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Abstract

Research on medical devices in the past has uncovered security vul-
nerabilities that threaten the safety and privacy of patients. Over the
past decade, Internet of Things (IoT) devices, as well as medical devices,
have become connected. The implementation of wireless communication
has enabled remote monitoring of patients and simultaneously opened an
additional attack surface. The lack of insight into the security practices of
medical device manufacturers has led research organizations to investigate
and perform security analysis to assess their security implementations.
Recent research on medical devices has shown that they contain security
vulnerabilities that an adversary could exploit to threaten patient safety
and privacy. This Master’s thesis is part of a collaborative research effort
between NTNU and SINTEF.

In this thesis we follow a black box approach to reverse engineering
the cryptographic code sections of the Biotronik CardioMessenger Smart
3G Home Monitoring Unit’s (HMU) firmware. To perform the analysis,
we utilize free and open-source software with commercial off-the-shelves
(COTS) tools on the devices that are available in the SINTEF lab. The
results show that physical access to the HMU and its on-board debugging
interface, makes physical and remote attack scenarios that threaten the
patient’s safety plausible. Our analysis show that the HMU might be
susceptible to a Denial-of-Service attack based on our new knowledge
of its communication protocol. My thesis also proposes the necessary
mitigations that are needed to secure the HMU.

The reverse engineering methodology and process enable further re-
search on the Biotronik HMU'’s remaining interfaces, as well as HMUs
of other manufacturers. The reverse engineering methodology developed
in this thesis can therefore be used as a guideline for future reverse
engineering projects.






Sammendrag

Tidligere forskning pa medisinske enheter har avdekket sarbarheter
som truer pasientens sikkerhet og personvern. I lgpet av det siste tiaret
har medisinske enheter fulgt i fotsporene til IoT og blitt tilkoblede. Imple-
menteringen av tradlgs kommunikasjon har muliggjort telemonitorering
av pasienter og samtidig apnet for nye angrepsoverflater. Mangelen pa
innsikt i sikkerhetspraksisen hos produsenter av medisinsk utstyr, har
fort til at forskningsorganisasjoner gransker og gjennomferer sikkerhets-
analyser for & vurdere deres sikkerhetsmekanismer. Nylig forskning pa
medisinske enheter har vist at de inneholder sikkerhetssvakheter som en
trusselaktor kan utnytte for & true pasientens sikkerhet og personvern.
Denne masteroppgaven er del av et forskningssamarbeid mellom NTNU
og SINTEF.

I denne masteroppgaven folger vi en black box-fremgang for & dekon-
struere de kryptografiske kodeseksjonene i programvaren til Biotronik sin
CardioMessenger Smart 3G hjemmemonitoreringsenhet (HMU). For a
utfere analysen har vi brukt gratis og apen-kildekode programvare med
hyllevareutstyr pa enhetene som er tilgjengelig i SINTEFs lab. Resultate-
ne viser at fysisk tilgang pa HMU og kretskortets feilsgkingsgrensesnitt,
gjor det rimelig a4 anta at bade fysiske og tradlgse angrepsscenarioer som
truer pasientens sikkerhet er mulige. Var analyse at HMU-en muligens
er sarbar for et tjenestenektangrep basert pa vare nye funn i kommuni-
kasjonsprotokollen. Denne masteroppgaven foreslar ogsa de ngdvendige
mottiltakene som trengs for a sikre HMU-en.

Reverse engineering-metoden og prosessen beskrevet i oppgaven mu-
liggjor videre forskning pa Biotronik HMU-ens gjenvaerende kodeseksjo-
ner, i tillegg til forskning p4 HMU-er fra andre produsenter. Reverse
engineering-metoden utviklet i denne oppgaven kan derfor bli brukt som
en fremgangsmate for fremtidige reverse engineering-prosjekter.
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Introduction

1.1 Context and Motivation

In the past few decades technological advancement has seen a rapid growth after the
invention of the Internet. The Internet has revolutionized the way we interact both
personally with social media and technically between machines. Today, most house-
hold electronics can be bought as a smart device, which implies inter-connectivity
to a local network or remotely to the Internet. Usually the smart device can be
controlled through an application on a computer or smartphone residing in the same
local network. These devices are part of the umbrella term, Internet of Things, or
IoT devices for short.

Connecting common household appliances are deemed both practical and innova-
tive, and therefore found in numerous homes nowadays. Appliances such as cameras,
automated lighting systems, alarm systems, and cameras. Devices and systems that
used to be standalone devices and today are used to improve security or to optimize
energy consumption in a modern home. Taking part in the IoT revolution has enabled
these devices to collect data and communicate with other devices on a the network.
This connectivity opens the possibility of device vulnerabilities being exposed on a
network-level.

Although cyber attacks and hacking might sound frightening in the context of
common IoT devices, there are other devices that also used to be standalone and
disconnected, which have become connected in the past decades. Devices that are
life-dependent for many people worldwide - that is implanted medical devices (IMD).
Medical devices have followed in the same footsteps and have become a part of the
IoT revolution. With the ability to be connected, a medical device can be used
actively in the treatment and monitoring of patients. It can also be used to notify
medical professionals about events concerning the patient’s well-being. This opens the
possibility of adjustable and customized treatment on a patient-level. It also enables
home care without the need of physical appointments at the hospital. Telecardiology
consequently saves large amounts of resources for doctors, companies, and the society
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as a whole. It also increases the safety of patients while saving them from frequent
clinic visits, and allows for a closer follow-up of their treatment.

The Pacemaker Ecosystem

The pacemaker or ICD is dependent on several other devices function and relay
information. Most pacemaker ecosystems consists of the same devices, the pacemaker,
the home monitoring unit, the programmer(i.e configuration device), and the vendor
servers. Between these devices are various communication channels to relay the
information.

Patient
Programmer

~ ]
B & =

’
L]

("N

()

na-

Network Doctor

Vendor’'s
data servers

Figure 1.1: A figure of the Pacemaker Ecosystem

Figure 1.1 shows all the devices in the pacemaker ecosystem!. The communication
between the devices are indicated with arrows. Each of the devices in the pacemaker
ecosystem is explained further below.

The pacemaker or ICD, the implanted medical device, is used to monitor
and support the heart by generating electrical impulses. The pacemaker logs are
stored in its internal memory and periodically transmitted wirelessly to the HMU.
The pacemaker has a wireless interface which communicates with the HMU and
the programmer through the Medical Device Radiocommunications Service (MICS)
communication spectrum, also referred to as MedRadio [8]. Modern pacemakers are
programmable and can be adjusted to fit the individual needs of each patient. The

IFigure 1.1 was designed using resources from Flaticon
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pacemaker is configured and programmable through the Programmer.

The Home Monitoring Unit or HMU, is a stationary device kept in the pa-
tients home. It is in many ways comparable to a home router, and receives the short
range wireless data from the pacemaker and then transmits the data using various
communication mediums depending on the manufacturer and model. Older HMU
models were connected by using telephone or Ethernet cables, while the latest gener-
ations of HMU devices use either 2nd/3rd generation telecommunications services or
a connection through the patient’s home Wi-Fi. The latest generations of HMUs are
also smaller and as mobile as a common smart phone, which also enables patients to
transmit their health- and monitoring data outside of their homes.

Vendor’s Servers receive the logs from the HMU after they are transmitted
through the appropriate communication medium. These servers are beneficial to
store large amounts of patient data because of the limited size and processing power
in the pacemaker and HMU. The cloud servers also makes patient data available
on-demand for the medical professionals, reducing the amount of hospital visits for
patients.

Programmer is a stationary configuration device that communicates with the
implanted medical device to configure the IMD’s settings, to retrieve operation logs
from the IMD, or to update the IMD’s firmware [9]. The programmer head is a
device at the end of a cord connected to the programmer, that is placed on the
patients chest for the programmer to wirelessly communicate with the IMD. The
programmer device is located in a hospital and is operated by a medical professional.

1.2 Scope

Our project will focus on the cybersecurity of a HMU device from Biotronik. The
research will focus on the CardioMessenger Smart 3G and how security is implemented
in the firmware. Specifically, we will perform a reverse engineering process with
suitable tools and scripts to find certain code sections of interest - mainly those
related to its cryptography functionality. The end goal is to find and document the
functionality of one of its communication protocols. The HMU’s protocol for sending
and receiving data to and from the data servers. We will also document the reverse
engineering process of a medical device, which can be used as a guideline for future
reverse engineering projects.

The manufacturer and devices are chosen based on devices available in the lab at
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SINTEF. The devices we have available have been bought at online marketplaces (e.g
eBay) or been donated. The code we will be analyzing is the result of extracting (i.e
dumping) the memory of the Biotronik CardioMessenger Smart 3G. This procedure
was first performed by my supervisor Guillaume Bour, and we have replicated this
procedure in the same lab and with the same equipment. We also modified a couple
of the scripts to test and extract through another debugging protocol. The process
is thoroughly explained in Appendix A. The research performed in this project
replicates some of the previous research by reusing some of the previous used tools
and methodology, it extends the previous research by focusing on the latest generation
of the HMU. Since the CardioMessenger Smart 3G is the latest model from Biotronik,
my findings will be highly relevant because patients worldwide use this device today.

1.3 Hypothesis and research questions

The HMU device we will research is the latest model of home monitoring units from
Biotronik. We expect it to be more robust and secure in both its hardware and
software compared to its predecessors. Its security implementations should be up to
today’s standards and good practices relating to both security- and legal perspec-
tives [10, 11]. Previous work on medical devices have found various vulnerabilities,
and it is our intention to confirm whether these have been addressed and mitigated
in the latest model.

It is also our intention to identify and analyze the proprietary communication
protocol of the CardioMessenger Smart 3G. Previous work from the Pacemaker
Hacking Project at SINTEF have analyzed the communication protocol of an older
HMU device from the same manufacturer Biotronik, an approach from the outside,
by establishing a connection to a custom base station. However, our approach will
be from the inside of a newer HMU model from the same manufacturer by extracting
its memory and analyze its internal code.

With these expectations and intentions, I have formulated the following research
questions and research objectives to guide my project:

Research Questions (RQ):

RQ1: To what extent is the HMU implementing security features to preserve the
patients safety?

RQ2: To what extent is the latest HMU protecting the patients privacy?

RQ3: To what extent is the latest HMU protecting the patients personal data in its
communications?
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Research Objectives (RO):

RO1: Analyze the security implementations in the extracted binaries of the Car-
dioMessenger Smart 3G

RO2: Describe the vulnerabilities and improvements in the latest CardioMessenger
Smart 3G, and compare to findings of the former CardioMessenger II-S or T-Line
RO3: Propose improvements and/or solutions to findings in the CardioMessenger
Smart 3G

1.4 Outline of the Thesis

Chapter 2: Background introduces and lays the background information for this
thesis. Firstly, a review of work related to implanted medical devices - IMDs. Going
through their functionality and their security vulnerabilities. Then some technical
background about the memory dumping procedure and the used debugging interfaces.
Lastly, some technical information about reverse engineering tools and practices.
Chapter 3: Methodology explains different methodologies I have used to approach
the work throughout this thesis. Each method is described in detail along with my
reasoning for its use case.

Chapter 4: Results goes through all the reverse engineering process and results
from the research. This chapter also gives explanations on how these results were
achieved and references to detailed descriptions in one of the appendices. It starts
with an exploration of the function hierarchy, and ends with identifying the commu-
nication protocol.

Chapter 5: Mitigation goes through the countermeasures related to our findings
from the Results chapter.

Chapter 6: Discussion is about the impact of our work and findings on the HMU.
This chapter also illustrate attack scenarios that the HMU might be susceptible to.
This chapter also highlights need for future work, on the HMU and other devices in
the pacemaker ecosystem.

Chapter 7: Conclusion Lastly, this chapter answers some of the research questions
and concludes the thesis.






Background

2.1 Cybersecurity Terminology

In this thesis we use terminology that is common to find in the field of cyber-
security. Since we use these terms through our thesis, it is useful to define them
early in this chapter. The following terms are formulated from the NIST glossery [12].

An asset can be an application, a system, equipment, or personnel - anything
with value to the company. An asset can be either tangible such as hardware, software,
or a device, or it can be intangible such as information, intellectual property, or
reputation.

A threat is a circumstance or event that potentially can adversely impact or
harm an asset.

A vulnerability is a flaw or a weakness in a system which can be exploited or
triggered by a threat. A vulnerability can take the form of a misconfiguration in a
system, poor system design, or human error. When identifying vulnerabilities it is
common to look for the vulnerabilities that are the easiest to take advantage of - the
low-hanging fruits.

An exploit is a tool that takes advantage of a vulnerability or a flaw in a system.

A risk is a measure of the extent an asset is threatened by an event or circum-
stance.

A zero-day, alternatively an n-day, refers to a vulnerability that is previously
unknown and exploits software or hardware.
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2.2 Related Work

In this section we present research and the findings that are related to the pacemaker
ecosystem. Some of the papers are from large research organizations, international
conferences, medical associations, and also included are previous papers and research
from the NTNU and SINTEF colleborative pacemaker project.

In 2008, Halperin et al. studied an ICD and its privacy and security properties [13].
They managed to reverse the ICD’s wireless communication protocol to the program-
mer using an oscilloscope and a software-defined radio. This enabled them to develop
different radio-based attacks that could compromise a patients safety and privacy.
In 2010, Feerestrand published a journal through the Norwegian Medical Association
emphasizing the positive use cases of telecardiology [14]. The use of IMDs are
practical for both the patient and the medical professionals, as it enables everyone
to save time and money. Feerestrand also writes that the remote monitoring devices’
ability to detect anomalies technically and physically, improve the patients safety.
Each scheduled clinic visit can be up to six months, which means that an event is
detected immediately instead of weeks or months after the event occurred.

There has been issues related to the technical wiring and the functionality of the

IMD if it is somehow manipulated or malfunctioning after being implanted. Even
though these devices occasionally have technical errors in wiring or function, they are
from a medical point of view deemed safe and effective for diagnostics and monitoring
a patients diagnosis. They believe that remote monitoring is forward-thinking and
that patient and medical personnel are satisfied with the practicality of telecardiology
and remote monitoring.
In the paper written by Fu in 2015, they go through the history of some medical
devices and their security issues [15]. Issues related to software on the devices and
the possibility of wireless attacks to modify the functionality of the IMD. A proven
example of modifying functionality is to disable the ICDs ability to send electrical
pulses to correct the heart beat - an attack that can cause a deadly or abnormal
heart rhythm.

They also mention the pre-market guidance for management of cybersecurity
in medical devices from the Food and Drug Administration (FDA), on purchases
of certain medical devices that pose a cybersecurity risk, risk analysis of medical
device applications before market clearance, and their continuous surveillance of of
emerging cybersecurity risks in this area [16].

They also reference several papers finding vulnerabilities in various medical de-
vices. Such as a vulnerability in an insulin pump, demonstration of a computer worm
spreading from a computer to an automated external defibrillator, a compromised
website belonging to a ventilator manufacturer that modified the softwares to include
a malicious payload in their software updates, a malware infected drug compounder
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running on Windows XP embedded operation system, and more.

The paper then proceeds to claim that security problems often arises where
abstractions meet, as in the digital to analog. This is especially the case for medical
devices. They also urge manufacturers of medical devices to address the cybersecurity
risks in the initial requirements engineering and design time, and that they continue
support and perform post-market surveillance during the device lifecycle.

In 2016, Muddy Waters released a report performed by the cybersecurity research
firm MedSec, on the security issues of the St. Jude Medical’s devices [17]. Their
findings were so severe that they urged St. Jude Medical to recall and remediate
their devices. They also estimated that St. Jude Medical would lose close to half
their revenue because these devices made up 46% of St. Jude Medicals revenue in
2015.

They found that they could perform a crash attack which could set a dangerous
pacing rate and a battery drain attack on the implantable cardiac device. They also
found that these attacks can be performed roughly within a few meters radius, and
could theoretically be performed on a large scale. The report also makes a point
of how many hundreds of thousands of these devices that are distributed for use or
sold secondhand on eBay. Since they found that these Merlin@Home devices lack
the basic forms of security, such as encryption and authentication, an attacker could
easily buy one of these devices online cheap, then impersonate and communicate
with a St. Jude Medical cardiac device.

In 2016, Marin et al. found that IMDs often use proprietary protocols with limited
security when communicating wirelessly to a programmer [18]. They were able to
fully reverse engineer a proprietary communication protocol between a programmer
and the latest generation of a widely used ICD. They showed that reversing this
protocol was possible for an adversary with limited resources and cabapilities, and
by only using inexpensive commercial off-the-shelf (COTS) equipment.

They also found functionality attempting to obfuscate the transmitted data,
compared to previous research on medical devices which did not find any security
functionality. Additionally, they conducted attacks that imposed on the patients
privacy, caused a denial of service (DoS) and compromised the patients safety. They
also claim that their findings apply to at least 10 types of ICDs that were on the
market at the time. Lastly, they proposed several short- and long-term countermea-
sures for the discovered vulnerabilities.

In 2017, Whitescope performed a review on the monitoring devices of four unnamed
major IMD vendors [19]. They found that their inherent architecture and implemen-
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tation interdependencies are susceptible to security risks that might impact of the
overall confidentiality, integrity and availability (CIA) of the ecosystems.

Their list of findings are related to embedded hardware security and software
implementation issues. They were able to obtain all the devices from public sources,
open and accessible debugging interfaces on the PCBs, extract the file systems in
its entirety of the medical devices, they found credentials and infrastructure data in
cleartext, use of third-party libraries, lack of digital firmware signatures, lack of file
system encryption, lack of authentication on the programmer device that enables
physicians to configure the IMDs, and much more.

The fact that their findings were more or less consistent between the four different
vendors show the lack of security implementations in medical devices in general.
They reported that these findings highlight for all vendors to perform an in-depth
evaluation of their security.

In 2021, on the second international conference on secure cyber computing and
communications (ICSCCC), a threat model of the entire pacemaker ecosystem was
presented by Manikandan and Shiju [20]. They explain MICS, which is the mobile
radio frequency service used between the IMD to and from either the programmer or
HMU.

They use attack trees to visually represent threats on the different devices of the
pacemaker ecosystem, and how it imposes on their CTA triad. They also claim there
is a lack of authentication between the devices using MICS and that an attacker
within close proximity of 5m can trigger the RF circuitry of the IMD. They also have
suggestions on how this threat to medical devices using MICS can be mitigated.

2.2.1 Results from the Pacemaker Hacking Projects at SINTEF

In 2018, Kristiansen and Wilhelmsen worked mainly on the programmer or controller
device in the pacemaker ecosystem [21]. They were able to extract the file system
of a programmer and create a running virtual machine (VM) with it. They found
several security issues such as an unencrypted hard drive and no authentication
mechanism to access and use the device. Their work also opens the possibility to
decrypt patient data exported from the programmers, and they claim it is possible
for any Biotronik programmer at the time.

In 2019, Bour, one of my supervisors, worked extensively on multiple HMUs from
different vendors. They performed a series of embedded hardware security analysis
which included Merlin@Home from Abbott, a HMU from Medtronic, and multiple
versions of Biotroniks CardioMessenger HMU series. They were able to identify
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the components on the PCBs and access their debugging interfaces by soldering a
connection to the PCBs, which gave full access to the microprocessor and unencrypted
memory.

Bour also worked on identifying the proprietary communication protocol of the
CardioMessenger II-S TLine, an older HMU model from Biotronik, between the
HMU and the backend data servers. By emulating a modem on a computer and
connecting to the HMU, they were able to analyze the HMU’s transmissions and
identify the byte structure of the protocol.

Bour also showed that a Man-in-the-Middle (MitM) attack was feasible against the
HMU and the backend private data servers due to the lack of mutual authentication.

In 2019, Lie demonstrated that using only COTS equipment and open source
software connected to a Universal Software Radio Peripheral (USRP), it is possible
to connect to an HMU over GSM mobile communications [22]. By establishing a
connection to the HMU and eavesdropping on the wireless transmission, they found
that the data was encrypted and that Biotronik were using a communication channel
within a private APN. They were also able to report on multiple attacks including
spoofing the data server, establishing a wireless connection to the HMU without
authenticating, and if they had physical access to the device they could decrypt the
encrypted data sent from the HMU intended towards the data servers.

In 2020, Kok and Markussen did preliminary hardware security testing of Biotron-
iks CardioMessenger II-S T-Line and GSM version, and hardware analysis of the
CardioMessenger Smart 3G [23]. They proceeded to develop a fuzzing framework
for the modem on the CM Smart 3G HMU based on COTS equipment such as a
USRP connected to a computer running on a modified OpenBTS installation. The
fuzzer is applicable to any modem, not just the modems on the HMUs made by
Biotronik. They also showed that the fuzzing framework was able to both interrogate
and cause its modem to crash, indirectly denying the communication service on the
HMU. Potentially risking the safety of the patient.

