as each referral requires an initial consultation in the OC. We know
the expected sequence of activities required by patients from different specialties,
and this is used to estimate the derived demand for all activity types based on
the number of initial consultations scheduled. The objective of the problem is to
construct a master schedule that assigns sufficient capacity for initial consultations,
while making sure that we can cope with the derived downstream demand for
activities.

The main contribution of the paper is an optimization model that generates the
integrated master schedule, where a specialty and a number of subordinate activity
types are assigned to each unit on each day of the planning cycle. We also develop
a discrete-event simulation model to evaluate the operational performance of the
master schedule under different operational scheduling policies. We evaluate three
scheduling policies, and find that a policy that combines the use of the tactical
activity type assignments with some degree of flexibility performs best.

1.2.4 Paper III: A framework for integrated resource plan-
ning in surgical clinics

In this paper, we study a similar problem as in Paper II, and it can be seen as an
extension of Paper II. In contrast to Paper II, we separate the master schedule in
two, one cyclic high-level, and one non-cyclic low level schedule. In the high-level
schedule, specialties are assigned to rooms in both units on each day of the planning
cycle, referred to as the cycle days. In the low-level schedule, we assign a number of
activity types to rooms and days in the planning horizon. Each day in the planning
horizon corresponds to a day in the planning cycle, and the assignments made
in the low-level schedule are constrained by the high-level schedule assignments.
To account for stochastic waiting lists, we propose a two-level planning procedure
where the assignments in the low-level schedule are periodically adjusted to handle
the current waiting lists.
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To generate the master schedule, we develop an optimization model that ex-
tends on the model from paper II. The model is more sophisticated, and it explicitly
considers all waiting lists in the system. When performing the periodically refine-
ment of the low-level schedule, we solve the model with fixed high-level variables.
We also extend on the simulation model from Paper II, and propose a procedure
for evaluating the planning framework.

The main contribution of the paper is a two-level planning framework, compos-
ing of the optimization model and the two-level planning procedure. Furthermore,
we apply the evaluation procedure to study different planning strategies, including
a flexible, a dynamic and an agile planning strategy, and we show that combining
the strategies yields additive improvements related to patient waiting times.

1.2.5 Paper IV: Simulating emergency patient flow during
the COVID-19 pandemic

In mid March 2020, the management at St. Olav’s Hospital decided that all pa-
tients that entered the hospital with a COVID-19 suspicion should be screened in
the Emergency Department, and that they should be transported by ambulance
both to and from the hospital. In addition, it was proposed that all patients who
were not screened upon arrival would require an ambulance when leaving the hos-
pital. In this paper, we aim to estimate the impact on the Emergency Department
and the ambulance services imposed by COVID-19 hospital admissions during the
peak of the pandemic.

As a starting point of our analysis, we split the emergency patient popula-
tion in two: the COVID-19 positive and negative patients. Then, based on the
recommended planning scenarios and a set of assumptions regarding the screen-
ing policy, we develop a set of scenarios representing the demand of emergency
patients to both the Emergency Department and the ambulance services. Two
discrete-event simulation models are developed, one for each system, and these are
used to analyse the systems across the different scenarios. Finally, the two models
are implicitly integrated into a third model, allowing us to study the effects of
boarding on the Emergency Department bed requirements.

The main contribution of the paper is to demonstrate the use of discrete-
event simulation to provide real-life decision support in a state of uncertainty.
The analyses were presented for the hospital management, who established more
beds for screening in the Emergency Department, and increased the transportation
capacities.

1.3 Contributions

In this section, we present the overarching contributions made in this thesis to the
research community and to the industry.

18



1.3.1 Contributions to the research community

In the following, we discuss the overarching contributions of the thesis to the re-
search community. We have made advances in the field of tactical surgery schedul-
ing, related to two main topics: integrated master scheduling, and the handling of
stochastic demand.

Integrated master scheduling

As stated in Section 1.1.3, no contributions exist on the MSSP that integrate the
planning of the OC and the OT. In Papers II and III, we develop optimization
models that construct integrated master schedules across both units. In Paper II,
we aim to level the capacity assigned to initial consultations and to the downstream
activity types, such that we serve sufficient patients while making sure that the
downstream waiting lists do not increase. In Paper III, we explicitly consider all
waiting lists in the system, and we use this information to obtain a high throughput
of patients and short waiting times across all waiting lists.

In both papers, we assign activity types in the master schedules to facilitate
an efficient use of resources, and strengthen the coordination between the OC and
the OT. In Paper II, we compare the outcomes of scheduling patients based on
the activity types assigned in the master schedule, to a policy where patients are
scheduled purely based on the specialty and a first-come-first-serve policy. The
results demonstrate that the first policy suffers from inflexibility, while the second
struggles to achieve a coordinated use of resources. However, combining the two
policies outperforms the others, especially if downstream resources are scarce.

Handling of stochastic demand

We make several contributions on how modelling can be used to make schedules,
and support ways of planning, that account for a stochastic demand for activities.

In Paper I, we construct an MSS that reserves capacity to handle a stochas-
tic demand of suburgent emergency surgeries. Roughly speaking, these patients
should be served in the same week as they enter, and we do not know the emer-
gency demand one week ahead. Therefore, as long as our assumptions about
demand is not changed, it makes sense to make static capacity reservations for
a long period of time. As a contribution to the research society, we propose a
two-stage stochastic optimization model that accounts for the stochastic demand
of emergency surgeries, and constructs an MSS where the level of robustness can
be altered based on the planner’s preferences.

In Paper III, we study a problem with stochastic waiting lists of elective pa-
tients. In contrast to the emergency patients, the elective waiting lists yield in-
formation about the demand for the upcoming weeks and months. Furthermore,
given that we do not look too far ahead and that we serve the waiting lists in a
first-come-first-serve policy, we can assume a deterministic demand. In this case, it
makes sense to periodically (or non-periodically) update the capacity assignments
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in the master schedules based on the waiting list information. Comparing to the
more strategic decisions of reserving capacities to emergency patients, these are
tactical decisions that can be made more frequently. As a scientific contribution,
we develop a planning framework, composing of a two-level planning procedure and
a deterministic optimization model, to handle the stochastic demand of elective
patients.

The case of stochastic waiting lists is also encountered in Paper II. Here, we
propose a policy for scheduling patients based on the activity type assignments
made in the master schedule and the current waiting lists.

Seen in combination, and with regards to the topic of handling a stochastic
demand, the contributions made in the three papers align in the vertical axes
proposed by Hulshof et al. (2012). This means that they can be implemented
independently of each other, or together.

1.3.2 Contributions to the industry

The author of this thesis (referred to as the candidate) has been an employee at
St. Olav’s Hospital since August 2020, at the Regional Center for Health Services
Development (RSHU). RSHU is a multidisciplinary unit, serving the clinical de-
partments in matters of resource planning and logistics, innovation, and health
economics. At the time of writing, we are three employees in the team that cov-
ers resource planning and logistics, adding up to 1.25 Full Time Equivalents. We
all have shared positions between RSHU and the Department of Industrial Eco-
nomics and Technology Management (IØT), allowing us to create synergies across
academia and practice. In addition to conducting projects with the departments,
we have arranged a few seminars for clinicians, presenting our methods and re-
search results. The clinicians show an increasing interest in Operations Research,
and we are currently working with several departments related to topics such as
OC planning, and personnel scheduling.

Our collaboration with the Orthopaedic Department dates back to 2017, when
the candidate initiated his Master thesis project. Since then we have conducted
multiple projects together, resulting in several Master thesis and peer-reviewed
publications. While we have had projects concentrating on operational schedul-
ing, most emphasis has been given to tactical planning. So far, the collaboration
has been of an academic character, focusing on the development of theoretical
models, and it still remains to demonstrate the real-life potentials of our models.
However, we have ambitions to conduct pilot studies based on our work, together
with the department. Back in 2019, we applied for funding from St. Olav’s Hos-
pital to conduct a pilot study related to Paper I, but unfortunately the project
was not funded. In the two following years, the hospital was handling a state of
pandemic, causing less capacities to conduct non-clinical activities. Then, in 2022,
a new electronic health record system was implemented at St. Olav’s Hospital,
causing massive amounts of preparations and change management both prior to
and following the implementation. We are currently part of a consortium working
on a grant application to the Research Council, related to developing and piloting
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a tool for strategic and tactical surgery scheduling.
The projects referred to in Paper IV made contributions to the hospital man-

agement. In contrast to traditional academic projects, the projects referred to
in Paper IV were conducted with a sense of urgency. At this point in time, the
management had incentives to demonstrate a drive, and they did state a willing-
ness to act upon our advises. Both projects were finished in less than two weeks,
and we had project meetings once or twice each day. In hindsight, we see that
some of the assumptions made in the analyses can be challenged, and with more
time we would have been able to explore more strategies especially related to the
ambulance services. Despite this, the results of the models were acted upon by
the management. Some months after the projects, new COVID-19 tests were de-
veloped that could provide results in less than half the time. When the new tests
were to be implemented, we adjusted the simulation model and established a set of
updated scenarios to evaluate whether some of the beds established for screening
could be brought back to serve the ordinary emergency patients.

The use, and reuse, of a relatively simple simulation model with limited aca-
demic interest (in it self) is noteworthy. Before we can implement advanced tools
based on complex mathematical models, we must demonstrate the ability to solve
the problems currently faced by practitioners and introduce our methods step-
by-step. In a dynamic and fluctuating reality, the scientific ethos and rigorous
methodologies valued in science can be too tedious: by the time we have properly
defined the problem, it may no longer be of interest to solve. On the other hand,
we should avoid becoming too involved in firefighting symptoms of underlying
problems. Targeting low-hanging fruits and solving problems that are of interest
to practitioners should primarily serve as a door opener to targeting the bigger
and more important problems.

1.3.3 The author’s contributions to each paper in the thesis

In this section we discuss the contributions made by the candidate to each of
the papers included in the thesis. The contributions are divided into the following
categories: conceptual, implementation, and writing. The conceptual part includes
the research idea, the formulation of the problem, the necessary assumptions, the
purpose of the paper, and defining the scope of the analysis. Implementation
refer to the collection of data, implementing models and solution methods, and
analysing and systematising the results. Finally, the writing category includes
the structuring and writing of the paper, handling the submission process, and
following the revision process. A summary of the candidate’s contributions are
given in Table 1.1. Here, the contributions are ranked on a scale from 1 ti 3.
The rating 1 represents some contribution, 2 means a significant contribution was
made, whereas 3 represents a majority of the contributions.

Paper II extends on the Master’s thesis of Anita Abdullahu, which was co-
supervised by the candidate. Anita implemented the optimization model during
her work. While minor improvements were made to the optimization model, the
candidate developed the simulation model presented in the paper, conducted the
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Table 1.1: The candidate’s contribution to each of the papers in the thesis

Paper Conceptual Implementation Writing

Paper I 3 3 3
Paper II 3 3 3
Paper III 3 3 3
Paper IV 3 3 3

analysis, and wrote the paper.

1.4 Concluding remarks and future research

A large body of research has emerged on the topic of tactical surgery scheduling
during the past 20 years. While the work presented in this thesis is inspired by
real-world problems faced by the Orthopaedic Department at St. Olav’s Hospital,
it also extends on current knowledge from the literature. Our main contributions
to the research society relates to the topics of integrated planning and ways of
handling a stochastic demand for surgery. We demonstrate that integrating the OC
and the OT when constructing master schedules is useful to mange the waiting lists
across both units. Furthermore, we study different planning strategies, both on the
tactical and operational level, and we demonstrate how these can be applied handle
stochastic waiting lists. While we mainly concentrate on the planning of elective
surgeries, we also develop an optimization model that dedicates capacities for
emergency patients in the MSS. The model balances the requirements of efficiency
and responsiveness when serving elective and emergency surgeries, respectively.

Despite the close collaboration with the Orthopaedic Department, we have yet
to demonstrate the real-life potential of our models. However, we have ambitions
to conduct pilot studies based on our models in near future. While our work on
surgery scheduling has been of an academic character so far, we include a paper
that demonstrates how discrete-event simulation were applied to provide decision
support to the hospital management during the COVID-19 pandemic. Despite
being relatively simple, the model results proved useful to the management in
times of uncertainty.

As topics for future research, we propose to compare different planning strate-
gies for the handling of stochastic waiting lists. In the papers included in this
thesis, we introduce and demonstrate the use of different planning strategies, both
on the tactical and operational level. We believe that some of the policies are
rather simple to implement, while others are more complex and will require the
involvement of more people to implement. Keeping this in mind, it is interesting
to distinguish the values added by adopting more complex strategies and ways of
planning. For practical matters there is definitely a trade-off between efficiency
and complexity.

Another topic for future research relates to the agile planning strategy in-
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troduced in Paper III, where we demonstrate that decreasing the planning delay
between the time of planning and executing a schedule improves the waiting list
outcomes. However, for reasons related to both the staff and the patients, the
planning delay cannot be zero days. Seen from an Operations Research point of
view, the sequence of planning and execution in this case seems to suit a stochastic
programming framework. Can the use of stochastic programming allow us to add
days to the planning delay, without loosing performance?

Finally, in all our master schedules we assign activity types to guide the op-
erational scheduling of patients. As an alternative to this, we can develop an
operational optimization model to perform the scheduling of patients, taking the
current waiting lists and the master schedule as input. This will allow us to take
more detailed information into considerations when performing the scheduling of
individual surgeries, which can reduce the chances of overtime etc. Comparing the
results from an operational scheduling model to the more naive patterns obtained
from the activity type assignments is of interest.
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Chapter 2

Stochastic Master Surgery
Scheduling

Abstract

The aim of the Master Surgery Scheduling Problem (MSSP) is to
schedule the medical specialties to the different operating rooms avail-
able, such that surgeries may be performed efficiently. We consider
a MSSP where elective and emergency patients can be treated in the
same operating rooms. In addition to elective-dedicated operating
room slots, flexible operating room slots are introduced to handle the
fluctuating demand of emergency patients.

To solve the MSSP, we propose a simulation-optimization approach
consisting of a two-stage stochastic optimization model and a discrete-
event simulation model. For the two-stage stochastic optimization
model, uncertain arrivals of emergency patients are represented by
discrete scenarios. The discrete-event simulation model is developed
to address uncertainty related to the surgery duration and the length
of stay at the hospital, and to test the Master Surgery Schedule (MSS)
developed by the optimization model in a stochastic operational-level
environment. In addition, the simulation model is used to generate
scenarios for the optimization model.

We present some general advice for surgery scheduling based on test-
ing the optimization model in a numerical study. The simulation-
optimization approach is applied to a case study from a hospital
department that treats both elective and emergency patients. The
optimized MSS outperforms the manually generated MSS, both in
terms of emergency waiting time for surgery, and emergency inter-
ruptions to the flow of electives.
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2.1 Introduction

Demographic changes in Norway and many other countries are increasing the need
for hospital services in the years to come. One of the major activities at a hospital
is providing surgery to patients. Freeman et al. (2018) state that 60-70% of all
patients admitted to a hospital require some surgical intervention, and Essen et al.
(2012) state that surgical costs account for approximately 40% of the total hospital
costs and that surgeries generate around 67% of hospital revenues. Developing
ways to schedule surgery efficiently is key to proper utilization of scarce hospital
resources, and a necessity to be able to treat more patients.

Patients are commonly divided into two groups: elective and emergency pa-
tients. Elective patients are not experiencing a medical emergency, and their
surgery can be scheduled in advance to suit the availability of the surgeon and the
patient. Emergency patients, on the other hand, may require surgery within hours
or up to a few days. A triage system is often applied to further divide the emer-
gency patients according to the urgency of their condition. Another classification
of patients refers to whether the patient may leave the hospital following surgery
or not.

One of the major issues within surgery scheduling is how to best balance ef-
ficiency and responsiveness when conducting surgeries for scheduled electives and
high-priority emergencies. If the OR capacity is shared between electives and emer-
gencies, emergencies can create disruptions to the handling of scheduled surgeries,
implying longer elective waiting times, costly resource overtime, cancellations and
rescheduling. If some of the OR capacity is dedicated to respond to emergencies
and avoid disruptions of electives, there will be times when the dedicated capacity
is not utilized as no emergencies are present (Ferrand et al., 2014).

Surgery planning may be divided into three decision stages (Hulshof et al.,
2012). At the strategic level, decisions on localization and dimension of the num-
ber and size of the operating rooms (ORs) are made. At the tactical level, a Master
Surgery Schedule (MSS) is developed to schedule different specialties to the ac-
cessible ORs through the week. Finally, at the operational level, the individual
patients are scheduled to the ORs covered by the respective specialty.

The main purpose of this paper is to provide tactical decision support for man-
agers of departments that provide surgery to both elective and emergency patients.
More specifically, we consider both elective and emergency patients in the Master
Surgery Scheduling Problem (MSSP). The goal is to schedule the medical subspe-
cialties to time slots in the ORs such that we ensure a sufficiently high throughput
of elective patients while maintaining a high responsiveness for emergency patients.
Two types of OR time slots are scheduled: elective slots and flexible slots that are
primarily intended to handle sub-urgent emergency patients.

To perform the scheduling, we propose a simulation-optimization approach
consisting of a two-stage stochastic optimization model and a discrete-event sim-
ulation model (see Figure 2.1). The optimization model generates an MSS, while
the simulation model is used to evaluate the MSS and to generate new input sce-
narios for the optimization model. This allows us to generate a new MSS based
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Optimization model (generate MSS)

Simulation model (evaluate MSS and provide 
scenarios to optimization model)

MSS

No. of emergencies arriving every week

No. of beds covered at the wards on every day of the week

Scenarios:

Figure 2.1: Illustration of our simulation-optimization approach. The op-
timization model generates an MSS, while the simulation model is used
to evaluate the tactical schedule in a dynamic environment, and provides
feedback to the optimization model in terms of scenarios.

on the scheduling rules that are applied in the simulation model and the MSS
generated in the previous iteration. This is helpful to avoid using historic data
that is dependent on the MSS and the scheduling regime that was present when
the data was generated.

The rest of the paper is outlined as follows: Section 2.2 presents relevant
literature. The MSSP is introduced in Section 2.3. In Section 2.4, we present
the approach for solving the MSSP. Following this, in Section 2.5, we present the
results from a computational study where we investigate the value of applying
a stochastic model formulation, managerial insights and a case study from the
orthopaedic department at St. Olav’s hospital in Trondheim, Norway. Finally, we
conclude the paper and suggest topics for further research in Section 2.6.

2.2 Literature review

To provide context, we present relevant literature both on surgery planning and
methods for solving the planning problems. First, we present an overview of
decision levels within surgery planning.

Hans et al. (2012) propose a holistic planning and control framework for a
health care provider, which consists of four managerial areas, combined with a
hierarchical decomposition of decision-making levels. Figure 2.2 illustrates the
framework and provides examples of planning and control functions for each com-
bination. The MSSP considers the managerial area of resource capacity planning.
Furthermore, the MSS is a cyclical block schedule that is repeated for several
months, implying that we consider the tactical planning level.

Within the field of OR planning, the majority of publications have considered
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Figure 2.2: Framework for health care planning and control (Hans et al.,
2012)

only the elective patients (Cardoen et al., 2010). The literature on the MSSP
is no exception, and most authors argue that the emergency patients are han-
dled with dedicated resources. However, some authors like Freeman et al. (2018),
Lamiri et al. (2008), Razmi et al. (2015) and Adan et al. (2011) include emergency
patients.

OR capacity is commonly divided into time blocks when solving the MSSP.
Many authors consider surgery slots of equal length, while others, like Mannino
et al. (2012) include surgery blocks of different lengths. Testi and Tànfani (2008),
Mannino et al. (2012) and Adan et al. (2011) consider overtime work at the ORs.
Testi and Tànfani (2008) and Mannino et al. (2012) minimize the overtime in
the objective function, while Adan et al. (2011) impose hard constraints on the
overtime allowed for each OR. Koppka et al. (2018) limit the total OR opening
hours available through the week, but allows for the model to decide how the
opening hours should be distributed over the different ORs.

The wards are frequently included. However, some authors, like Testi et al.
(2007), Li et al. (2017) and Mannino et al. (2012) disregard the wards in their
model under the assumption that the access to beds is not imposing a bottleneck
on the efficient flow of patients. A few authors, like Li et al. (2017), Fügener et al.
(2014) and Adan et al. (2011), include the intensive care unit (ICU) when handling
the MSSP. The latter are also among the few that explicitly include the nurses, by
imposing restrictions on the amount of nursing hours available at the ICU.

The literature on the MSSP presents numerous objective functions. Testi
and Tànfani (2008), Testi et al. (2007) and Penn et al. (2017) include aspects
of welfare into their objective functions. Testi and Tànfani (2008) propose an
objective function that minimizes loss of welfare among the patients, and the latter
two maximize surgeon preferences. A variety of objective functions regarding bed
capacity is proposed in the literature. Oostrum et al. (2008) aim to minimize both
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the number of ORs used and the maximum demand for hospital beds during the
planning cycle. Ma and Demeulemeester (2013) minimize the total bed deficit, the
maximum daily spare bed volume and the maximum variance of the bed occupancy.

The inclusion of multiple criteria objective functions is used by several authors.
In Beliën et al. (2008), the objective function contains three parts: minimization
of the total peak mean and variance bed occupancy, minimization of surgeons
of the same specialty performing surgery in different rooms and minimization of
surgeons not being scheduled to the same room on the same day every week of
the planning horizon. Li et al. (2017) aim at minimizing the number of patients
not being scheduled, minimizing the underutilization of OR time, minimizing the
maximum expected number of patients in the recovery unit and minimizing the
expected range of patients in the recovery unit.

Several authors include aspects of uncertainty when handling the MSSP. Oost-
rum et al. (2008) include a probability distribution for running into overtime in an
OR as a function of the number of surgeries scheduled to that OR. Koppka et al.
(2018) consider the probability of running into overtime in the ORs that depends
on the combination of patients that are scheduled for the OR. Adan et al. (2011),
Ma and Demeulemeester (2013) and Li et al. (2017) include probability distribu-
tions to account for uncertainty in the patient’s length of stay (LOS) following
surgery. Fügener et al. (2014) calculate the distribution of patients resting in both
the wards and the ICU resulting from a cyclical MSS. These distributions are used
in the objective function to minimize the fixed costs, the overcapacity costs, and
the staffing costs in both the wards and the ICU when generating the MSS.

According to Higle (2005), stochastic programming is a technique which is
well suited when some of the data elements are difficult to predict or estimate. A
major framework within stochastic programming is two-stage recourse modeling.
A two-stage recourse model consists of a first-stage problem and a second-stage
(recourse) problem. The first-stage decisions are determined before knowing the
outcome of the stochastic parameters, while the second-stage decisions are made
after observing the realization of the stochastic parameters. The goal when apply-
ing a two-stage stochastic modelling approach is to identify a first stage solution
that performs well in expectation, taking all possible realizations of the stochastic
parameters into account. When approximating the continuous probability distri-
butions of the stochastic parameters with discrete scenarios, extra care has to be
taken to ensure stability of the solution (see e.g. Kall and Wallace (1994)).

Some authors propose two-stage stochastic models at the tactical level within
surgery planning. Koppka et al. (2018) develop a two-stage stochastic model to
deal with the varying number of elective patients that require surgery during the
planning horizon. However, the authors do not include a recourse option. Kumar
et al. (2018) present a method that is inspired by the two-stage stochastic method
with recourse. Uncertainty is incorporated by using various LOS scenario realiza-
tions, and non-anticipation (see Higle (2005)) is imposed by constraining the model
to schedule patients in the same order as their position in the queue. However, in
contrast to the traditional two-stage stochastic models, the scenario realizations
in this model are chronologically sequential and not parallel. This allows for the

35



model formulation to be deterministic.
Figueira and Almada-Lobo (2014) state that there are three major streams of

simulation optimization research : Solution Evaluation (SE), Solution Generation
(SG), and Analytical Model Enhancement (AME) approaches. Within these three
streams several methods are available. The methods are categorized based on
the interaction between simulation and optimization, and on the search algorithm
design.

The SE approaches consist of developing a comprehensive simulation model
to represent the system and use that model to evaluate performance of various
solutions. The results of the simulation model is used to guide the search for
new, better solutions. The SG approaches are used when optimization models
can be formulated and solved, and their solutions simulated in order to compute
realistic values of the variables. The purpose of simulation here is not to verify the
advantage of one solution over another, but to compute realistic values for some
variables and hence to be part of the whole solution generation procedure. In
AME approaches, the optimization model is enhanced by the simulation results, for
example by providing better estimates of parameters applied in the optimization
model. One of the methods used in the AME approaches is called Stochastic
Programming Deterministic Equivalent (SPDE), and here the simulation model is
used to generate scenarios for the stochastic optimization model.

Several authors use the SG approach when formulating and solving surgery
scheduling problems. Freeman et al. (2018), Ma and Demeulemeester (2013) and
Testi et al. (2007) use simulation models to evaluate the tactical schedule produced
by the optimization model in an operational setting. This allows them to explore
the realistic values of the decision variables when more uncertainty is included.
Adan et al. (2011) and Cappanera et al. (2014) use discrete-event simulation to
investigate different operational scheduling policies after having first generated a
tactical surgery plan. By this they reveal realistic values of the tactical decision
variables for different scheduling policies.

In accordance with the AME approach, Lamiri et al. (2008) use Monte Carlo
simulations and a sample average approximation (SAA) to solve a stochastic op-
timization problem with uncertainty related to emergency arrivals. Also Ma and
Demeulemeester (2013) apply the AME approach, as the simulated, operational
level results are used to alter the parameter for the total bed capacity in the
optimization model.