In 2022, Bour et al. published an article at the Biodevices 2022 conference [24].
The paper was a continuation of Bour’s work from 2019, and presented their hardware
security findings from 2019 and network analysis of the Biotronik CardioMessenger
II-S TLine HMU’s communication protocol. This was achieved by setting up a
custom software-defined base station, forcing a downgraded GSM connection, for the
transmissions intended for the backend server and listening on its communications.
This paper was published after having completed a coordinated vulnerability dis-
closure process, resulting in a medical advisory from CISA related to their earlier
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findings [25].

The article is a new representation of Bour’s findings from 2019. They also
represent two new and potential attack scenarios that are feasible on the pacemaker
ecosystem in the light of the findings. They also state that these findings enable
an adversary to weaponize the HMU, and to act as a Man-in-the-Middle since the
CardioMessenger 11-S TLine’s wireless transmissions were analyzed, and parts of the
protocol was identified.

2.3 European Legislation & Regulations

This section contains the latest European legislation on medical devices and in vitro
diagnostic medical devices, best practice guideline documents from ENISA, and the
implications of the latest Norwegian security act.

2.3.1 MDR & IVDR

In December of 2019, the Medical Coordination Group published a guidance doc-
ument to provide manufacturers with guidelines on how to comply with the two
new EU regulations 45/2017 (MDR) and 746/2017 (IVDR) on the cybersecurity of
medical devices [10, 26, 27].

The MDR and IVDR were entered into force on the 25th of May 2017, and their
dates of application were on 26th of May 2021 and 26th of May 2022, respectively.
The objective of the new regulations were to replace three older directives, Medical
Device Directive (MDD), the Active Implantable Medical Device Directive (AIMD),
and In vitro Diagnostic Directive (IVDD). The new regulations create a regulatory
framework that improves the safety, quality, and reliability of the medical devices in
the EU.

The MDR contains regulation on all medical devices and their accessories for
sale and service in the EU [26]. It is an extensive document and it contains several
noteworthy points that relates to the pacemaker ecosystem. The MDR has a list of
general obligations for the manufacturers of medical devices, and one of the items
one the list is to establish and maintain a system for risk management. The risk
management systems needs to identify and analyze threats for each device. Addi-
tionally, they need to evaluate each threat and eliminate or control the threat by
secure design, adequate protection measures, or provide information and training.

The manufacturers also need to implement a quality management system to ad-
dress various aspect such as identifying general safety and performance requirements,
resource management and control of suppliers, implement and maintain a post-market
surveillance system, implement a process for reporting serious incidents and take
corrective actions based on safety, a management of corrective and preventive actions,
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and processes to monitor, measure and analyze data for product improvement.

To improve traceability and available information, the MDR also state that every
patient shall have an implant card with information on the device, information about
the manufacturer, warnings or precautions the patient or medical professionals need
to be aware of in certain environments or conditions, information about the expected
lifetime of the device, and information to ensure the safety of the device.

To improve identification and traceability within the supply chain of medical
devices, the MDR states that a manufacturers and authorized representatives shall
cooperate, and that a Unique Device Identification System (UDI) shall be created.
The information within the UDI database system shall be publically available.

To ensure the safety and performance of the medical devices, the manufacturer
needs to create a summery of the device’s safety and clinical performance. The
summary also needs to be written in such a way that it is clear for the user. The
summary needs to contain identification of the device and manufacturer, device’s
intended purpose, a description of the device, a reference to older devices and their
differences, a description of the accessories of the medical device, and information on
the residual risks and precautions. The summary also needs to be publically available
through the new European database on medical devices, EUDAMED.

Each manufacturer also needs to have a certificate of conformity to the regulations
and necessary safety markings, such as CE, to sell their medical devices in the EU.
The certificate is intended to guarantee the safety and performance of the devices,
and show that the manufacturer are conforming to all legal and regulations.

The MDR also states that devices with electronic programmable systems, includ-
ing software, shall be designed to ensure performance, reliability and repeatability.
In the case of any faulty condition, it needs to take appropriate actions to reduce
or eliminate the risks or impairment on performance. Devices with software shall
also be developed with state of the art principles in its development life cycle, risk
management, validation and verification, and information security.

After the manufacturer has gained a certification and sold medical devices on the
European market, they shall plan, implement and maintain a post-market surveil-
lance system. The surveillance system is intended to be part of the manufacturers
quality management system, and shall systematically gather and analyze relevant
data from the devices on safety, quality and performance throughout the device’s
lifetime. The surveillance plan is intended to be used to improve the benefit-risk
assessment, improve manufacturing and design, improve safety performance, and to
detect trends of incidents that impose on the patients health or safety.

The MDR also establishes a program for market surveillance that is enforced
by appointed authorities to perform the necessary checks on the conformity and
performance of devices on the market. These checks include documentation from the
manufacturer, physical, and laboratory checks of device samples. If the sample or
device is shown to present an unacceptable risk or non-complience with the regula-



14 2. BACKGROUND

tions, they will be forced to perform justified corrective actions to comply with the
regulations. Based on the presented risk, devices may be recalled or withdrawn from
market for a reasonable time period.

Similarly to the MDR, the IVDR contain many similar articles to be enforced [27].
The IVDR specifies a similar list of obligations for the manufacturer related to
compliance and deliver information about their products. The in vitro devices also
need the CE marking on the devices to show conformity to the regulation.

The UDI system is also applied to in vitro medical devices, similarly to all medi-
cal devices defined by the MDR. The in vitro devices shall also be included in the
EUDAMED system to enhance their traceability. The IVDR share the same safety
and performance requirements as defined in the MDR. A few key differences
between the IVDR and MDR, is the applicability of all medical devices and in-vitro
medical devices. Additionally, the IVDR require a methodically sound performance
evaluation procedure to demonstrate scientific validity, analytical performance, and
clinical performance. They shall implement and maintain a performance evaluation
plan that includes general safety and performance requirements, a specification of
methods and tools used in analytical and clinical performance, identification of
relevant standards, guidance and best practice documents. For the software on
the devices, the manufacturer needs to reference and specify the sources of their
data used in the decision making process. To demonstrate the scientific validity
and the analytical and clinical performance, the manufacturer needs to perform a
systematic literature review of the scientific relevant data to the device, its intended
purpose, and remaining issues that need to be addressed. They also need to review
peer-reviewed scientific literature, perform proof of concept studies, and analyze
results from clinical performance studies.

The IVDR requires a post-market surveillance plan to secure quality, performance
and safety, similarly to the MDR. The IVDR specifies that manufacturers of devices
classified as C and D, in general term devices that directly interacts with the biologi-
cal, shall prepare a periodic safety update report(PSUR) to summarize the results
and gathered data of post-market analyses.

The IVDR has a section on vigilance and reporting of serious incidents. In case
of an incident, they shall report to competent authorities, perform trend reporting,
and analysis of performed corrective actions and safety implications.

Competent authorities shall perform checks similarly to those specified in the
MDR, on in vitro diagnostic medical devices. In the case of unacceptable risk or
non-complience, where the risk to health or safety of patient is deemed critical,
devices and their accessories may be recalled or withdrawn from the market.
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2.3.2 ENISA best practice

In the ENISA section for critical infrastructures and services, there are published
documents on handling medical devices and their inherent cybersecurity [11]. These
documents can be used as guidelines by manufacturers to manage their business and
their devices in a secure manner. They have best practice documents for configuration
and management to handle malicious actions, testing components and setting up a
segregated network, implementing plans for vulnerability identifications and incident
response, how to handle and encrypt sensitive data, how to enhance security controls
in wireless communication, and much more. ENISA provides good practice guidelines
to the manufacturers of medical devices, which is in accordance with best-practice
and regulation.

2.3.3 Norwegian Security Act

The Norwegian Security Act went into force in 2019 and applies to the government,
county, and municipal bodies as well as suppliers of good and services. It also applies
to relations with other states and international companies, fundamental societal
functions, and the basic security of the population [28].

The National Security Authority has the responsibility for protective security
work and to supervise and ensure compliance to related security work. The NSM have
the authority to perform basic criteria inspections, obtain and assess information
on protective security work, develop and advise on security work, and they are
granted unhindered access to critical national information systems, infrastructure,
and information.

In response to a risk to national security interests or on infrastructure and ser-
vices, the supervisory authority has the authority to access undertakings’ information
systems and infrastructure. They also have the authority to process personal data
in accordance to their intended tasks as long as it does not pose a disproportionate
interference with the right to privacy.

Chapter 4 in the Norwegian security act states that that the responsibility of
protective security work rests upon the undertaking, and that the undertaking shall
implement a management system for protective security work. Additionally, the
undertaking should perform regular risk assessments. The undertakings are also
obligated to implement protective security measures to ensure an appropriate level
of security, to reduce the risk of associated threats to security. The undertaking is
also obligated to document the identified threats and document their planned and
implemented security measures.

The undertaking shall also give notice to the NSM immediately if they are affected
by present threats to security, they have a reasonable suspicion of activites that have
affected or may affect their or other undertakings, or of serious breaches of security
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requirements on national information, infrastructure, systems, communications, or
personal security.

2.4 Hardware - Memory Extraction

In this section, we will explain the technical aspects of the devices and protocols
used in the memory dumping procedure. Firstly, we will go through some the
technical aspects of the microprocessor on the CardioMessenger Smart 3G, the
STMicroelectronics STM32F417. Followed by a technical explanation of the two
debugging protocols that were used in the dumping procedure, namely JTAG and
SWD.

2.4.1 STMicroelectronics Microprocessor - STM32

The STM32F417 microprocessor is part of the STM32 32-bit microcontrollers based
on the Arm Cortex-M processor, and is developed by STMicroelectronics [29]. Tt
offers functionality such as high performance, signal processing, low-power operation,
connectivity, and a fully integrated platform with tools and software online for ease
of development. The STM32 is an industry-standard microcontroller that is used in
anything from small projects to large end-to-end platforms.

The STM32F417 comes with an integrated cryptographic- and hashing processor
that provides hardware acceleration for AES (128, 192, 256), DES (&TDES), and
hashing by MD5 or SHA-1 [30].

The STM32 also has multiple built-in features for safety [31]. Some of the safety
features of the STM32F4xx is a watchdog timer that can detect and recover from
malfunctions, a hardware CRC unit to identify errors in digital data, a memory
protection unit that manages the access of stack and memory in-use, and power
supply monitoring.

2.4.2 JTAG & SWD

JTAG is an interface for debugging an embedded device or circuit board with a
microprocessor [32]. JTAG stands for Joint Test Action Group and is an industry
standard for testing manufactured circuit boards. JTAG defines a dedicated debug
port with multiple connection pins implementing a serial communication with the
circuit board.

The JTAG standard consists of five specific connector pins. Test Data In (TDI),
Test Data Out (TDO), Test Clock (TCK), Test Mode Select (TMS), and the optional
Test Reset (TRST). TDI is the pin feeding input data to the chip. JTAG does
not define a protocol for the data stream on this channel and leaves it open for
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any sequence of 1’s and 0’s. It leaves the microprocessor to deal with the input.
Manufacturers can however define protocols to run over the JTAG standard. TDO
is specific for the data stream out of the chip. The TCK sets the speed of the
Test Access Port controller, it is set from the outside device controlling the JTAG
connection. TMS is controlled with different voltages to define different modes for
JTAG. The TRST pin is optionally used when it is needed to reset the TAP controller
to a correct state.

SWD, Serial Wire Debug, is an ARM alternative to JTAG with a 2-pin inter-
face [32]. Hence, less wires are needed to connect onto an electrical circuit board.
SWD is defined in ARM debug interface version 5 and uses a bi-directional protocol.
This enables access to the chips system memory, peripherals and registers. The TMS
and TCK pins in a standard JTAG connection are defined as SWDIO and SWCLK
for a SWD connection.

2.5 Software: Reverse Engineering

This section gives a technical overview of binary analysis, what assembly/disassembly
and compile/decompile is in the context of reverse engineering, and it gives an
overview of reverse engineering programs such as Binwalk and Ghidra.

2.5.1 Binary Analysis

In this subsection, we will go through technical details, techniques, and programs for
our binary analysis process. As previously stated, our intention in this thesis is to
reverse parts of the code running on the HMU. However, by dumping the memory
of the HMU we do not get source code, we get binary files that represent parts of
the executable code running on the device. The software running on the HMU were
code in a high-level programming language, which was compiled, i.e converted into
a lower-level code such as machine code, and turned into an executable binary file
which is installed on the device. Our analysis will therefore not be on source code but
rather a set of compiled binaries from the HMUs memory. This is a great distinction
and the reason it makes the reverse engineering process complex. It is not always
possible to fully reverse or convert the binary back to a similar state as the source
code, the goal of the reverse engineering is therefore to understand what the code
does, to the extent this is possible. To perform this task we need to use sophisticated
open-source reverse engineering software.
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A challenging aspect of binary analysis is the loss of information when the source
code is compiled. An example of this is naming conventions used in high-level
programming languages. This type of symbolic information is lost in the compilation
process. Other examples of lost information after compilation can be variable types,
abstractions and compartmentalization of functions, and classes. With these limita-
tions, our reverse engineering software will decompile machine code in the binaries
from the HMU memory and generate an obfuscated imitation of high-level code, to
the best of its ability. Because of the loss of information and imperfect nature of
the tools decompilation techniques, the result of a binary analysis may be imprecise,
especially when we are limited by somewhat obfuscated decompiled code that cannot
be executed during analysis - i.e static analysis.

Figure 2.1: Example of static analysis of .exe file

Figure 2.1 shows a typical example of a static binary analysis. Every .exe file
has the identifying MZ ASCII string at the beginning, or 4D 5A represented in
hexadecimal notation. Being able to identify file types is important in an reverse
engineering process and here are many tools available with this functionality. Two
programs that are able to detect, even hidden, file types are Binwalk and Ghidra,
and they are technically explained below and their use cases are shown under the
Binary Analysis section in the Results chapter.

2.5.2 Binwalk

Binwalk is a tool used for analyzing, reverse engineering, and extracting data from
firmware images [33]. It is used to search and find file signatures and code embed-
ded within a binary file. Binwalk is able to detect these files based on its system
of improved signatures that are commonly found in compressed and archived files,
firmware headers, the Linux kernel, and file systems etc [34]. Binwalk is also equipped
with several binary analysis tools such as an entropy scan.
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2.5.3 Ghidra

Ghidra is an open-source reverse engineering framework developed by the National
Security Agency (NSA) [35]. It is an open source alternative to the well-known SRE
IDA by Hex-Rays. Ghidra was released at the RSA conference in March 2019, and
it features such as disassembly tools, decompilation, debugging, platform support
for Windows, MacOS and Linux, graphing and scripting. Ghidra also has a public
and extensive API (Application Programming Interface) and supports script plugins
written in Python and Java [36].

Among Ghidras many features, there is a decompiler and a disassembler. Which
means that Ghidra is capable of loading and parsing machine code in a binary format
and converting it back to assembly code or a higher-level readable code which will
resemble the source code.

Ghidra also has a multiple different pre-installed auto analyzers. There is an ARM
Analyzer that looks for 32-bit ARM instructions, an ASCII Strings Analyzer which
searches for valid ASCII strings and defines them, a function signature analyzer,
stack analyzers, an embedded image analyzer and a few more. Hence, with installed
analyzers, script support and much more functionality, Ghidra well suited for most
reverse engineering purposes [37].






Methodology

3.1 Scientific Method

The scientific method describes the process of discerning facts from a set of information
or data. The process is characterized by steps such as observation, experimentation,
inductive and deductive reasoning, forming a hypothesis, and testing [38]. In order
to apply the scientific method correctly, each test needs to be used on a falsifiable
phenomenon. Which means the phenomenon needs to possess the capacity to be
proven wrong. In the scientific method proving or disproving is equally valid, hence if
a phenomenon lacks falsifiability, there can not be draw any conclusions from its tests.

Most methods used in any scientific field, whether they are related to technology,
medicine, economics etc, all use similar steps as defined in the scientific method. Their
commonality is the basis of obtaining knowledge based on proving or disproving a
hypothesis. The scientific method forms the foundation of all scientific methodologies.

The Importance of Reproducibility

The scientific method suggests that every finding should be retested and reproduced
in an attempt to be falsified. The scientific method does not blindly accept nor trust
results that do not possess the ability to be falsified or have not been replicated.

The Standford Enclyclopedia of Philosophy defines reproducibility as the redoing
of computations or whole experiments [39]. The ability to replicate processes and
scientific findings is an essential part of any scientific method. Replication can confirm
and validate findings, or disprove them. If a result drawn from a scientific process
can not be replicated, it can not be stated as true nor assumed as valid. Failing
to make a process and its results reproducible, undermines the credibility of the
experiment and makes the derived results unreliable.

In 2016, Baker published an article about the reproducibility crisis [40]. In their
study, they found that over 70% of 1500 researchers had tried and failed to reproduce
at least one experiment from another scientist. Over 50% of the same researchers
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agreed that there is a reproducibility crisis, however 31% of the researchers did not
think the results were wrongful even when they could not reproduce the published
results. Baker also states that statistical data on how much of the scientific literature
is limited, and that some studies from the fields of psychology and cancer biology
show rates of 40% and 10% being reproducible.

Another example of the reproducibility problem was revealed by a study performed
by the Center for Open Science when they released the findings of a eight year long
project trying to replicate 193 experiments from 53 of the top papers published
between 2010 and 2012 related to cancer [41]. The findings stated that only a
quarter of the experiments were able to be reproduced. In addition to that, 50 of
the experiments that were reproduced showed an effect size 85 percent lower than
reported in the original experiments.

The reproducibility issue highlights the need to thoroughly document a scientific
process. Even though the examples above is related to psychology and cancer research,
the same responsibility of reproducibility applies to our project. Documenting the
processes in this thesis will be a priority to ensure reproducibility. This thesis builds
on the works of others and reproducing their work is also essential to conduct this
thesis as well as to verify our findings.

3.2 Threat Model

The Open Web Application Security Project (OWASP) defines Threat Model as a
method to identify, communicate, and understand threats and mitigations within the
context of protecting something of value [42]. It is a structured representation of an
application and its information affecting its security. Threat modelling can be used
on systems, applications, IoT, networks, business processes and much more.

A threat model usually consists of a detailed description of the asset, potential
threats to the asset, a set of actions to mitigate the defined threats, and an assessment
to validate the threat models and verify the success of mitigating actions. The threat
model is not limited to these steps and may also include the motivation or who the
adversary might be.

By organizing and analyzing all the information about the asset, the purpose
of threat modelling is to improve the security of the asset. Threat modelling is
a continuous process which should be reevaluated throughout the assets life-cycle.
It is also crucial to detect security flaws early, hence threat modelling should be
implemented from the planning phase of asset development.

When a threat model is applied to the Pacemaker Ecosystem the obvious assets
are patient information and their devices. An attacker may attempt to exploit inher-
ent insecure functionality for either financial gain or other malicious reasons. These
days all kinds of personal information is sold on the Internet. Multiple high profile
individuals such as a former United States president, other well-known politicians, a
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former pope, famous athletes, and actors have been fitted with pacemakers through
the years [43]. This kind of patient information is highly sensitive and can be taken
advantage of, especially in the hands of an adversary with malicious intent.

In this thesis we are examining the various interactions an active attacker can
perform with the HMU and its software. Mainly by having physical access to a HMU
initially and being able to connect to it. There are different ways to interact with
an HMU. The HMU has its physical interfaces on the circuit board and a wireless
communication interface to the patients pacemaker. Connecting to the debugging
ports on the HMU circuit board is an example of physical interaction. Wireless
eavesdropping, and modifying messages being sent to or from the HMU are examples
of non-physical interactions.

Some of the devices in the Pacemaker Ecosystem have a higher likelihood of
being targeted by attackers, such as the HMU. Of all the devices and assets in the
ecosystem, except the HMU, it is a rarity to find devices for purchase. Programmers
are a special device only located in hospitals or treatment facilities, and they cost a
small fortune. Used pacemakers are naturally not accessible because of their location
within the body, hence they are not commonly sold anywhere. HMUs however, are
not difficult to find sold on online auction websites such as eBay. In this sense, the
HMU is the lowest hanging fruit.

Risk Assessment Criteria

A specific set of terminology is used when performing a risk assessment in a security
context. Terminology such as confidentiality, integrity and availability, the CIA triad,
are used in every security assessment. Additionally, there are a few more terms which
can be used when necessary. These terms are used to describe the asset and its
inherent state. They are also used to evaluate the severity of a finding, specifically in
the context of security, privacy, and safety of the patients in the pacemaker ecosystem.
The following terminology is defined by the Cybersecurity and Infrastructure Security
Agency (NICCS) [44].

Confidentiality is the property of only disclosing information to authorized users,
devices, and processes. In the context of the pacemaker ecosystem, the confidentiality
property avoids adversaries to access patients devices and obtain information which
can have severe consequences when exposed.