We propose a simulation-optimization approach to solve the MSSP. According
to the AME approach (SPDE method), we use a discrete-event simulation model
when generating the scenarios for our two-stage stochastic optimization model.
We also use the SG approach, as we use the simulation model to evaluate the MSS
generated by the optimization model. We introduce different levels of urgency for
the emergency patients, and we allow for rescheduling of elective patients to pro-
vide capacity for the emergency patients in periods of excessive emergency patient
loading. This allows us to investigate a major trade-off faced by the management at
many surgical departments, namely the number of electives scheduled for surgery
versus the amount of elective rescheduling needed in order to provide surgery for
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emergency patients.

2.3 Problem description for the MSSP

The MSSP is described in three steps. First, we provide the MSSP with a focus on
elective patients. Then, we expand the problem by including emergency patients,
and finally we present the concept of flexible slots that are used to handle the flow
of emergency patients in periods of high emergency demand.

2.3.1 The elective MSSP

In this MSSP, the aim is to generate a cyclic MSS where the medical subspecialties
are scheduled to the available ORs throughout the planning cycle (typically one
week). A set of elective patient categories exist that share diagnostic similarities.
The patient categories are either in- or outpatients. The surgeons performing the
surgeries are divided into different medical subspecialties. Surgeons of a given
subspecialty may perform surgery in several patient categories, but each patient
category may only receive surgery from surgeons of one subspecialty.

The department has a given number of ORs where surgeries are performed.
The ORs are heterogeneous and each OR may only accommodate certain subspe-
cialties. The opening hours of the OR are divided into time slots, and each slot
can be scheduled to one subspecialty. The number of slots allowed to schedule for
a subspecialty on a given day, and during the cycle is limited. For an OR to be
available for scheduling, an anaesthesia resource must be scheduled for the OR.
The number of ORs that may be covered by an anesthesia resource each day is
limited. Each patient category has an expected surgery duration, and the num-
ber of patients that can be scheduled for surgery in an OR is limited by the slot
capacity scheduled for a suitable subspecialty.

There are several heterogeneous wards available, where inpatients rest follow-
ing their surgery. In each ward a given number of beds can be staffed each day. An
upper bound on the total number of beds that can be staffed each day. Within the
total capacity, we can distribute the number of staffed beds that are available in
each ward on a given day. A staffed bed is assigned to each inpatient entering the
hospital on the day of arrival, and this bed is occupied by that patient throughout
the stay. This scenario is not always true in real life, but it is a fair assumption
from a tactical planning perspective.

The subspecialties are scheduled to the ORs according to the cyclical, fixed
period MSS. The target throughput of elective patients to be scheduled for each
patient category for the cycle is known. For all patient categories, a given share of
the target throughput must be scheduled for surgery in each cycle. This minimum
throughput should be set such that the average service rate is incrementally higher
than the average arrival rate for each patient category, such that we maintain a
stable waiting list of elective patients. Because elective patients are (in most cases)
scheduled well in advance, short periods of peaks in elective patient demand can
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be smoothed out by the hospital planners. For that reason, we argue that planning
according to the average demand is sufficient at a tactical level.

2.3.2 Considering emergency patients in the MSSP

The flow of emergency patients may cause elective cancellations and rescheduling in
periods when the emergency OR resources are insufficient to handle the emergency
demand for surgery. Therefore, the emergency patients should be considered in
the MSSP. The emergency patients represent different urgency categories, and they
are grouped according to three emergency scheduling regimes:

• The sub-urgent (SU) emergency scheduling regime applies to the least ur-
gent emergencies. In periods when the emergency OR capacity becomes
insufficient to handle all emergency patients, the least urgent emergency
patients are scheduled for the elective ORs to free emergency OR capacity.

• The urgent (U) emergency scheduling regime applies to the urgent emer-
gency patients. If no patients from the SU scheduling regime are present,
and there is idle capacity in the elective ORs, the urgent emergency pa-
tients are scheduled for the elective ORs to free capacity for the most urgent
emergency patients in the emergency ORs.

• The critically urgent (CU) emergency scheduling regime applies to the most
urgent emergency patients. These patients are always scheduled for the
emergency ORs.

Scheduling emergency patients to the elective surgery slots may cause elective
cancellations. However, if there is excess capacity in an elective OR slot, after
all elective patients have been scheduled, emergency patients might be scheduled
to the slot without causing cancellations (given that the idle capacity exceeds the
planned surgery duration of the emergency patient).

In periods with a bed shortage in some of the wards, it is possible to let pa-
tients rest in wards dedicated to other patient groups. If the number of emergency
patients requiring a bed increases, and no more scheduled beds are available, elec-
tive inpatients are cancelled to provide additional bed capacity. If the number of
emergencies needing beds exceeds the total number of scheduled beds available,
more beds need to be staffed. The random arrivals of emergencies cause both the
emergency demand for surgery and the number of emergencies occupying beds in
the wards each day to differ among cycles.

In periods of high emergency demand, SU emergency patients are displaced
from the emergency ORs due to lower priority. These patients are called the excess
demand of SU emergencies, and all of these should receive surgery in the elective
ORs within the cycle. To handle the SU patients, we schedule flexible slots that
are reserved for these patients. In periods of low demand for SU surgeries, the
flexible slots can be used for scheduling of U emergency patients. Not all ORs may
be accessible for scheduling of flexible slots. Figure 2.3 provides an example of an
MSS including both elective-dedicated and flexible slots.
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Figure 2.3: An example of a one-week MSS for four single-slot ORs, where
both elective-dedicated and flexible slots are scheduled.

2.3.3 Objectives

Three objectives are relevant for the MSSP. The first is to maximize the number
of elective patients scheduled for surgery. Secondly, we aim to minimize both the
number of elective cancellations, and the number of patients resting in wards not
designated for them.

2.4 Simulation-optimization approach

In this section, we present the simulation-optimization approach used to solve the
MSSP. The optimization model is formulated as a two-stage stochastic optimiza-
tion problem. Scenarios are used to represent the probability distributions of the
stochastic parameters, which are the number of emergency patients resting in each
ward during each day in the cycle, and the excess demand of SU emergency pa-
tients. Figure 2.4 illustrates the main components of the simulation-optimization
approach, and their interactions. The simulation-optimization process consists of
the following steps:

1. To initiate the procedure, the simulation model is run for an arbitrary MSS
to generate input data for the scenarios applied in the optimization model.

2. The scenarios generated from the simulation model is used as input for the
optimization model, and the optimization model generates a new MSS based
on these.

3. The new MSS is then implemented in the simulation model, and new sce-
narios are generated. Relevant measures, such as patient waiting time for
surgery and the number of elective cancellations are stored.

4. The procedure (2.-3.) is repeated until a stopping criterion is met, and is
then terminated.
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Figure 2.4: The set-up of the simulation-optimization approach, including
both the optimization model and the simulation model.
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Figure 2.5: Illustration of the two-stage decision model

The simulation model takes the MSS generated by the optimization model as
input, and evaluates it in an operational environment. In the optimization model,
the LOS and surgery duration are deterministic parameters. In the simulation
model, these values are drawn from empirical probability distributions for each
patient. By generating scenarios from the simulation output, we are able to gen-
erate input to the optimization model that is dependent on the scheduling regime
applied in the simulation model and the MSS at the previous iteration.

In Sections 2.4.1 and 2.4.2, we present the optimization and simulation mod-
els respectively. In Section 2.4.3, we discuss the scenario generation, and in
Section 2.4.4, we describe the stopping criterion that terminates the simulation-
optimization procedure.

2.4.1 The optimization model

We must decide on the MSS before knowing the exact number of SU emergencies
that require surgery in every cycle, or the number of emergencies occupying beds
in the wards each day. Therefore, a two-stage modelling framework is suitable for
the optimization model, as illustrated in Figure 2.5. The first-stage decisions are
tactical-level decisions, and are as follows:

• Assign an anaesthesia resource to the ORs in use.

• Schedule the available OR slots as either flexible or elective, and assign a
subspecialty responsible to each slot.

• Schedule the elective patients for surgery in the elective slots.
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• Decide on the number of staffed beds in each ward on every day throughout
the cycle.

The second stage decisions are operational-level decisions that are made within
each cycle:

• Schedule the excess demand of SU patients to the flexible and elective slots
(if no more flexible slots are available).

• Cancel elective surgeries if necessary.

• Send inpatients to the wards and let patients rest in wards not designated
for them, if necessary due to shortage of bed capacity.

• Staff more beds if necessary to handle all the emergency inpatients.

• If excess capacity is available in the flexible slots, schedule emergency pa-
tients belonging to the U emergency scheduling regime to these slots.

The uncertainty included in the optimization model is the excess demand of SU
patients that require surgery in the cycle, and the number of emergencies resting
in the wards each day through the cycle. These are represented by scenarios, and
each scenario contains a complete realization of both aspects for one cycle.

In the following, sets are indicated by calligraphic letters, parameters are given
by uppercase letters, and variables are in lowercase Latin or Greek letters. A.1
provides a detailed overview of all indices, sets, parameters and variables used in
the model formulation.

The first-stage constraints

The total number of slots available for scheduling is given by constraint (2.1). The
variable njkd represents the number of flexible slots scheduled for subspecialty j
in OR k on day d, while yjkd does the same for the elective slots. The parameter
MCY CLE represents the number of slots available through the cycle. Constraints
(2.2) and (2.3) allocate OR slots to the different subspecialties. Parameter ND

jd

gives the number of OR slots available to subspecialty j on day d, while Nj states
the number of OR slots available to subspecialty j in the cycle.

∑
j∈J

∑
d∈D

 ∑
k∈Kj∩KF

njkd +
∑
k∈Kj

yjkd

 ≤MCY CLE (2.1)

∑
k∈Kj∩KF

njkd +
∑
k∈Kj

yjkd ≤ ND
jd j ∈ J, d ∈ D (2.2)

∑
d∈D

 ∑
k∈Kj∩KF

njkd +
∑
k∈Kj

yjkd

 ≤ Nj j ∈ J (2.3)
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Scheduling according to the target level for the elective patient categories is
ensured by constraints (2.4) and (2.5). The variable xikd represents the number
of elective patients belonging to elective patient category i that are scheduled for
OR k on day d, while vi gives the number of patients belonging to a given elective
patient category that are scheduled above the minimum level. The target level
of electives belonging to patient category i is given by Ti, and this parameter
imposes an upper limit on the number of elective patients belonging to a patient
category that may be scheduled for surgery through the cycle. The parameters
Vi represents the minimum share of patients belonging to patient category i that
should be scheduled for surgery through the cycle.∑

k∈K

∑
d∈D

xikd ≤ Ti i ∈ IEL (2.4)

∑
k∈K

∑
d∈D

xikd − vi = ⌈TiVi⌉ i ∈ IEL (2.5)

Parameter Si represents the surgery duration of a patient belonging to patient
category i, while Bkd is the slot length in OR k on day d. Constraints (2.6) ensure
that the scheduled surgery duration at OR k does not exceed the time available
for surgery at that OR on day d.∑

i∈IJj

Sixikd ≤ Bkdyjkd j ∈ J, k ∈ Kj , d ∈ D
(2.6)

The anaesthesia resources are modelled in constraints (2.7) and (2.8). Binary
variable αA

kd indicates whether OR k is covered by an anaesthesia resource on day
d, while parameter MA

d represents the number of ORs that may be covered by
an anesthesia resource on day d. The parameter MOR

kd represents the maximum
number of slots that can be scheduled for OR k on day d. In constraints (2.7) the
number of ORs covered by an anaesthesia resource on a given day is restricted by
the total amount of anaesthesia resources available on that day. Constraints (2.8)
ensure that no more slots, elective or flexible, may be scheduled for an OR on a
day than the total number of slots available at the OR on that day. In order to
schedule subspecialties to the OR, an anaesthesia resource has to cover the OR.∑

k∈K

αA
kd ≤MA

d d ∈ D (2.7)

∑
j∈J

(njk′d + yjkd) ≤MOR
kd αA

kd k′ ∈ KF , k ∈ K, d ∈ D (2.8)

The first-stage bed constraints are given by (2.9) and (2.10).The number of
staffed beds in ward w on day d is given by the variable awd, while parameters
AMAX

w and Ad represent the maximum number of beds available in ward w per
day, and the maximum number of staffed beds available on day d, respectively.
In constraints (2.9), we require that the number of staffed beds in a ward on
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a given day cannot exceed the maximum number of beds available in the ward.
Constraints (2.10) ensure that we cannot staff more beds in total on a given day
than the total number of staffed beds available on that day.

awd ≤ AMAX
w d ∈ D, w ∈W (2.9)∑

w∈W

awd ≤ Ad d ∈ D (2.10)

The second-stage constraints

To model the scheduling of emergency patients and cancellations of elective pa-
tients, constraints (2.11) to (2.14) are applied. Each constraint and variable be-
longs exclusively to a scenario s ∈ S. Each scenario is defined by the stochastic
parameters TSU

is and UEM
wds . TSU

is represents the number of SU emergencies from
a given patient category that should be scheduled in the cycle, and UEM

wds repre-
sents the number of emergencies covering beds at the different wards every day.
In Section 2.4.3, we describe how the random parameters are generated.

The variables eijkds and eEL
ijkds are the number of emergency patients that

belong to patient category i scheduled for subspecialty j in OR k on day d. The first
variable represents the number of emergencies scheduled to flexible slots, while the
latter is the number of SU emergencies scheduled to the elective slots. Furthermore,
the variable xC

ikds gives the number of elective cancellations of elective patient
category i in OR k on day d. Constraints (2.11) ensure that all SU emergencies are
scheduled for surgery during the cycle. Constraints (2.12) restrict the number of
emergency patients scheduled for the flexible slots in an OR by the surgery duration
of the patients. In constraints (2.13) the number of electives and SU emergencies
scheduled for an OR on a given day are restricted by the slot time scheduled
for subspecialties able to handle the patients in that OR on that day. Finally,
constraints (2.14) state that we cannot cancel patients who are not scheduled.

∑
j∈J

∑
d∈D

 ∑
k′∈Kj∩KF

eijk′ds+
∑
k∈K

eEL
ijkds

 = TSU
is i ∈ ISU , s ∈ S (2.11)

∑
i∈IUJ

j ∪ISUJ
j

Sieijkds ≤ Bkdnjkd j ∈ J, k ∈ Kj ∩KF , d ∈ D, s ∈ S (2.12)

∑
i∈IJj

Si(xikd − xC
ikds)+

∑
i∈ISUJ

j

Sie
EL
ijkds ≤ Bkdyjkd j ∈ J, k ∈ Kj , d ∈ D, s ∈ S

(2.13)

xC
ikds ≤ xikd i ∈ IEL, k ∈ K, d ∈ D, s ∈ S (2.14)

The second-stage bed constraints are given by (2.15) to (2.17). Variables
uiwds and uSU

iwds represent the number of electives and SU-emergencies from patient
category i that cover beds in ward w on day d. Variable bww′ds represents the
number of beds occupied in ward w′ by patients belonging to ward w on day d in
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scenario s, and the variable βwds represents the number of additional beds staffed
in ward w on day d. The two first bed-constraints count the number of elective
and SU emergency patients who rest in the different wards each day, while the last
ones ensure that the total bed capacity is respected.

∑
k∈K

Eid∑
d′=1

(xik(d−d′+1) − xC
ik(d−d′+1)s) ≤ uiwds w ∈W, i ∈ IWw , d ∈ D, s ∈ S (2.15)

∑
j∈J

ESU
id∑

d′=1

 ∑
k′∈Kj∩KF

eijk′(d−d′+1)s +
∑
k∈K

eEL
ijk(d−d′+1)s

 ≤ uSU
iwds w ∈W, i ∈ ISUW

w , d ∈ D, s ∈ S (2.16)

∑
i∈IWw

uiwds +
∑

i∈ISUW
w

uSU
iwds +

∑
w′∈W|w′ ̸=w

bw′wds −
∑

w′∈W|w′ ̸=w

bww′ds ≤ awd + βwds − UEM
wds w ∈W, d ∈ D, s ∈ S (2.17)

When implementing constraints (2.15) and (2.16), we link the last day of the
cycle to the first day of the cycle. In the implementation, we handle non-positive
values in the expression (d − d′ + 1) by adding the number of days in the cycle.
For a weekly cycle (7 days), day 0 maps to day 7, day -1 maps to day 6, and so
on. This way of modelling is possible because the MSS is cyclic, and it allows us
to only model the days of the cycle, while at the same time making sure that the
bed usage of the whole length of stay is accounted for.

The objective function

The objective function is given by (2.18). Parameter REL
i represents the gain ob-

tained by scheduling more patients belonging to elective patient category i than
the lower limit, while Ps gives the probability of ending up in scenario s. Fur-
thermore, CC

i represents the penalty of cancelling elective patients belonging to
category i, while CW

ww′ yields the penalty of assigning a patient belonging to ward
w to ward w′. CSU indicates the penalty of scheduling SU emergencies for elec-
tive ORs, and Cβ is the penalty related to staffing more beds than scheduled.
Finally, RU is the growth obtained when scheduling U emergencies to the flexible
slots. The objective function maximizes the gains from scheduling more elective
patients than the lower limit in the first stage. In the second stage, we minimize
the penalty of cancelling electives, providing beds for patients in wards not origi-
nally intended for them, scheduling SU patients to elective slots and staffing more
beds than scheduled on the wards. In addition, we maximize the amount of urgent
emergency patients scheduled for surgery in the second stage.

max
∑

i∈IEL

REL
i vi −

∑
s∈S

Ps

 ∑
i∈IEL

∑
k∈K

∑
d∈D

CC
i xC

ikds +
∑
w∈W

∑
w′∈W

∑
d∈D

CW
ww′ bww′ds+

∑
i∈ISU

∑
j∈J

∑
k∈K

∑
d∈D

CSUeEL
ijkds +

∑
w∈W

∑
d∈D

Cββwds −
∑
i∈IU

∑
j∈J

∑
k∈K

∑
d∈D

RUeUijkds

 (2.18)
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Table 2.1: The activities, states and events of the system considered in the
simulation model

Activities States Events

Preop. stay in wards for inpat. # of inpat. in each ward, preop. Arrival of em. pat.
Preop. stay at home for outpat. # of outpat. at home, preop.
Postop. stay in wards for inpat. # of pat. in each ward, postop. Inpat. leaving ward postop.
Transport of em. pat. to OR
Surgery (incl. cleaning of OR) Whether an OR is idle or busy Completion of surgery

2.4.2 The discrete-event simulation model

The discrete-event simulation model encompasses all elective and emergency pa-
tient categories, and it performs the scheduling of these patients either to the
elective ORs governed by the MSS or to the emergency ORs. The system is mod-
elled as a queuing network where the emergency patients are the customers waiting
in line, and the ORs and the wards are the servers. There are four queues of emer-
gency patients: the CU, the U, the SU outpatient and the SU inpatient queue.
The elective patients are also treated by the servers, but they are not waiting in
line as they are scheduled for specific time slots and arrive just before surgery.
Table 2.1 lists the activities, states and events.

Figure 2.6 illustrates the flow of patients in the model. The emergency patients
arrive with an exponentially distributed inter-arrival time. The expected inter-
arrival time, 1/λiEM ,τ , is dependent both on the emergency patient category, iEM ,
and on the time, τ , of the day. Both the U, the CU and the SU inpatients rest
in the preoperative wards while waiting in line for surgery. The SU outpatients
are sent home to wait. If the number of SU emergencies waiting in line for the
emergency ORs is above a threshold value, the SU patients are scheduled for
surgery in a flexible surgery slot, preferably within the deadline for surgery. If a
flexible surgery slot is not available within a given number of days, elective patients
are cancelled in order to provide capacity for the SU emergency patients.

For the emergency ORs, scheduling rules are used to determine which patient
should enter next. The first patient in line in the U and CU queues, and the
first patient in the SU in- and outpatient queues who have not been scheduled for
flexible slots are the first to be chosen for surgery. The scheduling rules applied to
choose among the candidates may vary depending on the case department. For the
elective ORs, the next patient is the next scheduled patient. This may be either
an elective patient or a SU emergency patient. The elective patients that are
cancelled are rescheduled to a flexible slot some days ahead. All elective patients
are assumed to show up at the scheduled surgery time.

The surgery duration is random, with empirical probability distributions for
each patient category. The scheduling of emergency patients is based on the ex-
pected surgery duration. We can not schedule for overtime, but overtime may
occur as a result of the actual surgery duration. Following each surgery, the OR
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Figure 2.6: A flow chart describing the flow of patients in the simulation
model.

must be cleaned, implying that the room is unavailable for some time following
surgery.

After surgery, the patients are either sent to the ward or directly home. The
preoperative waiting time for emergency patients is calculated as the time from
arrival to the system until surgery. The postoperative length of stay is calculated
as the time interval from leaving the OR to leaving the postoperative ward. The
postoperative length of stay is random, and drawn from empirical probability
distributions for each patient category.

Unlike in the optimization model, the wards in the simulation model are as-
sumed to have infinite capacity, implying that no rescheduling is done as a result
of the wards being overloaded. The unlimited ward capacity is chosen to allow
for scheduling of more beds in periods when many emergencies arrive. This is the
normal protocol at many hospitals, as the number of physical beds exceeds the
number of staffed beds. Scheduling more beds is not penalized in the simulation
model, but rather in the optimization model. All emergency inpatients return to
the same ward where they were resting at prior to surgery.

2.4.3 The scenario generation procedure

Each scenario contains data from one cycle in the simulation output. Recall that a
cycle corresponds to the number of days considered in the optimization model. In
each iteration of the simulation-optimization approach illustrated in Figure 2.4, a
number of simulation replications, NREP , are produced, and for each replication,
a given number of separated cycles, NCY C , are sampled as the scenarios. In total,
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Figure 2.7: An example of how scenarios are chosen in each iteration of the
simulation-optimization procedure. Here, the number of simulation repli-
cations, NREP = 4, and the number of cycles chosen from each replication,
NCY C = 3, providing a total of 12 scenarios. Note that in each simulation
replication there is a warm-up period, and that each cycle is separated by
a number of cycles (3 in this example) to ensure reasonable independence
between the cycles.

this yields NREP · NCY C scenarios in each iteration. By letting each scenario
consist of data gathered from a number of consecutive days from the simulation
output, dependency is ensured between the days in each scenario. Furthermore,
to keep the scenarios reasonably independent of each other, the selected cycles are
separated by a number of cycles. All simulation replications start with an empty
system, so to ensure that the scenarios are not affected by this, a warm-up period
is implemented in each replication. In Figure, 2.7 an example of the scenario
generation procedure is illustrated. Here, NREP = 4, and NCY C = 3, providing a
total of 12 scenarios.

Initially, each scenario contains the number of SU emergency patients that
are scheduled for the elective ORs within the cycle and the number of emergency
patients resting in each ward every day. Because the SU emergency patients are
scheduled in the optimization model, they may be scheduled for other days com-
pared to what the simulation output shows. Because of this, they may end up
covering beds on different days as well. Therefore we subtract the postoperative
LOS for the SU patients when generating the scenarios. However, we do not sub-
tract the preoperative LOS for the SU patients when generating scenarios. The
reason for this is that the optimization model does not explicitly account for the
preoperative LOS. Hence, if we had subtracted the preoperative LOS, we would
have underestimated the bed loading through the cycle when generating the sce-
narios.

Equations (2.19) describe how the number of SU emergency patients that
require surgery at the elective ORs within the cycle is obtained. SUid is the
number of SU emergency patients from patient category i that entered on day d
in the cycle and were scheduled for the elective ORs. The set DS

s represents the
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days in the drawn cycle that is used to provide scenario s. Equations (2.20) show
how we calculate the number of emergency patients resting in the different wards
each day of the cycle. Ewd state the number of emergency patients resting in ward

w on day d, while E
SUpost

wd is the number of SU emergencies that rest in ward w
on day d following their surgery.

TSU
is =

∑
d∈DS

s

SUid i ∈ ISU , s ∈ S (2.19)

UEM
wds = Ewd − E

SUpost

wd w ∈W, s ∈ S, d ∈ DS
s (2.20)

2.4.4 Stopping criterion

The levels of detail in the optimization model and the simulation model differ in
their construction. This presents a challenge in terms of the convergence and sta-
bility of the solution, as the difference in representation typically leads to different
objective values, even for identical MSS. While we do not prove that the model
presented is guaranteed to converge, in practice the solution stabilizes after a few
iterations of the algorithm illustrated in Figure 2.4.

For the test cases and case study in this paper, we have chosen to use the
number of flexible slots scheduled through the cycle as the stopping criterion. At
a tactical decision level, determining the share of flexible slots is of high clinical
interest for planners at the hospital. If additional stability is required by the user,
adding inter-day stabilization would probably be the most useful requirement, but
would take more computation time to reach a stable solution.

2.5 Computational study

In the computational study, the optimization model is first run for a set of test
instances, providing results that can give both technical and managerial insights.
Then we perform a case study, where we apply the simulation-optimization ap-
proach on a case department to develop an MSS that handles a fluctuating demand
of emergency patients. In all instances, a cycle is set to be one week.

2.5.1 Implementation and setup of study

The optimization model is implemented in the Mosel language and is solved in
Xpress 8.3. The simulation model is built in MATLAB. In each simulation-
optimization iteration, 20 simulation replications are made (NREP = 20), each
representing a period of half a year (after half a year warm-up). From each sim-
ulation replication, five scenarios are selected (NCY C = 5) yielding a total of 100
scenarios. All scenarios are replaced from one iteration to the next.

To ensure independence between the scenarios, we would choose NREP = 100
and NCY C = 1. However, because of the relatively long warm-up period we
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decided to use several cycles from each simulation replication to save computational
time. The drawn cycles are separated by four weeks to ensure a reasonably degree
of independency.

For the test instances, three levels of emergency patient loading are imple-
mented: low, medium and high (EL, EM and EH, respectively). For each of the
emergency loading cases, two sets of target throughput of electives - low and high
(TL and TH, respectively) - are applied, and for each of these targets we test
three bed capacities, resulting in 18 different instances. Because the number of
patients is so variable in the instances, we apply four different bed capacities (W1,
W2, W3 and W4) to provide three levels of bed capacity for each of the three
emergency loading cases. Applying the lowest bed capacity (W1) to the high- and
medium emergency (EH and EM) loading cases will yield an unrealistically low
bed capacity, while the complete opposite will yield a very large bed capacity.

Note that for the experiments on these test instances, the focus is on the opti-
mization model. The simulation model is only run once for each of the emergency
loading levels to generate scenarios for the optimization model. In Appendix A.2
we provide the values assigned to the input parameters of the optimization model
in the test instances, and for the case department instance.

2.5.2 The value of the stochastic solution

We will use the value of the stochastic solution (VSS), as described by Birge (1982),
to evaluate our model. The VSS measures the value of applying a stochastic, rather
than a deterministic, model to solve the problem at hand. It can be interpreted as
valuing the flexibility that the stochastic solution provides that is not present in
the deterministic solution. The VSS is calculated by first constructing the mean
value problem (MVP). In the MVP, the stochastic parameters take their expected
value, and the stochastic model is solved deterministically. The values obtained
for the first-stage variables when solving the MVP are applied as input parameters
for the stochastic model, and we solve the second-stage problems (one problem for
each scenario) of the stochastic model. This leaves us with an optimal objective
function value referred to as the mean value solution (MVS). The VSS is calculated
as the difference between the stochastic solution (SS) obtained from solving the
stochastic model (equations (2.1)-(2.18)) and the MVS.

Neither the MVPs nor the stochastic problems are solved to optimality within
three hours, so the true VSS may not be calculated. However, the LP gaps are
small, and we can provide quite narrow intervals for the VSS. The upper limit
is calculated as the difference between the objective value of the upper bound
obtained from solving the stochastic model and the MVS. The lower limit is calcu-
lated as the difference between the objective value of the IP-solution from solving
the stochastic model and the MVS.

When solving the MVP, the values of the first-stage variables (that are fed to
the MVS) are the same regardless of the costs associated with the random param-
eters. Therefore, by increasing these costs, the VSS increases. Furthermore, for
this specific problem, the number of flexible slots increases as the costs associated
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with the random parameters increase. Scheduling flexible slots can be regarded as
investing in an insurance against periods of high emergency loading.

Table 2.2: The number of flexible slots scheduled in the SS and the MVS
when the cost of cancelling an elective patient is the same as the revenue
from scheduling the same patient.

Instance Flexible slots (SS) Flexible slots (MVS)

EL-TL-W1 9 9
EL-TL-W2 9 9
EL-TL-W3 9 9
EL-TH-W1 2 2
EL-TH-W2 1 3
EL-TH-W3 0 3

EM-TL-W2 9 9
EM-TL-W3 9 9
EM-TL-W4 9 9
EM-TH-W2 2 5
EM-TH-W3 3 4
EM-TH-W4 2 5

EH-TL-W2 10 10
EH-TL-W3 9 9
EH-TL-W4 10 9
EH-TH-W2 5 8
EH-TH-W3 8 9
EH-TH-W4 7 9

In Table 2.2 we present the number of flexible slots scheduled in both the SS
and the MVS, when the cost of cancelling a patient is set to be the same as the
revenue from scheduling the patient. As we see, the SSs provide fewer flexible slots
than the MVS. This is counterintuitive. The reason for this is that the stochastic
model also accommodates scenarios where few emergency patients arrive; the need
for flexible slots in these scenarios is less, and the capacity can be utilized to treat
more elective patients if they are scheduled in the first stage. As a consequence,
more elective patients are scheduled and more electives receive surgery (despite
more cancellations in general) in the stochastic solutions.

Table 2.3 includes results from solving both the stochastic model and its de-
terministic counterpart, when the cost of cancelling elective patients is set to be
higher than the revenue from scheduling the same patients. In addition to show-
ing the SS, the MVS and the VSS, the table includes the number of flexible slots
scheduled, the mean number of elective cancellations and the mean number of
electives treated in solving both the stochastic and the deterministic model for all
the instances.
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Comparing the instances, the VSS is often higher when the bed capacity is
scarce. This has to do with the fact that we penalize rescheduling of beds in the
second stage. Proper scheduling of beds in the first stage can decrease the number
of elective patients resting in wards not intended for them in the second stage. The
benefits of this scheduling are typically higher when the bed capacity is scarce.

Table 2.3: The value of the stochastic solution. For both the stochastic
solution (SS) and the mean value solution (MVS) we provide the number
of flexible slots scheduled (Flex.), the mean number of cancellations (El.
canc.) and the mean number of electives treated (El. treated). Because
neither the MVPs or the stochastic problems were solved to optimality,
intervals are given for the SS and the VSS.

# Flex. # El. canc. # El. treated Objective function value
Instance SS MVS SS MVS SS MVS SS MVS VSS

EL-TL-W1 14 9 2.71 6.20 80.29 84.80 [-9.63, -9.04] -25.74 [16.11, 16.70]
EL-TL-W2 9 9 0.20 1.55 90.80 89.45 [113.43, 114.96] 100.05 [13.38, 14.91]
EL-TL-W3 9 9 0 0 91.00 91.00 [115.51, 117.14] 115.26 [0.25, 1.88]
EL-TH-W1 8 2 3.29 9.03 93.71 100.97 [-21.35, -19.08] -46.40 [25.05, 27.32]
EL-TH-W2 4 3 1.22 2.74 106.78 106.26 [107.90, 113.64] 96.24 [11.66, 17.40]
EL-TH-W3 3 3 0.82 0.80 108.18 108.20 [115.26, 120.30] 115.22 [0.04, 5.08]

EM-TL-W2 12 9 3.58 5.98 84.42 85.02 [-278.02, -276.04] -296.47 [18.45, 20.43]
EM-TL-W3 9 9 0.21 0.57 90.79 90.43 [-19.25, -15.87] -22.99 [3.74, 7.12]
EM-TL-W4 10 9 0.25 0.27 89.75 90.73 [108.62, 114.22] 109.99 [0, 4.23]
EM-TH-W2 7 5 4.39 7.68 95.61 98.32 [-297.10, -289.21] -318.15 [21.05, 28.94]
EM-TH-W3 7 4 1.25 2.75 99.75 104.25 [-36.28, -27.83] -42.76 [6.48, 14.93]
EM-TH-W4 7 5 1.23 2.20 99.77 103.80 [93.76, 102.45] 92.02 [1.74, 10.43]

EH-TL-W2 16 10 6.01 11.86 70.99 78.14 [-6732.91, -6731.50] -6760.24 [27.33, 28.74]
EH-TL-W3 9 9 1.03 2.91 88.97 88.09 [-1764.45, -1757.14] -1759.48 [0, 2.34]
EH-TL-W4 11 9 0.33 2.85 87.67 88.15 [-700.23, -691.45] -719.14 [18.91, 27.69]
EH-TH-W2 12 8 6.65 12.85 79.35 85.15 [-6758.48, -6753.5] -6786.54 [28.06, 33.04]
EH-TH-W3 11 9 1.20 4.83 89.80 91.17 [-1785.64, -1779.42] -1813.86 [28.22, 34.44]
EH-TH-W4 11 9 0.62 2.32 90.38 93.68 [-719.23, -712.14] -728.99 [9.76, 16.85]

2.5.3 Managerial insight

We have destilled some insights from the test instances. Table 2.4 provides the
results from running the 18 instances for two levels of cost related to cancelling
elective patients. For the low cost cases, the cost of cancelling an elective patient is
the same as the revenue from scheduling the same patient. The table includes the
number of flexible slots scheduled, the number of electives scheduled for surgery,
the mean share of SU surgeries performed in flexible slots, the mean number of
electives cancelled, the mean number of electives treated and the mean number of
elective inpatients resting in inconvenient wards.

Figures 2.8 and 2.9 illustrate how the number of flexible slots scheduled in the
first stage depends on the available OR capacity and the bed capacity, respectively.
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Table 2.4: Output from solving the stochastic problem for the 18 instances.
Low (L) indicates that the cost of cancelling an elective patient is the same
as the revenue from scheduling the same patient, while high (H) represents
a higher cost of cancelling electives. We include the number of flexible
slots (Flex.) and the number of elective patients scheduled (El. sched.) in
the first stage. For the second stage we include the mean number of SU
patients scheduled for flexible slots (SU pat. in flex.), the mean number of
elective cancellations (El. canc.), the mean number of electives treated (El.
treated) and the mean number of patients resting in wards not intended for
them (Pat. moved).

# Flex. # El. sched. # SU pat. in flex. # El. canc. # El. treated Pat. moved
Instance L H L H L H L H L H L H

EL-TL-W1 9 14 91/91 83/91 2.36/2.40 2.40/2.40 5.08 2.71 85.92 80.29 5.76 4.17
EL-TL-W2 9 9 91/91 91/91 2.40/2.40 2.40/2.40 0.27 0.20 90.73 90.80 1.41 1.18
EL-TL-W3 9 9 91/91 91/91 2.40/2.40 2.40/2.40 0 0 91.00 91.00 0 0
EL-TH-W1 2 8 111/115 97/115 1.20/2.40 2.31/2.40 9.89 9.03 101.11 93.71 6.31 4.20
EL-TH-W2 1 4 112/115 108/115 0.60/2.40 1.90/2.40 3.18 2.74 108.82 106.78 2.73 1.93
EL-TH-W3 0 3 114/115 109/115 0/2.40 1.65/2.40 2.62 0.80 111.38 108.18 0.05 0.01

EM-TL-W2 9 12 91/91 88/91 4.80/5.24 5.20/5.24 4.52 3.58 86.48 84.42 6.05 5.42
EM-TL-W3 9 9 91/91 91/91 4.83/5.24 4.78/5.24 0.36 0.21 90.64 90.79 0.49 0.52
EM-TL-W4 9 10 91/91 90/91 4.82/5.24 4.99/5.24 0.47 0.25 90.53 89.75 0.21 0.20
EM-TH-W2 2 7 111/115 101/115 1.83/5.24 4.34/5.24 9.32 4.39 101.68 95.61 10.15 5.24
EM-TH-W3 3 7 109/115 101/115 2.40/5.24 4.37/5.24 3.92 1.25 105.08 99.75 0.43 0.44
EM-TH-W4 2 7 111/115 101/115 1.82/5.24 4.35/5.24 4.68 1.23 106.32 99.77 0.20 0.29

EH-TL-W2 10 16 90/91 77/91 8.86/9.88 9.88/9.88 11.65 6.01 78.35 70.99 9.37 7.39
EH-TL-W3 9 9 91/91 90/91 8.47/9.88 8.50/9.88 1.48 1.03 89.52 88.97 2.55 2.22
EH-TL-W4 10 11 89/91 88/91 9.02/9.88 9.42/9.88 1.01 0.33 87.99 87.67 0.57 0.62
EH-TH-W2 5 12 104/115 85/115 5.15/9.88 9.55/9.88 16.05 6.65 87.95 79.35 9.29 7.17
EH-TH-W3 8 11 97/115 101/115 7.60/9.88 9.41/9.88 3.63 1.20 93.37 89.80 2.12 2.78
EH-TH-W4 7 11 101/115 91/115 7.12/9.88 9.38/9.88 3.98 0.62 97.02 90.38 0.70 0.59

The number of flexible slots increases when the OR capacity is high - in other
words, when the target level of elective patients is low. The reason for this is that
more OR capacity can be made flexible without having to sacrifice the scheduling
of elective patients, and that we assume there is always an U patient who will fill
the idle flexible OR capacity.

When the cost of cancelling elective patients is high, the number of flexible
slots decreases as the bed capacity increases. There are two reasons for this. First,
the flexible slots may be utilized for either SU outpatients or U patients if bed
capacity is scarce, while the SU inpatients may be moved to elective slots where
they receive surgery without exceeding the bed capacity, providing a kind of option
towards scarce bed capacity. Secondly, scheduling flexible slots reduces the number
of electives scheduled, implying less demand for beds.

We do not find the same pattern for the low cost instances. In Table 2.4,
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Figure 2.8: How the number of flexible slots scheduled in the first stage
depends on the OR capacity when the cost of cancelling elective patients is
either low or high.
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Figure 2.9: How the number of flexible slots scheduled in the first stage
depends on the bed capacity when the cost of cancelling elective patients
is either low or high.
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we observe that going from instance EM-TH-W2 to EM-TH-W3 and from EH-
TH-W2 to EH-TH-W3, the number of scheduled flexible slots increases. In the
instances EM-TH-W2 and EH-TH-W2, bed capacity is very scarce, resulting in
many elective cancellations. Cancelling elective inpatients because of the scarce
bed capacity provides ample spare elective OR capacity. This idle OR capacity
may be used to schedule SU patients (if they are less demanding in terms of beds
than the elective patients that were cancelled), decreasing the need for flexible
slots. This happens because the penalty for cancelling elective patients is very low
in these instances. For three of the low-target instances, the number of flexible
slots increases as we go from the medium to the high bed capacities. This results
from the high penalty associated with staffing more beds than scheduled to handle
the peaks of emergency bed loading. The chances for avoiding additional staffing
are greater for the instances with high bed capacity, and may be avoided if we
schedule fewer electives in the first stage. Decreasing the penalty of staffing more
beds than scheduled yields solutions that are more aggressive in terms of elective
bed loading for the instances with high bed capacity.

Figure 2.10 illustrates the mean share of flexible slots scheduled for the three
levels of emergency loading. As expected, the number of scheduled flexible slots
increases as emergency loading increases. For the low emergency loading instances,
the share of emergency patients is 2.6% for the TL instances and 2.0% for the TH
instances. These numbers are 5.4% and 4.4%, and 9.8% and 7.9% for the medium
and high emergency loading instances, respectively. For the TH-low cost instances,
the mean share of flexible slots is quite similar to the share of emergency patients,
implying that the emergency patients receive OR capacity according to the relative
size of the group. For the TL-low cost instances, there is less competition for the
OR capacity, and the emergency patients receive excessive OR capacity. For the
TH-high cost instances, the emergency patients receive a much higher share of the
OR capacity compared to the TH-low cost instances, indicating that they gain
power in the competition for OR capacity. For the TL instances, the competition
from electives is less, and therefore the difference is less between the two cost
regimes. In general, if the penalty for cancelling a patient is at least the same
as the revenue from scheduling the patient, the share of flexible slots scheduled
should be higher than the share of emergency patients.

2.5.4 Case study

For the case study we consider the Master Surgery Scheduling Problem (MSSP)
in the orthopaedic department at St. Olav’s Hospital. St. Olav’s Hospital is a
university hospital located in Norway, and it is a relatively large hospital with
approximately 1000 beds. The orthopaedic department performs approximately
7000 surgeries every year, and roughly 3000 of these are emergency surgeries. To
perform these surgeries, the department has access to 7 elective and 3 emergency
ORs. The case department faces many of the issues discussed in this paper.

In this section we apply the simulation-optimization approach to the case de-
partment. The aim is to provide an MSS that enables the department to handle
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Figure 2.10: How the number of flexible slots scheduled in the first stage
depends on the emergency loading when the cost of cancelling elective pa-
tients is either low or high.

fluctuating emergency patient demand and at the same time provide a sufficient
throughput of elective patients. First, the scheduling rules applied in the simu-
lation model to mimic the case department is presented. Secondly, the new MSS
is introduced, and finally we compare outcomes from running both the new MSS
and the MSS present at the case department today in the simulation model.

Scheduling rules and the flow of patients in the simulation model

CU patients will always have priority over the U and SU patients. U patients have
priority over SU patients except when the next SU patient has exceeded the time
limit more than the next U patient. Only CU patients can have surgery during
the night, and only the U and CU patients are admitted to surgery on weekends.

All U and CU patients may be summoned for surgery immediately after arrival,
while SU patients are scheduled in the morning after arrival. The SU inpatients are
primarily lined up for the emergency ORs. If the number of SU inpatients waiting
in the queue is above a threshold limit - in this case two - we start scheduling
these patients for the flexible slots in the elective ORs. The SU outpatients have
to return to the hospital on the day of surgery, so we want to make sure that they
do not have their surgery postponed since this would involve too much traveling
for the patients. Therefore, the SU outpatients are not lined uo for the emergency
ORs, but are scheduled directly into the flexible slots. If no flexible slots are
available within a given number of days - in this case eight - elective surgeries
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must be cancelled to provide capacity for the SU in- and outpatients.

All displaced elective patients will be rescheduled to a flexible slot some days
ahead. Rescheduling a patient just before surgery is not preferable, so we introduce
a limit on the number of days prior to surgery that rescheduling is not allowed.

Iterative outcomes and the optimization-based MSS

To create an MSS for the case department, we populate the optimization model
with the data described in Appendix A.2. On request from the case department, no
flexible slots may be scheduled for two of the elective ORs (OR-6 and OR-7), and
no elective inpatients should be scheduled on Friday. To initialize the simulation-
optimization approach, we apply the MSS present at the orthopaedic department
today when running the simulation model in the first iteration. Because no flexible
slots are available in the present MSS, all emergency patients are sent to the
emergency ORs in the first iteration. However, if the SU emergencies do not
receive surgery within a set time, they are rescheduled to the elective ORs, and
there will be elective cancellations.

Tables 2.5 and 2.6 present the main outcomes from the optimization model and
the simulation model, respectively. The optimality gap in Table 2.5 is calculated
as the difference between the objective function of the best integer solution and
the upper bound, divided by the upper bound. The MSS generated in the last
iteration is illustrated in A.4.

Table 2.5: Outcomes from each iteration with the optimization model when
generating the simulation-optimization-based MSS

Iter. 1 Iter. 2 Iter. 3 Iter. 4 Iter. 5 Iter. 6 Iter. 7 Iter. 8

Obj. func. val. -2566.701 -75.346 -140.293 -241.623 -44.047 -33.668 -1137.51 58.55
Upper bound -2563.714 -71.017 -134.99 -230.729 -40.951 -29.512 -1132.74 61.21
Optimality gap 0.12% 5.75% 3.77% 4.51% 7.03% 12.34% 0.42% 4.35%
Flex. slots 12 12 11 14 12 12 12 12
El sched. 71/80 74/80 74/80 70/80 74/80 74/80 74/80 74/80
SU in flex. (avg.) 4.41/4.53 6.47/6.70 6.29/6.58 6.66/6.67 7.26/ 7.60 5.79/6.04 5.91/6.01 7.04/7.16
El. canc. (avg.) 6.95 2.35 3.63 1.94 2.02 2.18 3.45 1.58
U surg. (avg.) 11.22 8.03 6.48 7.94 7.57 9.53 8.76 8.24

Table 2.6: Outcomes from each iteration with the simulation model when
generating the simulation-optimization-based MSS

Iter. 1 Iter. 2 Iter. 3 Iter. 4 Iter. 5 Iter. 6 Iter. 7 Iter. 8

Canc. per week 4.16 0 0 0 0 0 0 0
Avg. WT (CU) 3.9 h 3.7 h 3.5 h 3.8 h 3.7 h 3.8 h 3.8 h 3.7 h
Avg. WT (U) 31.3 h 20.9 h 20.5 h 20.7 h 18.0 h 20.7 h 21.0 h 18.8 h
Avg. WT (SU) 3.81 d 1.80 d 1.80 d 1.83 d 1.73 d 1.86 d 1.87 h 1.78 d
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The number of SU emergencies treated in flexible slots and the number of U
emergencies treated reveal information about the flexible slot capacity. Almost all
SU emergencies are treated in the flexible slots, and there is ample flexible capacity
to treat U emergencies when no more SU emergencies are present. This indicates
that the flexible slot capacity is good, and that most of the elective cancellations
are due to the shortage of beds.

The simulated results include both the number of elective surgeries that are
cancelled each week and the waiting time to receive surgery for the emergency
patients. Scheduling flexible slots dramatically decreases the waiting time for
both U and SU patients from iteration one to the subsequent iterations. Note that
since the bed capacity is treated as unlimited in the simulation model, no electives
are cancelled due to the shortage of beds. After the first iteration no electives are
cancelled, indicating that the flexible OR capacity is sufficient.

Analysing the performance of the optimization-based MSS

Figure 2.11 illustrates the waiting time to receive surgery for U and SU emergen-
cies when running both the MSS present in the case department today and the
optimized MSS 20 times in the simulation model. The optimization-based MSS
performs better on average, and the waiting times are less affected by fluctuations
in emergency demand for surgery. Figure 2.12 illustrates the queue of SU emergen-
cies at 08.00 through the simulated period when running both the MSS present in
the case department today and the optimized MSS once in the simulation model.
Note that the minimum number of SU patients waiting in queue for surgery in
the MSS present today is almost as large as the maximum number of SU patients
waiting for surgery in the optimized MSS. Figure 2.13 shows the number of SU
patients treated in both the flexible and elective slots each week from running the
two MSSs. For the MSS present today, all SU emergencies are treated in elec-
tive slots (as no flexible slots are available), while for the optimized MSS all SU
emergencies are treated in flexible slots. As a consequence, there are no elective
interruptions when applying the new MSS.
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Figure 2.11: The simulation mean waiting time in hours for SU (left) and
U (right) emergencies for the current and new optimization-based MSS,
results from 20 simulations.
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Figure 2.12: The graph illustrates the queue of SU emergencies as 08.00
through the simulated period for both the optimization-based MSS and the
MSS present at the case department today.
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present today, and the lower one illustrates the optimization-based MSS.
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2.6 Conclusion

The main purpose of this paper is to present a simulation-optimization approach
for developing an MSS and to provide tactical decision support for the management
in a department with both elective and emergency patients. Flexible slots are
scheduled to the elective ORs to handle the fluctuating demand for emergency
surgeries.

A two-stage stochastic optimization model is presented, where uncertainty
related to emergency arrivals is included. Furthermore, a discrete-event simulation
model is developed to include aspects of uncertainty related to the length of stay of
patients following surgery and the surgery duration. The simulation model allows
us to evaluate the MSS produced by the optimization model. Also, the simulation
model provides scenarios for the optimization model, allowing the model to adapt
to different MSSs and scheduling regimes.

The stochastic model outperforms its deterministic counterpart in terms of
the Value of Stochastic Solution (VSS), and for realistic cancellation costs the
number of flexible slots is higher in the stochastic solution. Furthermore, if the
OR capacity is sufficient, or the ward capacity is scarce, a relatively large share of
the ORs should be scheduled as flexible.

The simulation-optimization approach is applied to an orthopaedic department
at a Norwegian hospital that treats both elective and emergency patients. With the
optimized MSS, the emergency waiting time for surgery decreases, and it proves
to be able to handle fluctuating emergency surgery demand with less interruptions
to the flow of elective patients.
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Chapter A

Appendices

A.1 The Mathematical Model

In Tables A.1, A.2, and A.3 all the notation used in the mathematical formulation
is presented.