Integrity is the property where information or an entity has not been modified
or changed without authorization. Modified or destroyed devices could pose serious
health risks for a patient. In a worst case scenario, a damaged pacemaker could be
lethal for the patient.
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Availability is defined as the property of being usable when needed or queried.
Medical devices need a high level of availability. Especially the IMDs need to have a
high availability since they are the implanted device monitoring and maintaining the
patients heart rhythm. If the IMD were unavailable while the patient is experiencing
a type of incident, this could also be severe or lethal for the patient. Whereas the
data servers or HMU can be offline occasionally, the IMD cannot be afforded the
same availability standard.

Authentication is the property or the ability to verify the identity of a user,
process or device.

Privacy is an assurance property that defines the access to information about a
protected asset.

Safety is defined as the condition of being free from harm, risk of injury, loss,
and danger.

Authenticity is defined as the property that data originated from the alleged
source. It means that the item in question has the property to be verified and can
be trusted.

Non-repudiation is the property to prove the origin and integrity of data. It is
an assurance of the validity of an item which is hard to deny.

Authorization is the property where a right or access is given to an approved or
privileged user to a system or on of its resources. If an unauthorized user is granted
access to a system it is considered compromised.

Now that we have defined the different risk assessment criteria, we can model
threats for the HMU in the pacemaker ecosystem. To identify threats we are using
the STRIDE model. STRIDE is an acronym for Spoofing, Tampering, Repudiation,
Information Disclosure, Denial of Service, and Elevation of privilege [5].
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STRIDE

Threat

Desired Property

Attack on HMU

Spoofing

Tampering

Repudiation

Information disclosure

Denial of Service

Elevation of Privilege

Authenticity

Integrity

Non-Repudiation

Confidentiality

Availability

Authorization

Establishing a connection to the
HMU by one of its interfaces,
physical or wireless, to gain ac-
cess or authenticate while mas-
querading as a legitimate ac-
tor. By either hijacking the on-
going communication session or
performing a Cross-Site Request
Forgery (CSRF).

Modifying the memory or
firmware of the HMU to alter its
functionality

Craft customized messages sent
to the HMU from a device that
imitates the pacemaker or the
data servers, by exploiting weak
authentication/authenticity, lack
of signatures, or lack of event
logs.

Setting up an illegitimate base
station to eavesdrop on communi-
cation from the HMU, imitating
as a legitimate base station

Halting the HMUs microproces-
sor by sending a large amount
of instructions such that the mi-
croprocessor becomes unable to
perform its tasks

Gaining access to the private data

servers by obtaining valid user
credentials from the HMU

Table 3.1: A STRIDE threat model of the HMU [5]

To assess these threats we are using the DREAD system developed by Microsoft [6].

DREAD is an acronym for Damage, Reproducibility, Exploitability, Affected users,

and Discoverability. It is an assessment system that gives a numeric score to each
identified threat. The score is linearly correlated to the severity of the threat. A
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higher score equals a more severe threat. Each property is given a score between 0
and 10. The threat is assessed by the impact on the different properties. Damage
potential’s score is based on how much damage that will be caused if the threat
occurred. 0 indicated no damage and 10 equals total destruction or a compromised
system. The reproducibility score is based on how easy the threat exploit is to
reproduce. A score of 0 in reproducibility means that the exploit is near impossible
to reproduce, and a score of 10 means that only a simple tool is needed to perform
the exploit [45]. The exploitability score is based on what resources are needed to
exploit the threat, a higher score is given if the amount of needed resources are low.
If the exploit requires advanced programming skills or knowledge the score is 0. The
affected users score is based on how many users that would be affected by the threat
exploit, it ranges from no users with a 0 score to all users and a score of 10. The
discoverability score is based on how easy it is to discover this threat. A score of
0 indicates that it is near impossible to discover the threat and that special access
or source code is necessary. A score of 10 means that the threat is discoverable by
simple tools or very limited knowledge.

The table 3.2 below gives a DREAD assessment example of an attack based on the
integrity property. We chose this example because it is closely related to knowledge
of the internal structure of the HMU, one of our main objectives in this thesis.

DREAD
Example: Integrity - modifying the memory of the HMU
Damage Potential 2-10
Reproducibility 0-6
Exploitability 6
Affected users 1
Discoverability 0-2

Table 3.2: A DREAD threat assessment of the HMU [6]

The damage potential of modifying the memory on the HMU can be quite severe. The
damage of the exploit depends on the section of memory being modified. The HMU
has memory sections that are accessible and other sections that are not. However
if an important system memory section is modified, the threat exploit can cause
malfunctioning of the device in various ways. The types of malfunctions range from
a device resets, restarts or crash due to illegal state handling, forcing a downgrade
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on a security functionality such as encryption, or disabling an interface or peripheral
on the microcontroller. In those cases the damage score range from 1-5, where a
reset is a 1 and a downgrade attack can be a 5. In a worst case scenario, the HMU
can be flashed, i.e overwritten, with a modified firmware which can attack the IMD
over their ULP-AMI interface. Attacks on this interface, by RF activation, have
previously been shown to successfully perform replay attacks and battery drainage
attacks on four brands of IMDs [19]. The damage potential could be critical for the
patient. The HMU could in this scenario act as a Man-in-the-Middle and control
the most sensitive parts of the pacemaker ecosystem. If we score this threat by the
modified firmware scenario, it is a solid 10.

Reproducing a memory modification on a HMU device requires an HMU device
which is easily available online, it requires a few simple lab tools to connect to the
PCB, and it requires an individual with knowledge of embedded security. Since
this exploit needs different steps and someone with a specific skill-set, 6 might be
a reasonable score. In the worst case example of the HMU attacking the IMD, the
score would be near impossible even for a skilled individual and deserves a score of 0.

The exploitability of the threat is somewhere in the middle of the scale. The
threat requires some tools and programming abilities. However there are a lot of
information available online with guides to connect and query a microprocessor, and
by extension modify memory. A reasonable score might be 6.

Our threat exploit is performed on a single HMU and therefore only affects
one patient. Hence, we give the affected users score 1. Discovering the possibility
of modifying the memory of a HMU unit, and also discovering that the HMU is
susceptible to the threat would require a highly skilled individual. The adversary
would need to be either a security researcher or someone with a similar technical
capacity. Hence, it would be very hard and rated at a score of 2. In the example of
modifying the firmware to attack the patient’s IMD, the score would be near closer
to 0. To calculate the threat ranking we use the DREAD formula.
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AverageThreatRanking = (D+ R+ E+ A+ D)/5

The best case of the threat is calculated with the lowest ratings for each property. It
is the scenario of modifying the memory to the extent that the firmware is replaced
and used to attack a patients IMD.

ModifiedFirmwareThreatRanking = (2+04+6+1+0)/5 = 1.8

The worst case of the threat is calculated with the highest ratings for each property.
This is the scenario of modifying the memory to cause some kind of malfunction.

Mal functionThreatRanking = (10+6+6+14+2)/5=15

The output from the DREAD threat assessment formula gives a numerical value that
can be used to prioritize threat cases. In our case the threat ranking for malfunction
was 5 and the threat ranking for modified firmware was 1.8. In a general sense the
threat of malfunction by modification should be the first priority. The scale for the
formula goes from 0 to 10, and the malfunction threat scores at the middle of the
scale. If the manufacturer has an implemented risk identification and assessment
process, the malfunction by memory modification threat should be an obvious threat
to mitigate. The manufacturer has to prioritize threats according to their threat
assessment scores. Depending on the context of the devices, some manufacturers
need to handle threats with lower DREAD scores than other manufacturers. In the
context of medical devices, the standard for threat assessment scores that needs to
be mitigated should be lower than the standard used for other devices. Thus, the
firmware modification score of 1.8 should also be addressed by the vendor. Since
these devices pose a threat to the health of a patient, it require the manufacturers to
handle most threats with low scores if they additionally pose large health or safety
impacts for the patient.

To mitigate these threats it is beneficial for the manufacturer to also apply
certain cybersecurity mitigation strategies. There exists different frameworks or
strategies developed by security authorities. Two such companies or authorities
are Microsoft and the NSA. They have their own defined list of top ten mitigation
strategies to reduce impact of commonly identified threats [46]. Their strategies are
quite similar and relate to the mostly the same categories of cybersecurity. In fig-
ure 3.3 we can see the categories defined by the NSA and how they can be handled [7].
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NSA’S Top Ten Cybersecurity Mitigation Strategies

Update & upgrade software

Defend Privileges and Accounts

Enforce Signed Software Execution
Policies

Exercise a System Recovery Plan

Actively Manage Systems and Con-
figurations

Continuously Hunt for Network In-
trusions

Leverage Modern Hardware Security
Features

Segregate Networks
Application-Aware Defenses

Using
Integrate Threat Reputation Ser-
vices

Transition to Multi-Factor Authen-
tication

Applying software updates by an automated pro-
cess to avoid zero-day/n-day exploits from threat
actors.

Access control and management of credentials
should be automated by a access privileged ac-
cess management system. Implement procedures
to securely reset credentials such as passwords,
tokens etc.

There should be a list of trusted certificates and
an enforced software policy for signed firmware,
drivers, and other executables. To maintain in-
tegrity devices should use secure boot options and
whitelisting of applications.

To protect critical operational data, configurations,
and logs a comprehensive recovery strategy should
be implemented. There should be encrypted back-
ups and support for recovery of systems and de-
vices. A recovery plan can be a necessary mitiga-
tion plan against malicious attacks such as ran-
somware or other integrity attacks.

Actively manage devices, applications, applica-
tions interacting on the network. Systems need
to adapt to a dynamic threat environment. Un-
known, unnecessary or unexpected devices should
be removed from the network.

Proactive measures to detect, contain, and remove
malicious devices or services in the network. Both
passive and active forms of detection mechanisms
should be deployed.

Implement hardware security such as secure boot,
TPM, application containment, schedule replace-
ment of old hardware/devices, and hardware vir-
tualization.

Segregation of critical networks and services. Im-
plement IDS and application-aware defences in the
network to block malicious traffic.

Implement  multi-source  reputation  and
information-sharing services to prevent and
detect malicious attacks/events.

Transition away from single-factor authentication
systems such as password-based systems, and re-
place with physical token-based systems supple-
mented with knowledge-based systems such as
passwords or PINs. Authentication of both de-
vices are also critical, i.e mutual authentication.

Table 3.3: Cybersecurity mitigation strategies by NSA [7]
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3.3 Black Box Testing

Black Box Testing is defined as "a software testing method in which the functionalities
of software applications are tested without having knowledge of internal code structure,
implementation details and internal paths. Black Box Testing mainly focuses on
input and output of software" [47].

A z L
¢ Blind Gray|Box T‘ander;

Double Gray Box

Target's
Knowledge
of Attack

Double Blind Reversal .

Attacker's Knowledge
of Target

Figure 3.1: Common test types defined by OSSTMM [1]

Finding a suitable method is dependant on the available information. OSSTMM
defines six different types of common test types based on the target and the informa-
tion available to the attacker [1]. The available information, or knowledge, of the
attacker is plotted along the x-axis and the targets knowledge is plotted along the
y-axis. The figure can then be divided into four squares, where the top right square
defines a white box test and the bottom left corner defines a double blind test. White
box is a test where both the analyst and target are aware of the audit, and where
the assets and all knowledge is available for both parties. This can be the case if the
analyst is hired by a company. In that scenario, the analyst is the "attacker'.

In the opposite end of the scale, there is the Double Blind test. In the double blind
test, the attacker has no prior knowledge of the targets system, assets or defenses.
This audit can be performed by both an internal analyst or a real attacker, depending
on the context. The purpose of an analyst to do a double blind audit is to simulate
the scenario of a real attacker. Similarly, in this project we will be the attacker - an
ethical attacker.

Our role in reverse engineering the HMU devices will be similar to the attacker
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with limited to no knowledge. The only prior knowledge we have of the HMUs
internal system is findings from other similar projects also working on the devices in
the pacemaker ecosystem.

Black Box Testing is a methodology for testing software without access or knowl-
edge of the internal system. The method consists of modifying input data, observing
behavior and then analyzing the corresponding output data. Based on this, we can
try to find the internal functionality of the system based on input and output.

BLACK BOX S5YSTEM

OUTPUT

ADJUSTMENTS

Figure 3.2: An illustration of the Black Box Testing Method

Black Box Testing method stages

Below are the stages stages of the black box testing method [47].

1. Information gathering
Initially, we try to obtain all the available information about the system. All the
specifications, interfaces and technical information in the components datasheet
or manual, or even readable on the device itself. All these details about the
system is documented and used to make an outline of the device. This is used
to form a basis and hypothesis for our following steps.

2. Hypotheses
With the information from the previous step, we construct hypotheses about
how the system will behave based on our current knowledge.

3. Test Cases
We make positive and negative test cases, predicting the expected outputs of
the system for each of our constructed supposed valid or invalid inputs. We
base these test cases on each of the hypotheses defined in the previous step.

4. Execution
The test cases are executed, where the constructed inputs from each test case
are inserted into the system in order.
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5. Comparison and analysis

For each input we compare the observed output with our hypothesized expected
output. If the observed output is coinciding with the predicted output, we
have confirm functionality and obtained knowledge of the system. The goal
is to learn more information about the systems internal behavior through a
series of constructed inputs and their corresponding outputs- a trial-and-error
approach based on the information available. If the output does not match our
expected test case hypothesis, we have falsified our hypotheses, and can form
a new hypothesis based on the system output. Outputs can occasionally give
unintended internal knowledge, e.g debugging strings, which can give clues as
to functionality.

6. Retest
The information obtained during the previous iterations are added to our
known information, and then used to construct a new series of hypotheses in
the next iteration with new test cases. It is an iterative process that examines
constructed inputs based on hypotheses and compares to actual system output.

Each generated input and resulting system output will impact the next iteration of
inputs. My reverse engineering process will therefore be a series of trial-and-error
iterations.

The benefit of black box testing is that fact that we are analyzing a real system.
Its output, whether it is output corresponding to valid input or error messages,
describes the internal behavior and might give us information we otherwise would not
know. Except from error messages, there may be debugging strings, configuration
information or even as severe as internal system information. The drawback of black
box testing is the lack of internal knowledge. White Box Testing is the opposite, it
is defined by its access to system internals and source code. Ideally, we would like
to do white box testing but the medical device companies do not give away their
internal source code. Their medical device source code is highly sensitive and may
be taken advantage of in the hands of an adversary with malicious intent.

Since our pacemaker project’s centre of attention is Biotronik’s proprietary
pacemaker ecosystem, our knowledge is limited to previous research on HMU devices
and vaguely-worded device user manuals.

Finally, findings that show critical vulnerabilities are reported to the appropriate
authority in a coordinated vulnerability disclosure process. Along with the findings it
can be useful to report mitigating measures. The test cases may uncover unintended
functionality or insecure practises, hence reporting means of mitigating risk and
exposed systems are useful for the authority and the by extension the people affected
by the service.
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3.4 Limitations

The first limitation of this reverse engineering process is the lack of source code. As
described in the Software: Reverse Engineering section, a lot of useful information
is lost in the compilation process. Our project is therefore limited to the effect of
the available tools, and their functionality to reverse and decompile code from the
binary memory dumps.

The analysis tools may not me accurate at reversing the memory dumps because
certain information is lost from the compilation process, the software makes an
educated guess and optimizations when analyzing the files. However, given enough
time and the required skills and knowledge, it is feasible to reverse parts of the code
to a stage where we are able to determine the structural code design and functionality.

One of the largest limitations is my own knowledge and experience. My experience
going into this project rest on the general knowledge gained as a student of cyber
security, and the specific knowledge of an electrical computer engineering course
during my studies. The process of reverse engineering in this project might therefore
be challenging and even more time-consuming based on the lack of specific training
in this method of research.

3.5 Ethical & Legal Considerations

When starting a project on medical devices, it is important to recognize the implica-
tions of our work and findings. These medical devices are a life-necessity for many
people around the globe. Therefore, it is important that we disclose critical findings
in a safe manner to the proper authorities and agencies before the paper is disclosed
publicly. This is done with a coordinated vulnerability disclosure (CVD) process
with the manufacturer. They will then have the opportunity to mitigate any of the
disclosed critical findings and vulnerabilities. We have also signed a non-disclosure
agreement with SINTEF.

There is a possibility of finding personal information on medical devices. However,
in the case of HMUs, previous work on the CardioMessenger Smart 3G and Car-
dioMessenger I1-S have shown no sign of personal information like the information
found on pacemakers. However, if we were to find personal information such as
identification numbers, phone numbers or such, it will be redacted from publication
because of privacy and security considerations.






Results

This chapter contains a preliminary information gathering phase about the Car-
dioMessenger Smart 3G devices available in the SINTEF lab, by identifying the
components and debugging interfaces on the boards, and then dumping certain
memory locations.

We then perform a series of security analysis tests. We perform a preliminary
strings analysis of the memory files. Section 4.2 gives an overview of the binary
dumping procedure. A detailed walk-through is added to the Appendices A. We use
Binwalk to perform an entropy analysis to show how data is stored within the files.
Lastly, the flash memory file is analyzed in the SRE framework Ghidra to reverse
engineer the code sections that make up the communication protocol from the HMU
to the data servers.

4.1 Information Gathering

In gathering information about the HMU and the pacemaker ecosystem we are
limited by publicly available information. It would be unethical and even illegal
for us to utilize different information gathering tools that impose on devices and
networks owned by a private company. Scanning or trying to establish a connection
to their internal network can be classified as an attack on their property, hence
we need conduct our research cautiously and within the bounds legal and ethical
considerations.

Limited documentation of the HMU is available online. The manufacturer
Biotronik has a technical manual for the CardioMessenger Smart 3G [9]. It contains
information on the basic functionality of the HMU. How to setup the HMU, some
basic maintenance and handling, and some limited telemetry- and technical data.
The manual mentions the micro USB interface for charging, the error and self-test
functions that are displayed on the HMU display, and information on the frequency
bands for the different HMU model’s telecommunication services and short range

35
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MICS.

Previous research on the pacemaker ecosystem and specifically the HMUs have
also uncovered additional information. Previous Master’s Theses from the Pacemaker
Project at SINTEF have performed hardware analysis on most of the different HMU
models from Biotroniks, and some models from other vendors. The hardware compo-
nents on the CardioMessenger Smart 3G’s PCB have been identified by Bour and
Koké&Stenersen [23, 48]. The HMU has a microprocessor from STMicroelectronics
called STM32F417, a micro-USB interface, a 2MB SRAM EM7164SP from Jeju
semiconductor, a LC4064ZE programmable logic device from Lattice semiconductor,
a Telit HE910-D modem, and a GD25Q32C 4MB external flashfrom Giga Device.

The STM32F417 microprocessor has publically available documents - the refer-
ence manual and the datasheet [4, 30]. These documents define all the technical
details of the microprocessor, its internal components and detailed description of
its functionality. Information in the reference manual and datasheet can be used to
identify the microprocessor’s internal components, their supported features, and their
defined procedures. These features and procedure sets the basis of features the HMU
is capable of. For example the hashing processor of the STM32F4xx supports the
secure hash algorithm (SHA-1, SHA-224, SHA-256) and the message-digest algorithm
(MD5). Hence, we would expect that one or more version of these hashing algorithms
are used in the firmware. Similarly, the same can be said for the cryptographic
processor. The STM32F4xx cryptoprocessors support DES, TDES, and AES encryp-
tion standards. we would expect to find at least one of these encryption standards
implemented in the firmware.

4.2 Reproducing HMU Binary Dumps

Before we can start analyzing the binary memory files from the HMU we need to
reproduce the memory dumping procedure on the HMU. With the assistance of my
supervisor and the equipment at the SINTEF lab, we were able to dump the memory
images from the HMU. The memory dumping have been performed by my supervisor
on older HMU models and on one of the CardioMessenger Smart 3G devices. They
used the JTAG interface to connect to the HMU’s PCB. In our case, we first repro-
duced the dumping over the JTAG interface, and then we additionally performed
the dumping procedure over the SWD interface. We modified the JTAG scripts to
support SWD and connected to the microprocessor. We were able to reproduce the
JTAG dumping of the CardioMessenger Smart 3G, as well as reproducing the same
memory dumping through the SWD debugging interface. We performed the dumping
procedure on the three CardioMessenger Smart 3G HMUs that are available in the
SINTEF lab.
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Finding 1. SWD debugging interface is available

The laptop is connected to a local wireless private network, an access point (AP)
running on the Raspberry Pi Zero with authentication, using the SSH protocol
through the PuTTY application on my Windows laptop. An image of the connection
setup in PuTTY can be seen below.

Figure 4.1: Establishing an SSH connection through PuTTY

We connected the laptop to the wireless AP on the Raspberry Pi Zero. The
raspberryPi is then connected with wires through either the JTAG or SWD debugging
interface. This enabled us to remotely execute commands on the CardioMessenger
Smart 3G’s STM32F417 microprocessor from the laptop.