Table A.1: Sets used in the mathematical formulation

Set Description Indices

D Days in a cycle d ∈ D

I Patient categories i ∈ I

J Surgical subspecialties j ∈ J

K ORs k ∈ K

KF ORs that are available for scheduling of flexible slots k ∈ KF ⊆ K

W Wards w ∈W

S Scenarios s ∈ S

IEL El. patient categories i ∈ IEL ⊆ I

IIN El. patient categories that are inpatients i ∈ IIN ⊆ IEL

IJj El. patient categories that can be treated by subspecialty j i ∈ IJj ⊆ IEL

IKk El. patient categories that can be scheduled to OR k i ∈ IKk ⊆ IEL

IWw El. patient categories meant for ward w i ∈ IWw ⊆ IIN

IEM Em. patient categories i ∈ IEM ⊆ I

ISU SU patient categories i ∈ ISU ⊆ IEM

IU U patient categories i ∈ IU ⊆ IEM

IUJ
j U patient categories that can be treated by subspecialty j i ∈ IUJ

j ⊆ IU

ISUIN SU patient categories that are inpatients i ∈ ISUIN ⊆ ISU

ISUJ
j SU patient categories that can be treated by subspecialty j i ∈ ISUJ

j ⊆ ISU

ISUW
w SU patient categories meant for ward w i ∈ ISUW

w ⊆ ISUIN

Kj ORs that can be managed by surgeons with subspecialty j k ∈ Kj ⊆ K
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Table A.2: Parameters used in the mathematical formulation

Parameter Description

AMAX
w Max. number of beds available in ward w

Ad Number of staffed beds available on day d
Bkd Time available for surgery in one slot in OR k at day d
CC
i Penalty for cancelling an elective patient of category i

CSU Penalty for scheduling SU patients to elective slots

CW
ww′ Penalty for putting a patient belonging to ward w in ward w

′

Cβ Penalty for staffing more beds than scheduled
Eid Expected LOS for elective patient category i scheduled for surgery on day d
ESU

id Expected LOS for SU patients of category i scheduled on day d
MOR

kd Max. number of slots that can be assigned in OR k on day d
MA

d Max. number of ORs that can be covered by anaesthesia staff on day d
MCY CLE Total number of slots available through one cycle
Nj Max. surgeon capacity (slots) of subspecialty j in one cycle
ND

jd Max. surgeon capacity (slots) of subspecialty j at day d

REL
i Reward for scheduling more patients of elective category i than the lower limit

Ps Probability of ending up in scenario s
RU Reward for scheduling a U patient to a flexible slot
Si Expected surgery duration of patient category i
Ti Target throughput of elective patient category i
TSU
is Excess demand of SU patients of category i

UEM
wds Number of emergency patients resting in ward w on day d in scenario s

Vi Min. share of patient category i that should be scheduled for surgery

Table A.3: Variables used in the mathematical formulation

Variable Description

awd # of staffed beds in ward w on day d
njkd # of slots scheduled as flexible for subspecialty j in OR k on day d
vi # of elective patients of category i scheduled above the lower limit
xikd # of elective patients of category i scheduled to an elective slot in OR k on day d
yjkd # of elective slots scheduled for subspecialty j in OR k on day d
αA
kd Indicates whether OR k is covered by anaesthesia staff on day d or not

bww′ds # of beds occupied in ward w
′
by patients belonging to ward w

on day d and scenario s
eijkds # of SU pat. of cat. i scheduled to subspecialty j in a flex. slot

in OR k on day d in scenario s
eEL
ijkds # of SU pat. of cat. i scheduled to subspecialty j in an elective slot

in OR k on day d in scenario s
uiwds # of elective patients of category i resting in ward w on day d in scenario s
uSUiwds # of SU patients of category i resting in ward w on day d in scenario s
xCikds # of elective patients of category i that are cancelled in OR k on day d
βwds # of additional beds staffed in ward w on day d in scenario s
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A.2 Input parameters for the optimization model

Here, we provide the values assigned to the input parameters in the optimization
model for both the test instances used in Sections 2.5.2 and 2.5.3, and the large
instance uses in Section 2.5.4. In Tables A.4 to A.6, and Tables A.10 and A.11,
we present the values applied for the input parameters in the large instance. The
number of ORs and wards in the large instance are similar to the case department,
and the elective patient categories represent the main patient categories treated
at the department. In Tables A.7 to A.9, and Tables A.10 and A.11, we provide
the values applied for the test instances.
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Table A.4: Values obtained for the subspecialties and the patient categories
in the optimization model for the big instance. Ti is the target number of
elective patient category i to be scheduled in each cycle, Si is the expected
surgery duration of patient category i , Eid is the expected length of stay
of patient category i that receive surgery on day d, REL

i is the gain for
scheduling more patients from patient category i than the lower limit, CC

i

is the penalty for cancelling an elective patient of category i, ND
jd is the

maximum number of slots available to subspecialty j on day d, and Nj is
the maximum number of slots available to subspecialty j in one cycle.

Subspecialty Ti Si Eid REL
i CC

i ND
jd Nj

Elective foot 4 5
Aggregated group 4 143 3 3 3
Hand 4 7
Aggregated group 8 94 0 2 3
Carpal tunnel syndrome 3 85 1 3 3
Plastic 4 14
Aggregated group 15 95 2 3 3
Plateepitelkarsinom 2 73 1 3 3
BCC 5 142 1 3 3
Malingt melanom 4 68 0 2 3
Cancer mammae 4 97 1 3 3
Arthroscopic 4 12
Aggregated group 6 123 2 3 3
ACL 2 186 2 3 3
Meniscus 3 173 0 2 3
Back 4 6
Aggregated group 4 295 6 3 3
Prostheses 4 16
Hip 7 177 4 3 6
Knee 11 174 4 3 6
Tumour 2 2
Aggregated group 2 76 1 3 3
emergency patients
SU inpatients 192 2
SU outpatients 131 0
U patients 165 0
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Table A.5: Values of the parameters related to the ORs in the optimization
model for the big instance. MOR

kd represents the number of surgery slots
available at OR k on day d, and Bkd is the time available in each slot in
OR k on day d.

OR MOR
kd Bkd Patient category

1 2 240 Elective foot, hand, plastics, arthroscopic
2 2 240 Elective foot, hand, plastics, arthroscopic
3 2 240 Elective foot, hand, plastics, arthroscopic
4 2 240 Elective foot, hand, plastics, arthroscopic
5 2 240 Back, tumour
6 2 240 Prosthesis
7 2 240 Prosthesis

Table A.6: The ward capacities obtained in the optimization model for the
big instance. Ad represents the number of staffed beds available on day d,
while AMAX

w is the maximum number of beds available in ward w.

Ward Name Ad (week) Ad (weekend) AMAX
w Patient category

1 Trauma 32 El. foot, hand, SU
2 Reconstructive 16 Plastic, tumour
3 Elective 12 Arthroscopic, back
4 Fast-track 16 Prosthesis
5 Hotel-day 5 None, Buffer capacity

67 44
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Table A.7: Values obtained for the subspecialties and the patient categories
in the optimization model for the test instances. Ti is the target number of
elective patient category i to be scheduled in each cycle, Si is the expected
surgery duration of patient category i , Eid is the expected length of stay
of patient category i that receive surgery on day d, REL

i is the gain for
scheduling more patients from patient category i than the lower limit, CC

i

is the penalty for cancelling an elective patient of category i, ND
jd is the

maximum number of slots available to subspecialty j on day d, and Nj is
the maximum number of slots available to subspecialty j in one cycle.

Subspecialty TLOW
i THIGH

i Si Eid REL
i CC

i ND
jd Nj

Subspecialty 1 6 41
Patient category 1 8 12 143 3 3 10
Subspecialty 2 6 41
Patient category 2 32 38 94 0 2 10
Patient category 3 18 25 85 1 3 10
Subspecialty 3 6 41
Patient category 4 21 25 95 2 3 10
Patient category 5 12 15 73 0 3 10
emergency patients
SU inpatients 192 2
SU outpatients 131 0
U patients 150 0

Table A.8: Values of the parameters related to the ORs in the optimization
model for the test instances. MOR

kd represents the number of surgery slots
available at OR k on day d, and Bkd is the time available in each slot in
OR k on day d.

OR MOR
kd Bkd Patient category

1 2 240 All
2 2 240 All
3 2 240 All
4 2 240 All
5 2 240 All
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Table A.9: The ward capacities obtained in the optimization model for
the test instances. The four configurations represent four different bed
capacities, Ad represents the number of staffed beds available on day d,
while AMAX

w is the maximum number of beds available in ward w.

Configuration Ward Ad (week) Ad (weekend) AMAX
w Patient category

W1 1 32 1, 3 and SU
W1 2 25 4

45 40
W2 1 32 1, 3 and SU
W2 2 25 4

55 50
W3 1 45 1, 3 and SU
W3 2 40 4

85 50
W4 1 60 1, 3 and SU
W4 2 50 4

110 55

Table A.10: Maximum number of ORs that may be covered by anesthesi-
ologists each day in the optimization model for both the large and the test
instances.

Instance size MA
1 MA

2 MA
3 MA

4 MA
5 MA

6 MA
7

Large (Section 2.5.4) 7 7 7 7 4 0 0
Small (Sections 2.5.2 and 5.5.4) 5 5 5 5 4 0 0

Table A.11: The values obtained for the other parameters in the optimiza-
tion model. CW

ww′ is the penalty of putting a patient meant for ward w
in ward w′, CSU is the penalty of scheduling an SU patient to an elective
slot, PU is the gain for scheduling a U patient to a flexible slot, Cβ is the
penalty of having more patients resting in the wards than the total amount
of staffed beds available, Vi is the share of patients belonging to the elective
patient category i that needs to be scheduled for surgery, and MCY CLE is
the total amount of slots available through the cycle.

Instance size CW
ww′ CSU PU Cβ Vi MCY CLE

Large (Section 2.5.4) 0.1 2 0.5 1000 0.5 70
Small (Sections 2.5.2 and 5.5.4) 1 2 0.5 1000 0.5 70
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A.3 Input for the simulation model

In Tables A.12 and A.13 we provide the input values used in the simulation model
when running the model in Section 2.5.4. In Table A.14 we provide the probability
distributions that are used to model the stochastic processes in the simulation
model. These distributions are based on historical data obtained from the case
department.

Table A.12: The wards present in the simulation model

Ward Patient category Capacity

1 Elective foot, hand and emergencies ∞
2 Plastic, tumour, emergencies ∞
3 Arthroscopic, back, emergencies ∞
4 Prosthesis, emergencies ∞
5 Emergencies ∞

Table A.13: The ORs present in the simulation model

OR-type Number of ORs Opening hours

Elective 7 08.00-16.00 (Monday to Friday)
Emergency 3 Varies dependent on day and OR

Table A.14: Stochastic processes

Process Probability distribution

Emergency arrivals Poisson
Surgery duration Empirical
Length of stay Empirical
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A.4 The case study

Table A.15 provides the optimized MSS.

Table A.15: The MSS generated in the case study. Green letters indicate
flexible slots.

OR Day of week
Monday Tuesday Wednesday Thursday Friday

1 Hand Hand El. foot/ Plastic Plastic/ Arthro. Plastic/ Plastic

2 Arthro. Arthro. El. foot Plastic Arthro.

3 Plastic Plastic/ Arthro. Arthro. Hand Arthro.

4 Plastic Plastic/- Plastic Hand/- El. foot

5 Tumour/Tumour Back Back Back -
6 Prosthesis Prosthesis Prosthesis/- Prosthesis -
7 Prosthesis Prosthesis Prosthesis/- Prosthesis -
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Chapter 3

Integrated Master Surgery
and Outpatient Clinic
Scheduling

Abstract

In this paper, we study an integrated master surgery and outpa-
tient clinic scheduling problem, motivated by the situation at the
Orthopaedic Department at St. Olav’s Hospital, Trondheim. During
a treatment process, the patients require one or several consultations
at the outpatient clinic, and potentially a surgery in one of the op-
erating rooms. The physicians perform both consultations and surg-
eries, and coordinating the two facilities is challenging. The surgeons
are trained to handle different surgical specialties, and they differ in
experience. The overall goal is to schedule the specialties, and a num-
ber of qualified surgeons, to time slots in the outpatient clinic and
operating rooms through the week, to efficiently handle the patient
demand. Our main contribution is an optimisation model for solving
the integrated master surgery and outpatient clinic scheduling prob-
lem. In addition to allocating specialties and a number of surgeons,
the model also schedules activity types (surgery categories and out-
patient clinic consultation types) to the time slots. These can guide
the operational scheduling of individual patients at a later stage. A
computational study is performed, demonstrating the use of the opti-
misation model to provide a set of master schedules, based on a set of
different resource capacity cases. We develop a simulation model for
evaluating the master schedules in an operational setting, and three
different operational scheduling policies are compared. We conclude
that scheduling patients to activities governed primarily by the opti-
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misation model solution outperforms a FIFO scheduling policy based
only on specialty.

3.1 Introduction

Surgical costs account for approximately 40% of the total hospital costs (Van Essen
et al., 2012), and Freeman et al. (2018) state that 60-70% of all patients admitted to
a hospital require some surgical intervention. However, surgeries are not performed
in isolation, and by neglecting aspects of coordination when performing capacity
planning, we may arrive at suboptimal solutions. Surgical patients typically require
a consultation at the outpatient clinic (OC) both prior to, and following surgery. In
addition, many patients require a stay in a hospital ward to recover from surgery.
The surgeons serve both the OC rooms and the ORs, and their time must be
carefully divided between the two facilities to provide a coordinated and efficient
service.

The Master Surgery Scheduling Problem (MSSP) is a frequently studied prob-
lem within operations research. The Master Surgery Schedule (MSS), is a cyclic
schedule where surgical specialties are assigned to OR slots through the week, such
that the demand for surgery is covered. The time horizon considered in the MSSP
is typically in the range of months, and the MSS is repeated through the time
horizon. An equivalent problem can be formulated for the OC.

In this paper, we study the integrated master surgery and outpatient clinic
scheduling problem. The problem is motivated by the situation at the Orthopaedic
Department as St. Olav’s Hospital, Trondheim. Vik et al. (2022) report poor
coordination of key health care activities as one of the major challenges within the
department. From our point of view, a lack of coordination between the OC and
the ORs can lead to unwanted variations in demand for activities, and we believe
that the work presented in this paper can help to increase coordination.

During the treatment process, the patients require one or several consultations
in the OC rooms, and potentially a surgery in one of the ORs. The surgeons
are trained to handle different surgical specialties, and they differ in experience.
The goal is to handle patient demand by allocating specialties, and a number
of qualified surgeons, to time slots in the OC rooms and the ORs through the
planning horizon. In addition, we also schedule activity types (surgery categories
and outpatient clinic consultation types) to the available time slots, which can
be used for scheduling individual patients at a later stage. To our knowledge this
problem has not been studied in literature. It differs both from multi-appointment
scheduling, which mainly considers outpatient services, and from the MSSP, that
seldom includes upstream units.

The main contribution in this paper is an optimisation model for solving the
integrated master surgery and outpatient clinic scheduling problem. The model
produces two cyclic master schedules; one for the OC rooms and one for the ORs.
To evaluate the performance of the master schedules, they are implemented in
a discrete-event simulation (DES) model, where patient arrivals and the paths
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of individual patients are modelled as stochastic processes. We compare three
different operational scheduling policies. This allows us to investigate the value of
scheduling activity types in the master schedules.

A computational study is performed based on data from the Orthopaedic De-
partment at St. Olav’s hospital. In this study, five alternative resource capacity
cases are considered, each representing a strategy which the department can im-
plement to increase patient throughput. Even though we study the situation at
the orthopaedic department, the problem under study is rather generic and can be
found in many hospital departments that perform surgical activities. It is common
for such departments to serve patients that require multiple services, and where
a set of resources are involved in providing more than one service. With some
adjustments, the problem under study is relevant to departments that face similar
problems.

The rest of the paper is structured as follows. In Section 3.2, a literature re-
view is provided to position our contribution. Then, in Section 3.3 the problem
under consideration is described. The mathematical model is presented in Section
3.4, while the simulation model is provided in Section 3.5. In Section 3.6, the com-
putational study is reported on, before presenting managerial insights in Section
3.7. Finally, in Section 3.8, the paper is concluded.

3.2 Literature review

Tactical outpatient and surgery scheduling, that considers multiple resources, con-
stitutes the field of interest. First we present selected literature on surgery schedul-
ing, and the MSSP in particular, before turning to the tactical OC planning.

3.2.1 Tactical OR planning

Within health care planning, the tactical decision level addresses the organisation
of the execution of the health care process (Hulshof et al., 2012). At this level,
the available resource capacities, settled at the strategic level, are divided among
patient groups. Blueprints for the operational planning are created that allocate
resources to different tasks, specialties and patient categories. According to Hul-
shof et al. (2012), the MSSP is considered a tactical planning problem within
surgical care services.

Cardoen et al. (2010) review the literature on OR planning and scheduling,
and find that about half of the recent contributions limit their scope to an isolated
OR. Among the contributions that regard additional facilities, the wards, the In-
tensive Care Unit and the Post Anesthesia Care Unit are most frequently included.
However, the modelling of ORs in interaction with other hospital facilities remains
a main topic for further research (Cardoen et al., 2010).

When considering the MSSP, the downstream facilities, and the wards in par-
ticular, are frequently considered. Li et al. (2017), Moosavi and Ebrahimnejad
(2020) and Adan et al. (2011) include the Intensive Care Unit when analysing the
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MSSP, while Schneider et al. (2020) and Fügener et al. (2014) consider multiple
downstream units. The upstream activities are seldom regarded in the MSSP liter-
ature, and Schneider et al. (2020) propose the inclusion of upstream units, such as
the OC, as a topic for future research. Moosavi and Ebrahimnejad (2020) regard
the wards as both up- and downstream capacities, acknowledging the fact that
patients might need a bed both prior to, and following surgery.

Schneider et al. (2020) cluster surgery types into surgery groups, and instead
of scheduling surgery specialties, they schedule surgery groups to the OR blocks.
This eases the operational scheduling of individual patients.

Unlike the majority of literature on the MSSP, we consider both up- and
downstream activities in our problem. By including the OC we can schedule
more of the surgeons’ activities, and instead of considering the derived demand for
surgery we can include the demand for new referrals. This allows us to control the
number of patients that are sent to surgery based on the overall capacity of the
system. Furthermore, like Schneider et al. (2020), we schedule surgery groups for
the OR slots, and through simulation we evaluate the value of using these when
performing the operational scheduling of surgeries.

3.2.2 Tactical OC planning

According to Hulshof et al. (2012), OC planning is categorised as ambulatory care
services, and the existing literature is mainly focusing on the operational appoint-
ment scheduling. At the tactical level, the allocation of capacity to patient groups
is the most frequently studied problem in the OC planning literature (Ahmadi-
Javid et al., 2017).

Historically, the majority of research has considered patients requiring a single
appointment. However, in recent years, an increasing number of researchers has
considered several resources and the fact that patients may require multiple con-
sultations (Marynissen and Demeulemeester, 2019). According to Marynissen and
Demeulemeester (2019), the multi-appointment scheduling problem is designed to
act as an umbrella for both combination appointments, in which patients require
multiple appointments on the same day, and appointment series, in which patients
need to revisit the same set of resources several times. Furthermore, the authors
define the multi-appointment scheduling problem as an operational problem, but
emphasise the importance of reserving capacity at a tactical level. Examples of tac-
tical multi-appointment scheduling problems can be found in Bikker et al. (2015),
Nguyen et al. (2015) and Hahn-Goldberg et al. (2014). The first two represent an
appointment series problem, while the last is a combination appointment problem
for scheduling patients for chemotherapy.

Care processes can be analysed as a multi-appointment scheduling problem,
as the patients typically require several visits to the hospital. Hulshof et al. (2013)
consider the tactical resource allocation for elective patient admission planning in
care processes. The authors analyse a care process comprising of a visit to the OC,
followed by surgery and a revisit to the OC, which is similar to the one studied
in this paper. In the modelling framework presented by Hulshof et al. (2013),
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each care process is represented by a set of consecutive queues, and patients are
routed between queues to represent the demand for each care process. In each time
period, a number of patients are served in each queue, while the patients remain
in the queue to the next time period. To serve a patient in a given queue, a set
of resources are required throughout the time period. All resources have a given
capacity, restricting the flow of patients between queues. The decision variables
represent the number of patients treated from each queue, in each time period,
and a solution represents the resource capacity devoted to each queue in each time
period.

Another branch of hospital planning that relates to multi-appointment schedul-
ing is multi-disciplinary scheduling. Leeftink et al. (2020) define a multi-disciplinary
care system as a care system in which multiple interrelated appointments per pa-
tient are scheduled, where health care professionals from various facilities, or with
different skills are involved. The authors categorise the literature according to a
hierarchical planning structure, and within capacity planning the generation of
blueprint schedules, patient admission planning and temporary capacity changes
are typical outcomes. Like for multi-appointment scheduling, the consultations
in multi-disciplinary scheduling can be performed within a day (see Liang et al.
(2015)), or as multiple revisits (see Braaksma et al. (2014)).

To the best of our knowledge, the existing papers on tactical multi-appointment
scheduling (and similar problems) in hospitals only consider outpatients. Although
Hulshof et al. (2013) encounter a setting which has similarities to ours, the prob-
lems differ. In Hulshof et al. (2013), the resource requirements to perform an ac-
tivity (serve patients from a queue) is given. In our problem, surgeons of different
experience levels can perform OC consultations, allowing for flexibility. Further-
more, Hulshof et al. (2013) apply discrete time steps in their model, requiring that
each activity is started and finished within one time period. If a time step resem-
bles one day, coordination of resources within a day is problematic as surgeons
cannot serve one activity in the morning and another in the afternoon. If the time
steps represent shorter time periods, coordination is possible. However, requir-
ing that each activity spans one time period makes short time steps problematic.
Finally, beds cannot be analysed as resources, as patients cannot wait for a bed
following surgery. Therefore, their framework is most suitable for an outpatient
setting.

Our model is suitable for handling inpatients, and we consider the demand-
ing task of coordinating and scheduling resources to serve patients that require
multiple services.

3.3 Problem description

In the integrated outpatient and master surgery scheduling problem, the aim is to
generate two cyclic schedules; one for the OC rooms, and one for the ORs. The time
available during the working day is divided into fixed time slots, and we define a slot
within a room as a room slot. In both schedules, surgical specialties are assigned
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Figure 3.1: Example of master schedules for the ORs and the OC rooms.
Here, the capacity is shared between the orthopaedic and the surgical de-
partment. For the ORs, the number of surgeons assigned to each OR is
given in addition to the specialty. In this example, two slots are available
in each room each day. M is the morning slot, while A is the afternoon slot.

to the available room slots through the planning cycle (typically one week), such
that the system can serve at least the expected demand of new referrals during
the planning horizon (typically half a year). As an example, Figure 3.1 illustrates
two such schedules where two OC rooms and two ORs are shared between the
orthopaedic and the surgical department. Here, two slots are available in each
room, representing a morning and an afternoon slot. A scheduled slot in the
operating theatre comprises both the medical specialty and the number of surgeons
assigned to the slot. For the OC, only the specialty is given, as it is always sufficient
with one surgeon to perform an OC consultation.

Four activity types can be performed; surgery and three different types of OC
consultations. In an initial consultation (IC), the patient is examined and the
surgeon decides on whether further intervention is needed, and if so, what kind
of intervention. If a non-surgical intervention is required, the patient receives a
treatment consultation (TC) in the OC. Finally, following either surgery or a treat-
ment consultation, the patient is summoned for one or more follow-up consultations
(FU) in the OC. The length of an OC consultation depends on the specialty of the
patient, and what type of consultation that is performed. Surgeries are categorised
depending on what procedures that are done during surgery. A surgery category is
characterised by the planned surgery duration, the minimum number of surgeons
that must be present during surgery, and the planned length of stay (LOS) in a
ward following surgery.

There exists a set of surgical specialties, and patients are categorised based on
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the specialty they belong to. The activity types required by a patient depends on
what specialty the patient belongs to. Following the initial consultation, a share of
patients belonging to a specialty requires a treatment consultation, while another
share requires a surgery. The remaining patients leave the system. Following
a treatment consultation or surgery, the patients require one or multiple follow-
up consultations. A number of patients within each specialty is referred straight
for surgery, and the remaining paths of these patients are identical to the other
patients within the same specialty.

Figure 3.2 illustrates the activity types considered in the problem, and how
they relate to each other for a specialty with two surgery categories available. In
this example, xIC initial consultations are scheduled. The expected demand for
treatment consultations and surgery categories one and two are calculated as the
probabilities that patients require these activities following an initial consultation
multiplied by xIC . Similar logic is used to calculate the expected demand of follow-
up consultations based on the number of surgeries and treatment consultations that
are scheduled.

IC TC FU

Surgery
category 1

Ward

Surgery
category 2

xIC − xTC −
∑

i qi xTC =
xIC · FIC,TC

xFU=
xTC · FTC,FU +

∑
i qi · FSF

qi = xIC · FS
i

xIC

Figure 3.2: The activity types considered in the problem, and how they
relate to each other. xIC : Number of initial consultations scheduled. xTC :
Derived demand for treatment consultations that must be scheduled. qi:
Derived demand for surgery category i that must be scgeduled. xFU : De-
rived demand for follow-up consultations that must be scheduled. FIC,TC :
Average fraction of initial consultations that yield a demand for treatment
consultations. FTC,FU : Average fraction of treatment consultations that
yield a demand for follow-up consultations. FS

i : Average fraction of initial
consultations that yield a demand for surgery of category i. FSF : Fraction
of surgeries that yield a demand for follow-up consultations.
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There is a given number of OC rooms and ORs. The opening hours of the
rooms are divided into consecutive time slots. The slot duration can differ between
the OC rooms and the ORs, but they are of constant length within each facility.
The slots are synchronised, such that a surgeon can serve one of the facilities
in the morning, and the other one in the afternoon. As a consequence of these
requirements, there can be at most two slots available during a day in each of
the facilities. Each slot can be scheduled for one specialty, and the number of
patients that can be scheduled within a slot is limited by the slot duration. If a
specialty covers two consecutive slots in a room, an activity may begin in the first
slot and end in the other. There are several wards available to serve the inpatients
that require a bed following surgery. In every ward, a given number of beds are
available each day, and each ward can serve patients from a subset of the surgery
categories.

The surgeons are categorised according to what specialties they master, and
their level of experience. Surgeons can be trained to master several specialties, and
surgeons that master a given specialty may provide all activity types to patients
belonging to that specialty. Based on the level of experience, surgeons are either
consultants or residents, and each surgery requires the presence of at least one
consultant. Both consultants and residents can perform activity types in the OC.
Each surgeon type has a fixed number of surgeons available each day of the cycle.

To schedule a surgery of a given category there must be enough time available
in an OR and a slot scheduled for the corresponding specialty. Furthermore, there
must be enough surgeons scheduled to the same room and slot to perform the
surgery, and the bed capacity must be sufficient to cover the entire LOS of the
patient. To schedule an OC activity there must be enough time available in an
OC room and a slot scheduled for the corresponding specialty.

The expected arrival rate of initial consultations during a cycle is constant and
known for each specialty. In addition, there is a queue of patients that have not
yet received an initial consultation at the beginning of the planning horizon. To
maintain a stable waiting list for each specialty, a minimum throughput of initial
consultations should be set such that the service rate is at least incrementally
higher than the expected arrival rate of new referrals. Furthermore, to decrease a
potential queue of patients waiting for an initial consultation, a reward is given for
scheduling more than the minimum throughput. However, the maximum number
of initial consultations that can be scheduled for each specialty in a cycle cannot
exceed the expected arrival rate of new referrals, plus the length of the waiting list
divided by the number of cycles in the planning horizon. To avoid queues from
building up within the system, we must ensure that the system can handle the
downstream demand for services generated.

Our goal is to serve at least the expected number of new referrals, and more if
possible, while making sure that there is sufficient capacities to handle the derived
demand for downstream services.
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3.4 The mathematical model

In this chapter, the mathematical model for solving the problem is presented.
Tables 3.1, 3.2, and 3.3 include all the notation used in the mathematical model.
To enhance readability, the constraints are introduced in thematic groups.

Table 3.1: Sets

Symbol Description

A Consultation types performed at the OC a ∈ A

D Days in a cycle d ∈ D

I Surgery categories i ∈ I

J Surgical specialties j ∈ J

K ORs k ∈ K

L OC rooms l ∈ L

N Number of surgeons that can be present during surgery n ∈ N

P Surgeon types p ∈ P

S Time slots s ∈ S

W Wards w ∈W

DLOS
id Days that a patient of surgery category i can have received

surgery if the patient is still in a ward on day d d′ ∈ DLOS
id

IJj Surgery categories that can be handled by specialty j i ∈ IJj ⊆ I

IWw Surgery categories that can rest in ward w i ∈ IWw ⊆ I

JKk Specialties that can be scheduled to OR k j ∈ JKk ⊆ J

Kj ORs that can be utilised by specialty j k ∈ Kj ⊆ K

PC
j Surgeon types that are consultants and can cover specialty j p ∈ PC

j ⊆ P

PR
j Surgeon types that are residents and can cover specialty j p ∈ PR

j ⊆ P

WI
i Wards that can serve patients from surgery category i w ∈WI

i ⊆W
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Table 3.2: Parameters

Symbol Description

Awd Number of beds available at ward w on day d
Cpd Number of surgeons of type p available on day d
Dj Min. number of ICs of specialty j that must be scheduled during one cycle

Dj Max. number of ICs of specialty j that can be scheduled during one cycle
FS
i Fraction of ICs that yields a downstream demand for surgery category i

Fjaa′ Fraction of OC consultations of type a that
yields a downstream demand for OC consultations of type a’ for specialty j

FSF
j Number of FU consultations generated by a surgery of specialty j

HOC
ja Planned time needed for consultations of type a of specialty j

N i Min. number of surgeons that must be present for a surgery of category i

N Max. number of surgeons that can be present during surgery
Qi Number of patients from surgery category i that are referred straight

to surgery during a cycle
QI

j Number of patients from specialty j waiting for an IC

at the beginning of the planning horizon

Qnikd Max. number of surgeries of surgery category i that can be scheduled for
surgery with n surgeons present in OR k on day d

Rj Reward obtained from scheduling an IC of specialty j
Si Planned surgery duration for patients of surgery category i
T Number of cycles in the planning horizon

TOR
ksd Time available for surgeries in OR k, slot s on day d

TOC
lsd Time available for consultations in OC room l, slot s on day d

Xjald Max. number of consultations of type a of specialty j that can be scheduled to
OC room l on day d

Table 3.3: Variables

Letter Description

gOC
pjsd # of surgeons of type p assigned to specialty j in slot s in the OC on day d

gOR
pksd # of surgeons of type p allocated to OR k in slot s on day d

qnikd # of surgeries of category i scheduled in OR k with n surgeons on day d
uiwd # of beds occupied by patients of surgery category i in ward w on day d
xjald # of OC consultations of type a of specialty j scheduled in OC room l on day d
βjlsd Indicates if specialty j is assigned OC room l in slot s on day d
λnjksd Indicates if specialty j is assigned OR k in slot s, with n surgeons on day d
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Demand constraints

Dj ≤
∑
l∈L

∑
d∈D

xj,IC,ld ≤ Dj j ∈ J (3.1)

The demand constraints (3.1) ensure that we schedule between the planned
demand and the upper limit of initial consultations for each specialty j. Here, Dj

is the maximum number of initial consultations of specialty j that can be scheduled
in a cycle, while Dj is the minimum throughput of new referrals for one cycle. Dj

can be calculated by adding the number of patients from specialty j waiting for
an initial consultation at the beginning of the planning horizon, QI

j , divided by
the number of cycles in the planning horizon, T , to the minimum throughput:

Dj = Dj +

⌈
QI

j

T

⌉
j ∈ J (3.2)

Slot constraints∑
j∈J

βjlsd ≤ 1 l ∈ L, s ∈ S, d ∈ D (3.3)

∑
n∈N

∑
j∈JK

k

λnjksd ≤ 1 k ∈ K, s ∈ S, d ∈ D (3.4)

Constraints (3.3) make sure that at most one specialty j is assigned to each
slot s in every OC room l on day d. Constraints (3.4) ensure that at most one
specialty j with n surgeons is assigned to each slot s in OR k on day d.

Surgeon constraints∑
l∈L

βjlsd ≤
∑
p∈PC

j

gOC
pjsd +

∑
p∈PR

j

gOC
pjsd j ∈ J, s ∈ S, d ∈ D (3.5)

λnjksd ≤
∑
p∈PC

j

gOR
pksd n ∈ N, j ∈ J, k ∈ Kj , s ∈ S, d ∈ D (3.6)

nλnjksd ≤
∑
p∈PC

j

gOR
pksd +

∑
p∈PR

j

gOR
pksd n ≥ 2, j ∈ J, k ∈ Kj , s ∈ S, d ∈ D (3.7)

∑
j∈J

gOC
pjsd +

∑
k∈K

gOR
pksd ≤ Cpd p ∈ P, s ∈ S, d ∈ D (3.8)

Constraints (3.5) ensure that all OC rooms that are scheduled for specialty j
in slot s on day d, must be covered by at least one surgeon each. Constraints (3.6)
require that, if specialty j is assigned to OR k in slot s on day d with n surgeons,
there should be at least one consultant of the same specialty assigned to that OR,
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at that point in time. Constraints (3.7) state that, if specialty j is assigned to OR
k in slot s on day d with two or more surgeons, this OR must be covered by enough
surgeons from that specialty, at that point in time. Constraints (3.8) make sure
that the number of surgeons allocated to slot s from surgeon type p on a given
day d does not exceed the number of surgeons available from that surgeon type on
that day.

Time capacity constraints in the OC∑
a∈A

HOC
ja xjald ≤

∑
s∈S

TOC
lsd βjlsd j ∈ J, l ∈ L, d ∈ D (3.9)

The time capacity constraints (3.9) make sure that the total time scheduled
for initial consultations, treatment consultations, and follow-up consultations for
specialty j, in OC room l on day d, cannot exceed the time scheduled for that
specialty in that room on that day.

Patient flow constraints

∑
l∈L

∑
d∈D

FS
i xj,IC,ld +Qi ≤

N∑
n=Ni

∑
k∈Kj

∑
d∈D

qnikd j ∈ J, i ∈ IJj (3.10)

Constraints (3.10) state that the number of scheduled surgeries of surgery
category i, is at least the same as the sum of the planned demand for surgery of
category i, derived from the initial consultations scheduled for specialty j, and the
expected number of surgeries of surgery category i referred from other instances.∑

l∈L

∑
d∈D

Fj,IC,TCxj,IC,ld ≤
∑
l∈L

∑
d∈D

xj,TC,ld j ∈ J (3.11)

Constraints (3.11) ensure that we, for each specialty j, schedule enough treat-
ment consultations in relation to initial consultations.

∑
n∈N

∑
i∈IJj

∑
k∈Kj

∑
d∈D

FSF
j qnikd +

∑
l∈L

∑
d∈D

Fj,TC,FUxj,TC,ld ≤
∑
l∈L

∑
d∈D

xj,FU,ld j ∈ J
(3.12)

Constraints (3.12) make sure that we schedule at least the required fractions
of follow-up appointments from specialty j after surgery or after a treatment con-
sultation.

Time capacity constraints for surgery∑
i∈IJj

Siqnikd ≤
∑
s∈S

TOR
ksd λnjksd n ∈ N, j ∈ J, k ∈ Kj , d ∈ D (3.13)

Constraints (3.13) ensure that time capacity is respected in the ORs. The
total time scheduled for surgery categories belonging to specialty j within OR k
on day d cannot exceed the time scheduled for that specialty, in that room, on
that day.
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Ward constraints∑
i∈IWw

uiwd ≤ Awd w ∈W, d ∈ D (3.14)

∑
n∈N

∑
k∈K

∑
d′∈DLOS

id

qnikd′ =
∑

w∈WI
i

uiwd i ∈ I, d ∈ D (3.15)

Constraints (3.14) state that the number of beds occupied at ward w on day
d does not exceed the available number of beds at the ward. In constraints (3.15),
we count the number of patients of surgery category i still present at a ward on a
given day d.

Objective function

max
∑
j∈J

∑
l∈L

∑
d∈D

Rjxj,IC,ld (3.16)

In the objective function we maximise the reward generated from covering more
than the expected demand of initial consultations at the OC. This is an attempt
to decrease the queue of referrals for a specialty during the planning horizon.

Variable domains

xjald ∈ {0, 1, ..., Xjald} j ∈ J, a ∈ A, l ∈ L, d ∈ D (3.17)

qnikd ∈ {0, 1, ..., Qnikd} i ∈ I, n ≥ N i, k ∈ K, d ∈ D (3.18)

uiwd ∈ {0, 1, ..., Awd} i ∈ I, w ∈W, d ∈ D (3.19)

gOC
pjsd ∈ {0, 1} p ∈ P, j ∈ J, s ∈ S, d ∈ D (3.20)

gOR
pksd ∈ {0, 1, ..., N} p ∈ P, k ∈ K, s ∈ S, d ∈ D (3.21)

βjlsd ∈ {0, 1} j ∈ J, l ∈ L, s ∈ S, d ∈ D (3.22)

λnjksd ∈ {0, 1} n ∈ N, j ∈ J, k ∈ K, s ∈ S, d ∈ D (3.23)

Constraints (3.17) to (3.23) give the domains for the variables.

Prioritising among the specialties

Between the minimum demand and the upper limit for new referral consul-
tations, it is possible to prioritise among the specialties. The majority of patient
generated income comes from surgical activity. The income is correlated with the
expected surgery duration, such that surgeries with long expected duration gen-
erates a high income. We can incorporate the surgery duration when prioritising
the specialties in the reward set for each specialty. A way to calculate the reward
for each specialty is as the product of the fraction of surgeries and the expected
surgery duration, as shown in equations (3.24).

Rj =
∑
i∈Ij

FS
i Si j ∈ J (3.24)
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3.5 The simulation model

In this section, the discrete-event simulation (DES) model is introduced. To de-
scribe the simulation study and the DES model, the STRESS guidelines, intro-
duced by Monks et al. (2019), are used. First, we describe the objectives of the
simulation study, before presenting the logic of the model. The data is introduced
in Section 3.6, and described in details in Appendix A.2.

3.5.1 Objectives

The purpose of the simulation study is to evaluate the performance of the tactical
schedules provided by the optimisation model when including random arrivals of
new referrals, and random paths of patients through the system. The main input
for the simulation model is the schedules generated by the optimization model,
while the main output is the development over time of the queues of patients
waiting for both OC consultations and surgery, and the mean total service time of
patients in the system. The length of the queues are recorded at the beginning of
each simulated week. There are two main aims of experimentation: To evaluate
the performance of the tactical schedules provided by the optimisation model, and
to evaluate the effect of different operational scheduling policies.

We want to emphasise that the simulation model is not a replication of the
complex system of the orthopaedic department. There are many events that are
not considered, such as no-shows and absence of staff, and stochastic processes,
such as surgery duration and patient length of stay, that are considered determin-
istic. To isolate the effects from implementing different schedules and scheduling
policies, we have chosen to keep the system under study rather simple. For this
reason, a model validation is not applicable in our case.

3.5.2 Logic

The entities of the model are the patients, and the attributes of the patients are
presented in Table 3.4. An illustration of the system considered can be seen in
Figure 3.3. The resources available are the OC rooms, and the combination of ORs
and beds. The resource capacities available to the various specialties at different
days are given by the schedules obtained from the solution of the optimisation
model. The variables βjlsd and λnjksd indicate what specialty that has access to
the different room slots during the week, while the variables xjald and qnikd indicate
what activity types (type of OC consultation or surgery category respectively) that
should be performed in the rooms. The daily bed capacity reserved for patients
of surgery category i is given by the uiwd variables. The activity types provided
in the OC rooms are initial consultations, treatment consultations and follow-up
consultations, while the activity types provided in the ORs are surgery categories
and potentially a subsequent stay in a bed. There are four queues in the system,
illustrated by the grey squares, one in front of each activity type. Each queue is
split into subqueues, one for each specialty.
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Table 3.4: The attributes of the patients

Attribute
number

Description

1 Specialty
2 Surgery category
3 Treatment at OC, {0, 1}
4 Surgery, {0, 1}
5 Ward
6 Number of follow-ups, {0, 1, 2}

OC slotOC slot OC slot

OR slot/ 
bed at ward

Initial 
consultation

Treatment
consultation

Follow-up 
consultation

Surgery

Arrival of
new referrals

Figure 3.3: The flow of patients in the DES model.
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Algorithms Flow of patients

Arrival algorithm

While w < Weeks do:
1. Generate new referrals
2. w=w+1
3. Send new arrivals to             
    queue for initial consultations
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Figure 3.4: Overview of the DES model implementation.
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In Figure 3.4, an overview of the DES model implementation can be seen.
Fixed time increments of one week are applied, and we assume that no patients
receive more than one consultation per week, and that patients are added to the
queue for initial consultations the week following arrival. Although this may not
always be the case in real life, it is a reasonable assumption when modelling elective
patients whose waiting time limits are typically in the range of months. In the
arrival algorithm, new referrals are generated each week and sent to the queue for
initial consultations the week after. Then, the scheduling algorithm is initiated,
which assigns patients to activities in the present week according to two scheduling
policies, described below. When a patient is assigned for an activity, the post-
scheduling algorithm is initiated. Here, patients are either sent to the queue for
the subsequent activity, or, if no further activities are required, they leave the
system. Patients do not join the queue for the subsequent activity before the
following week. There can be a need for an additional delay between activities,
and if so, a patient will not join the queue before the delay has passed.

We assume that the referrals arrive independently of each other, and model
the arrivals as a Poisson process with expected arrival rates equal to the expected
demand used in the optimisation model. The probabilities of generating patients
of a given surgery category, and a given path, are set such that the flow of patients
corresponds to the flow given by the F parameters in the optimisation model. In
contrast to the arrival of patients and the paths required by patients, the planned
service durations are deterministic. We acknowledge that there exist mechanisms
that will impact the realised outcome of a schedule, and the importance of efficient
rescheduling. However, these are not studied here.

In the scheduling algorithm, two different scheduling policies are used for as-
signing patients to activities. In both policies, all subqueues are sorted according
to a FIFO principle, and when a patient of a given subqueue is to be scheduled, the
first patient in the queue is chosen. Algorithms 1 and 2, presented in Appendix A.1,
explain the two policies applied to the OC room activities. In the former, patients
are scheduled in accordance with the optimisation model solution, that is the xjald

variables. If there are not enough patients present in the corresponding subqueue,
the scheduled capacity is left idle. In the second scheduling policy, we schedule
patients based on specialty and the remaining time available in an OC room. If a
specialty is scheduled for a slot in an OC on a given day, and the remaining time
in this room slot is sufficient to perform more OC consultations, the patient that
has waited the longest for an OC consultation (either an initial, a treatment or a
follow-up consultation) within the corresponding specialty is scheduled. If several
patients have waited equally long, one is randomly chosen.

Corresponding policies are implemented for scheduling patients in the ORs.
If, in the first scheduling policy, we cannot find a patient to schedule according
to the solution of the optimisation model, the qnikd variables, the corresponding
OR capacity is left idle, and the bed capacity that was reserved for this patient
is freed. In the second scheduling policy, we schedule patients based on specialty,
the number of surgeons, and the remaining time available in an OR. For a patient
to be scheduled, there must be enough time remaining in an OR scheduled for the
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right specialty, with enough surgeons available to perform the surgery, and there
must be a bed available for the patient in a suitable ward for at least as many
consecutive days as the LOS of the patient. The first patient (the one who has
waited the longest) to fulfill these criteria is scheduled. Since the first scheduling
policy applies information regarding the type of consultation (in the OC rooms)
and the surgery category (in the ORs), we refer to this policy as the Activity (Act)
policy. The second policy schedules patients based on specialty, and is therefore
referred to as the Specialty (Spec) policy.

When applying the Act policy, we take advantage of the resource coordination
provided by the optimisation model. If we compare the two scheduling policies,
we can interpret the differences in outcome as the value of coordination. If the
two scheduling policies are combined, and run successively, we may be able to
utilise the capacity that is left idle after scheduling in accordance with the Act

policy. In this case, the Spec policy may be thought of as having a list of patients
that can be called and scheduled on short notice (the week before), if there is
idle capacity. Performing activities on a short notice requires resource flexibility
and responsiveness. Additional gains from combining the two policies can be
interpreted as the value of flexibility.

When scheduling according to the Act policy, the solution from the optimi-
sation model can be used to calculate the minimum possible queues that can be
achieved. As a result, we may end up with queues that are shorter than the ones
calculated based on the solution of the optimisation model.

3.6 Computational study

The aim of the computational study is to demonstrate how a department can ap-
ply the optimisation model to coordinate its OC and OR activities to decrease the
queues of patients waiting to be served in either of the facilities. The study based
on data from the Orthopaedic Department at St. Olav’s Hospital. In addition
to a base case, representing the present resource capacities at the Orthopaedic
Department, we design multiple cases with slightly altered resource capacities to
demonstrate how the department can temporarily alter its resources to enhance
the system performance. Finally, we evaluate three operational scheduling policies
to demonstrate the gains from scheduling activity types in addition to special-
ties when generating the master schedules. In accordance with the Orthopaedic
Department, we use the term subspecialty instead of specialty throughout the
computational study.

An Intel(R) Core(TM) i7-8550U CPU @ 1.80 GHz, 16 GB RAM computer
is used when performing the computational study. The optimisation model is
implemented in IVE Xpress 8.6, while the simulation model is written in Python
3.7, and the package SimPy. To perform the random sampling, the algorithms
included in Python are used.
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Table 3.5: The resource capacity cases

Case Description

I0 Base case
I1 Homogeneous wards
I2 Homogeneous ORs
I3 All beds available during weekend
I4 I1 + I3

3.6.1 Case descriptions

To establish the base case, data from the Orthopaedic Department at St. Olav’s
Hospital is used. All data necessary to define the base case are provided in Tables
A.1 - A.8, in Appendix A.2. To sum up, there are 19 surgery categories divided
among seven subspecialties. There are eight OC rooms and seven ORs, and one
slot per day is used. The OC rooms can be used by all specialties, while the ORs
are heterogeneous and can only be accessed by a subset of the specialties. The slot
length at the OC is 240 min, while a slot lasts for 480 min at the operating theatre.
Four wards are available, with a total capacity of 28 beds from Monday to Friday,
and seven beds during the weekend. The wards are specialised, and an inpatient
that has received surgery can only access a subset of the wards. The initial queues
of patients waiting for an initial consultation at the start of the planning period
are specified in Table A.9, in Appendix A.3.

In addition to the base case, labelled I0, four resource capacity cases are in-
vestigated, and these are presented in Table 3.5. In I1, the wards are treated as
homogeneous, implying that each inpatient can be assigned to all wards. In prac-
tice, this would imply that the nurses, who serve the wards, must gain a wider
competence such that they can handle patients outside their main field of compe-
tence. In I2, homogeneous ORs are applied, meaning that each subspecialty can
be assigned to all ORs. Room size and location can inhibit complete homogeneity
between ORs, but by introducing similar equipment in all ORs, they can be more
or less homogeneous. In I3 and I4, the bed capacity is not decreased during the
weekend, and in the latter the wards are homogeneous.

3.6.2 The results from the optimisation model

One alteration has been made to the mathematical formulation when performing
the optimisation study. To avoid unnecessary opening of the OC rooms, we intro-
duce a small penalty of 0.1 for assigning specialties to the OC room slots (that is,
we penalise the βjlsd variables in the objective function).

The main results from running the five cases for three hours are presented in
Table 3.6. The problem has not been solved to optimality in any of the cases, so we
provide the best objective function values found, together with the upper bound
and the dual gap. In addition, the aggregated number of activity types scheduled

95



per week is presented. In the base case, 129 initial consultations are scheduled
every week. By imposing homogeneous wards, we are able to increase the activity
type by seven initial consultations, which is three more compared with leaving
the bed capacity constant all week. Combining the two yields one more initial
consultation compared with only having homogeneous wards. Also note that the
number of surgeries increases in these instances, providing a higher reward in the
objective function. By introducing homogeneous ORs, we can expect to provide
two more initial consultations each week, compared with the base case, and one
additional surgery. Based on these results, we can conclude that the beds are a
scarce resource, and that the separation of wards imposes considerable restrictions
for the patient throughput.

Table 3.6: Results from running the optimisation model for three hours.
UB: Upper bound on objective value. IC: Number of ICs scheduled. TC:
Number of TCs scheduled. FU: Number of FUs scheduled. S: Number of
surgeries scehduled.

Case Obj func UB Gap IC TC FU S

I0 7058.13 7211.40 2.13% 129 31 138 65
I1 7680.15 7918.00 3.00% 136 30 143 71
I2 7231.16 7385.67 2.09% 131 32 141 66
I3 7469.96 7859.53 4.96% 133 30 141 69
I4 7846.27 8100.66 3.14% 137 30 146 74

In Tables 3.7 and 3.8, the number of initial consultations and surgeries sched-
uled are provided respectively. Compared with the base case, all other cases sched-
ule more initial consultations, resulting in more surgeries being scheduled as well.
When introducing homogeneous wards, less initial consultations from the hand
and tumour subspecialties are scheduled, while the capacity increases for the re-
maining subspecialties. The reason for this is that these specialties impose less
reward in the objective function. To take advantage of the increased bed capacity,
specialties that provide a higher reward are prioritised. In the base case, the ward
that houses the arthroplasty patients is closed during weekend. If the bed capacity
is not reduced on Saturday and Sunday, the activity related to the arthroplasty
patients can be increased. Also when applying homogeneous ORs, the capacity is
increased for arthroplasty patients. In the base case, the arthroplasty subspecialty
has access only to ORs six and seven, and due to the long LOS of these patients,
all surgeries must be performed on Monday and Tuesday. When allowing for ho-
mogeneous ORs, the arthroplasty subspecialty gains access to all ORs, enabling
the surgery of one additional patient.

In Table 3.9, the total resource consumption for one week in the different
cases is given. Increasing the resource flexibility results in a higher resource con-
sumption, which increases the surgeon workload. The total surgeon capacity is
calculated as the number of surgeons available multiplied by five days. However,
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Table 3.7: The number of initial consultations scheduled in the different
cases

Number of ICs

Specialty I0 I1 I2 I3 I4 Dj Dj Rj

Arthroscopy 17 19 17 17 17 17 20 42.4
Hand 23 20 23 23 20 19 23 35.1
Plastic 30 33 30 30 34 29 34 77.9
Arthroplasty 19 21 21 23 23 19 23 86.5
Reconstructive 18 20 18 20 20 18 22 46.1
Back 10 13 10 10 13 10 13 56.7
Tumour 12 10 12 10 10 10 12 13.2
Sum 129 136 131 133 137 122 147

Table 3.8: The number of surgeries scheduled in the different cases

Subspecialty Surgery category I0 I1 I2 I3 I4
Arthroscopy Arthroscopy (aggregated) 2 3 2 2 2
Arthroscopy ACL 1 2 1 1 1
Arthroscopy Meniscus 1 1 1 1 1
Arthroscopy Patellae 1 1 1 1 1
Hand Hand (aggregated) 7 6 7 7 6
Hand CTS 2 2 2 2 2
Plastic Plastic (aggregated) 12 13 12 12 14
Plastic Carsinoma 1 1 1 1 1
Plastic BCC 3 3 3 3 4
Plastic Malignant melanoma 5 5 5 5 6
Plastic Cancer mammae 3 4 3 3 4
Plastic SCC 2 2 2 2 2
Arthroplasty Hip (primary) 7 8 8 9 9
Arthroplasty Hip (revision) 2 2 2 3 3
Arthroplasty Knee (primary) 5 5 5 5 5
Arthroplasty Knee (revision) 1 1 1 1 1
Reconstructive Reconstructive (aggregated) 6 7 6 7 7
Back Back (aggregated) 2 3 2 2 3
Tumour Tumour (aggregated) 2 2 2 2 2
Sum 65 71 66 69 74
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Table 3.9: The scheduled use of resources. For the beds, some numbers are
underlined to indicate that more beds are available in these cases.

Resource usage
Resource type I0 I1 I2 I3 I4 Capacity per week

OC room slots 40 40 40 40 40 40
OR slots 24 29 30 28 30 35
Bed days 134 154 138 149 161 154/196
Surgeon days 85 96 97 93 98 220

the surgeons have other duties to fulfill, such as serving the wards and the emer-
gency department, and conducting research, so having 220 surgeon days available
for OC and OR activities is not realistic. As can be seen from Table 3.10, there can
be days where all the available surgeon hours are utilised for OC and OR activi-
ties. The table presents the maximum daily utilisation of surgeon hours available
for each subspecialty. The surgeon types that can cover several specialties are
added to the capacity of all the corresponding specialties when performing the
calculation.