Executing the scripts for JTAG or SWD in A.4 dumps the memory from the
HMU. The memory dumps goes through the selected debugging interface, to the
Raspberry Pi Zero and wirelessly to our laptop over the SSH session in PuTTy by
running the following command:

# ssh from windows laptop to linux raspberry pi zero:
pscp.exe -r sintef@192.168.1.1:/home/sintef/tools/hardware-hacking/3gTesting
/first3gdumps

A detailed description of process, the lab setup, and the connection between
the HMU’s PCB and raspberryPi to our laptop is included in Appendix A, Binary
Extraction.
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4.3 Binary Analysis

In this section we start analyzing the binary memory files extracted from the Biotronik
CardioMessenger Smart 3G HMU device. Firstly, we conducted a string and entropy
analysis of each file in order to gather information. This will help us to see what
kind of information is available initially from the strings in the files, and it sets
expectations from which we can form hypotheses. To accomplish these tasks we will
be using the built-in strings command in Linux and the functionalities of Binwalk.
The following section in this chapter is related to reverse engineering in Ghidra, and
the tools used and developed in that process.

4.3.1 String Analysis

Firstly, we wanted to check whether there were any interesting information available
straight from the memory files. So we boot up a virtual machine with Ubuntu
Linux and run the strings command on each of the memory files we extracted from
the HMU. In the boot configuration section of the STM32 reference manual, we
know that the boot space is available in the flash section of memory [30]. The boot
configuration also mentions that the embedded SRAM code area might be used as a
boot space as well. Hence, we start by searching for text strings in those files. A full
overview of the memory section in the STM32 microcontroller is added to appendix,

A6 [4].

1200
AT+CPIN="8[REDACTED] 8"
bio [REDACTED]mobile
internet
64 [REDACTED] 29@cmsmart-homemonitoring.de
Z1[REDACTED] bM
172. [REDACTED] .14.1
2323

These findings are also similar to those of Lie, Kok&Markussen, and Bour [22, 23,
48]. They also found usernames, passwords (i.e credentials), pin codes and network
structure stored in cleartext in the SRAM and flash, on both older CardioMessenger
HMUs and of the same Smart 3G model. Additionally, the memory gave away
information about Biotroniks internal network structure. The IP address starting
with 172 is defined to be used in a local network. 2323 would likely be related to
the port number the service is communicating on. The same finding was true for
each of the three CM Smart 3G HMUs we have at our disposal at SINTEF. They all
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had their own unique username and password stored in the memory. The credentials
of the other two devices can be seen below in redacted form for security considerations.

64 [REDACTED] 03@cmsmart-homemonitoring.de
D* [REDACTED] ON

64 [REDACTED] 74@cmsmart-homemonitoring.de
*n [REDACTED] rR

Most of the extracted memory files do not contain any debugging strings. However,
in addition to the SRAM, the flash memory file contains a large amount of debugging
strings. Strings in the form of error messages that reveal naming conventions and
functionality of the code inside the HMU. Below is a selection of the most interesting
strings that were found.

Finding 2. Credentials (i.e username and password), pin code, and infrastructure
information is unencrypted in SRAM

Firstly, we ran the strings command on the flash file and found a lot of debugging
strings. These strings had certain terms such as compression, copyright, header, layer,
encryption, data, hash, download, source, GSM etc. Running the strings command
with the grep option enables us find all the strings that contain each of the selected
terms.

Command: $ strings flash.img | grep Copyright
deflate 1.2.1 Copyright 1995-2003 Jean-loup Gailly
inflate 1.2.1 Copyright 1995-2003 Mark Adler
incorrect header check

unknown compression method

One of the first searches we performed was to check whether the binary had any
strings that referenced to third party software. In the extracted text above we found
a (de)compression reference for inflate/deflate which is part of the Zlib library written
by Jean-loup Gailly and Mark Adler [49]. The string 1.2.1 is a reference to the
version of the Zlib library. This version contains two known CVEs, CVE-2005-2096
and CVE-2004-0797 [50]. We also found the incorrect header check and unknown
compression strings next to the copyright strings when looking through the flash file.
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These strings show that the code has a defined set of allowed compression methods,
and that there likely is a header check to define the selected method of compression.
The CVEs we identified have the potential to cause denial of service (DoS), i.e a
crash. CVE-2004-0797 contains an issue with the error handling in the inflate and
inflateBack functions which allow local users to cause a crash by denial of service.
CVE-2005-2096 shows that a remote attacker can cause a DoS attack with a crafted
stream with an incomplete code description with length greater than 1, leading to
a buffer overflow. In the CVE description, a crash could be demonstrated by a
modified PNG file [50]. However, at this point it is unknown whether any of these
CVEs would affect the HMU because the restrictions on the compressed payload in
the communication protocol is unknown. We also do not know the full extent of how
data is processed by the HMU. A proof of concept is therefore required to verify if
the HMU is vulnerable to the CVEs.

Finding 3. The firmware contains the third-party compression library zlib version
1.2.1, which has two known CVEs

Command: $ strings flash.img | grep Source

$Source: src/variables.c $ $Revision: 1.1 $

$Source: src/variables.h $ $Revision: 1.2 $

$Source: src/Ulpamilow_nonsh_config.h $ $Revision: 1.47 $
$Source: src/Ulpamilow_nonsh_config.c $ $Revision: 1.66 $
$Source: src/Ulpamilow_nonsh_debug.c $ $Revision: 1.43 $
$Source: src/Ulpamilow_nonsh_debug.h $ $Revision: 1.42 $
$Source: src/variables.c $ $Revision: 1.40 $

$Source: src/variables.h $ $Revision: 1.40 $

$Source: Ulpamilowl.c $ $Revision: 1.41 $

$Source: Ulpamilow.h $ $Revision: 1.13 $

$Source: Ulpamilow_H3.h $ $Revision: 1.2 $

$Source: UlpamilowInterface.h $ $Revision: 1.21 §
$Source: src/Ulpamilow_nonsh_debug.h $ $Revision: 1.42 $
$Source: src/Ulpamilow_nonsh_Hw.h $ $Revision: 1.39 $
$Source: UlpamiLowHAL.c $ $Revision: 1.6 $

$Source: UlpamiLowHAL.h $ $Revision: 1.2 $

$Source: bfs.c $ $Revision: 1.37 $

$Source: bfs.h $ $Revision: 1.14 §

Searching for strings containing Source showed that they reveal the directory, file
names, and their revision number. Although we do not have the files, we can see the
revision number of the files, their names, and a src folder structure. We also notice
that many of strings mention the name ULPAMI, which is an acronym for Ultra
Low Power Active Medical Implant - an IMD with a medical implant communication
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system (MICS).

Finding 4. Revision numbers of the ULPAMI scripts are available in Flash memory

Command: $ strings flash.img | grep UsbInterface

Message_UsbInterfaceHandler: configuration not found

Message_UsbInterfaceHandler: unable to open virtual pdhm port
Message_UsbInterfaceHandler: unsupported interface

Message_Init: unable to init Message_UsbInterfaceHandler
pGpGMessage_UsbInterfaceHandler: com port open event received and debug is disabled
Message_UsbInterfaceHandler: unable to request rx and/or tx buffer from port
Message_UsbInterfaceHandler: com port open event received and debug is disabled
Message_UsbInterfaceHandler: com port close event received - closing virtual pdhm port

The HMU has a micro USB interface that is used for charging [9]. When search-
ing through the flash memory for USB and UsbInterface we find several debugging
strings. We find mentions of port, interface, and PDHM. PDHM is an acronym
or name we find in a multitude of strings related to network and communication.
Hence, we believe it is likely a name related to Biotroniks proprietary communication
protocol. Finding a reference to PDHM related to USB was unexpected. Maybe the
USB interface has more functionality than the mere charging capabilities that were
described in the HMU manual.

Command: $ strings flash.img | grep Hmsc
Message_HmscInterfaceHandler: unable to initialize semaphore
Message_HmscInterfaceHandler: unable to set rx/tx buffer
Message_Init: unable to init Message_HmscInterfaceHandler
Message_HmscInterfaceHandler: unable to open virtual hmsc sms pdhm port
Message_HmscInterfaceHandler: triggered by regular check timeout
Message_HmscInterfaceHandler: unable to create gsm state handler process
Message_HmscInterfaceHandler: unable to start gsm modem e.g. due to
low battery voltage, waiting for usb plug/unplug
Message_HmscInterfaceHandler: unable to export out message list
Message_HmscInterfaceHandler: sms fallback timeout occured while waiting
for disconnect event
Message_HmscInterfaceHandler: unable to open virtual hmsc pdhm port
Message_HmscInterfaceHandler: sms fallback timeout occured while waiting
for connect event
Message_HmscInterfaceHandler: unable to change in/out direction
Message_HmscInterfaceHandler: unable to set sms connection wanted event
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Hmsc is an acronym for Host Mass Storage Class and it is a driver for USB.
When searching for strings containing Hmsc we find debugging strings that mention
opening of virtual ports, PDHM, and SMS. The strings also mention that the GSM
modem is dependent on sufficient battery voltage to start, and that the SMS interface
is waiting for an event to perform connection and disconnection to the other device.

Command: $ strings flash.img | grep Layer

PDHM: ProcessDataFromMessagelayer - unknown layer [%d] error

PDHM: pdhm_decode_rx_handler - transport layer expected

PDHM: pdhm_network_rx_handler: communication timeout during network layer selection

Since we are looking for a communication protocol we expect to find structures
similar to the OSI model and its defined layers. Searching for the term "layer" we
found a few interesting strings. The first line refers to ProcessDataFromMessageLayer
and clearly throws an error if the layer is not set correctly, likely the message layer. It
means that the program expects a specific value to define the layer, otherwise an error
is thrown. The other two strings mention the transport layer and the network layer, in
PDHM__DECODE__RX__HANDLER and PDHM__NETWORK__RX__HANDLER respectively.
It is clear that the software has specific functionality to check if the transport-,
network- and message layer is defined correctly, and that a layered structure similar
to OSI is used.

Command: $ strings flash.img | grep pdhm_network

PDHM: pdhm_network_rx_handler - malloc error

PDHM: pdhm_network_rx_handler: communication timeout

PDHM: pdhm_network_tx_handler: communication timeout

pdhm_open: unable to initialize pdhm_network_rx_handler

PDHM: pdhm_network_rx_handler: communication timeout during network layer selection
pdhm_open: unable to initialize pdhm_network/decode_tx_handler

Command: $ strings flash.img | grep auth

PDHM: ProcessDataFromMessagelLayer - MSG auth CRC error

PDHM: pdhm_cmd_auth: response

PDHM: pdhm_cmd_auth - error: adding message to out list

PDHM: pdhm_cmd_auth - error: invalid passkey

PDHM: pdhm_message_handler - pdhm_cmd_auth: invalid frame len

PDHM: pdhm_message_handler - pdhm_cmd_auth: error during authentification
PDHM: ProcessDataFromMessagelLayer - MSG auth CRC error

authentication failure

GSM_HandlePdpContext: authentication failure or wrong apn
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Searching for the term auth, as in authentication, we find interesting strings
containing CRC, passkey, authentication, and APN. In the first line there is an error
about CRC authentication on data that is processed in the message layer, and that
there is an authentication response being either logged or sent. There is also an error
message if a passkey is invalid which can be interesting to analyze later in the reverse
engineering process. It might be the same password we identified from the SRAM
strings or possibly another credential. The last line above mentions an APN which is
the gateway name a telecommunications network and a computer network. An APN
is made up of a network identifier and a operator identifier. It might be referring to
the APN we found previously from the SRAM string analysis.

Finding 5. The HMU has functionality authenticate and detect a wrong APN

Command: $ strings flash.img | grep ProcessData

PDHM: ProcessDataFromMessagelLayer - unknown layer [%d] error
PDHM: ProcessDataFromMessageLayer - MSG Hash error

PDHM: ProcessDataFromMessagelLayer - frame len [%d/%d] error
PDHM: ProcessDataFromMessageLayer - invalid direction

PDHM: ProcessDataFromMessagelLayer - unspecific error

PDHM: ProcessDataFromMessagelLayer - pdhm alloc error

PDHM: ProcessDataFromMessageLayer - MSG auth CRC error

PDHM: ProcessDataFromMessagelLayer - invalid container crc

PDHM: ProcessDataFromMessagelayer - invalid target [/d] error
PDHM: ProcessDataFromMessagelayer - invalid source [}d] error
PDHM: ProcessDataFromMessageLayer - invalid session id in frame
PDHM: ProcessDataFromMessagelLayer - invalid sequence number in frame

From the previous string findings we saw the term ProcessData, searching for
this term might be useful to uncover more functionality on how data is handled in
the code. Searching for ProcessData gave many different error messages, which can
be seen above. There is another CRC error check in the container in the data from
message layer, there are checks on the validity of source and target, and mentions
of session, frame, and sequence numbers. Frame is the unit for the data link layer.
However, the session id in frame does not relate properly to the session layer in the
OSI model. The session layer is multiple layers above the data link layer for frames,
therefore session id might be a local identifier unrelated to the OSI model.

Finding 6. The HMU has functionality to detect an invalid target and source

Finding 7. The HMU has functionality to calculate a message hash and CRC
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Command: $ strings flash.img | grep Download

PDHM: pdhm_message_handler - pdhm_cmd_download_file: complete

PDHM: pdhm_message_handler - pdhm_cmd_download_file - rx: %x/%x

PDHM: pdhm_message_handler - pdhm_cmd_download_file: invalid offset detected
PDHM: pdhm_message_handler - pdhm_cmd_download_file: invalid file id detected
PDHM: pdhm_message_handler - pdhm_cmd_download_file: parsing error - response

Since the HMU has a network connection, we suspect that it has functionality
to download firmware updates. Searching the flash file for Download reveals that
the HMU indeed does have functionality to download a file. The strings also show a
function named PDHM__MESSAGE_ HANDLER, a file id check, and offset check. The
strings do not indicate the file type being downloaded, but we assume it is related to
either a firmware- or configuration file.

Finding 8. The HMU has functionality to download a file

Command: $ strings flash.img | grep Install
Message_InstallFile: pdhm_file_list_processing_failed
Message_InstallFile: invalid signature.
Message_InstallFile: invalid magic number.

The strings also reveal that the HMU installs a file - likely the downloaded file.
It also shows that the file has a signature check and a magic number check.

Finding 9. The HMU has functionality to install o file

4.3.2 Entropy Analysis in Binwalk

We already know that the flash memory section is supposed to contain code and
the string findings from the previous section show error messages related to various
functionality. Thus, we want to analyze the contents of the flash file and see how the
data is distributed within. For this purpose an entropy analysis is suitable. Entropy
measures the uncertainty or randomness of data. In our case, the uncertainty is
related to the change of data or information within a file. Entropy show where data
is located within a file. For this purpose, Binwalk can help us perform an entropy
analysis with a text and visual output as seen below in figure 4.2. The entropy of all
the memory files is attached in appendix E, Entropy of Memory Files.

too short
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Entropy
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Figure 4.2: Entropy of the flash memory file
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py flash.img
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S binwalk --entro

Figure 4.3: Entropy of flash with detailed hexadecimal information
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As shown in figure 4.2 above, we notice that the flash memory file contains three
larger blocks of code. Aside form the size difference, each of the blocks have similar
peaks and troughs in the entropy graph. Another key similarity is the large spike at
the end of each code block. These similarities implicates that these blocks have a
similar structure.

4.4 Ghidra Analysis

In this section we advance to the reverse engineering process in Ghidra. The pre-
requisite for this section is adding the binary into Ghidra, which is explained in
Ghidra Installation & Setup in appendix C. This section describes the analysis tools
that are used in Ghidra, modification of the binary input file, the development of
necessary tools & scripts, the discovery of third party libraries, the exploration of a
hierarchical code structure, and lastly we identify the layers and fields of the PDHM
communication protocol.

4.4.1 Defining peripherals from base addresses

One of the first issues we experienced in Ghidra was the lack of readability. Ghidra
does not automatically recognize the microprocessor from which the binary was
obtained from, and therefore Ghidra does not know the names of the peripherals
and registers the base addresses refer to. Most sections of code were therefore only
referenced by hexadecimal base address or a DAT identifier - Ghidras functionality
to specify data content of some unknown kind. Our first task was then to identify
and define each of the peripherals and their registers names.

Script: Reading .svd file & defining peripherals

To make the code more readable, we decided to make a script plugin for Ghidra that
defines memory sections by name accordingly to the peripherals and their registers
based on how they are defined in the STM32 reference manual [30]. However, doing
this process manually is time-consuming and not very practical. Below in figure 4.4
is an image of how this task were performed for the binary flash file, named ram in
the image, and the process would be exactly the same for defining peripherals.
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Figure 4.4: Manually adding memory blocks

To make the reverse engineering process efficient, we decided to develop a plu-
gin for Ghidra that would define all the peripherals and registers for our STM32
microprocessor automatically. Ghidra has an open API and there already exist a
couple different tools for this exact purpose, the svd-loader by leveldownsecurity and
the stm32f4_loader by Bour [51, 52]. The svd-loader relies on .svd (System View
Description) files that contain a microprocessors defined peripherals and registers
in an xml file structure. Instead of manually going through the STM32 reference
manual, there exists a library of .svd files for common microprocessors online by
Arm Kiel [53]. However, the leveldown security svd-loader only loaded some of the
peripherals before throwing error messages. The stm32f4-loader were hardcoded for
every peripheral and register for the STM32F4 microprocessor. For this reason we
decided to develop our own version of the svd-loader that reads the .svd file similarly
to leveldown securitys loader, but also with the register components like we found in
Bours stm32f4-loader. Our Ghidra .svd loader were developed to work for any ARM
processor with a given .svd file, and possess the ability to define both peripherals
with all their register names in a Ghidra project. The code for our Ghidra .svd loader
is published on the SINTEF github and is attached in the appendix D, Developed
Tools & Scripts for Ghidra. The result of running our Ghidra .svd loader can be seen
in the two figures below, 4.5 and 4.6.



48 4. RESULTS
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Figure 4.5: Pre .svd loader
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// Generated by andnilse script
// ram:50060000-ram:S00603£E
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Beripherals.Registers::CRYP.CR XREF[90]:

2 |void FUN_080465d8 (uint *param 1)

{

undefined *puvarl;

undefined *puvar2;

* (uint
0) && (param_1[1
*(uint *)puVarl

return;

From figure 4.6, our .svd loader enables us to see which peripherals and registers
are being referenced in each of the decompiled functions in Ghidra. Instead of
manually looking up every hexadecimal base address in the reference manual or
from the Arm Kiel .svd files, we are now able to see the peripheral and register
name directly from the generated functions in Ghidra. In the case of the function
from figure 4.6, we can see that the function contains pointers to the cryptographic

Figure 4.6: Post .svd loader

processor and its Control Register (CR).
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4.4.2 Identifying the low-level Cryptographic Functions

Since one of our main goals is to find the functions that constitute the HMUs com-
munications protocol, and reversing it, we need to start identifying the low-level
cryptographic functions. These functions contain a reference to the at least one of
the many registers on the cryptographic processor - named CRYP in the STM32
reference manual. We know from previous work on these HMUs that the communica-
tions from the HMU is encrypted [48, 54]. So, at some point in the communication
protocol there has to be a reference to encryption, and the encryption function
needs to reference onto the lowest level cryptographic functions on the cryptographic
processor. lIdentifying the low-level cryptographic functions is therefore our first
primary objective and it will enable us to do a bottom-up approach to identify all
the functions that are related to the communications protocol. In figure 4.7 below,
we can see all the functions that reference the cryptographic control register that
was defined by our own svd-loader script.

[program Trees HE ™ x||E flash 80000-D343C.img BN B @& x
[ // ram:500€0000-ram:500603£f

=
Program Tree

-
&WTM o | x Peripherals.Registers::CRYP.CR ¥REF([33]:
- [CfF) Functions
= [} Namespaces

- {} Peripherals.Interrupts
®  CRYP.CRYP
£ {} Peripherals.Registers
; CRYP.CR
CRYP.DIN
CRYP.DMACR
CRYP.DOUT
CRYP.IMSCR
CRYP.IVOLR
CRYP.IVORR
CRYP.IVILR
CRYP.IVIRR
CRYP.KOLR
CRYP.KORR
CRYPK1LR
CRYPKIRR
CRYP.K2LR
CRYP.K2RR
CRYP.K3LR
CRYP.K3RR
CRYP.MISR
CRYP.RISR

0000000000000000000 ¢

CRYP.SR 50060000 undefinedd 22
|F.|he,; CRYP x| 8 Peripherals.Registers: :CRYP.SR XREF([3]:
@&rmmnw v X CRY FUN 0f =
50060004 undefinedd 22 -
i AR B ASILY

aDatﬂTvPeS Peripherals.Registers::CRYP.DIN XREF([1]: CRYP_Dataln[FUN_0810béde
@@ BuiltinTypes 50060008 undefinedd 22

- Jf ©fiash 80000-D343C.img
- generic_db Peripherals.Registers: :CRY.DOUT XREF([1]: CRYP_DataOut [FUN_0810bES:

5006000c undefined4 2?2 I

Filter: )|

Figure 4.7: Functions calling on the cryptographic processor

However, this method is limited to finding functions for a single register at the
time. If we were to look for functions containing multiple registers simultaneously
this method would not be feasible. That is why we developed another script plugin
in Ghidra that could look for multiple registers or strings simultaneously.
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Script: Compiling & searching functions

Being able to find functions that contain more multiple registers or strings simulta-
neously is beneficial to identify certain specific functions. Also, it would be practical
for the coming reverse engineering work, where we redefine other types of data inside
a function such as variables, to fully reverse a function. Therefore we made another
script plugin for Ghidra that goes through every recognized function and searches
for all the keywords in a list - one or more. For every function containing every
item, register or string from the list, the script would generate a file with all the
matching functions and print their names in the Ghidra console. In figure 4.8, we can
see the output from the script plugin after searching for the CRYP peripheral registers.

s &% x | [ T NIEE AT R o I
——— =1 7 Name Es{Location |Func... |Func..
Bt // WDG.WWDG | CRYP-datanpu... 0801L.. un... 3
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Filter: 2 = -
oAl Defined Strings X Y7 Functions x
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Fiter: &) [[100.08

||| ["FUN_08011628", 'CRYP-key-registers(FUN_080116a8)', 'CRYP-initialization-vector-registers(FUN_08011¢e0)', 'FUN_08011700', 'FUN_08011712', 'FUN_08011720°,
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{8 0vta Tvpes "FUN_08046€b04", 'FUN_08046d16', 'FUN_08046ee8’, 'FUN_08047478', 'FUN_08047fcd’, 'FUN_ *FUN_0804a5 "FUN_080426 *FUN_0808b538",
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Figure 4.8: Output in console from GhidraFunctionFinder.py

The output shows a list of 60 functions that match and contain one of the registers
from the cryptographic processor. We had already mapped a couple of the functions
before running this script and an interesting finding was that there appears to be 3
identical functions at different base addresses. For instance, there are three functions
for CRYP-data-input-register, and they are all referenced at different base addresses.
This is interesting because previously, in the Entropy Analysis in Binwalk section,
we found that there were three blocks of code in the flash memory file, and we also
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found that some debugging strings were repeated.

The low-level functions calling on a register of the cryptographic processor always
contained a hexadecimal number in the decompiled functions. An example of this
is shown in a figure 4.10, where there is a pointer to the control register of the
cryptographic processor and an offset 0x8. When we look up the cryptographic
processors control register in the reference manual for STM32, section 23.6.4 in the
reference manual, we find that the offset 0x8 is the defined offset for CRYP data
input register [30]. With this method we are able to name the functions based on
its containing registers and offsets, and comparing those to the information in the
microprocessor’s reference manual. This procedure is performed for all the functions
that were found by our GhidraFunctionFinder.py script. Identifying and renaming
all these low-level functions will aid us in identifying other functions further on that
all depend on these lower-level cryptographic functions.

Duplicated functions

Because of the issue of duplicated functions we decided to cut out and analyze one of
the code blocks from the flash memory file. Our hypothesis is that the largest code
block contains the same information found in the two smaller code blocks, as well as
some additional data. Our analysis showed that the largest code block contained all
the strings found in the two smaller preceding code blocks, and additional debugging
strings that were not found in the former blocks. Thus, we are less likely to miss out
on any data by only analyzing the larger code block, and we avoid overlapping work.

In figure 4.9 below, we have inserted the cut code block from 80000-D843C-hex
into Ghidra and ran the GhidraFunctionFinder.py script plugin again. We have also
identified most of the functions referencing "CRYP".
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=iy 08080012 02 08 lsrs x2,10,#0x20 = | | cRYP_GetFlagst... 0810b... wun.. 34
~®  CRYPKILR 08080014 c9 45 cmp 9 o || R ntFUN_... 0810b... un.. 116
@ CRYPKIRR 08080016 02 08 lsrs CRYP_IVInit[FU... 0810b5f0 wun.. 20
[ : E::.gn; 08080018 59 46 mov CRYP_KeyInit[F... 0810b... wun.. 3%
@ CRYPIGLR 0808001a 02 08 1lsrs CRYP_KeyStruct... 0810bSdc_un. .. 20
@ CRYPX3RR 0808001c 00 00 movs Fiter: 2 =-
~®  CRYP.MISR 0808001e 00 00 movs x0,r
LY DA1 Defined Strings X Y7 Functions x
000000 adx

Fiter: |aryp %| &) ||[99- 65337954048

1 | 95.740034662
ﬁmm v X ||99.52668977473

99.9133448873%
o (IR |0

["CRYP_Init[FUN_0810bS38]', 'CRYP_KeyInit[FUN_0810bSb€]', 'CRYP_KeyStructInit[FUN_0810bSdc]', 'CRYP_IVInit[FUN_0810bS£0]', 'FUN_0810bél0',
(2300t Types "CRYP_FIFOFlush [FUN_0810b622]', 'CRYP_Cmd[FUN_0810b630]', 'CRYP_DataIn[FUN_0810bé4e]’, 'CRYP_DataOut[FUN_0810b€54]', 'FUN_0810béSa’,

'CRYP_GetCmdStatus [FUN_0810b834]', 'CRYP_GetFlagStatus[FUN_0810b848]', 'FUN_0810b87c', 'CRYP_AES[FUN_0810ba€4]', 'FUN_0810bc76', 'FUN_0810beds',
'FUN_0810c3d8', 'FUN_08l0caca', 'CRYP_DES[FUN_0810cbaé]', 'FUN_08l0ccSe', 'CRYE_TDES[FUN_0810cd%a]', 'Decryption-Handler[FUN_081275fc]’,
'Encryption-Handler [FUN_081277c6]', 'FUN_08127894", 'PDHM-TX-Handler[FUN_0812b4c8]']

25

GhidraFunctionRegisterFinder.py> Finished!

- § BuitinTypes
- |Jff @fiash 80000-D343C.img
- generic_dib

Filter: 2

Figure 4.9: Output in console from GhidraFunctionFinder.py on cut code block

When running the GhidraFunctionFinder on the largest flash code block we
only got 25 matching functions containing a CRYP register. All of the previous
duplications of decompiled functions were also not found in the results of the latest
script execution. Cutting the binary seemed to remove the duplications of CRYP
functions.

4.4.3 ldentifying the Encryption Functions & Third-party
Library

By using the Function Call Trees feature in Ghidra, we are able to see which functions
that make call to the currently selected function. By selecting any of the low-level
identified cryptographic functions, e.g CRYP_ DATAIN, we can see that it is called
by three different functions as seen below in figure 4.10.
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5]
©

¥
X

‘Fﬂm

= [£57¥ flash 30000-D343C.img
+[F] ram

e i ) O o

2 |woid CRYP DataIn[FUN_0310b64e] {undefined4 param 1)

L
¢t
Program Tree x _ . . o .

& * (undefined4 *) (PFTR_CRYP.CR 0810b36éc + 0x3) = param 1;

Tree IZ_‘l EI[ x _ return;

- [ Imports . :
[{\[fj Exports ;
Ev IEE Functions
@EQ Labels
- [CI3 Classes

[ [C5(} Namespaces

|Fi|’ner: &
IEWTWEMQE |+ x
e=-=- - | [N&|E

i 3§ Data Types
B ’ﬁ BuiltnTypes

Filter: =)

Incoming Calls

§ Incoming References - CRYP_Dataln[FUN_0810b&4e]
- [$ § FUN_0B10bas4

- § FUN_0810chas

- [ § FUN_D810cd9a

Figure 4.10: The three encryption functions calling on CRYP_ Dataln

At this point we suspected that Biotronik might not have written the cryp-
tographic code themselves. As we discovered in the string analysis, they have
implemented a third-party compression library. Similarly to the compression func-
tions, the cryptographic functions need to be dependable since their functionality is
essential for the security of the data. For Biotronik it would be logical to implement
an existing and well-tested cryptographic library to handle the encryption, similarly
to the compression library, instead of spending time and resources to develop their
own libraries. After all, Biotronik specializes in the medical aspect of the device and
we would expect them to generally focus on the development of the medical code
sections.

On the STMicroelectronics website, it is possible to send an application to get
access to the code libraries of their microprocessors. By making an account at
STMicroelectronics and sending an application for their STM32F4 DSP and standard
peripherals library under research and academic purposes, we were able to download
their peripheral code library for the STM32 microprocessor [55]. The package in-
cludes code and drivers for every interface and functionality such as GPIO, UART,
RNG, flash, CRC, hash, and crypto(DES, TDES, and AES).

By comparing the three functions calling on CRYP__DATAIN to the code files
downloaded from SRMicroelectronics website, we were able to determine that those



54 4. RESULTS

three function were in fact the DES, TDES, and AES encryption functions. We were
also able to rename most of their variables in the encryption functions and rename

the parameter variable names coming from the caller functions above using Ghidra’s

Function Call Trees feature. This feature enables us to see the incoming and outgoing
function calls for each decompiled function.

Finding 10. The HMU supports the encryption algorithms DES, TDES, and AES

Errorstatus CRYP_AES_( cElC(umt:B t Mode, uint8_t InitVectors[16], uints_t *Key,
ntile_t Keysize, uints8_t =Input, uint32_t Ilength,

u1ncs T *0utput)

CRYP_InitTypeDef AES_CRYP_InitStructure;
CRYP_KeyInitTypeDef AES_CRYP. KeyImtStru:ture,
CRYP_IVInitTypeDef AES_CRYP_IVInitStructure;
__I0 uint32_t counte
uint32_t busystatus
EFrorstatus status
uint32_t keyaddr
uint3z2_t inputaddr
uint32_t outputaddr

=0;

0;

SUCCESS;
(uint32_t)Key;
(uint3z_t)Input;
(uint3z_ t)clutput'
(uint32_t)InitVectors;

uint3z_t ivaddr =
uint3z_t i = 0;

/* Crypto structures initialisation®/
CRYP_KeyStructInit (&AES_CRYP_KeyInitstructure);

switch(kKeysize)

case 128:
AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_128b;
AES_CRYP_KeyImitStructure.CRYP_Keyz2left = __REV(* (u'mt32 t*) (keyaddr));
keyaddr+=4;

AES_CRYP_KeyInitstructure.CRYP_Key2Right= __REV(=(uint32_t=)(keyaddr));
keyaddr+=4;

AES_CRYP. KeyImtStructure CRYP_Key3Left = _REV(*(uint3z_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key3Right= __REV(*(uint32_t+)(keyaddr));
break;

case 192:

AES_CRYP_Initstructure.CRYP_Keysize = CRYP_Keysize_192b;
AES_CRYP_KeyInitStructure.CRYP_KeyllLeft = __REV(*{uint32_t*)(keyaddr));
keyaddr+=4;

QES_g%VP_ eyInitStructure.CRYP_KeylRight= __REV(*(uint3z_t*) (keyaddr));
eyaddr
AES_CRYP_KeyInitStructure.CRYP_Key2Left =
keyaddr+=4;

AES_CRYP. KefyIm:s:ru::ure CRYP_KeyzRight= __REV(*(uint3z_t=) (keyaddr));
keyaddr+=4;

AES_CRYP_| KeyImtStructure CRYP_Key3Left = __REV(*(uint3z2_t*) (keyaddr));
keyaddr+=4;

AES_CRYP_KeyInitStructure.CRYP_Key3Right= __REV(*(uint32_t*)(keyaddr));
break;

case 256!

AES_CRYP_Initstructure.CRYP_KeySize = CRYP_Keysize_256b;

AES_CRYP, Ka’yImtStru[turE CRYP_KeyoLeft = __REV(*(uint32_t=)(keyaddr));
keyaddr +=

AES_CRYP_| KeyImtStructure CRYP_KeyORight=

—REV(*(uint32_t*) (keyaddr));

_REV(*(uint3z_t*) (keyaddr));

uint param_6,undefinedd *paras_?)

{
vint warl;

int local _78;
uint local_74;
uint local _70;
uint loca]

¥
i
)

uint
uint
uint
uint
uint
uint
uint
uint
undef ineds loc.
undef ineds ot

ivard = 0;
local 78 = 1;
iStacks? = param_1;
uStackdd - param_2;
ocal_2c = paran_3;
Tocal 28 = paran_i;
FUN_0B0BbSGC (81oca]_64);
if (local 26 = 0x80) {
Tocal 38 0;
wvarl = *par;
Tocal 54 = uvarl << 0x18
uvarl = param_3[1];
local 50 = uvzn « 0x18
uvarl = param 3
Tocal dc = wart << 0a8
uvarl - param_;
Tocal_48 = wvarl << 0x18

(uvarl »»
(uvart »»
| (uvarl =»

(uvarl >

58
if élo(al_z.! - 0xc0) {

B & 0xff) << 0x10 | (uvarl
B & Oxff) << Ox10 | (uvarl
B & Oxff) << 0x10 | (uwvarl
§ & OXFF) << Ox10 | (ward »»

i FUS_0B0Bbag4 ({rt paran_1,uint *paran_2,uint *paran_3,int paran_d,undefineds *paran_s,

=5 0x10 & 0xff) << B | uvarl > 0x18;
> 0x10 & Oxff) << 6 | uvarl > 0x18;
> 010 & Onff) << 8 | wvarl > Ox18;
0x10 & OxfF) << & | warl > 0x18;

»> 0x10 & 0xff) << B | uwvarl >> 0x18;
>» 0x10 & Oxff) << B | wvarl >> Ox18;
»» Ox10 & Oxff) << 8 | uvarl >» Ox18;

keyaddr+=4;

AES_CRYP. KE}IIV\'I[S[V‘MCEUI’E CRYP_KeyllLeft =

keyaddr+=4;

i
AES_CRYP_KeyInitStructure.CRYP_KeylRight=

keyaddr+=4;

—REV(*(uint32_t*) (keyaddr));
__REV(=(uintaz_t=) (keyaddr));

local 38 = 0x100;

uvarl = *paran.d;

Tocal_sc = uvar) << 018 | (warl >> 8 & Oxff) << 010 | (warl
uvarl s par,

Tocal 58 = uvarl < 0418 | (Warl >> 8 & Oxff) << 0x10 | (wvarl
warl - paran_3(2];

Tocal_54 = uvarl << 0x18 | (wvarl »» 8 & Oxff) << 0x10 | (uvarl
war] = paran_3[3];

Tocal_50 = uvarl << 0x18 | (warl >» § & OxFF) << 0x10 | (uvarl
wvarl = paran_3[4];

local dc = wvar] << 018 | (warl >» § & 0xff) << 0410 | (warl
warl = param_3[5; )

Tocal 48 = uvarl <c Ox18 | (uvarl >» 6 & OcFf) << 0010 | (uvarl

»» 0x10 & OxfF) << § | wvarl =» 0x1§;
>» 0x10 & OxFF) << & | wvarl »» Ox1§;
»> 0x10 & Oxff) << 6 | wvarl >> 0x18;

AES_CRYP_KeyInitStructure.CRYP_Key2Left = _REV(*(uint32_t*) (keyaddr));
keyaddr +=4;
AES_CRYP_| KeyImtStructurE CRYP_Key2Right= __REV(*(uint3z_t*) (keyaddr));
keyaddr+=4;
AES_CRYP. KeyImtstructure CRYP_Key3Left = __REV(=(uint3z_t=)(keyaddr)):
keyaddr+=4;
AES_( CRVP KEyImtStrum:urE CRYP_Key3Right= _REV(*{uint3z_t*) (keyaddr));

I

/* CRYP Initialization vectors */
AES_CRYP_: IVIHitStFuEtuFE CRYP_IVOLeft =
ivaddr+=4

AES_{ CRVP IVImtStruttura CRYP_IVORight= _REV(*(uint3z_t*) (ivaddr));
ivaddr+=

AES_( CRVP IVImtStr“ucture CRYP_IViLeft = __REV(*(uint3z_t*)(ivaddr));
ivaddr+=:

AES_( CRVP I\JImtStructure CRYP_IVIRight= __REV(=(uint32_t=)(ivaddr));

__REV(*(uint32_t=) (ivaddr));

/
if(Mode

AES Decryption
MODE_DECRYPT) /* AES decryption

/= Flush IN/OUT FIFOs =/
CRYP_FIFOFTUsh();

Figure 4.11:
AES function

Tocal, 28 - 0u100) {
Tocal 38 =
warl = ¥
Tocal_64 = warl ¢ 0x18 | (uwvarl
warl = paran.
Tocal 60 = Wl(i « 0:15 | (uvarl
uvarl s paran_j
Tocal_5¢ = uvm << 018 | (war1
warl = param_3[3];
Tocal_58 = uV.\rl < lm& | (wvari
wvar] = par
Tocal_54 = warl u 0518 | (wvarl
uvarl = par
Tocal 50 = wiri < 0u8 | (warl
wvarl = paran_3[6];
Tocal dc = mr1 << 018 | (uvarl
uvul = param_3[7];
} Tocal 48 = wvarl << Ox18 | (uwvarl
}
}
uvan P
Tocal 74 = uvarl <<
paran_2[1];
Tocal 70 = uvarl << Ox18 | (warl >> § & Oxff) <<
warl = paran_2[2
Tocal_c = wvarl < <018 | (warl »> 8 & Oxff) <
uvarl = param 2[3
Tocal 66 = uvarl < 0K | (warl >> 6 & OKFF) <

0x18 | (uwvarl »> 8 & Oxff) <<

3> § & OkFF) << 0x10 |
>> 8 & Oxff) << 0x10 |
»> § & Oxff) << 0x10
> 8 & Oxff) << 0x10
>» 8 & 0xfF) << 0x10
»» B & 0xff) << 0x10
» B & 0xff) << 0x10
> 8 & Oxff) << 0x10

(uvarl >»
(uvarl >»
| (uvarl >»
| (uvarl »»
| (wvarl =
| (warl =
| (uvary »>»

| (uvarl »»

0410 & 0xFF) << § | wvarl >
010 & Oxff) << 8 | wvarl »
0u10 & Oxff) << 8 | uvarl >>
Ox10 & 0xff) << & | wvarl >»
0x10 & 0xfF) << 8 | wvarl >»
010 & 0xff) << 8 | wvarl »»
0x10 & 0xff) << 8 | uvarl >»
010 & 0xff) << & | wvarl »»

0x10 | (warl >> 0x10 & OxFf) << 8 | uvarl >» 0X18;
0x10 | (wvarl »» 0x10 & Oxff) << B | uwvarl >» Oxi8;
0x10 | (wvard > 0x10 & OxFF) << 8 | warl » Oxg;
0x10 | (uvarl >> 0x10 & OxFF) << 8 | wvarl >> O0x18;

0x18;
0x18;
0x18;
0x18;
ou18;
Ox18;
0x18;
0x18;

Comparison of the STM CRYP-AES-CBC and Ghidra’s decompiled

From the figure 4.11 above, we can see several similarities. The first similarity is
the amount of parameters in the function definition on top. Both the AES code from
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STMicroelectronics and the AES code decompiled in Ghidra recognizes 7 parameters
in the function call. They also have a keysize check which is named local_ 28 in
the decompiled code. The keysizes are 128, 192, and 256 bit. They are defined in
hexadecimal notation in the decompiled code 0x80, 0xCO0, and 0x100, respectively.
In the code examples we can also see that the Ghidra decompiler interprets the
code to be a series of if- and else-statements, while the STM code shows that the
code in reality were a switch-structure with keysize as the parameter. This is a
good example of how the source code is changed during the compilation and the
subsequent decompilation process. There is also a clear difference between how the
keys are written to the registers. In the left image, the keys are obtained from an
address, while in the right image there is a complex mathematical operation to obtain
every key. This exemplifies the added complexity of reverse engineering compared to
analyzing source code.

The STM AES code contained five block cipher modes, ECB, CBC , CTR, GCM,
and CCM. However, GCM and CCM are only supported by the STM32F437x, not
our STM32F417 model. Our decompiled code also finds code with initialization
vectors which are not used by ECB. Hence, the cipher mode used in our case is either
CBC or CTR. The AES decryption section of the decompiled code also match the
structure of CBC mode.

In the STM library code for AES below the AES Encryption section the AES CRYP
__InitStructure. CRYP_AlgoMode and the AES CRYP__InitStructure. CRYP__Data Type
is set. In the decompiled AES function in Ghidra we find two variables at the same
place, in line 157 and 159. The first variable is 0x28 in hexadecimal notation which
is equal to 00101000 in binary notation. The bits in position 3-5, 101 in this case,
consist with AES-CBC according to the algomode in chapter 23.6.1 in the STM32
reference manual [30]. The datatype variable was 0x80, 10000000 in binary notation,
and the datatype is defined in bits 6-7. 10 is defined for 8-bit data or bytes. The
same approach can be done with the DES and TDES encryption functions. For
the decompiled DES function the algomode is 0x18, 00011000 in binary notation,
which is defined to be DES-CBC. For the decompiled TDES function the algomode
variable contained 0x8, which is 00001000 in binary notation, which is defined to be
TDES-CBC in the reference manual. We see a clear structural similarities in the
decompiled code compared to the STM standard peripheral library, and we found
defined algomode values in the decompiled code that is consistent with the definitions
in the STM32 reference manual. From that, we can tell they are using CBC mode
for all three encryption algorithms.