Table 3.10: The maximum daily utilisation of surgeon hours

Specialty I0 I1 I2 I3 I4
Arthroscopy 0.5 0.67 1.00 0.50 0.50
Hand 1.00 1.00 1.00 1.00 1.00
Plastic 1.00 1.00 1.00 1.00 1.00
Arthroplasty 0.64 0.55 0.64 0.55 0.55
Reconstructive 1.00 0.57 0.86 0.71 0.43
Back 1.00 0.60 1.00 0.60 0.60
Tumour 0.29 0.43 0.43 0.29 0.43

The expected OC room and OR utilisation for the different cases can be seen in
Table 3.11. Here, the resource utilisation is given relative to the scheduled resource
capacity. When regarding the OC rooms, we see that the utilisation increases when
allowing for a more flexible use of resources. For these rooms, a utilisation of 100%
is possible as we have set the duration of OC consultations to be 30 minutes, which
is a multiple of the slot duration. For the ORs, the utilisation is low compared with
in the OC rooms. The reason for this is the combination of surgery durations not
adding up to full slots, and the bed capacity restricting the possible combinations
of surgeries on a day.
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Table 3.11: The planned utilisation of OC rooms and ORs. The values
represent the utilisation of the scheduled time.

Resource type I0 I1 I2 I3 I4
OC room slots 93.13% 96.56% 95.00% 95.00% 97.81%
OR slots 66.82% 62.90% 54.22% 61.12% 61.97%

3.6.3 The simulation study

The aim of the simulation study is to evaluate the performance of the tactical mas-
ter schedules provided by the optimisation model, and to test different schedul-
ing policies that can be implemented for the operational scheduling of patients.
Furthermore, the arrival of patients, and whether the patients require surgery, a
treatment consultation in the OC, or if they leave the system following an initial
consultation are modelled as stochastic processes. Because the number of follow-
ups after an orthopaedic treatment is rather standardised, we assume that the
number of follow-up consultations is deterministic. Furthermore, there is a delay
of minimum three weeks before a follow-up consultation.

Experimental setup

For each of the cases analysed in the previous section, the solution obtained from
the optimisation model is implemented in the simulation model. Then, 100 simu-
lated weeks are run with the simulation model, and a total of 100 replications are
performed for each case. We only report on the 25 first weeks, but a cool-down
period is added to ensure that all patients arriving within the first 25 weeks have
left the system by the end of the simulation.

As the system under study is not a steady state system, no warm-up is applied.
Furthermore, the system is not empty when starting the simulation, and the queues
are pre-filled with patients to mimic a realistic situation. For the two first weeks,
the expected number of the different activities are pre-assigned. Then, for the
two following weeks, half of the expected number of activities are pre-assigned.
There is also an initial queue of patients waiting to be scheduled for an initial
consultation at the beginning of week 1. The queues of pre-assigned activities and
unscheduled initial consultations are specified in Tables A.9 and A.10 in Appendix
A.3.

Figure 3.5, illustrates how the initial consultations performed in the first sim-
ulated week will cause a delayed downstream demand for the remaining services.
From the first simulated week, the number of initial consultations performed is
equal to the number of initial consultations performed in the solution of the op-
timisation model. The derived demand for treatment consultations and surgeries
is evident from week two, while the derived demand for follow-up consultations
is delayed to weeks five (first follow-up) and eight (second follow-up). As a con-
sequence, the full impact of the altered scheduling regime will be evident from
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Figure 3.5: Illustration of the initial development of activity in the simula-
tion model. The derived demand for treatment consultations and surgeries
is evident from week two, while the derived demand for follow-ups consulta-
tions is delayed to weeks five (first follow-up) and eight (second follow-up).

week eight. Other consequences of the delay related to follow-up consultations is
that the queue of follow-ups will increase the first five weeks, and that the OC
utilisation will not peak until week eight.

We do not make assumptions about how long the patients that are already
in queue have been waiting, so we only report on the waiting time of patients
arriving after the start of the simulated time. Furthermore, for patients that
belong to subspecialties that require two follow-up consultations, we sample with
a 50% probability for each outcome, whether a prescheduled patient is scheduled
for his first or second follow-up consultation.

Before comparing the different scheduling policies, we first present results
where the Act policy is applied, as these can be compared directly to the results
of the optimisation model.

The queues for OC consultations and surgery

In Figure 3.6, the mean queue length for OC consultations in total, initial con-
sultations at the OC, and surgeries are provided for the five different cases. To
calculate the total queue of OC consultations, the queue of initial, treatment and
follow-up consultations are added together. Note that all follow-up consultations
for a patient are added to the queue of follow-ups the week following either a
treatment consultation or a surgery, even though there is a delay between these
activities. Not surprisingly, the cases perform according to the rank of perfor-
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Figure 3.6: The mean queue length for OC consultations (left, solid lines),
initial consultations (left, dashed lines) at the OC, and surgeries (right) in
the five different cases

mance obtained from the solutions of the optimisation model. It is also evident
that all queues decrease during the period. Initially, the queue of OC consultations
increases, caused by the delay related to follow-up consultations. The number of
initial consultations, and the relatively low throughput of surgeries in week one,
leads to more patients being added to the queue for surgery than what is removed.
Therefore, the queue for surgery increases from week one to two. However, from
week two, the surgery rate increases and the queue decreases.

The resource utilisation and overall efficiency

The mean utilisation of the scheduled OC rooms, ORs, and the beds is displayed
in Figure 3.7. Since we model the arrivals and paths of patients as stochastic
processes, the demand for activities will deviate from the expected demand, causing
some of the pre-scheduled activities to be unused. This tendency becomes more
evident as the queues decrease, leading to a decrease in resource utilisation towards
the end of the planning horizon.

When regarding the OC room utilization, the delayed demand for follow-up
consultations yields a jump in utilization in weeks five and eight. As previously
shown, the derived demand for surgeries will be present from week two, causing
the jump in OR utilization from week one to two. The same effect causes similar
behaviour for the bed utilization.

To measure the system efficiency achieved in the different cases, we register
the mean time that patients, who have received all necessary activities, stayed in
the system. Figure 3.8 illustrates the mean number of weeks that patients stay
in the system as a function of when they arrive. In all cases, the patient waiting
times decrease throughout the period, resulting in lower times spent in the system.
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Figure 3.7: The mean utilisation of the scheduled OC rooms (top left), the
scheduled ORs (top right), and the beds (bottom) in the five cases.

Evaluating different patient scheduling policies

In this section, three different scheduling policies are evaluated. The scheduling
policies introduced in Section 3.5.2, the Act and the Spec policies, are evaluated
individually. In the final scheduling policy, the two former policies are used suc-
cessively, such that after having scheduled patients according to the optimisation
model solution, we schedule additional activities if possible. This is equivalent
to scheduling patients according to the Act policy, and then, if excess capacity is
available, summon patients who can enter on a short notice. This can be achieved
through establishing a calling list of patients who are willing and able to enter on
a short notice. We refer to the final policy as the Combined (Comb) policy. When
applying the Act policy, only the capacity that is pre-scheduled for activities can
be utilised (see Table 3.11 to see how much of the scheduled capacity that can
be utilised with this policy). However, when applying the two other policies, all
the capacity scheduled for a specialty can be used, allowing for a higher resource
utilisation in these policies. It is therefore not fair to compare the Act to the other
policies, but we choose to include it to indicate the value of establishing a calling
list.

The mean queue length for initial consultations, OC consultations, and surgery
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Figure 3.8: The mean number of weeks that patients stay in the system as
a function of when they arrive

when applying the three different scheduling policies in I1 can be seen in Figure
3.9. If patients are scheduled according to the Act policy, the queues obtained in a
deterministic reality can be calculated from the solution of the optimisation model.
This queue has also been added to the figure. Not surprisingly, the optimisation
model solution outperforms the Act policy for all queues. Furthermore, the Comb

policy outperforms the Act policy, indicating the value of flexibility in terms of a
calling list.

When regarding the queues for initial and OC consultations in total, the Act

performs worse than the two other scheduling policies because it has access to
less resource capacity. However, when regarding the queue of surgeries, something
interesting is observed. Due to the excessive scheduling of initial consultations
during the first weeks, the queue of surgeries grows initially when applying either
the the Spec or the Comb policy. Since the Comb policy ensures a coordination
between initial consultations and surgeries, the queue for surgeries eventually de-
creases below the level seen with the Act policy. However, this is not the case with
the Spec policy, where the queue of surgeries keeps growing. This clearly indicates
the value of coordination, especially when downstream capacities are scarce.

To evaluate the efficiency obtained from the three scheduling policies, the mean
number of weeks that patients stay in the system as a function of when they arrive,
is displayed in Figure 3.10. The Comb policy clearly outperforms the Act policy,
indicating the value of flexibility. As a consequence of poor coordination between
initial consultations and surgeries, the Spec policy performs worse than the Act
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Figure 3.9: The mean queue length for initial consultations (top left), OC
consultations (top right), and surgery (bottom) for the three scheduling
policies in I1.

policy when approaching the end of the period.
In Table 3.12, we present different measures from the end of the planning

horizon [week 25] in the simulation model. In general, we observe that the Comb

policy outperforms the other scheduling policies, stating the value of coordination
in combination with resource flexibility. Furthermore, the Spec policy yields a
longer queue of surgeries at the end of the planning horizon compared with the
two other policies (except for I4). The patients waiting for surgery in week 25,
will eventually require one or two follow-up consultations in the OC. However,
these are not counted in the total OC queue before the week following surgery.
Therefore, there are relatively more OC consultations left to be performed in the
Spec policy, compared with the other policies, than indicated by comparing the
”Queue OCs”. Note that the Spec policy performs well in I4 where the bed
capacity is much increased. This indicates that coordination is not crucial when
downstream capacities are high.
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Figure 3.10: The mean number of weeks that patients stay in the system
as a function of when they arrive for the three scheduling policies in I1.

Table 3.12: Different measures in the last week of the planning horizon
(week 25) for the Act (A), Spec (S) and Comb (C) policies. The ”Time
in system” is the mean time [weeks] spent for patients arriving in week
25. ”Throughput” is the mean number of patients that has left the system
within week 25.

Time in system Queue OR Queue OC Throughput
Case A S C A S C A S C A S C

I0 8.74 10.58 6.33 138 288 201 1074 993 757 3175 3098 3421
I1 6.90 7.46 5.72 132 260 90 882 751 778 3372 3382 3523
I2 8.08 7.51 6.08 140 276 185 1013 781 738 3233 3335 3462
I3 7.92 8.91 5.99 128 170 116 994 949 811 3269 3256 3470
I4 6.83 5.91 5.82 101 64 60 891 825 812 3391 3505 3508
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3.7 Managerial insights

In this section we list insights based on the findings of this paper, relevant for
surgical departments where patients require both OC consultations and surgery.

• A hospital department is often measured by how fast it can provide initial
consultations for its patients. Increasing the throughput of initial consulta-
tions without coordinating with downstream activities can harm the system
efficiency and increase the total throughput time of patients. In our case,
implementing the Act instead of the Spec policy decreases the average time
in the system by 0.38 weeks (averaging over all resource capacity cases) even
though the Spec has access to more capacity.

• Coordination between resources is particularly important when downstream
resources are scarce. In our case, I0 is most limited in terms of bed- and OR
capacity, and this is the case where the throughput time of patients differs
the most (1.84 weeks).

• Including information about what activity types to perform within each time
slot is valuable when coordination is an issue. In our example, scheduling
the surgery categories in addition to the specialty and the number of sur-
geons made it easier to achieve a high bed utilisation and to provide a high
throughput of patients.

• Scheduling patients according to a pre-defined pattern settled at a tactical
level can suffer from inflexibility causing unused capacities. Establishing
a patient calling list or other flexible mechanisms can increase efficiency.
In the case studied here, implementing the Comb instead of the Act policy
decreases the average throughput time of patients by 1.71 weeks (averaging
over all resource capacity settings).

3.8 Conclusion

In this paper we argue that surgical departments should consider the OC and the
operating theatre simultaneously to ensure efficient handling of patients. Further-
more, we demonstrate how optimisation can be used as a tool to develop efficient
master schedules for both facilities. Through simulation, we conclude that schedul-
ing activity types, in addition to specialties, in the master schedules allow for a
simple and efficient scheduling of individual patients. The value of scheduling ac-
tivity types in the master schedules is to a large extent caused by the scheduling
of patients for surgery, which is a complex task due to the need for coordination
between the surgical activities and the bed capacity. Furthermore, a successful
implementation of a patient calling list, which enables patients to be summoned
for a consultation on short notice (the coming week), is beneficial for increasing
patient throughput.
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In our problem formulation, the resource capacities are leveled based on a de-
mand for initial consultations, and a derived demand for surgery and downstream
OR consultations. However, there can be situations where there are considerable
queues also for surgery and downstream OC consultations at the beginning of a
planning horizon. If the queue for initial consultations is long, and we schedule
the capacities to decrease this queue, the corresponding capacities scheduled for
surgery and downstream OC consultations will be sufficient to handle more than
expected demand for treatment, and these queues will decrease as well. How-
ever, if the queues for initial consultations are short, while the others are long,
these queues should be handled as separate demands, independent of the derived
downstream demand.

There are some limitations in our study. First, we apply a deterministic optimi-
sation model to solve a problem that has several stochastic parameters. Applying a
stochastic model could allow us to capture more of the inherent uncertainties when
generating the master schedules, and introduce flexible mechanisms to handle the
uncertainties. Furthermore, due to our relatively simple simulation model, we can-
not give the complete picture of how the schedules and the scheduling policies will
perform in a real-life setting. A recommendation for future research is to consider
both uncertain patient arrivals and activity demands in the optimisation model.
Capturing these uncertainties and proposing mechanisms for handling them will
be of great value to hospitals that face variations in demand.

107



Bibliography

I. Adan, J. Bekkers, N. Dellaert, J. Jeunet, and J. Vissers. Improving operational
effectiveness of tactical master plans for emergency and elective patients under
stochastic demand and capacitated resources. European Journal of Operational
Research, 213(1):290 – 308, 2011.

A. Ahmadi-Javid, Z. Jalali, and K. J. Klassen. Outpatient appointment systems in
healthcare: A review of optimization studies. European Journal of Operational
Research, 258(1):3 – 34, 2017.

I. A. Bikker, N. Kortbeek, R. M. van Os, and R. J. Boucherie. Reducing access
times for radiation treatment by aligning the doctor’s schemes. Operations
Research for Health Care, 7:111 – 121, 2015.

A. Braaksma, N. Kortbeek, G.F. Post, and F. Nollet. Integral multidisciplinary
rehabilitation treatment planning. Operations Research for Health Care, 3(3):
145 – 159, 2014. ISSN 2211-6923.

B. Cardoen, E. Demeulemeester, and J. Beliën. Operating room planning and
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Chapter A

Appendices

A.1 Algorithms for describing the DES model

Algorithm 1: The algorithm for scheduling patients to the OC
rooms according to the solutions of the optimisation model. Re-
ferred to as the Act scheduling policy.

input: Queue referred, Queue treatment, Queue follow up,
OC availability

for d← 1 to 5 do
for l← 1 to Number of OC do

for j ← 1 to Specialties do
N1 = min{xj1ld, length(Queue referred)};
N2 = min{xj2ld, length(Queue treatment)};
N3 = min{xj3ld, length(Queue follow up)};
for i← 1 to N1 do

Subtract the consultation duration from OC availability;
Remove the first patient from Queue referred;

end
for i← 1 to N2 do

Subtract the consultation duration from OC availability;
Remove the first patient from Queue treatment;

end
for i← 1 to N3 do

Subtract the consultation duration from OC availability;
Remove the first patient from Queue follow up;

end

end

end

end
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Algorithm 2: The algorithm for utilising idle OC room capacity
after having scheduled patients according to the solutions of the
optimisation model. Referred to as the Spec scheduling policy.

input : Queue referred, Queue treatment, Queue follow up,
OC availability

for d← 1 to 5 do
for l← 1 to Number of OC do

for j ← 1 to Specialties do
check=1;
while length(List of candidates) > 0 or check = 1 do

check = 0;
List of candidates=[];
if consultation duration of Queue referred[0] fits into
remaining OC availability then

Append patient to List of candidates;
end
if consultation duration of Queue treatment[0] fits into
remaining OC availability then

Append patient to List of candidates;
end
if consultation duration of Queue follow up[0] fits into
remaining OC availability then

Append patient to List of candidates;
end
Choose the patient from List of candidates that has
waited the longest;

Subtract the consultation duration of the chosen patient
from OC availability;

Remove the chosen patient from List of candidates;
Remove the chosen patient from the corresponding queue;

end

end

end

end
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A.2 Data for the base case

Table A.1: Base case: the sets

Set # of elements

Days 7
Subspecialties 7
Surgery categories 19
OC rooms 8
ORs 7
Wards 4
Activity types performed at the OC 3
Surgeons present 2
Surgeon types 17
Slots 1

Table A.2: Base case: the subspecialties

Availability Duration [min]
Specialty OCRs ORs IC TC FC Reward

Arthroscopy All 3 and 4 30 30 30 42.4
Hand All 3 30 30 30 35.1
Plastic All 1, 2 and 3 30 30 30 77.9
Arthroplasty All 6 and 7 30 30 30 86.5
Reconstructive All 1 and 5 30 30 30 46.1
Back All 5 30 30 30 56.7
Tumour All 5 30 30 30 13.2
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Table A.3: Base case: the surgeons

Surgeon type Subspecialty # of surgeons Experience

Arthroscopy 1 Arthroscopy 4 Consultants
Arthroscopy 2 Arthroscopy 2 Residents
Hand 1 Hand 2 Consultants
Hand 2 Hand 1 Residents
Plastic 1 Plastic 4 Consultants
Plastic 2 Plastic 4 Residents
Arthroplasty 1 Arthroplasty 6 Consultants
Arthroplasty 2 Arthroplasty 3 Residents
Reconstructive 1 Reconstructive 4 Consultants
Reconstructive 2 Reconstructive 2 Residents
Back 1 Back 4 Consultants
Back 2 Back 1 Residents
Tumour 1 Tumour 3 Consultants
Tumour 2 Tumour 1 Residents
Cons 1 Arthroplasty and tumour 1 Consultant
Cons 2 Arthroplasty and tumour 1 Consultant
Cons 3 Reconstructive and tumour 1 Consultant

Table A.4: Base case: the number of beds available

Ward Mon Tue Wed Thu Fri Sat Sun

Trauma 4 4 4 4 4 2 2
Reconstructive 5 5 5 5 5 3 3
Elective 3 3 3 3 3 2 2
FT 16 16 16 16 16 0 0
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Table A.5: Base case: the surgery categories

Surgery cat. Subspecialty Duration
[min]

# of
Sur-
geons

Ward LOS
[days]

Arthro. (agg.) Arthroscopy 174 2 El. 2
ACL Arthroscopy 173 1 El. 2
Meniscus Arthroscopy 103 2 - 0
Patellae Arthroscopy 176 2 El. 1
Hand (agg.) Hand 107 2 - 0
CTS Hand 54 2 Tr. 1
Plastic (agg.) Plastic 108 2 Tr., Rec. 2
Carsinoma Plastic 52 1 Rec. 1
BCC Plastic 59 2 Tr., Rec., FT. 1
Mal. melanoma Plastic 85 1 - 0
Cancer mammae Plastic 146 1 Rec. 1
SCC Plastic 65 2 Rec. 1
Hip (primary) Arthroplasty 110 2 FT. 4
Hip (revision) Arthroplasty 152 2 FT. 4
Knee (primary) Arthroplasty 122 2 FT. 4
Knee (revision) Arthroplasty 165 2 FT. 4
Recon. (agg.) Reconstructive 145 2 Rec. 2
Back (agg.) Back 309 2 El. 6
Tumour (agg.) Tumour 93 1 Rec. 1

Table A.6: Base case: the flow of patients at the OC

Subspecialty Exp. demand Max demand Share
to TC
after I

Share
to FU
after T

Arthroscopy 17 20 0.01 1
Hand 19 23 0.55 2
Plastic 29 34 0.20 1
Arthroplasty 19 23 0.01 1
Reconstructive 18 22 0.06 2
Back 10 13 0.01 2
Tumour 10 12 0.53 2
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Table A.7: Base case: the flow of patients at the operating theatre

Surgery category Share
to
surgery
after
IC

Share
to FU
after
surgery

Add
surg
demand

Arthroscopy (aggregated) 0.11 1 0
ACL 0.06 1 0
Meniscus 0.04 1 0
Patellae 0.05 1 0
Hand (aggregated) 0.29 2 0
CTS 0.08 2 0
Plastic (aggregated) 0.39 1 0
Carsinoma 0.02 1 0
BCC 0.09 1 0
Malignant melanoma 0.15 1 0
Cancer mammae 0.10 1 0
SCC 0.03 1 0
Hip (primary) 0.37 1 0
Hip (revision) 0.09 1 0
Knee (primary) 0.21 1 0
Knee (revision) 0.04 1 0
Reconstructive (aggregated) 0.32 2 0
Back (aggregated) 0.18 2 0
Tumour (aggregated) 0.14 2 0

Table A.8: Base case: slots

Location # of slots Time avail-
able per slot
[min]

Outpatient clinic 1 240
Operating theatre 1 480
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A.3 Initial conditions for the DES model

Table A.9: The queue of patients for the OC when starting the simulation.
Except from the queue of initial consultations that are not yet scheduled,
the remaining consultations are scheduled within the 4 first weeks.

Subspecialty Scheduled
for IC

Scheduled
for TC

Scheduled
for FU

IC not
yet sched-
uled

Arthroscopy 52 0 12 23
Hand 58 30 102 42
Plastic 88 18 84 37
Arthroplasty 58 0 42 42
Reconstructive 56 6 42 44
Back 32 0 12 43
Tumour 30 18 42 20
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Table A.10: The queue of patients for surgery when starting the simulation.
The surgeries are scheduled within the 4 first weeks.

Surgery category # of patients in queue

Arthroscopy (aggregated) 6
ACL 4
Meniscus 4
Patellae 4
Hand (aggregated) 16
CTS 6
Plastic (aggregated) 34
Carsinoma 4
BCC 6
Malignant melanoma 12
Cancer mammae 12
SCC 4
Hip (primary) 22
Hip (revision) 6
Knee (primary) 12
Knee (revision) 4
Reconstructive (aggregated) 18
Back (aggregated) 6
Tumour (aggregated) 6
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Chapter A

Appendices

A.1 The notation related to the LMSP

The notation used in the LMSP is presented in Tables A.1 to A.4.

Table A.1: Sets

Symbol Description

I Planning periods in the planning horizon i ∈ I

D Days covering the maximum activity delay, the planning delay and the planning horizon d ∈ D

DPD Days covering the planning delay and the planning horizon d ∈ DPD ⊆ D

DT Days in the planning horizon d ∈ DT ⊆ D

DI
i Days in planning period i d ∈ DI

i ⊆ DT

DC Days in a planning cycle d ∈ DC

DT
d′ Days in the planning horizon that correspond to cycle day d′ d ∈ DT |d mod |DC | = d′

DQ Days when we measure the waiting lists d ∈ DQ ⊆ DT

DLOS
ad Dys that a patient who stays in a ward on day d can have had a surgery of type a d′ ∈ DLOS

ad

U Units u ∈ U

J Surgical specialties j ∈ J

P Surgeon types p ∈ P

W Wards w ∈W

B OR activity blocks b ∈ B

A Activity types a ∈ A

AOC OC activity types a ∈ AOC ⊆ A

AOT Surgery activity types a ∈ AOT ⊆ A

K Waiting list intervals k ∈ K

PC
j Consultant types that can cover specialty j p ∈ PC

j ⊆ P

PR
j Resident types that can cover specialty j p ∈ PR

j ⊆ P

WA
a Wards that can house patients who received activity type a w ∈WA

a ⊆W

BJ
j OR activity blocks available for specialty j b ∈ BJ

j ⊆ B

AJ
j Activity types that can be handled by specialty j a ∈ AJ

j ⊆ A

AOT
j Surgery activity types that can be handled by specialty j a ∈ AOT

j ⊆ AJ
j

AW
w Surgery activity types that can rest in ward w following surgery a ∈ AW

w ⊆ AOT
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Table A.2: Parameters

Symbol Description

Ru Number of rooms available in unit u

Vujd Number of rooms that can be accessed in unit u by specialty j on cycle day d

CN
u Number of room-days that can be accessed in unit u during the planning cycle

BF
u Number of room-days that must be assigned as flexible in unit u through the planning cycle

TOC Time available in an OC room-day

Cpd Number of surgeons available of surgeon type p on cycle day d

CMAX
pi Maximum number of days available for surgeon type p during planning period i

NB
b Number of surgeons that must be present to assign OR activity block b

Awd Number of staffed beds available in ward w on day d in the planning cycle

Xjad Number of activities of type a and specialty j (expected to be) performed on day d, before the planning horizon

Lja Expected external arrival rate of activity type a and specialty j

Fjaa′ Fraction of activity of type a that yields a downstream demand for activity of type a’ for specialty j

DOC
ja Duration of OC activity type a, specialty j

AB
bja Number of patients from specialty j and activity type a that are assigned to OR activity block b

DP Number of days in the planning delay

DA
ja Number of days in the activity delay after activity type a, specialty j

Q0
ja Number of patients on the waiting lists for specialty j and activity type a on at the day of planning

Qjak Maximum number of patients that can be assigned to the waiting list of specialty j, activity type a and interval k

Cjak Penalty coefficient associated with the waiting list of specialty j, activity type a and interval k

Table A.3: The high-level variables.