Applying the same approach we used to identify AES-CBC on the other two
functions that were calling on the CRYP__DATAIN function, and we found that
those functions were identical to the DES-CBC and TDES-CBC implementations
of the STMicroelectronics library. The three functions calling on CRYP_ DATAIN
were the three encryption functions AES-CBC, DES-CBC, and TDES-CBC.
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We can therefore conclusively state that they are using the STM cryptographic
library. We compared the encryption functions to those available in version 1.9.0 of
the STM32F4xx peripheral code library, however it is unknown which version of the

STM cryptographic library that is actually implemented.

Finding 11. All three encryption functions are used in CBC' cipher mode

Finding 12. The HMU uses the STM cryptographic code library

id & | x

= [£7¥ flash 80000-D343C.img
S rem

B x|

&)
D] a Type Manager | v X
e-=-[u- RNE[E
i 8§ Data Types
-- BuiltinTypes
Filter: [ | Q

T T T N

void CRYP DataIn[FUN_081l0b64e] (undefined4 param 1)

{
* {undefined4 *) (FTR_CRYP.CR 0310b36c + 0x8) = param 1;
return;

}

Incoming Calls

@[ § CRYP-AES-CBC[FUN_D810ba64]
#-[® § CRYP-DES-CBC[FUN_D810chas]
- (% § CRYP-TDES-CBC[FUN_0810cd9a]

Figure 4.12: The three encryption functions calling on CRYP_ Dataln

By identifying the encryption function we were able to identify and rename
variable names. This was especially helpful with the parameter names which would

F Incoming References - CRYP_Dataln[FUM_0&10b&4e]

pass through to the caller functions above in the function hierarchy.
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4.4.4 Bottom-up Approach in the Function Hierarchy

Similarly to how all the low-level cryptographic functions were all called by the three
encryption functions, the Function Call Trees feature shows that all three of the
encryption functions are called by the same two functions. These two functions were
almost identical in structure. In one of these functions, the first parameter sent to the
encryption functions were all 0, and in the other function the first parameter of each
encryption function call were 1. Apart from this key difference, the two functions
were quite similar. From the fully reversed encryption functions we know that the first
parameter received is the direction, i.e either encrypt or decrypt. We chose to name
these two functions the ENCRYPTION-HANDLER and the DECRYPTION-HANDLER.
Both of the encryption and decryption handler functions are added in the compressed
zip-file attached with this thesis, which will not be published for security reasons.

[-11 = 0;

32 puVaré = param 2;

for (iVard = 0; index = (int)uVari >> 3, iVard <= index; iVard = iVard + 1) {
34 FUON_0811la7e2(4);

35 puVars = (undefinedd4 *)sNMI;

36 CRYF_DES[FUN_0810cbat] (1,CRYP_KeyInitStructure[l],puVars,input, 8, input);
=k FON_0811a80c(4);

38 input = input + 2;

] }

40 iVard = uVar3 + index * -8;

41 ard !'=0) |

42 8 - (uVar3 + index * -8);

4 }

14 param 2[4] = uVar3 + iVard + 2;

15 param 2[2] = param 2[2] + -1f

ig *{char *)param 2[2] = (char)iVar4d;

1 param 2[2] = param 2[2] + -1;
18 * [undefined *)param 2[2] = &;

45 param 2 = puvVare;

Figure 4.13: Call for DES in Encryption-Handler
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51 else |
52 if (cVarl = T7) {
53 TDES_CRYP_IVInitStructure = input + -2;
LT puVaré = param 2;
535 FUN_0812776a(IDES_CRYF IVInitStructure,8);
56 Vard = param 2[4] & Oxffff;
57 = uVar3d + ((int)uVar x =Ar
53 =0 {
59 &8 — (uVar3 + ((intjuVar3 >> 3) * -8):
&0
(38 Var3d + iVard & Oxffff;
62 for (index = 0; index <= (intjuVar3 >> 3; index = index + 1} {
63 FUN_08lla7e2(4):
od puVars = (undefinedd4 *)&NMI;
&5 CRYP_TDES[FUN_0&810cd%a]
oo {1,CEYP KeyInitStructure[2],TDES_CREYF IVInitStructure,input,§,input);
&7 FUN_081la80c(4):
[t input = input + 27
&9 1
70 param 2[4] = uVar3 + iVard + 27
T1 param 2[2] = param 2[2] + -8;
72 param 2[2] = param 2[2] + -1;
T3 *{char *)param 2[2] = (char)iVard;
74 param 2[2] = param 2[2] + -1-
75 * (undefined *)param 2[2] = 77
76 param 2 = puvVare;
(e 1
Figure 4.14: Call for TDES in Encryption-Handler
73 else |
74 if (cVarl == 8) {
20 FUN_0812776a(input + -4,16€);
81 I param 2[4] & Ox£Eff;
a2 uvard + ((int)uvar3 >> 4) * -0xl0;
a3 Vard !'= 0) |
24 = 0x10 - (uVar3 + ((intjuVar3i >> 4) * -0x10);
as 1
86 FUN_081la7e2 (4);
a7 CRYP_RES[FUN_0810ba@i]
as (1,input + -4, *CRYP KeyInitStructure,l28,input,uVar3 + iVar4 & Oxffff,input);
a9 FUN_081lag0c(4);
g0 param 2[4] = iVard + 0xl2 + param 2[4];
91 param 2[2] = param 2[2] + -0x10;
92 param 2[2] = param 2[2] + -1;
93 ¥ {char *)param 2[2] = (char)iVard;
94 param 2[2] = param 2[2] + -1;
95 ¥ {undefined *)param 2[2] = 8&;
S9e param 2 = input;
97 }

Figure 4.15: Call for AES in Encryption-Handler
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Another quite interesting finding is that the encryption- and decryption-handler
functions both check whether an integer variable is 6 in line 27 to call DES; 7 in line
52 to call TDES, or 8 in line 79 to call AES. This is similar to Bour’s findings in
their analysis of the communication protocol of the older Biotronik CardioMessenger
II-S T-Line model HMU [54]. From figure 4.11 we know that the forth parameter
of the AES function is the defined keysize. In figure 4.15 we can see that when
the AES function is called in the ENCRYPTION-HANDLER line 87-88, the fourth
parameter is 128. The implemented AES function is only called by two functions, the
ENCRYPTION-HANDLER and the DECRYPTION-HANDLER. In both of these functions
the keysize is defined to be 128 bits. The implemented AES function supports 128,
192, and 256 bit in keysize, but 192- and 256-bit are therefore never used.

Finding 13. The encryption type DES, TDES, and AES is selected by the number
5, 6, and 7T respectively, which is identical to the older CardioMessenger II HMU
models

Finding 14. AES-CBC is only used with a 128-bit key

There are a couple key differences between the ENCRYPTION-HANDLER and
the DECRYPTION-HANDLER. Both of the functions have checks for the value that
indicated the selected encryption algorithm, but the DECRYPTION-HANDLER initially
starts by checking if the value is less than 10. If the value is not less than 10, the
else-clause checks if the value is either 10 or 0x65. 0x65 represented as the ASCII
character ’e¢’. Perhaps e as in encrypted. If this value is neither 10 nor 0x65, the
return value is set to 0. If the encryptionType value is 6 and DES-CBC is selected,
its third parameter is interpreted to be 0xD8&. From the STM library and analysis of
the encryption functions, we know that the third parameter to all of the encryption
functions is the initialization vector array variable. This variable is supposed to be
an array where the first two indexes contain the initialization vector. Perhaps this
number signifies something else, since it would not make sense to have a hardcoded
byte as an initialization vector.

By continuing to follow the Function Call Trees upwards in the hierarchy, there
was only one function that made a call to our ENCRYPTION-HANDLER and one other
function that made a call to our DECRYPTION-HANDLER. At this point we were able
to identify a completely different kind of function. Functions that were not part of
the STM32 peripheral library. These functions had logging features with debugging
strings which made it possible for us to determine the functions functionality based
on the contents of the strings. Their structure was different from the other functions
we had seen so far. The structure of these functions were on the form similar to the
example code below. The var variable would be 0 or 1 depending on the return value
of the function. This was also the case in the three encryption function were the
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return value was named ErrorStatus, and were also either 0 or 1.

Algorithm 4.1 The general structure of code

var =

FUNCTION1()

if (var==1){
# if success: Perform functionality
FUNCTION2()

}
elseq{

# Reveals naming convention

LOG("*function_name* - debug string")

The function calling on the ENCRYPTION-HANDLER had multiple logging func-
tions with debugging strings such those listed below.

= "PDHM:
= "PDHM:
= "PDHM:
= "PDHM:

pdhm_decode_tx_handler
pdhm_decode_tx_handler
pdhm_decode_tx_handler
pdhm_decode_tx_handler

- adding frame: frm=Yd, len=}d\r\n"
- skip result: dropping frm=Jd\r\n"
- frame error\r\n"

- no message available\r\n"

This function is named PDHM__DECODE__ TX_ HANDLER (PDHM-TX-Handler
hereafter), and the clear difference in structure indicates that we have crossed the line

between the functions written by STMicroelectronics and those written by Biotronik.
Similarly, the function that calls on the DECRYPTION-HANDLER contains the
debugging strings that are listed below.

"PDHM:
"PDHM:
"PDHM:
"PDHM:
"PDHM:
"PDHM:
"PDHM:
"PDHM:
"PDHM:

pdhm_decode_rx_handler -
pdhm_decode_rx_handler -
pdhm_decode_rx_handler -
pdhm_decode_rx_handler -
pdhm_decode_rx_handler -
pdhm_decode_rx_handler -
pdhm_decode_rx_handler -
pdhm_decode_rx_handler -
pdhm_decode_rx_handler -

invalid pointer detected"
DECOMPRESSION error"
ENCRYPTION error"
rx-timeout"

malloc error"

frame length error"

CRC error"

nothing to send"
transport layer expected"
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This function, calling on the DECRYPTION-HANDLER, is named PDHM__DECODE__
RX__HANDLER (PDHM-RX-Handler hereafter). The first four characters PDHM are
present in many functions that are related to communication. PDHM is therefore
likely the name of their communication protocol.

The structure of the function calls can be graphed in Ghidra with its Function
Call Graph feature. The figure below displays the function calls from the top and
downwards. The PDHM-RX-HANDLER calls the DECRYPTION-HANDLER, which in
turn calls one of the encryption functions AES, DES or TDES, and they call onto the
low-level cryptographic functions, such as the previously mentioned CRYP__DATAIN.
Similarly, the PDHM-TX-HANDLER calls the ENCRYPTION-HANDLER which in turn
calls one of the three encryption functions. The key difference between the PDHM
handler functions are the RX and TX, which stands for receiver and transceiver, and
the direction parameter which is sent from the decryption/encryption handlers to
the three encryption functions. Another important clarification is that the PDHM
RX and TX handlers call onto many other functions that are not shown in the
figure, however the figure shows the direct calling convention in the context from the
AES-CBC function. The PDHM handler functions are also involved in many other
functions and we will analyze them further in the next subsection, but firstly we
need to continue our bottom-up approach until we are able to identify the functions
in top of the hierarchy, and all the PDHM functions.

pdhm-rthandler  pdhm-be-handler

Decryption-Handler Encryption-Handler

CRYP-AES-CEC

CRYP_Init CRYP_KeyInit CRYP_KeyStructInit CRYP_IVInit CRYP_FIFOFlush CRYP_Cmd CRYP Dataln CRYP_DataOut CRYP_GetCmdStatus CRYP_GetFlagStatus

Figure 4.16: The Function Call Trees in the context of CRYP-AES-CBC. The call
tree is identical for (T)DES-CBC

The Function Call Trees feature in Ghidra does not find any incoming function
calls to the PDHM-RX-HANDLER function. This is strange because the receiver func-
tion needs to be initiated somewhere. The lack of this incoming function call might
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be the result of an inaccuracy in Ghidra’s decompilation process. However, Ghidra is
able to find the incoming reference for the PDHM-TX-HANDLER which comes from
the function PDHM__ OPEN. We were able to name this function based off its many
debugging strings starting with pdhm_ open. PDHM-OPEN contains an interesting
nested structure of if-statements, where the function identified as OS-STARTTASK is
called once within each if-statement. Each if-statement checks the return value of a
call to the function OS-STARTTASK. If the return value is 1, as in success, the code ad-
vances to the next inner if-statement with another OS-STARTTASK function call. The
difference between the calls to OS-STARTTASK is the parameters that are sent to the
function. The second parameter is always a function, and the OS-STARTTASK seems
to create a task or a thread for this function task to initiate. In PDHM-OPEN we
can see that most of the OS-STARTTASK calls contain the PDHM-TX-HANDLER as a
second parameter, as can be seen in the figure 4.17 below. We also named the function
OS-STARTTASK because it seems to initiate multiple functions or tasks. We also
found OS-STARTTASK function calls within other functions to initiate other functions.

‘Cfnm:m-crm[ﬁm_oamczs]-(ﬁashscuuu-amac.img) L3 [ | B - X
78 i8) = 0) {

if (*(int *) (param_l + Ox
iVarl = 05-Starttask[
(0, F

if (iVarl 1= 1) |
if (*_FUN 12bfec != "\0") [
Logging [FUN_0811ca74] (_FUN_0812c07c) 5
¥
FUN_08129fbc (param_1);
return 0;

0x2000

if (*_FUN_0812bfec != "\0") {
Logging [FUN_0811lca74] (_FUN_0812c07c);
}

FUN_08129fbc (param 1) ;
return 07

Figure 4.17: Initializing PDHM-TX-Handler in PDHM__OPEN with OS-Starttask

The other OS-STARTTASK calls in PDHM__OPEN referenced a function that
looked malformed by decompilation. If the return value from OS-STARTTASK
was 0, function logged the debugging string "pdhm__open: wunable to initialize
pdhm__network__rz_handler’. This means that it is trying to start a task for PDHM-
NETWORK-RX-HANDLER, but that the decompilation might be inaccurate. This
is interesting because the PDHM-NETWORK-RX-HANDLER function has a OS-
Starttask statement that sends the PDHM-RX-HANDLER as a second parameter,
but Ghidra did not recognize this as an incoming function call reference. Hence,
the PDHM-OPEN initiates OS-STARTTASK for the PDHM-TX-HANDLER directly,
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and for the PDHM-RX-HANDLER through PDHM-NETWORK-RX-HANDLER. The
selection between PDHM-NETWORK-RX-HANDLER and PDHM-TX-HANDLER is
determined by the variable value in crypStruct at offset Ox1FF. CrypStruct is a
variable structure which contains the keys used in the encryption functions. It is
sent as a parameter far up in the functions hierarchy. The PDHM-NETWORK-RX-
HANDLER is selected if the following code is true. This is code snippet is above the
code in figure 4.18.

Finding 15. The function PDHM __OPEN initiates both the receiver and transceiver
functions for the PDHM communication protocol

((x(byte =) (crypStruct + Ox1ff) & 1) == 1)

This code retrieves the value of a variable in the structure at crypStruct+0x1FF
and performs a binary AND operation with 1. It essentially checks if a variable in
the structure is equal to 1. Similarly, the PDHM-TX-HANDLER is sclected if only
the second last bit is set, and equal to 2. These types of binary operations are found
in many places of the code. In this case, the byte pointer is dereferenced, and thus
comparing the inherent value contained at the address (crypStruct+0x1FF). The
entirety of the PDHM receiver and transceiver functions are also added in the zip-file
attachment with this thesis.

pile: PDHM-OPEN[FUN_0812bc28] - (flash 80000-D343C.img)

®
&)
-
q
x

if (*{int *) (param_l + Oxd4
31 iVar2 = 05-Starttask[FUN
32 (0,_ Var3, (char) FUN_02l2c02c,param 1,0x400,

33 *{undefined4d *) (param_ 1 + 0xb8),0x20, (uint) * {ushort *) (param_l + Oxlcé),0

0

/ e open: unable to initialize pdhm net x_handler\r\n" */

Logging [FUN_0311lca74] (s_pdh

1
FUN_0812%fbc(iVarl);
return 07

Figure 4.18: Initializing PDHM-Network-RX-Handler in PDHM__OPEN with
OS-Starttask

pdhm_network_rx_handler[FUN_0812acds] - (flash 80000-D343C.img) % | o | & X
iVard4 = 0S-Starttask([FUN_0811d994]

(0, PDHM UN_0

¥ ({undefined4 *) (param 1 + 0Oxc0),0xSc, (uint) * (ushort *) (param 1 + Oxlca),0

andler[FUN_0812al66] + 1, (char)param 1,0xbd,param 1,0x2000,

Figure 4.19: Initializing PDHM-RX-Handler in PDHM-Network-RX-Handler with
OS-Starttask
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Now we know that the PDHM-OPEN function is responsible for initializing
the receiver and transceiver functions for the PDHM protocol. The PDHM-OPEN
function is only called from the function USBINTERFACEHANDLER. The USBINTER-
FACEHANDLER is also initialized through an OS-STARTTASK statement within the
MESSAGE-INIT function which can be seen below in figure 4.20. If the PDHM-OPEN
ErrorStatus return value is not 1, the error message = "Message_ UsbInterfaceHandler:
unable to open virtual pdhm port” is logged and the USBINTERFACEHANDLER returns
0 to MESSAGE-INIT. The MESSAGE-INIT has a nested structure of if-statements for
starting the main services on the device. The USBINTERFACEHANDLER is the first
of four services in a nested structure. Consequently, if the USBINTERFACEHANDLER
return 0 as the ErrorStatus, the services for HMSCINTERFACEHANDLER, IMPLANTIN-
TERFACEHANDLER, and the SCTHANDLER will not be initiated.
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I 8 |@ 8- x

Jarl = }‘essageSmIm\:[FUN 0810&19%]();
if (ivarl == 0)
37 if (‘:‘.—_:f;‘,‘&‘:: = "\0") {
Logging [FUN_0811lca74] (s_Message_Init:_ MessageScilnit ERR 08107b5c);
}
41 1
42 else {
43 FUN_0811dc44(DAT_08107ac0,0);
44 FUN_08105%ac (* (undefined4 *) (DAT_08107ac8 + 4));
45 iVarl = OS-Starttask[FUN_0811d994]
46 (0,T
47 0x84, (
48 if (iVarl == 1) {
49 (** (code **) (DAT_02107b90 + 0x34))():
50 iVarl = OS-Starttask[FUN_0811d994]
51 (0 ,(-unc x)

53 if (ivarl = 1) {
54 (**(code **) (DAT_08107be0 + 0x34))():
iVarl = 0S- Starttas).[FUN ﬂ°lld9‘44]

,0,0,0,0,0,0,0);

7c30,0x24
if (ivarl = 1) {
(**(code **) (_LAB_08107c30 + 0x34))():

iVarl = OS-Starttask[FUN_0811d994]

&3 if (iVarl == 1) {
€4 (** (code **) (_L2

*DAT_08107cbs8

if ((int) ((uint)**DAT_08107cbc << 0Oxla) < 0) {
Message_GenerateStatus [FUN_08106c00] (8);

}

if ((int) ((uint)**DAT_08107cbc << 0x17) < 0) {
Message_GenerateStatus[FUN_08106c00] (0x10);

Figure 4.20: The nested structure of the Message-Init function

It appears that the MESSAGE-INIT function is in charge of initiating certain
primary services running on the HMU. A snippet of the MESSAGE-INIT function can
be seen above in figure 4.20. The OS-STARTTASK function is called for each of these
services, and the function is passed as the second parameter to the OS-STARTTASK
call. The USBINTERFACEHANDLER that is initiated in line 45-46 in MESSAGE-INIT
is also the only function that calls the PDHM-OPEN, which in turn starts either
of the PDHM RX or TX handler functions. The MESSAGE-INIT function is among
the top of the functions hierarchy, and it initializes the main services on the HMU.

These services do in turn start sub-processes. An example of this is PDHM-OPEN
which initiates the PDHM-NETWORK-RX-HANDLER and the PDHM-TX-HANDLER

sub-processes.
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The function that calls to MESSAGE-INIT is the last function Ghidra recognizes
in the Function Call Trees. It does not contain any debugging strings or peripheral
names, and it is called FUN__081055CcC from decompilation. It does not contain any
debugging strings with a function name. It is not a particularly long function but
it calls to 12 functions, one of them is the MESSAGE-INIT. Each of these functions
call a vast amount of other functions, and it is clear that we have reached one of
the functions at the very top of the hierarchy. However it is surprising that the
FUN_ 081055cc functions returns either 0 or 1, but it does not have any recognized
incoming function calls. The structure is similar to the other functions/services that
have been started and returning an error status. They return either 1 if successful, or
0 if failed. Ghidra also has the ability to search for references to a function name or
function address, but Ghidra did not find any such references for FUN__081055cc.
It might be another inaccuracy in the decompilation. The function also contains
many references and pointers to data addresses in the form DAT_08xxxxxx. Trying
to decompile the data sections adjacent to this function gives malformed code, and
is therefore hard to reverse any further. There are also no recognized references to
the function’s base address in memory. However, since we previously cut the binary
flash file, this might be an unintended side-effect of that. Launching the older Ghidra
project with the entire flash memory which had duplication, shows that the incoming
calls to FUN__081055cc is recognized by Ghidra. It is called by one function that
has two OS-STARTTASK calls. One of them contains the string system_ task and the
other OS-STARTTASK contains the string idle task. This function is also referenced
once by a function that contains OS functions that are recognized by Ghidra as get-
MainStackPointer(), getProcessStackPointer(), isThreadModePrivileged(), etc. These
are common stack pointers for Cortex-M microprocessors [56]. In this function they
seem to handle whether a task is running in a privileged thread mode. This is the
top of the function hierarchy.