Symbol Description

βujd Number of rooms assigned to unit u and specialty j on cycle day d

yud Number of rooms in unit u assigned as flexible on cycle day d

µOR
jd Maximum number of ORs that can be assigned as flexible for specialty j on cycle day d

Table A.4: The low-level variables.

Symbol Description

λujd Number of rooms in unit u used by specialty j on day d

yujd Number of flexible rooms in unit u assigned for specialty j on day d

gpjd Number of surgeons from surgeon type p that cover specialty j on day d

xOR
bd Number of OR blocks of type b assigned to day d

xjad Number of activities of type a assigned to specialty j on day d

uawd Number of beds occupied in ward w on day d, by patients who received activity type a

qjad Number of patients on the waiting list of specialty j and activity type a on day d

qjadk Number of patients on the waiting list of specialty j and activity type a on day d, within interval k
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A.2 Input data for the LMSP

In Tables A.5 to A.12, we provide the data applied to define the Small, Medium
and Large cases in the LMSP.

Table A.5: The main sets

Set Symbol # of elements

Small Medium Large

Planning periods I 3 3 3

Days in planning horizon DT 84 84 84

Days in planning cycle DC 7 7 7

Days when we measure the waiting lists DQ 12 12 12

Surgical specialties J 3 3 7

OC activity types AOC 3 3 3

Surgery activity types AOT 7 12 19

Wards W 3 3 4

Surgeon types P 6 6 14

Waiting list intervals K 3 3 3
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Table A.6: The availability of surgeons on weekdays, and the maximum
number of days available for clinical work in a planning period.

Surgeon type Mon Tue Wed Thu Fri Days in planning period

Small Medium Large

Arthroscopy C 2 2 1 3 2 30 30 20

Arthroscopy R 2 1 2 1 2 15 15 15

Hand C 2 1 3 1 1 30 30 24

Hand R 1 2 1 2 1 16 16 16

Plastic C 2 2 2 1 3 35 30

Plastic R 3 1 2 2 2 34 34

Arthroplasty C 2 2 2 1 0 24

Arthroplasty R 2 2 1 1 0 24

Reconstructive C 2 2 0 1 1 20 20

Reconstructive R 0 1 1 1 0 16 26

Back C 1 2 1 2 1 24

Back R 2 1 2 1 1 16

Tumour C 1 0 1 0 1 15

Tumour R 0 1 0 1 1 12

Table A.7: The number of beds available

Ward Small Medium Large

M T W T F S S M T W T F S S M T W T F S S

Trauma 4 4 4 4 4 2 2 4 4 4 4 4 2 2 4 4 4 4 4 2 2

Reconstructive 5 5 5 5 5 3 3 4 4 4 4 4 3 3 5 5 5 5 5 3 3

Elective 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

FT 16 16 16 16 16 0 0

Table A.8: The rooms

Location Availability
[min]

Number of rooms Number of room-days

Small Medium Large Small Medium Large

Outpatient clinic 240 4 4 8 14-17 17-20 34-37

Operating theatre 480 3 4 7 4-8 7-11 16-20
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Table A.9: OC activity types

Activity type Specialty Duration
[min]

Qja1 Qja2 Qja3 Cja1 Cja2 Cja3

IC Arthroscopy 30 34.0 17.0 ∞ 5 15 100

TC Arthroscopy 30 1.7 0.9 ∞ 2 5 50

FU Arthroscopy 30 26.6 13.3 ∞ 0 1 30

IC Hand 30 38.0 19.0 ∞ 5 15 100

TC Hand 30 20.1 10.1 ∞ 2 5 50

FU Hand 30 78.8 39.4 ∞ 0 1 30

IC Plastic 30 58.0 29.0 ∞ 5 15 100

TC Plastic 30 11.6 5.8 ∞ 2 5 50

FU Plastic 30 90.1 45.0 ∞ 0 1 30

IC Arthroplasty 30 38.0 19.0 ∞ 5 15 100

TC Arthroplasty 30 1.9 1.0 ∞ 2 5 50

FU Arthroplasty 30 29.3 14.6 ∞ 0 1 30

IC Reconstructive 30 36.0 18.0 ∞ 5 15 100

TC Reconstructive 30 2.2 1.0 ∞ 2 5 50

FU Reconstructive 30 41.0 20.6 ∞ 0 1 30

IC Back 30 10.0 5.0 ∞ 5 15 100

TC Back 30 0.5 0.3 ∞ 2 5 50

FU Back 30 13.8 6.9 ∞ 0 1 30

IC Tumour 30 10.0 5.0 ∞ 5 15 100

TC Tumour 30 5.3 2.7 ∞ 2 5 50

FU Tumour 30 40.2 20.1 ∞ 0 1 30
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Table A.10: Surgery types

Surg. type Specialty Dur.
[min]

# sur-
geons

Ward LOS
[days]

Qja1 Qja2 Qja3 Cja1 Cja2 Cja3

Arthro. (agg.) Arthroscopy 174 2 El. 2 5.1 7.7 ∞ 2 5 50

ACL Arthroscopy 173 1 El. 2 4.1 6.1 ∞ 2 5 50

Meniscus Arthroscopy 103 2 - 0 3.7 5.6 ∞ 2 5 50

Patellae Arthroscopy 176 2 El. 1 3.4 5.1 ∞ 2 5 50

Hand (agg.) Hand 107 2 - 0 11.4 17.1 ∞ 2 5 50

CTS Hand 54 2 Tr. 1 3.8 5.7 ∞ 2 5 50

Plastic (agg.) Plastic 108 2 Tr., Recon. 2 17.4 26.1 ∞ 2 5 50

Carsinoma Plastic 52 1 Recon. 1 5.8 8.7 ∞ 2 5 50

BCC Plastic 59 2 Tr., Recon. 1 2.9 4.4 ∞ 2 5 50

Mal. mel. Plastic 85 1 - 0 8.7 13.1 ∞ 2 5 50

Cancer m. Plastic 146 1 Recon. 1 5.8 8.7 ∞ 2 5 50

SCC Plastic 65 2 Recon., El. 1 2.9 4.4 ∞ 2 5 50

Hip (primary) Arthroplasty 110 2 FT 4 14.1 21.1 ∞ 2 5 50

Hip (revision) Arthroplasty 152 2 FT 4 3.4 5.3 ∞ 2 5 50

Knee (primary) Arthroplasty 122 2 FT 4 8.0 12.0 ∞ 2 5 50

Knee (revision) Arthroplasty 165 2 FT 4 1.9 2.9 ∞ 2 5 50

Recon. (agg.) Reconstructive 145 2 Recon. 2 5.8 8.6 ∞ 2 5 50

Back (agg.) Back 309 2 El. 6 1.8 2.7 ∞ 2 5 50

Tumour (agg.) Tumour 93 1 Recon. 1 1.4 2.1 ∞ 2 5 50

Table A.11: The flow of patients at the OC

Specialty Expected #
of new IC
per day

Share
to TC
after
IC

Share
to FU
after
TC

Arthroscopy 2.43 0.05 1

Hand 2.71 0.53 2

Plastic 4.14 0.20 1

Arthroplasty 2.71 0.05 1

Reconstructive 2.57 0.06 2

Back 1.43 0.05 2

Tumour 1.43 0.53 2
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Table A.12: The flow of patients at the operating theatre

Surgery category Share to
surgery
after IC

Share to
FU after
surgery

Arthroscopy (aggregated) 0.15 1

ACL 0.12 1

Meniscus 0.11 1

Patellae 0.10 1

Hand (aggregated) 0.30 1

CTS 0.10 1

Plastic (aggregated) 0.30 1

Carsinoma 0.10 2

BCC 0.05 1

Malignant melanoma 0.15 1

Cancer mammae 0.10 2

SCC 0.05 2

Hip (primary) 0.37 1

Hip (revision) 0.09 1

Knee (primary) 0.21 1

Knee (revision) 0.05 1

Reconstructive (aggregated) 0.32 2

Back (aggregated) 0.18 2

Tumour (aggregated) 0.14 2
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Chapter 5

Simulating emergency
patient flow during the
COVID-19 pandemic

Abstract

The work presented in this paper is based on two projects that were
conducted at St. Olavs Hospital (Norway) when preparing for the
COVID-19 pandemic. During this period of time, there was a grow-
ing concern in the hospital management that the emergency depart-
ment (ED) and the ambulance services would collapse under the in-
creased demand for service related to the testing and transportation
of COVID-19 patients.

Three discrete event simulation models are provided to evaluate the
resource requirements during the peak of the pandemic. In the first
model, we estimate the number of beds needed in the ED. In the
second model, we estimate the number of ambulances required to
maintain prepandemic response times for urgent emergency patients.
The third model is an implicit coupling of the two former models,
and it is used to study the effects of ED boarding time for patients
that are transferred from the ED to COVID-19 ward. To reduce the
modeling complexity, the capacity available in the COVID-19 ward is
managed through counting rules. This method can be used under the
assumption that the boarding time does not affect the total length of
stay of patients.

The models are used to analyze the resource needs under different
COVID-19 testing policies. A strict testing policy increases the need
for beds in the ED, while it has the opposite effect in terms of the
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number of ambulances required. Using the third model, two dis-
tinct mechanisms causing boarding time are analyzed: excessive-
flow-induced boarding and ambulance-induced boarding. The rela-
tive effect of these depends on the testing policy implemented by the
hospital management. We also find that the effects from extended
boarding time are most prominent during night and weekends.

5.1 Introduction

The COVID-19 pandemic has put the health care sector in many countries under
pressure. In Norway, societal restrictions, such as closing down public institutions
and instructing social distancing, were imposed on the 12th of March 2020. More-
over, the hospitals reduced the elective patient activity to free resource capacity,
resulting in a decrease in the number of inpatient stays in March and April by 39%
compared with the same period in 2019. Furthermore, presumably due to less acci-
dents and the fact that people are reluctant towards seeking medical assistance in
danger of becoming infected, the activity related to emergency patients decreased
by 19% in the same period compared with 2019 (The Norwegian Directorate of
Health, 2020).

The main contribution of this paper is to demonstrate how discrete event simu-
lation (DES) can be used to provide decision support for the hospital management
when preparing for the pandemic. The second contribution is a novel approach to
model boarding time in the emergency department (ED). Boarding occurs when
downstream units are not able to serve patients at the rate at which the patients
are ready to leave the ED, causing additional demands for beds in the ED. Board-
ing time is defined as the time between the decision made by a physician to admit
a patient and the time the patient leaves the ED to an inpatient unit (Tang et al.,
2015).

St. Olavs Hospital is a university hospital located in Trondheim, Norway, treat-
ing about 60 000 inpatients each year. The work presented in this paper is based
on two projects that were conducted at St. Olavs Hospital between the 17th
of March and the 29th of March 2020. The first project was conducted for the
ED, and the second for the ambulance services. In each project, one DES model
was developed, and eventually these were implicitly combined into a third model.
During this period of time, the hospital management proposed that all COVID-19
suspected patients that enter the hospital should be tested for COVID-19 in the
emergency department (ED). Furthermore, these patients must be transported by
ambulance when going to the hospital, and this also applies to patients that are
not confirmed to be COVID-19 negative upon departure from the hospital. To
evaluate these proposals, the hospital management required to estimate the need
for both additional beds in the ED, and additional ambulances during the peak of
the pandemic.

On the 12th of March 2020, the Norwegian Institute of Public Health (NIPH)
released a ”recommended planning scenario” for the evolvement of the COVID-19
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pandemic in Norway, which aimed to provide the Norwegian hospitals with support
when preparing for the pandemic. On the 24th of March 2020, the recommended
planning scenario was updated with a higher number of COVID-19 patients hos-
pitalized at peak of the pandemic. Both scenarios were used as input for our three
models.

The rest of the paper is outlined as follows. In Section 5.2, relevant literature
is presented to provide a context for our contribution. Then, in Section 5.3 we
present the objectives of the study, the basic assumptions, the logic of the models
and the data used to perform the studies. The scenarios considered for analysis
are presented in Section 5.4, while the simulation results are provided in Section
5.5. Finally, in Section 5.6 we discuss the main implications of our findings and
conclude the paper.

5.2 Literature

ED crowding, a consequence of a simultaneous increase in the demand for health
care and a deficit in available hospital and ED beds, has become a significant public
health problem (Bair et al., 2010). A growing body of evidence suggests that ED
crowding is linked to adverse quality of care, such as medication errors, patient
dissatisfaction and staff burnout (Valipoor et al., 2021). One cause of ED crowding
is boarding patients that experience a delay in transfer to hospital wards (Tang
et al., 2015). Only 7% of the papers reviewed by Vanbrabant et al. (2019) include
boarding time as a key performance indicator, but they were all published in the
last 10 years. This confirms the growing interest in ED boarding as a research
topic within operations research.

To model ED boarding time, downstream units should be regarded. However,
this adds modeling complexity, and some authors sample boarding times to omit
this complexity (De Boeck et al., 2019; Carmen et al., 2014; Bair et al., 2010).
Other contributions, like Kolb et al. (2007, 2008) explicitly include the inpatient
unit to obtain realistic boarding patterns. Kolb et al. (2007) investigate the effect of
the inpatient unit utilization on ED crowding, while Kolb et al. (2008) evaluate the
effect of different buffer concepts. Wood and Murch (2020) develop a continuous
Markov chain to model a stroke pathway with different units. Unit capacities are
part of the model formulation, and capacity shortage induces delays in patient
transfer.

In this paper, we model ED boarding through an implicit coupling of two
models, where output data from one model is used as input for the other. This
data is used to model the downstream ward capacity through simple counting
rules, allowing us to obtain realistic boarding patterns in the ED, and maintain a
low model complexity.

DES has also been used to evaluate ambulance systems. Aboueljinane et al.
(2013) review the literature on simulation models applied to such systems and find
that most simulation studies focus on medium-term decisions such as the deploy-
ment problem and long-term decisions such as dimensioning of resources. Lam
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et al. (2014) use DES to evaluate different strategies for reducing ambulance re-
sponse times, defined as the time it takes for a dispatched ambulance to arrive on
scene. Lutter et al. (2016) use DES to compare different strategies for ambulance
location planning. They compare five optimization models that are used to facili-
tate ambulance location, and use simulation to compare the solutions in terms of
the proportion of calls that are served within the time threshold.

Currie et al. (2020) address how simulation modeling can help reduce the
impact of COVID-19. The authors present different problems where simulation
can be used as decision support. One of the problems they highlight is related to
capacity of inpatient hospital beds and critical care.

Several authors apply DES to provide decision support in relation to the
COVID-19 pandemic. Wood (2020), and Melman and Cameron (2021) both con-
sider the trade-offs related to decreasing the activity for nonCOVID-19 patients
during the pandemic. Mallor et al. (2020) aim to predict the number of beds
needed by COVID-19 patients both in the Intensive Care Unit and in the rest of
the hospital for the coming weeks. In addition to estimating the bed requirements
imposed by the COVID-19 patients, Le Lay et al. (2020) also evaluate different
policies for managing the increased demand for beds. Wood et al. (2020) aim
to predict the number of deaths, which they divide into capacity-dependent and
capacity-independent deaths, caused by the COVID-19 pandemic. They analyze
different scenarios with regards to both the loading of COVID-19 positive patients
and the number of intensive care beds available. Finally, Asgary et al. (2020) ap-
ply DES to evaluate different settings related to a drive-through facility for mass
vaccination.

This paper adds to the literature on how DES can be a viable tool for decision
support when preparing for a state of pandemic. In addition, we extend on the
literature on ED boarding by proposing a new method for modelling a downstream
ward and the ambulance waiting time experienced by inpatients leaving this ward.
In this specific problem, two sources of ED boarding are identified and quanti-
fied, but we believe that similar methods can be applied to identify and quantify
mechanisms that cause boarding in other systems.

5.3 Materials and methods

Three cases are considered in this paper; the ED, the ambulance and the combined
case, and one DES model is developed for each case. These are referred to as the
ED model, the ambulance model and the combined model. Before describing the
models, the objectives of the study and a set of basic assumptions are presented.
To describe the three DES models, the STRESS guidelines proposed by Monks
et al. (2019) are used.
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5.3.1 The objectives of the study

The purpose of the study is to provide decision support for the hospital manage-
ment when preparing for a state of pandemic. The first objective is to estimate the
number of beds that must be present in the ED to host COVID-19 suspected pa-
tients that wait for a COVID-19 test result (the ED model). The second objective
is to estimate the number of ambulances required to obtain similar response times
for the most urgent patients as in a prepandemic state (the ambulance model). We
here define response time as the time it takes from the transport request emerges
to an ambulance is assigned the mission. The third objective is to estimate the
additional number of (boarding) beds required in the ED when considering the de-
layed transfer of patients from the ED to the COVID-19 ward, due to the lack of
available beds in the COVID-19 ward (the combined model). All estimates should
reflect the demand during the peak of the pandemic, and different COVID-19
testing policies.

5.3.2 Basic assumptions

In this section, we specify the assumptions that were made at the time when the
two projects were performed.

# of COVID-19 positive 
admissions

Peak period Time

COVID-19 
positive 

population

nonCOVID-
19 

population

COVID-19 
suspects

nonsuspects

Figure 5.1: The two patient populations considered, and how they are
divided into COVID-19 suspects and nonsuspects. All COVID-19 positive
patients are COVID-19 suspects when arriving at the hospital, so is a share
of the patients from the nonCOVID-19 patient population.

Patient groups

In all three cases, the emergency patients are considered. We define that the
patients are divided into two groups: those that require a stay at the hospital due
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to their COVID-19 disease, and the rest. In Figure 5.1, the groups are labelled as
the COVID-19 positive and the nonCOVID-19 population, respectively.

As we cannot know to what group a patient belongs before receiving the test
results, the patients arriving at the hospital are divided into two categories: those
with a COVID-19 suspicion and those without. All patients that are labelled as
COVID-19 suspects must be treated as if they belong to the COVID-19 positive
population until they are potentially clarified as belonging to the nonCOVID-19
population. We assume that all patients in the COVID-19 positive population
have symptoms that place them in the COVID-19 suspicion category. In addition,
we assume that a share of the patients that belong to the nonCOVID-19 patient
population have symptoms that qualify for placing them in the COVID-19 suspi-
cion category. The testing policy is decided on by the hospital management, and
a strict testing policy implies that the threshold for testing is low and that a large
share of patients are labelled as COVID-19 suspects. The red dashed line in Figure
5.1 illustrates how the nonCOVID-19 patient population is separated into either
COVID-19 suspects or nonsuspects.

The development of the pandemic

When regarding the development of the pandemic over time, initially, the number
of COVID-19 positive admissions increases. At a point in time, a peak period of
activity is reached, followed by a period of decreasing incidence. At the time when
the projects were conducted, we did not know for how long the peak period would
last. To obtain a conservative estimate of the resource requirements, we assumed
a peak period lasting longer than the average patient LOS. This implies that there
is a stationary period when the number of COVID-19 admissions is equal to the
number of COVID-19 patients leaving the hospital, and this period represents
the peak of COVID-19 positive patients present in the hospital simultaneously.
In comparison to the arrival peak, this peak is delayed by the time equal to the
average patient LOS, and we refer to it as the delayed peak period.

In addition to the two ”recommended planning scenarios”, NIPH provided
estimates of the average LOS of the COVID-19 positive patients. Based on this
information, and since we assume a stationary system (with days as the time
resolution) during the delayed peak period, Little’s formula (Little, 1961) is used
to derive the daily arrival rate of COVID-19 positive patients entering the hospital.

The flow of patients through the hospital

All COVID-19 suspects are admitted to the COVID-19 area upon arrival at the
ED, where testing is performed. If the test results indicate a COVID-19 disease,
the patient is transferred to a hospital ward for treatment. If no beds are available
in the downstream ward, patients remain in the ED until a bed becomes vacant.
This additional waiting time is referred to as the boarding time, and patients
require a bed while waiting to be admitted in the downstream ward. As a simpli-
fication, we aggregate the total bed capacity devoted for the COVID-19 positive
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patients to a common resource, referred to as the COVID-19 ward. The COVID-
19 positive patients stay in the COVID-19 ward until they leave the hospital by
ambulance. Furthermore, each patient that is not confirmed to be COVID-19
negative in the ED requires an ambulance upon departure, also those that were
labeled as nonsuspects upon arrival at the ED.

At the time when the projects were conducted, it was decided by the hospital
management to assume that the bed capacity for treating COVID-19 patients is
sufficient during the peak period. The total bed capacity at St. Olavs Hospital is
approximately 1000 beds, and elective patient activity will be adjusted to provide
beds for the COVID-19 positive patients. We therefore assume that the bed ca-
pacity in the COVID-19 ward is sufficient and constant during the delayed peak
period.

The arrival process of COVID-19 positive patients

Even though the number of COVID-19 patients resting in the COVID-19 ward is
assumed to be stationary during the delayed peak period (on a daily basis), the
number of COVID-19 patients present in the ED is non-stationary (on a hourly ba-
sis). We assume that patients arrive independently of each other and with varying
intensity, and we therefore model the patient arrival processes as nonhomogeneous
Poisson processes. We assume that the arrival process of COVID-19 positive pa-
tients to the ED is similar to the arrival process of semi-urgent patients, who
mainly arrive at the ED during daytime. This is based on the assumption that the
progression of symptoms is gradually increasing, which makes it possible to avoid
traveling during night.

The arrival processes of requests in the ambulance model are also modelled as
nonhomogeneous Poisson processes. We assume that all patients that will prove
to be COVID-19 positive are transported with an ambulance to the ED. Together
with the assumption that the time between a request for ambulance and the arrival
at the ED is generally small, this justifies the choice to model the arrival process
of patients belonging to the COVID-19 positive population with the same process
as we used to generate the arrival of these in the ED model. The patients that
are not confirmed to be COVID-19 negative upon departure are assumed to be
discharged mainly during daytime, and the the same process is used again to model
the discharge process. Even though the processes are the same, the intensities are
adjusted to fit the associated expected arrival/ discharge rates.

5.3.3 The logic of the models

In this section, the logic of the three models are presented.

The ED model

In the ED model, we consider the flow of emergency patients with a COVID-19
suspicion entering the ED. These patients must be isolated from the nonsuspects,
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Figure 5.2: The system modelled in the ED case. The dashed arrows
illustrate the flow of tests that are taken immediately after the patient
is assigned a bed. The tests queue up in front of the analysis machine,
and patients cannot leave the ED before receiving the outcome of the test
analysis.

and enter an area referred to as the COVID-19 area.

In Figure 5.2, the system considered in the ED model is illustrated. There is
a number of beds available in the COVID-19 area, and each patient is assigned a
room and a bed upon arrival. A COVID-19 test is performed just after the arrival,
and the patients must remain in the COVID-19 area until their test results are
ready. If a patient enters the ED, and no beds are available in the COVID-19 area,
the patient is escorted to a buffer area, referred to as the tent area, with additional
beds. Tests are also performed in the tent area, and the process is not delayed for
patients that stay in these beds. We assume that patients who are placed in the
tent area are not transferred to the COVID-19 area if beds become vacant there.

The COVID-19 test samples are batched together, and analyzed in a machine.
Only one machine is available, and only one batch can be analyzed at a time. This
means that patients that enter just after a batch is initiated must wait to have
their tests analyzed until this batch is done.

We assume that all ED activities required by the patients are undertaken while
the patients wait for the test results. When the test results are ready, the patients
leave the ED. After a patient leaves, the room must be sterilized independently of
the test result.

The entities of the simulation model are the COVID-19 suspected patients
entering the ED, while the resources are the beds in the COVID-19 and the tent
area, and the machine for analyzing the COVID-19 tests. The state of the system
is given by the number of patients in the COVID-19 and the tent area. The events
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in the simulation model are patients arriving at the COVID-19 area, patients being
assigned to a bed either in the COVID-19 or the tent area, starting the analysis of
a COVID-19 test batch, ending the analysis of a COVID-19 test batch, patients
leaving the COVID-19 or the tent area, starting the cleaning of a room after a
patient has left and finishing the cleaning of a room.

The ambulance model

The system modelled in the ambulance case is presented in Figure 5.3. There
are two categories of patient transports considered: the normal and the COVID-
19 transports. All patients that are either COVID-19 suspects when going to
the hospital or that are not confirmed to be COVID-19 negative upon departure,
require a COVID-19 transport. Patients that are not confirmed to be COVID-
19 negative constitute of those that were confirmed to be COVID-19 positive,
and those that were not tested for COVID-19 in the ED (the nonsuspects). The
remaining transports are normal transports.

A COVID-19 transport requires additional transportation time, because the
ambulance workers must wear an anti-infection coat, and the ambulance must be
cleaned after the delivery of the patient. All transports are characterized by an
urgency level and a required service time. If two patients request an ambulance
at the same time, and only one ambulance is vacant, the most urgent patient
is served first. We do not consider the position of the ambulances or the pick-up
destinations in the model, but the service times are stochastic to reflect a variation
in driving distances.

There is a number of ambulance cars available for patient transportation. Each
car can only transport one patient at a time, and a car is unavailable for new
missions during the entire service time of the patient that it is carrying. The
ambulance personnel are not explicitly considered in the model, but the number
of ambulances available through the day depends on the number of ambulance
personnel on duty at different times during the week.