Real-Time Operating System

The name OS-STARTTASK was chosen because it seems to initiate services by re-
ceiving functions as input parameters. Inside the OS-STARTTASK function a long
array is set with the different incoming parameters, and structure also looks sim-
ilar to code from a real-time operating system such as the FreeRTOS [57]. Since
the CardioMessenger Smart 3G was initially released in 2015, we downloaded the
Keil. STM32F4xx_ DFP.2.2.0 series drivers and peripherals library that was released
in october 2014. A year before the release of this HMU. It is the earliest software
and driver library available for download at the keil website for the STM32F417
microprocessor [55]. In the cmsis_os header file we find the core functions of the
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CMSIS-RTOS documentation and API version 1.02. The os header contains the full
API with descriptions of thread- and memory pool management. RTOS 1.02 has
the function OSTHREADCREATE similar to OS-STARTTASK and the same memory
allocation function we identified. Neither the strings nor the code in our reverse
engineering analysis of the HMU have revealed concrete OS information, but the
functionality and the prior release date of the OS correlates with the HMU.

Finding 16. The HMU uses the CMSIS Real-Time Operating System (RTOS) API
version 1.02

If the Message_ Init function returns an error status of 1, the function calls four
new functions. These functions contain a pointer to the IWDG peripheral and its
KR register. This is the Independent Watchdog peripheral of the microprocessor,
described in section 21 of the reference manual [30]. The independent watchdog
peripheral serves the purpose of detecting and resolving malfunctions in software,
and to trigger interrupts and system resets. The first value sent the IWDG is 0x5555
which is the key to enable access to IWDG’s PR and RLR registers. The next
functions sends the value 6, 110 in binary notation, to the IWDG PR register to
select the 32 prescaler device to the counter clock. The third functions sends OxFFF
to the IWDG offset 0x8 which is the RLR register. The value in RLR defines where
the watchdog counter starts to count down from. In this case, the OxFFF is the reset
by standby mode value. The last function within the if-clause sends the 0xCCCC
value to the IWDG KR register. According to the reference manual 21.4.1, writing
the value 0xCCCC starts the independent watchdog peripheral. A peripheral that
serves to detect and resolve software malfunctions is likely a service that is started
carly on by the software. This is consistent with our function hierarchy finding. The
reference manual also specifies that the microprocessor has a hardware watchdog
capability, but we have not found any references to it in the code. Which may be
correct as the hardware watchdog is scheduled to launch automatically at device
power-on.

Configuration in SRAM

While going up the function hierarchy we are able to trace the parameters that are
sent to our PDHM protocol functions. We know that the first parameter that is sent
to the PDHM-RX-HANDLER and the PDHM-TX-HANDLER is the crypStruct. The
object structure for all the processes of the cryptographic module that we identified
in the encryption functions from the STM peripheral code library. The PDHM
functions receive the crypStruct from PDHM-OPEN, which in turn receives the
cryptStruct as the first parameter from the USBINTERFACEHANDLER function. In
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USBINTERFACEHANDLER we can see that the first parameter sent to PDHM-OPEN
is a variable obtained directly from memory, at position 200087f8. This is in the
SRAM memory section, 0x2000 0000 - 0x2001 BFFF. This finding was based on
the project file that only analyzed the largest code block from the flash memory
section. When analyzing the entire flash file, there was no such reference in the
USBINTERFACEHANDLER to a location in the SRAM. Whether the crypStruct is
located at address 200087f8 is therefore uncertain.

El&tmmda[ﬂm_oamsaao]- {flash 80000-D343C.ima) % |
13 2000 = 0) {

14 if (DAT_ 20003870 != 0) |

15 /% = "Message UsbInterfaceHandler: configuration not found\r\n™ */

ls Logging [FUN_0811ca74] {(s_ Message UsbInterfaceHandler: co 03106cSh + 1):

17 }

18 uvarl = 0;

19 }

Figure 4.21: Code snippet from UsbInterfaceHandler. Showing memory location
of crypStruct object

The first if-statement checks if the byte at crypStruct memory location is 0. If
this is the case, another memory location is checked and an error message stating
"Message UsbInterfaceHandler: configuration not found" is logged. Therefore it
seems that there is a configuration value or object in sram, starting at the offset
0x3970. Since we dumped the sram previously, we are able to open the memory
dump with a hex editor to view the memory locations directly. We used the HxD
editor which is a free hex- and disk editing software.

@ samimg & sramimg

Offset(h) 00 01 02 03 04 05 06 07 08 09 OA 0B OC OD OE OF Decoded text Offset (h) 00 Ol 02 03 04 05 06 07 08 09 OA OB OC OD OE OF Decoded text

0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 D3 12 0D 08 5 DA 18 OD 08 28 33 00 2
0 00 00 00 00 00 00 00 00 0 F2 18 0D 08 20 F2 18 0D 08 34 33 00 20
00 0 00 00 00 00 00 0 F2 18 OD 08 20 97 18 0D 08 CF 18 OD 08
00 ) 00 00 0 47 34 00 20 8 4D 3¢ 00 20 D3 12 OD 08
00 00 00 00 00 00 0 FD 13 0D 08 ¢ 00 00 00 00 00 00 00
00 00 00 00 00 0 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 0 84 03 00 00 00 00 01 OF 00 00 00 00 00
00 0 00 00 00 00 00 00 10 00 02 00 00
00 00 00 00 00 78 1D CC 53 3B 00 00 00
4] 20 34 A2 00 20 0 00 04 00 15 00 16 00 17 00
00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00
B4 20 04 00 00 O 6 00 2E 00 10 00 11 00 27 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 0 00 00 00 00 00 00 04 00 10 00 11 00 16 00
| Checksum Search (0 hits)
Offset(h): 87F8 Block(h): 87F8-87F8 Length(h): 1 Offset(h): 3970 Block(h): 3970-3970 Length(h): 1

Figure 4.22: The memory locations of the crypStruct and configuration respectively
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The left subfigure shows the memory section of the crypStruct. The value at
offset 0x87F8 in the SRAM is not 0, which means the code does not progress to
the inner if-statement that checks if the configuration is found. The subfigure on
the right is the memory section for the configuration object. Since the value at
offset 0x3970 is 0, this means the configuration is defined as expected and that the
error message is not logged. The code shows that a configuration file or object is
supposed to set the values of crypStruct. Otherwise the USBINTERFACEHANDLER
returns 0 back to MESSAGE-INIT. The USBINTERFACEHANDLER is dependent on
a configured crypStruct object for the code to progress to the PDHM-OPEN call.
The sizes of crypStruct and configuration is not evident, but their start addresses in
memory and the CRYP object’s structure is known and defined in the STM32 library.
However, it is not certain that the crypStruct object is implemented identically to
the CRYP object. The STM32 library definition of the CRYP object’s structure can
nevertheless be used for comparison to aid the reverse engineering process.

Cryptographic Keys & Initialization vectors

In the microprocessor the encryption keys are stored in the left and right key reg-
isters CRYP__KxL/R. CRYP_KI1L/R for DES, CRYP_KI1L/R, CRYP_K2L/R,
and CRYP_K3L/R for TDES, and in CRYP_K2L/R and CRYP_K3L/R for AES-
128 [30]. In our decompiled (T)DES encryption functions these keys are gotten
through the Key array which we identified in the STM CRYP library [55]. In the
Encryption-Handler, keyStruct[1] is sent as the Key array parameter to DES-CBC
and keyStruct[2] is sent as the Key array parameter to TDES-CBC. In the DES-
CBC function, the key is gotten from the first two indexes of the Key object. In the
TDES-CBC function, the three keys are located in the first six indexes of the Key
array. This means that keyStruct is a two-dimensional array that holds the values of
the K1 registers in index 1, and the values of K1, K2, and K3 at index 2.

# STM CRYP library TDES key init

TDES_CRYP_KeyInitStructure.CRYP_KeylLeft = __REV(*(uint32_t*) (keyaddr));
keyaddr+=4;
TDES_CRYP_KeyInitStructure.CRYP_KeylRight= __REV(*(uint32_t*) (keyaddr));
keyaddr+=4;
TDES_CRYP_KeyInitStructure.CRYP_Key2Left = __REV(*(uint32_t*) (keyaddr));
keyaddr+=4;
TDES_CRYP_KeyInitStructure.CRYP_Key2Right= __REV(*(uint32_t*) (keyaddr));
keyaddr+=4;
TDES_CRYP_KeyInitStructure.CRYP_Key3Left = __REV(*(uint32_t*) (keyaddr));
keyaddr+=4;

TDES_CRYP_KeyInitStructure.CRYP_Key3Right= __REV(*(uint32_t*) (keyaddr));
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# Decompiled code TDES key init

local_4c = uVarl << 0x18 | (uVarl >> 8 & Oxff) << 0x10 | (uVarl >> 0x10 & Oxff) << 8 |
uVarl >> 0x18;

uVarl = puVar3[1];

local_48 = uVarl << 0x18 | (uVarl >> 8 & Oxff) << 0x10 | (uVarl >> 0x10 & Oxff) << 8 |
uVarl >> 0x18;

uVarl = puVar3[2];

local_44 = uVarl << 0x18 | (uVarl >> 8 & Oxff) << 0x10 | (uVarl >> 0x10 & Oxff) << 8 |
uVarl >> 0x18;

uVarl = puVar3[3];

local_40 = uVarl << 0x18 | (uVarl >> 8 & Oxff) << 0x10 | (uVarl >> 0x10 & Oxff) << 8 |
uVarl >> 0x18;

uVarl = puVar3[4];

local_3c = uVarl << 0x18 | (uVarl >> 8 & Oxff) << 0x10 | (uVarl >> 0x10 & Oxff) << 8 |
uVarl >> 0x18;

uVarl = puVar3[5];

local_38 = uVarl << 0x18 | (uVarl >> 8 & Oxff) << 0x10 | (uVarl >> 0x10 & Oxff) << 8 |
uVarl >> 0x18;

In AES function the key is gotten from the address of keyStruct at four offsets,
differently from the DES functions. The pointer to keyStruct is dereferenced, giving
us the stored value in keyStruct at the offsets 0, 0x4, 0x8, and 0xC. The space between
these addresses is four bytes. This can also be read directly by the decompilation
since it is a cast to the uint datatype which also stores 32-bits, i.e 4 bytes. These
four sections of four bytes is equal to the 128-bit AES key.

# STM32 cryp library AES128 key init

AES_CRYP_KeyInitStructure.CRYP_Key2Left = __REV(*(uint32_t*) (keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key2Right= __REV(*(uint32_t#) (keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key3Left = __REV(*(uint32_tx*) (keyaddr));
keyaddr+=4;

AES_CRYP_KeyInitStructure.CRYP_Key3Right= __REV(*(uint32_tx*) (keyaddr));

# Decompiled code AES128 key init
uVarl = *(uint *)keyStruct;

local_b4 = uVarl << 0x18 | (uVarl >> 8 & Oxff) << 0x10 | (uVarl >> 0x10 & Oxff) << 8 |
uVarl >> 0x18;

uVarl = *(uint *) (keyStruct + 0x4);

local_50 = uVarl << 0x18 | (uVarl >> 8 & O0xff) << 0x10 | (uVarl >> 0x10 & Oxff) << 8 |
uVarl >> 0x18;

uVarl = *(uint *) (keyStruct + 0x8);

local_4c = uVarl << 0x18 | (uVarl >> 8 & Oxff) << 0x10 | (uVarl >> 0x10 & Oxff) << 8 |
uVarl >> 0x18;

uVarl = *(uint *) (keyStruct + 0xc);

local_48 = uVarl << 0x18 | (uVarl >> 8 & O0xff) << 0x10 | (uVarl >> 0x10 & Oxff) << 8 |
uVarl >> 0x18;

The cryptographic core definitions for TDES and AES in the reference manual
state that they share the K2 and K3 key registers. Since the decompiled AES function
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gets its key from the address of keyStruct, we should be able to read the values of
the K2 and K3 registers from the sram memory. It seems that there is a correlation
between the STM CRYP structure and the Key array in the crypStruct with the
four byte offsets. Figure 4.22 above shows these values.

If DES is the selected encryption function the keys are read from the K1 registers.
We do not know where K1’s left and right register might be in the crypStruct object.
However, we know that the K2 and K3 registers are next to each other based on
the STM encryption function, and based off of the offsets in the decompiled AES
code. Thus, the K1 registers might be right before our crypStruct base address,
at crypStruct-0x4 and crypStruct-0x8. The eight bytes before crypStruct contain
all zeroes. Alternatively, if the K1 registers are positioned after the K3 register
in SRAM, that would make no difference as the succeeding eight bytes are also
all zeroes. Since the K1 registers are used for the DES key, it seems unlikely that
DES is selected in the memory dump. For TDES the K3, K2, and K1 registers
are used to store the three keys. However, since we know that the supposed K1
register only contains zeroes it implies that the implemented TDES function only
uses two different keys. The TDES cryptographic core documentation states that
the cryptograpic processor supports TDES in three different keying options [30]. For
TDES, the cryptographic processor can use either three different keys, two different
keys (where K3 = K1), or three equal keys which is equivalent to single DES. If the
currently selected encryption algorithm is TDES, it uses a zero key or it reuses one
of the former keys from K2 or K3. If the AES-128 is chosen, the key would be in the
K2 and K3 registers. Due to the implication for DES and TDES of the all-zero K1
registers, it seems likely that the K2 and K3 registers contain the supposed AES-128
key. The hexadecimal values of the K2 and K3 registers can be seen below.

AES-128 key: D4 [REDACTED] 00

However, if it is the case that they are using TDES with an all-zero K1 register,
the K2 and K3 register would contain the same hexadecimal value with 8 bytes each.
Since DES only uses 56-bit keys, the last byte is either discarded or used for a parity
check.

Alternatively, TDES keys:
Ki: 00 00 00 00 00 00 00 00
K2: D4 [REDACTED]

K3: [REDACTED] 00
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Since we dumped the memory of three HMUs, all of the same model CardioMes-
senger Smart 3G, we were able to check the the memory sections for those devices
as well. They all contained the same 16 byte hexadecimal value starting at position
0x2000 87F8. The values in the position of the supposed K1 registers were also all
zeroes in the memory dumps of all three devices. The hexadecimal values preceding
the supposed K1 registers were different for the three HMUs. The memory of the
HMU we analyze have many 16 byte lines of all zeroes, while the memory of the two
other HMUs have 138 bytes of identical memory (length hex:8A), then their memory
were different. The bytes succeeding the K3 registers were all different for all the
memory dumps. The last key register in CRYP is the CRYP__K3RR at offset 0x3C.
The next register defined in the CRYP object is the first initialization vector register
CRYP_IVOLR at offset 0x40 [30]. Each of the initialization vector registers contain
32-bit, 4 bytes, similar to the key registers. Based on the structure of the CRYP
object described in the reference manual, and its similarities to the key register
structure in the decompiled crypStruct object, we would expect the initialization
vector registers to be the next values in memory. However, we cannot conclusively
claim at this point that these are in fact the initialization vectors without a proof of
concept on the encrypted HMU transmissions. The presumed initialization vector
from memory are added below. For the AES-128 key, the initialization vector is also
128-bit in length [30]. A proof of concept is needed to confirm whether the crypStruct
is in fact located at the mentioned address in SRAM, due to the inconsistency of the
two project decompilations. The many 0 values of the presumed encryption key and
initialization vectors suggest that these findings are questionable. It might be the
case that the decompilation is misleading in its interpretation, thus the supposed
encryption key finding requires a proof of concept to be confirmed.

128-bit IV:
00 00 [REDACTED] 20 04 00 00 00
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4.4.5 PDHM - Communication Protocol

To make sure we have identified all the functions that compose the PDHM communi-

cation protocol, we perform another search with our GhidraFunctionRegisterFunder
for PDHM.

1 Console - Serpting SRARS
99.33%

99.91%
100.0%

['FUN_081252b0"', 'FUN_081252b4', 'PdhmGenerateSyncFilelistRequest[FUN_031255e2]’,

'PdhmExportConfig [FUN_081257e2]", 'FUN_08125a3a', 'pdhm message_handler[FUN 08125bea]', 'FUN_08l2620c",

' PdhmGenerateDownloadFileRequest [FUN_08126334] ', 'pdhmBenerateAuthChallengs [FUN_08126452]", "FUN_08126308°,
'PDHM-ProcessDataFrorMessageLayer [FUN 081269b0]", '?pdhm-scomething[FUN 08127aéa]’,

'pdhm_decode_rx handler[FUN_0312a05a]', 'pdhm-rx-handler', 'pdhm-network-rx-handler', 'FUN_0812ad20°,
"2pdhm_network_tx_handler[FUN_0812bl%a]"', 'pdhm-tx-handler', 'pdhm-open', 'FUN_0812bfec', 'FUN_0812c02c’,
'FUN_0812c030', 'FUN _0812c07c', 'FUN _081l2cl4c', '"2PDHM-OPEN Allocate Memory[FUN 0812c24c]’']

25

GhidraFunctionRegisterFinder.py> Finished!

Figure 4.23: Results from GhidraFunctionFinder for PDHM

Running the script shows that 25 functions contains the term PDHM. Going
through each of the functions, we find functionality related to the network and
message layers of PDHM, the ULPAMI- and GSM interface, file installation, hashing,
and authentication. In the string analysis we found mentions of a compression header,
message layer, transport layer, and network layer. The message layer is part of the
function name for PDHM-PROCESSDATAFROMMESSAGELAYER, transport layer
was mentioned in the PDHM-RX-HANDLER, and the network layer is mentioned
in a debugging string starting with PDHM-NETWORK-RX-HANDLER. The string
findings indicate a protocol with a layered structure similar to the OSI model. Below
is a sketch of our initial expectations for the PDHM protocol structure.

Expected protocol structure:

| (Network) Transport layer|Encryption layer|Compression layer|Message layer|

Now that we have an overview of all the PDHM function we will try to identify
the structure and layers of the protocol. We will start by dissecting the PDHM func-
tions initialted by PDHM__OPEN, which is the PDHM-NETWORK-RX-HANDLER,
PDHM-RX-HANDLER, and the PDHM-TX-HANDLER. We will also compare our
findings in the Biotronik CardioMessenger Smart 3G with the findings of Bour on
the older Biotronik CardioMessenger II-TLine model. The PDHM-NETWORK-R X-
HANDLER, PDHM-RX-HANDLER, and the PDHM-TX-HANDLER are added in
their entirety in the zip-file attached with this thesis.
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PDHM-Network-RX-Handler

The PDHM__NETWORK__RX_HANDLER is the first receiver function to dissect the
incoming data. Its purpose is to allocate memory and create a OSTHREADCREATE
for the PDHM-RX-HANDLER for further processing. It starts by checking if the
crypStruct object is 0 or not - if it is configured correctly. Below is a simplified code
snippet of the PDHM-NETWORK-RX-HANDLER.