The entities of the simulation model are the transport requests, and the re-
sources are the ambulances. The state of the system is given by the number of
patients in transportation and the number of patients waiting to be assigned an
ambulance (number of patients in queue). The events are a new transport re-
quest, an ambulance being assigned a patient, a patient leaving the ambulance,
starting the cleaning of an ambulance after a COVID-19 transport and finishing
the cleaning of an ambulance.

The combined model

This model extends the ED model, and the system under consideration is illus-
trated in Figure 5.4. After initial testing in the ED, all COVID-19 positive patients
are transferred to the COVID-19 ward to receive treatment, while the COVID-19
negative patients leave the system. If no beds are available in the COVID-19 ward,
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Figure 5.3: The system modelled in the ambulance case
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Figure 5.4: The system modelled in the combined case. The discharge time
from the COVID-19 ward and the the ambulance response time are both
sampled from the ambulance model output database.
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the COVID-19 positive patients must wait in a boarding bed in the ED until a
bed becomes vacant.

Under the assumption that a stay in a boarding bed does not extend the LOS
of a patient, we do not have to model the individual patients stay in the COVID-19
ward. However, it is sufficient to know the number of beds available at a given
point in time, and keep track of the relative difference from this point as patients
enter and leave the COVID-19 ward. This saves computational effort, as the length
of stay of COVID-19 patients is typically in the range of days and weeks, while
the stay in the ED is in terms of hours.

Both the number of patients present in the boarding beds and the COVID-19
ward beds are handled via counting. At the beginning of the simulated time, a
given number of beds are available in the COVID-19 ward. This is represented
with a counter that is set to equal the number of available beds. If a patient is
transferred from the ED to the COVID-19 ward, the counter is decreased by 1
as one less bed becomes vacant. There is also a counter for the boarding beds,
representing the number of patients resting in a boarding bed. If the counter
representing the COVID-19 ward is 0 (no beds available), and yet another patient
should be transferred to the COVID-19 ward, the boarding bed counter is increased
by 1.

When a COVID-19 positive patient is no longer in need of hospital services,
an ambulance is requested to transport the patient out. Then, following a delay,
an ambulance arrives to transport the patient home. When a patient leaves the
COVID-19 ward, the corresponding counter is increased by 1, as one more bed
becomes vacant. If there are patients resting in the boarding beds when a patient
leaves the COVID-19 ward, one patient is transferred from a boarding bed to the
vacant bed in the COVID-19 ward. The net change of patients in this process
is -1 in the boarding beds, and 0 in the COVID-19 ward. At the same time,
the boarding time of the patient who has stayed in a boarding bed the longest is
recorded.

Two mechanisms that cause boarding are identified. First, having many pa-
tients ready to leave the ED at the same time (following a test batch) may cause
prolonged boarding time if not enough beds are vacant in the COVID-19 ward. We
refer to this as excessive-flow-induced boarding. Second, additional boarding time
might occur when patients that are ready to leave the COVID-19 ward cannot
leave because no ambulance is available. This is referred to as ambulance-induced
boarding.

5.3.4 Data and experimentation

In the following we present the input data and specify the number of replications
used to conduct the studies. The outcome variables that we want to study are
referred to as the dependent variables, while the input variables that affect the
dependant variables and that we alter through the sensitivity analysis are called
the independent variables. Before performing the simulation study, preliminary
testing is performed to decide on the length of warm-up necessary to avoid transient
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effects, and the number of replications needed to ensure accurate results (Law,
2015).

The ED model

The expected arrival rate of the nonCOVID-19 patients at different hours of the
week is calculated based on historical data from St. Olav’s Hospital, 2019. The
weeks 37-47 were chosen by the ED management to represent normal weeks. As
stated in Section 5.3.2, the arrival process of semi-urgent emergencies is used to
model the arrival process of COVID-19 positive patients. The intensity is how-
ever altered to make sure that the weekly number of arrivals equals the estimates
provided by the NIPH scenarios.

There are 27 beds available in the COVID-19 area. Since we want to estimate
the need for additional beds required in the ED, the tent area is treated as having
infinite capacity. The analysis machine is used for evaluating tests taken both
in the ED and in other locations in the region. Each batch has a capacity of
approximately 100 test samples, and the tests performed in the ED are prioritized.
Even during the peak period, the test intensity in the ED will not require the entire
batch capacity. We therefore assume that a test batch has infinite capacity with
regards to the tests performed in the ED. Each batch is analyzed for 4 hours before
receiving the results. The cleaning of a room after a patient has left the ED takes
30 minutes.

For each scenario presented in Section 5.4, 200 replications of one simulated
week are performed, and one week warm-up is applied. In each replication, the
output data is aggregated to an hourly resolution, implying that we calculate the
average number of beds used during each hour of the simulated week. Based on the
200 samples, we calculate the hourly mean and hourly 90th percentile bed loading
during a week. The independent variable is the arrival intensity of COVID-19
suspects, while the dependent variable is the number of beds used in the tent area.

The ambulance model

Six subgroups of transport requests are considered in the model, and each subgroup
is associated with an urgency level. Sorted by decreasing urgency, the levels are red,
yellow, green and planned transports. For the nonCOVID-19 patient population,
we consider red (37%), yellow (36%), green (9%) and planned transports (18%)
going to the hospital. The fifth subgroup are patients that will prove to be COVID-
19 positive when tested in the ED. These patients request a transport to the ED
due to experiencing COVID-19 related symptoms, and they are categorized as
yellow transports. The last subgroup are patients that are not confirmed to be
COVID-19 negative when leaving the hospital, and these are categorized as planned
transports. In Figure 5.5, the subgroups are displayed, and we include whether
they require a normal or a COVID-19 transport.

The expected arrival rate of requests generated by the nonCOVID-19 popula-
tion at different hours of the week is calculated based on historical data from St.
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Olav’s Hospital, 2019. The weeks covering January to March were chosen by the
management at the ambulance services to represent a normal period. As stated in
Section 5.3.2, to generate requests from subgroups five and six, the arrival process
of semi-urgent (green) emergencies to the ED is used. The intensity is however
altered to fit the scenarios of the sensitivity analysis.

To obtain realistic transport durations, the time spent for each transportation
is sampled from the set of historical transport durations from 2019. For COVID-19
transports, 45 minutes are added to the sampled duration to include the cleaning
of the ambulance. The number of ambulances available during the week is identical
to the ambulance schedule that was present when the project was conducted.

For each scenario presented in Section 5.4, 300 replications of one simulated
week are performed, and one week warm-up is applied. For each patient request,
the response time is recorded. The records are used to calculate the mean response
times for patients within each urgency category. The independent variables are
the arrival intensity of transport requests and the number of ambulances available,
while the dependent variable is the ambulance response time.

The combined model

All input data used for the ED model is also applied in the combined model. In
addition, two input parameters are used to model the discharge process of pa-
tients leaving the COVID-19 ward: the desired discharge time of patients and the
corresponding ambulance response time. This data is collected from running the
ambulance model for one week (following one week warm-up) with the number
of ambulances necessary to obtain prepandemic waiting times for red and yellow
emergency patients. The ambulance model is run 500 times, producing a data set
containing 500 replications of both the desired discharge times and the correspond-
ing ambulance response times through the week. The data is stored according to
the simulated replication (1 to 500) and weekday (1 to 7). For example, on Tuesday
in replication 30 there may be 18 COVID-19 positive patients leaving the COVID-
19 ward. Patient 13 is discharged at 15:00 and gets an ambulance at 15:20, yielding
an ambulance response time of 20 minutes for this patient.

For each simulated day in the combined model, one replication is sampled, and
the data from the corresponding weekday in the sampled replication is used to gen-
erate the discharge time of patients in the COVID-19 ward, and the corresponding
ambulance waiting time.

One adjustment is made to the input data of the ambulance model when pro-
ducing the data base. Recall that the last subgroup of patients introduced in Sec-
tion 5.3.4 contains both the COVID-19 positive patients resting in the COVID-19
ward, and patients that were not tested for COVID-19 in the ED. In the combined
model, we are not interested in the latter group of patients. To exclusively model
the requests coming from the COVID-19 ward, the last subgroup of patients in-
troduced in Section 5.3.4 is therefore split in two when collecting and storing data
from the ambulance model. Furthermore, since we model the delayed peak period,
identical distributions are used to generate COVID-19 positive patients entering
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the ED and COVID-19 positive patients that are discharged from the COVID-19
ward. As we want to estimate the need for boarding beds during the peak of
the pandemic, we model the boarding bed capacity as unlimited and evaluate the
usage of these.

For each scenario presented in Section 5.4, 200 replications of one simulated
week are performed with the combined model. The independent variables are the
arrival intensity of COVID-19 suspects, the departure intensity from the COVID-
19 ward and the ambulance response time, while the dependent variable is the
boarding bed requirement. In contrast to previous simulations, we are here inter-
ested in the transient period starting with the delayed peak, so warm-up is not
applied. Furthermore, each simulated replication is initiated at 00:00 in the night
with no patients in the COVID-19 area and 3 vacant beds in the COVID-19 ward.
The experiment is run for two modes. In the first mode, the ambulance response
time is set to zero, implying that we only observe excessive-flow-induced boarding
time. In the second mode, ambulance response time is added.

5.4 Implementation and the setup of the sensitiv-
ity analysis

An Intel(R) Core(TM) i7-8550U CPU @ 1.80 GHz, 16 GB RAM computer is used
when performing the simulations. The simulation models are written in Python
3.7 and the package SimPy. To perform the random sampling, the algorithms
included in Python is used. To reduce output variance, common random numbers
are applied when performing sensitivity analysis. In the first replication, a seed is
set, and it is then increased by one for each subsequent replication.

A scenario tree is constructed to guide the sensitivity analysis. The tree con-
tains three parameters that represent aspects of uncertainty that are common for
the cases:

• The number of COVID-19 positive patients arriving for the ED each day

• The size of the nonCOVID-19 population

• The testing policy, defining the share of nonCOVID-19 patients that will be
labelled as suspects

In the first branching, the daily arrival rate of COVID-19 positive patients to
the hospital during the peak period is represented. In the second branching, the
loading intensity of patients that belong to the nonCOVID-19 patient population,
in relation to the reference loading, is represented. The reference loading is the
expected number of emergency patients that entered the ED or required an am-
bulance each day in a normal prepandemic week. The third branching represents
the testing policy, describing the threshold of categorizing patients as COVID-19
suspects. In reality, the threshold can be related to what symptoms that should
trigger a test. The policy levels are given as the percentage of individuals from the
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Table 5.1: The 16 scenarios applied in the models.

Scenario # of
COVID-
19 positive
(µC19)

nonCOVID-
19 relative
to normal

(α)

Share of
suspects in
nonCOVID-

19 (β)

E[suspects] E[transports]

1 12 80% 33% 31 96
2 12 80% 50% 41 88
3 12 80% 67% 51 81
4 12 80% 100% 70 67
5 12 100% 33% 36 114
6 12 100% 50% 48 105
7 12 100% 67% 60 96
8 12 100% 100% 84 78
9 21 80% 33% 40 114
10 21 80% 50% 50 106
11 21 80% 67% 59 99
12 21 80% 100% 79 85
13 21 100% 33% 45 132
14 21 100% 50% 57 123
15 21 100% 67% 69 114
16 21 100% 100% 93 96

nonCOVID-19 patient population that are labelled as COVID-19 suspects when
entering the ED or requesting an ambulance to the hospital.

One split is applied in the first and the second branch, while we have four
levels of testing policies in the third branch. The split in the first branch reflects
the two scenarios provided by NIPH, with 12 and 21 COVID-19 positive patients
entering each day respectively. The split in the second branch was discussed with
the hospital management, and set to be 80% and 100%. Also the last split was
discussed with the hospital management, and the values 33%, 50%, 67% and 100%
were applied to cover a wide range of testing policies. In total this yields 16
scenarios. The scenarios are listed in Table 5.1. For each scenario we obtain the
expected number of both COVID-19 suspects arriving for the ED, and transport
requests each day. Note that there are intra-day variations in the expectations, but
these are not shown in the table. For more information on how the the expected
number of both COVID-19 suspects arriving for the ED and transport requests
are calculated, see Appendix A.2.

5.5 Results

In this section, the results from all three models are presented. The hospital man-
agement was mostly interested in the scenarios with the high COVID-19 positive
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patient loading, which are represented by scenarios 9 to 16. These are therefore
emphasized in the following. The main results for all scenarios are presented in
Table A.1 in Appendix A.1.

5.5.1 Results for the ED case

Figure 5.6 provides results for the ED bed loading in scenarios 9 to 12, which differ
in the testing policy. The light shaded area represents the beds in the COVID-
19 area, while the dark shaded area is the beds in the tent area. The borders
of the shaded areas indicate the mean and the 90th percentile measures for each
hour of the week. The mean represents the mean bed requirement over the 200
replications, while the 90th percentile indicates a threshold where only 20 out of
200 measured bed requirements for a given hour of the week equal or exceed the
threshold.

Note how the testing policy impacts the number of beds that must be estab-
lished in the tent area. In scenario 12, all patients are tested upon arrival to
the ED. In this case, the tent capacity should be similar to the capacity of the
COVID-19 area. Furthermore, the need for additional beds is much less during the
weekends. In all scenarios, the use of a tent area emerges at around 12:00 (noon)
and the peak number of patients in the tent area is observed between 16:00 - 19:00.
The number of patients in the COVID-19 area falls towards the evening, implying
that the patients resting in the tent area can be moved inside (although this is not
done in the simulation model). The total number of additional beds needed, if we
allow for patients to transfer from the tent area to the COVID-19 area, can be
derived from the simulated results. This is done by adding the beds used in the
COVID-19 area and the tent area, and subtract the capacity of 27 beds (if this
becomes negative, the value is set to zero). The resulting number of additional
beds in the 90th percentile level can be seen as the solid red line in Figure 5.6.
Depending on the testing policy and the size of the nonCOVID-19 population at
the peak of the pandemic, there is a need for between 0 to 41 additional beds
during the weekdays, and 0 to 13 additional beds in the weekend.

5.5.2 Results for the ambulance case

For each scenario, we estimate the minimum number of additional ambulances
required to ensure mean response times for red and yellow emergency patients
that are equal to or shorter than those of the prepandemic state. To represent
the prepandemic situation, the model is first run for a base case. That is, we
only include requests from the nonCOVID-19 patient population and apply the
ambulance capacity available in a prepandemic situation.

Figure 5.7 illustrates the mean utilization of ambulances and the mean response
time for different patient categories during the week from simulating the base case.
During the weekdays, except from Friday, the ambulance capacity is satisfying
yielding short response times. On Friday, the combination of more requests and
less capacity available during the evening causes significant waiting times. The
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Figure 5.6: Results from the ED model: The bed loading in the COVID-
19 area (dashed lines) and the tent area (solid black lines) through the
week for scenarios 9 to 12. The bands cover the area between the mean
and the 90th percentile. The solid red line indicate the 90th percentile
bed requirement in the tent area if patients can be transferred from the
tent area to the COVID-19 area. The horizontal dashed line indicates the
planned bed capacity in the COVID-19 area.
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Figure 5.7: Results from the ambulance model: The base case. Top: Mean
utilization of the ambulance capacity. Bottom: Mean response time during
the week
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Table 5.2: Results from the ambulance model: The number of ambulances
added in scenarios 9 to 16 to obtain similar mean response times as in the
base case

Scenario Red Yellow Green Planned

9 5 5 6 10
10 5 5 6 10
11 5 5 6 9
12 5 5 6 7
13 6 6 7 12
14 6 6 7 12
15 6 6 7 11
16 6 6 7 9

waiting times are also prolonged during the weekend because less ambulances are
available.

To obtain the preferred response times in the 16 scenarios, the ambulance re-
sources are added flat. That is, for each additional ambulance, the resource is
available through the entire week. When the number of ambulances is increased,
the response time decreases towards the base level. The resulting number of addi-
tional ambulances needed in scenarios 9 to 16 is presented in Table 5.2. In general,
because of the queue prioritization rules, the base level response times for the most
urgent patient groups are easier obtained compared with the less urgent patients.
Adding more ambulances than what is suggested from just regarding the response
times for red and yellow requests should be considered, as it dramatically decreases
the expected response time for the planned requests. If we consider Scenario 13,
going from 6 to 12 additional ambulances yields a decrease in mean response time
for planned patients from 585 to 63 minutes. The corresponding values for red and
yellow patients are 11 to 3, and 21 to 4 minutes respectively.

As for the ED case, the results in the ambulance case are sensitive to the
testing policy. The planned patient category is most sensitive to the policy level.
A strict testing policy yields fewer COVID-19 transports leaving the hospital,
causing relatively short response times for planned patients in these scenarios since
the demand for planned transports is reduced. Conversely, in the ED case, a strict
testing policy yields a high demand for additional beds in the ED, making those
scenarios more demanding.

5.5.3 Results for the combined case

When generating the ambulance waiting time data, 5 and 6 additional ambulances
were added to scenarios 9 to 12 and 13 to 16 respectively. Furthermore, we assume
that the boarding beds are located in the ED.
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Figure 5.8: Results from the combined model: 90th percentile number of
additional beds when considering boarding for scenarios 9 and 12. The label
Tent represents the number of beds needed in the tent area. Tent + Flow
is the number of additional beds when adding the excessive-flow-induced
boarding. Tent + Flow + Ambulance represents the number of additional
beds when also adding the ambulance-induced boarding.

Figure 5.8 illustrates, for scenarios 9 and 12, the 90th percentile number of
additional beds needed in the ED when considering ED boarding and compares it
with the result when boarding is disregarded. The results clearly indicate the need
for excessive bed capacity in the ED when entering the peak period. The excessive-
flow-induced boarding results in an increased bed loading primarily during night,
as the patients must wait until the next morning for beds to become vacant in
the COVID-19 ward. When adding ambulance waiting time, the problems related
to boarding starts earlier in the day because patients leaving the COVID-19 ward
during the day are delayed. During night, the ambulance waiting time is short
and the effect of ambulance-induced boarding is less prominent. Note that because
Friday is a busy day for the ambulance service (see Figure 5.7), the ambulance-
induced boarding is most prominent on this day. Finally, the effect of ambulance-
induced boarding is less in scenario 12, caused by shorter ambulance waiting times
due to the strict testing policy.

Figure 5.9 illustrates the requirement for additional beds if we allow for a
transfer of patients from the tent area and the buffer beds to the COVID-19 area
in scenarios 9-12, and compares it with the results when boarding is disregarded.
As the simulations with boarding are run without a warm-up period and starting
from an empty system, the results cannot be directly compared. However, they
illustrate some important aspects, like the fact that excessive ED boarding will
cause an additional need for beds both during the late evening and in the week-
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Figure 5.9: Results from the ED model and the combined model: Com-
parison of bed usage when boarding is considered and not for scenarios
9-12. The results illustrate the 90th percentile number of additional beds
required in the ED when allowing for patients to transfer from the tent area
and the buffer beds to the COVID-19 area
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ends. Furthermore, we see that the difference between the results when regarding
boarding and not is larger for scenario 9 compared with scenario 12, reflecting the
shorter ambulance response times in scenario 12.

5.5.4 Managerial implications

The results from the ED and the ambulance model were used to inform the hospital
management, partly through presentations for the hospital pandemic committee
and partly as input for a managerial report on how to perform the ambulance
planning through the pandemic. Based on these results, the following decisions
were made when preparing for a state of pandemic:

• Outpatient clinic examination rooms close to the ED were used to provide
additional bed capacity for COVID-19 suspects that required testing in the
ED.

• Additional resources for transporting patients to and from the hospital were
established, including Red Cross ambulances, and military ambulances op-
erated by the Home Guard.

In August 2020, some months after the first peak in Norway, the management
requested updated analysis on the bed requirements in the the ED. At this point in
time, new testing regimes had become available, including the option to buy tests
that could provide answers within 90 minutes instead of 4 hours. The management
wanted to know how the bed requirements would change given different levels
of available 90-minutes-tests. To provide decision support, the ED model were
extended and new results were presented for the hospital management.

5.6 Discussion

In this paper we have shown how a set of DES models can be applied to provide
decision support for the hospital management when time is limited. Even if the
models presented are rather simple, the analyses performed proved to be of great
value to the hospital management. The results are highly sensitive to the NIPH
planning scenarios, and the relative loading of emergency patients compared with
the prepandemic situation. In contrast to the testing policy, these cannot be
controlled by the hospital management.

When regarding the number of beds needed in the ED, the results are very sen-
sitive to the testing policy. A strict testing policy increases the need for additional
beds in the ED considerably, and consequently the number of nurses required. As
a consequence, resources must be reallocated from elective activity, or the capacity
must be increased. When regarding the ambulance response times of red and yel-
low transports, these decrease with a strict testing policy. However, the differences
are small and the number of ambulances required to obtain prepandemic response
times are not affected by the testing policy. Based on these observations, a less
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strict testing policy seems reasonable. However, the consequences of admitting a
COVID-19 positive patient into a non COVID-19 ward can be fatal, and the costs
related to increased resource capacity must be weighted against the potential of
ignoring a COVID-19 positive patient in the ED.

When boarding is considered, the bed requirement increases, especially during
night and in the weekends. If a less strict testing policy is implemented, the
boarding time is to a large extent affected by the ambulance response times of
patients discharged from the COVID-19 ward, that are categorized as planned
transports. Based on this observation, increasing the ambulance capacity further
to decrease the waiting times for planned transports seems reasonable. This will
have less effect if a strict testing policy is implemented.

We have demonstrated how boarding can be modelled with simple counting
rules. This saves computational effort, as we can omit the explicit modelling of
patient stay in the downstream ward. Furthermore, initiating the model is very
simple, as the vacant bed capacity is set by a single number. We assumed that
the rate of patients leaving the COVID-19 ward was equal to the rate of patients
entering the ward. This assumption implies that a stay in a boarding bed does
not affect the LOS, meaning that we regard the boarding beds as a server and not
as a queue, and consider an infinite server system. In the opposite case, where a
stay in the boarding bed delays the healing process, the boarding beds should be
considered as a queue for service at the ward. Then, the rate of patients leaving
the COVID-19 ward depends on the bed capacity and we may have rates that are
unequal.

The counting approach is not appropriate if extended boarding affects the LOS
of patients. Extended boarding can sometimes cause misplacement of patients
and delay the treatment process. However, boarding time is often measured in
the range of minutes and hours, while the LOS is typically several days. In many
cases it should therefore a fair assumption that the LOS is not affected by extended
boarding time.
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Chapter A

Appendices

A.1 Main results
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Table A.1: Main results for the three cases, scenarios 1 to 16. For the ED
and the combined case, the maximum 90th percentile number of additional
beds both during the week and the weekend is presented. For the ambulance
case, the number of additional ambulances required to maintain base case
response times are included. In the combined case, the analysis is performed
with the number of additional ambulances as given in the table.

Scen. Max beds
week

Max beds
weekend

Additional
ambulances

Max beds
week

(boarding)

Max beds
weekend

(boarding)

1 0 0 4 5 0
2 7 0 4 16 3
3 15 0 4 26 6
4 28 2 3 37 13
5 5 0 5 13 2
6 15 0 5 26 8
7 23 0 5 33 11
8 38 9 4 46 18
9 9 0 5 23 10
10 16 0 5 31 13
11 23 0 5 38 15
12 32 8 5 45 18
13 12 0 6 31 18
14 22 0 6 39 19
15 29 3 6 41 21
16 41 13 6 51 23
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A.2 Calculating the expected number of suspects
and transports

Here, we describe how we calculate the expected number of both COVID-19 sus-
pects arriving for the ED and transport requests each day.

The ED and the combined cases share the same scenario tree, and the expected
number of COVID-19 suspects that enter the ED each day in each scenario is
calculated by the following formula:

E[suspects] = µC19 + µNon · α · β (A.1)

Here, µC19 is the expected number of COVID-19 positive patients entering the
ED each day at the peak of the pandemic, and µNon is the expected number of
emergency patients belonging to the nonCOVID-19 patient population that enter
the ED each day. This number depends on the weekday. The parameter α is used
to adjust the expected patient activity (the second branching), while β represents
the share of patients belonging to the nonCOVID-19 patient population that are
categorized as COVID-19 suspects (the third branching). Note that since µNon

depends on the weekday, the expected number of suspects given here represents
the average day, but the number varies between weekdays.

To calculate the daily total number of ambulance transports in each scenario,
the following equation is used:

E[transports] = (µNon,A · α · β) + (µNon,A · α · (1− β))

+2µC19 + (µNon,A · α · (1− β))

= 2µNon,A · α
(
1− β

2

)
+ 2µC19,A

(A.2)

Here, µNon,A is the expected number of patient transports to the hospital
generated by the nonCOVID-19 patient population, and its value depends on the
weekday. The parameters α, β and µC19 have the same interpretation as in the
ED case. The first term represents the expected number of COVID-19 transports
to the hospital generated by the nonCOVID-19 patient population, while the sec-
ond term is the number of normal transports generated by the same population.
The COVID-19 positive patients require a Covid transport both to and from the
hospital, which is ensured by the third term. The final term represents the trans-
portation of COVID-19 suspects from the nonCOVID-19 patient population that
require an ambulance when leaving the hospital. Note that this equals the second
term and represents the fact that all patients that are not tested for COVID-19 in
the ED require an ambulance when leaving the hospital.
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