1 if ((*(byte *)(crypStruct + Ox1ff) & 1) == 1) {

2 if (*(byte *) (crypStruct + 0x200) == 0) {

3 while(true){

4 if (*header [pbStack40] == 5) {

5 *(undefined *) (crypStruct + 0x200) = 2;

6 break;

7 }if (xheader[pbStack40] == 0x33) {

8 *(undefined *) (crypStruct + 0x200) = 2;

9 break;

10 Yelse{

11 if ((*header[pbStack40] == Oxaa) && (header[pbStack40][1] == 0)) {
12 *(undefined *) (crypStruct + 0x200) = 1;

13 break;

14 ¥

15 }

16 }

17 }if (*(char #*)(crypStruct + 0x200) == '\x01') {

18 isMemAlloc = memory-alloc[FUN_081172d8] (0xbO0) ;

19 if (isMemAlloc == 0) {
20 log("PDHM: pdhm_network_rx_handler - malloc error")

21 Yelse{
22 isMemAlloc = osThreadCreate[FUN_0811d4994]
23 (0,pdhm-rx-handler [FUN_0812a166] + 1, (char)crypStruct,0xbd,crypStruct
24 ,0x2000, * (undefined4 *) (crypStruct + 0xc0),0x9c,
25 (uint)* (ushort *) (crypStruct + Oxlca),0,0,0,0,0,0);
26 }
27 }else if (*(char *) (crypStruct + 0x200) == '\x02') {

28 isMemAlloc = memory-alloc [FUN_081172d8] (0xDbO0) ;

29 *(int *) (crypStruct + 0xc0) = isMemAlloc;

30 if (isMemAlloc == 0) {

31 FUN_08129fbc (crypStruct + 0xb0) ;

32 Yelse{

33 isMemAlloc = osThreadCreate[FUN_0811d4994]

34 (0,pdhm-rx-handler [FUN_0812a166] + 1, (char)crypStruct,0xbd,crypStruct
35 ,0x2000, * (undefined4 *) (crypStruct + 0xc0),0x9c,

36 0,0,0,0,*(undefined4 *) (isMemAlloc + 0x94),0,0);

37 }

38 }

39 }

40 }



4.4. GHIDRA ANALYSIS 75

The noteworthy elements of the PDHM__ NETWORK__RX__HANDLER are the point-
ers to a header value in the stack. The first value that is expected in the transmission
header is either 0x5, 0x33, or OxAA. All these three header values call osThreadCreate
to start an instance of PDHM-RX-HANDLER, but a couple of the parameters are
different for the osThreadCreate for 0xAA compared to the two other headers. The
header values define the expected values in the first field in the outer layer. The
header 0x5 is also the same header which was found by Bour while analyzing the
wireless transmissions of the CardioMessenger 1I-S TLine [54].

Finding 17. The HMU’s PDHM protocol supports three incoming transport layer
headers, 0x5, 033, and OrAA.

PDHM-RX-Handler

PDHM-RX-HANDLER is the second receiver function for messages to the HMU. It is
initiated by an OSTHREADCREATE in PDHM__NETWORK__RX__HANDLER. A selection
of its debugging strings are added below. The strings show that this function contains
code related to encryption and decompression. Those are the two next expected layers
of the protocol. There is also mention of a cyclic redundancy check which means that
the transmission might have error-detection. One string also mentions an error based
on frame length. In the standardized OSI model, frame is a term used to describe
the transmission unit in the data link layer. If this layer is consistent with OSI model
data link layer we would also expect to find fields for a source and destination address.

"PDHM: pdhm_decode_rx_handler - invalid pointer detected\r\n"
"PDHM: pdhm_decode_rx_handler - DECOMPRESSION error\r\n"
"PDHM: pdhm_decode_rx_handler - ENCRYPTION error\r\n"

"PDHM: pdhm_decode_rx_handler - rx-timeout\r\n"

"PDHM: pdhm_decode_rx_handler - malloc error\r\n"

"PDHM: pdhm_decode_rx_handler - frame length error\r\n"
"PDHM: pdhm_decode_rx_handler - CRC error\r\n"

"PDHM: pdhm_decode_rx_handler - nothing to send\r\n"

"PDHM: pdhm_decode_rx_handler - transport layer expected\r\n"

First, the function checks a couple conditions on the incoming crypStruct. The
crypStruct variable cannot be null - it needs to be defined. The code then goes into a
while-loop that checks for available messages, calls the Decryption-Handler, calls for
decompression, and then calling the PDHM__PROCESSDATAFROMMESSAGELAYER
function if each step is successful. Below there is a while-loop that checks the
header of dataStruct is either 0x5 or 0x33. These are two of the same values we
encountered in the former PDHM-NETWORK-RX-HANDLER. Yet, it is interesting that
the PDHM-RX-HANDLER has essentially three modes. The first mode is at the
top within the crypStruct+0x75==0x1 if-statement. The other two are defined by
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the header 0x5 and 0x33. There is no mention of the 0xAA header in this func-
tion. OxAA might be related to the first mode but it is not clear from the code.
The code snippet below illustrates a simplified overview of the PDHM-RX-HANDLER.

1 if (crypStruct != (int *)0x0) {

2 if (crypStruct+0x7e==0x1){

3 do{

4 do{

5 var = CheckMessageAvailable()

6 }while(var!=1)

7 if (memory-allocation() !=0x0){

8 if (Decryption-Handler (crypStruct,dataStruct)){

9 if (Decompression(crypStruct, (int *)&dataStruct)){
10 PDHM_ProcessDataFromMessageLayer (crypStruct, (int) (crypStruct + 0x2c), (int)dataStruct)
11 Yelse{

12 log("PDHM: pdhm_decode_rx_handler - DECOMPRESSION error")
13 ¥

14 Yelse{

15 log("PDHM: pdhm_decode_rx_handler - ENCRYPTION error")
16 }

17 }

18 }while (true)

19 }

20 while(true){

21 if (*(char *)local_30 == '0x05')

22 if (*(char *)local_30 == '0x33')

23 else: "PDHM: pdhm_decode_rx_handler - transport layer expected"
24 }

25}

From the simplified code snippet above we can see that below the two if-statements
that check the variable for 0x5 and 0x33, there is an else-clause that logs the error
message transport layer expected. Hence, the expected values for the header is either
0x5 or 0x33 and these are transport layer headers. No other header values appear to
be accepted in the transport layer except for the OxAA header, which is not present
in this function.

To understand each of the layers in the protocol, we need to follow the code that
leads to the DECRYPTION-HANDLER, DECOMPRESSION, and PDHM-PROCESSDATA
-FROMMESSAGELAYER functions. The code inside the 0x05 and 0x33 modes have a
complex structure of nested conditionals and loops. We mainly focus on the path
within each mode that takes us to the data processing functions. It is also important
to note that information and configurational data is gotten from the two variable
objects crypStruct and dataStruct. We know that crypStruct contains cryptographic
information based on the analysis of the encryption functions, and we expect the
dataStruct to contain the layered message based on the many code lines that retrieve
data from this object. The crypStruct and dataStruct are also the two variables that
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are always sent to the data processing functions dealing with encryption, decryption,
compression, and decompression. This makes sense as we would expect the processing
functions to receive both the cryptographic information and the variable containing
the data.

In the 0x05 code block there are no calls to the DECRYPTION-HANDLER, DE-
COMPRESSION, nor PDHM-PROCESSDATAFROMMESSAGELAYER. However, it does
have functionality to modify values in the stack, and it has debugging strings about
PDHM memory allocation and a frame error. It starts off by checking if a local
variable is less than 0xB, 11 in decimal, which seems to compare a length variable. If
the local variable is not less than 0xB, multiple elements on the stack are set to the
value in the position of the transport header, but binary right shifted by 0x8, 0x10,
or 0x18, and then cast to an int. It essentially means that one of the stack elements
have been given the value at the address the header pointer points to, except the
right-most byte. For the second stack object, the two right-most bytes have been
removed. The stack variables seem to be given the header and some extra data.
Where one, two and three of the right-most bytes have been discarded. The code
lines assigning values to the stack variables are listed below. The offsets may also
reveal the lengths of the first fields. The header is recognized as the data type char
which is one byte in length. The next references offset is 0x8 which means this field
is also one byte. The same can be said for 0x10 and 0x18, which are also one byte in
length each.

uVar3 = *header-transport-layer;

local_3c = (undefined)uVar3;

uStack59 = (undefined) ((uint)uVar3 >> 0x8);
uStack58 = (undefined) ((uint)uVar3 >> 0x10);
bStack57 = (byte) ((uint)uVar3 >> 0x18);

uVar3 = header-transport-layer[1];
local_38 (byte)uVar3;

uStack55 = (undefined) ((uint)uVar3 >> 0x8);
uStack54 = (undefined2) ((uint)uVar3 >> 0x10);
local_34 = x(undefined2 *)(header-transport-layer + 0x2);

Two of the stack variables are then concatenated with CONCAT11 to append
them together. The code above looks to be formating the values of the stack variables
to obtain the value at certain offsets. The basic functionality inside the 0x5 code
block is to manage variables on the stack and assign these stack values to different
offsets in the dataStruct if memory is allocated. It is strange that the 0x5 offset
code block in the receiver function does not reference any data processing functions,
given that this transport header is known to encapsulate encrypted data in an older
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version of the protocol [54].

The 0x33 header is the only other accepted header value in the PDHM__RX__
-HANDLER. It looks similar to the code found in the 0x5 code block, however
this mode references the DECRYPTION-HANDLER, DECOMPRESSION, and PDHM-
PROCESSDATAFROMMESSAGELAYER. Before the code reaches the data processing
function, it performs similar binary shifting operations on multiple stack variables
and concatenations of these byte values. Similarly to the binary shifting operations
in the 0x5 block, it seems to obtain values from specific offset. Since we can not
see the actual variable values, it is difficult to reverse. Before reaching the data
processing functions, the code calls to twice to a function which seems to perform a
CRC16 operation. Its code is added below.

uint uVari;

for (uVaril
*param_3

0; uVarl < param_1; uVarl = uVarl + 1) {
*(ushort *) (_FUN_081252b0 + ((int) (uint)*param_3 >> 8) * 2) ~ *param_3 << 8 ~
(ushort)*(byte *)(param_2 + uVarl);

}
return *param_3 == Ox[REDACTED];

The function in the code snippet above takes three incoming parameters. Paraml
seems to be the length of a for-loop. Param2 and param3 is part of the calculation,
but param3 is also the assigned variable for the CRC result. Lastly, the function
compares paramd3 to a hardcoded value of two bytes, which seems to be a CRC16
result. If the CRC function is not true, we do not reach the data processing functions
and a CRC error is logged. It seems that the transport layer comes with a CRC16
check that needs to be equal to the hardcoded CRC value.

Finding 18. The HMU performs CRC16 calculations in the transport layer on
incoming data and compares to a hardcoded value

If the result of the CRC function is equal to the hardcoded value, the function
proceeds to call the data processing functions, DECRYPTION-HANDLER, DECOM-
PRESSION, and PDHM-PROCESSDATAFROMMESSAGELAYER.
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# Structure findings so far:

mode 1: |Internal CheckMessage() |Encryption layer|Compression layer|Message layer|
mode 2: |OxAA|+ 7

mode 3: [0x5|+ 7

mode 4: |0x33|Encryption layer|Compression layer|Message layer|

Encryption Layer

Within the call to the DECRYPTION-HANDLER, the key- and data structure is sent.
Following these parameters into the DECRYPTION-HANDLER, we can see that the
byte in dataStruct at offset 0x8 is set as the encryptionType. The byte in offset
0x8 of the data variable therefore defines the selected type of encryption. We have
previously found that this value selects one of the encryption algorithms DES-CBC,
TDES-CBC, and AES-CBC. The encryptionType is then stored in the offset 0x2A
in the dataStruct, and then the pointer to datastruct 4+ 0x8 is added by 2. This
pointer is then used to get the input for DES-CBC, and the initialization vectors for
TDES-CBC and AES-CBC. Ghidra does not recognize the data type and the length
of the initialization vectors are not clear from the code. However, the reference man-
ual states that (T)DES-CBC uses only two 32-bit register CRYP__IVO(L/R), which
equals 8 bytes. For AES-CBC both the CRYP_IVO(L/R) and CRYP_IV1(L/R)
registers are used, which equals 16 bytes. Since the length of the initialization vectors
are not clear from the decompiled code, we assume their fields are equal to the
standard specified lengths in the STM32 reference manual [30]. The updated pointer
is then getting the input values for both TDES-CBC and AES-CBC. Similarly, we
can also see that the length parameter sent to all the encryption functions is defined
in dataStruct4+0x10. This is recognized as the data type int and uint which is of
size 4 bytes. Hence, the length field is 4 bytes for all three encryption functions.
For TDES-CBC the input in dataStruct + 8 is added by 8 and the length in
dataStruct4+0x10 is subtracted by 8 before each encryption call. For AES-CBC
the input in dataStruct+8 is added by 16 and the length in dataStruct-+0x10 is
subtracted by 16. This is consistent with the CRYP_ DataType_ 8b variable found
inside the encryption functions. The 6th and 7th bit indicate the data type selection.
In DES-CBC and TDES-CBC the sixth and seventh bit is 10 which indicate 8-bit
input data, and in AES-CBC bits are 01 indicating 16-bit input data according
to the CRYP control register section of the STM32 reference manual [30]. These
sizes are consistent with the sizes of the interpreted data types for the variable
(dataStruct+10) for each of the encryption functions.

Finding 19. (T)DES-CBC is used with 8-bit input, and AES-CBC is used with
16-bit input
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# Encryption layer
|Encryption Type(6=DES-CBC, 7=TDES-CBC, 8=AES-CBC) |IVs|Input|Length|Padding?|

DES:
|Et=6|IVs|Input|Length|Padding?|
[tB |8B |?B  |4B |?B I
TDES:
|Et=7|IVs|Input|Length|Padding?|
[1B 8B |?B  |4B | 7B I
AES:
|Et=8|IVs|Input|Length|Padding?|
[1B |16B |?B |4B | 7B |

Compression Layer

If the DECRYPTION-HANDLER returns 1 as the ErrorStatus, the PDHM-RX-HANDLER
calls the DECOMPRESSION function with the parameters crypStruct and dataStruct.
The PDHM-RX-HANDLER calls the PDHM-PROCESSDATAFROMMESSAGELAYER,
if DECOMPRESSION to returns 1. DECOMPRESSION can return 1 in two ways. Either
if the first header check is false and does not contain 9, or if the deflate function
returns 0. The first if-statement in DECOMPRESSION checks if the first byte in
dataStruct is equal to 9. If this is not the case, DECOMPRESSION returns 1 to the
PDHM-RX-HANDLER and PDHM-PROCESSDATAFROMMESSAGELAYER is called.
The header check of the dataStruct is similar to the first dataStruct header check in
the DECRYPTION-HANDLER. In that case 0 is returned to the PDHM-RX-HANDLER
which means that the data is only accepted if the dataStruct is encrypted. Unen-
crypted data is not accepted, but uncompressed data is accepted if it is encapsulated
by an encrypted outer layer. This finding is interesting since the data sent over SMS
in the CardioMessenger IT HMU was encrypted with DES, and not compressed [48].
However if the first byte header of dataStruct is 9, the DECOMPRESSION functions
allocates memory and calls the Deflate function. The parameters sent to the Deflate
function are the address of the header containing 9, Ox1F, a string 7.2.1, and the
value 0x38. The first checks in the Deflate function checks if the version parameter
is not 0, that the version has to be 1.2.1, that the flags are defined as 0x38, and that
the header is not 0. The DECOMPRESSION function also call another function which
contain many debugging strings.

Finding 20. The compression layer header contains the value 9 if a compressed
payload is present

Finding 21. The PDHM protocol requires an encrypted layer, however compression
s optional
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# Line 68-72:
if (((*(uint *) (pbVar7 + 8) & 2) == 0) || (uVar9 != 0x8bif)) {
*(undefined4 *) (pbVar7 + 0x10) = O;
if (((x(uint *) (pbVar7 + 8) & 1) == 0) ||
(uVar3 = ((uVar9 << 0x18) >> 0x10) + (uVar9 >> 8), uVar3 !'= (uVar3 / 0x1f) * Ox1f)) {
param_1[6] = (byte *)s_incorrect_header_check_0813a6c4;

# Line 123-124:
if ((*(uint *) (pbVar7 + 0x10) & Oxff) != 8) {
param_1[6] = (byte *)s_unknown_compression_method_0813a6dc;

In the first line of the code snippet above there is a check for 0x8B1F. 0x1F is the first
identifier in the gzip wrapper and 0x8b is the second identifier. The first and second
identifier combined is the gzip magic header [2]. The code snippet of lines 123-124
show that an error message is thrown if the compression method is not 8. Stating un-
known compression method. In the gzip wrapper, 8 identifies the deflate compression
algorithm. Hence, deflate is the only supported compression method. Since 9 in the
header is a necessity to start the DECOMPRESSION function, it seems likely that it is a
value to specify that the following data is compressed. The gzip documentation defines
a lossless compressed data format. The string 1.2.1 is the same string we found earlier
in the preliminary string analysis. It defines the version 1.2.1 of deflate and inflate.
These algorithms are part of the zlib compression library, and its authors are also
behind the gzip compression utility [49]. The last parameter 0x38, 00111000 in binary
notation, defines the compression flags. The set bits are in position 2-4 which means
that the compressed data also has a FEXTRA-, FNAME-, and FCOMMENT field [2].

Finding 22. The zlib compression library is identified by the gzip wrapper and its
magic header

Finding 23. Deflate is the only supported compression method
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Each member has the following structure:
e T e S T S =
|ID1]|ID2|CM |FLG| MTIME |XFL]OS | (more--3)

R e et e e

(if FLG.FEXTRA set)

R SR "
| XLEN |...XLEN bytes of "extra field"...| (more-->)
e SR '

(if FLG.FNAME set)

|...original file name, zero-terminated...| (more-->)

(if FLG.FCOMMENT set)

|...file comment, zero-terminated...| (more-->)

Figure 4.24: Gzip file structure [2]

Additionally to the wrapper identifiers, the compression mode, and the flags,
the wrapper has an extra flag parameter that we have not been able to find. This
extra flag is either defined as 2 for maximum compression or defined as 4 for fast
compression. We were not able to find which mode is used or if they are both
supported. We did not find the OS identifier either. Since the FEXTRA flag is set
there should also be two sub identifier fields, a length field, and a subfield for the
extra data. There should also be an original file name in the defined FNAME field
which is zero-terminated. The FCOMMENT was also set and there should be a
comment field which is also zero-terminated. The compressed data wrapper ends
with a CRC32 value of the uncompressed data, and an input size field containing the
size of the uncompressed data modulo 232 [2].

Compression layer:

|Header|ID1 |ID2 |CMIFLG IMTIME|XFL|0S|FEXTRA|FNAME | FCOMMENT | Compressed msgl|CRC32|ISizel
19 |0x1F|0x8B|8 10011100] | [ | | | | | |
11B |11B 1B |1BI1B |4B |1B |1B|2B+7B |7B | 7B |7B |14B |4B |

If the first byte in the compression layer data is 9, all the compression fields
above should be present. However, if the header is not 9 DECOMPRESSION also
returns 1. We believe this value defines the presence of a compressed message and
its absence means an uncompressed message. Based on this, the compression seems
to be optional for the receiver function.
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Message Layer

If the decompression is successful and returns an ErrorStatus of 1, the PDHM-RX-
HANDLER calls the function PDHM-PROCESSDATAFROMMESSAGELAYER with the
crypStruct and dataStruct as parameters. This function is the last of the nested data
processing functions called from the PDHM-RX-HANDLER, and should contain the
remaining layer and data management.

The first check in PDHM-PROCESSDATAFROMMESSAGELAYER is on the cryp-
Struct and dataStruct. The code essentially checks whether the header is equal to
0x65 (/’¢’), or otherwise if the header equals OxA. These are the two only supported
modes in the PDHM-PROCESSDATAFROMMESSAGELAYER, else the function logs an
error stating unknown layer and returns 0. This means that there is another inner
layer encapsulating the message, which has not been identified by previous research.

Finding 24. The PDHM protocol supports two message layer headers, 0x65 and
0zA.

The first mode starts with a check on the header. If it is not equal to 0x65 it logs
an error message saying unknown layer and returns 0. Otherwise the function enables
the crypto module clock perform and calls to a hashing function. This function
contains a call to the hashing processors status registers and to the hash digest
registers. Comparing this function to the hash functions in the STM32 peripheral
library we find that this is the HASH-SHA1. The microprocessor supports both MD5
and SHA1 with and without HMAC, but the implemented function has only three
input and is identical in structure to the SHA1 function. The HASH-AlgoSelection
and HASH-Algomode is all zeroes, which proves that the function is in fact SHA1
without HMAC according to the HASH processor documentation [30]. The 8-bit
HASH-Datatype flag is 00100000 which defines 8-bit data written into the HASH
data in registers.

Finding 25. The HMU supports the hashing algorithm SHA-1

The next function call is to a function we have identified to be CHECKSIGNATURE.
It takes similar input parameters as the HASH-SHA1 function and contains calcu-
lations with binary operations. The Function Call Trees feature in Ghidra shows
that this function is called by five other functions. One of them is the function
MESSAGE-INSTALLFILE. This function contains many debug strings that reveal the
naming convention for CHECKSIGNATURE, and itself as MESSAGE-INSTALLFILE. We
will get back to MESSAGE-INSTALLFILE in section 4.4.11 of the additional results.
If CHECKSIGNATURE returns 0 PDHM-PROCESSDATAFROMMESSAGELAYER also
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returns 0. The function is dependent on the follow code from CHECKSIGNATURE to
execute and return 1 or -1.

if ((((uint)param_1 | (uint)param_2) & 3) == 0) {
while (3 < param_3) {
uVar4 = *param_1;
param_1 = param_1 + 1;
uVar3 = *param_2;
param_2 = param_2 + 1;
param_3 = param_3 - 4;
if (uVard != uVar3) {
if ((uVar4 << 0x18 | (uVard >> 8 & Oxff) << 0x10 | (uVard >> 0x10 & Oxff) << 8 |
uVard >> 0x18) <=
(uVar3 << 0x18 | (uVar3 >> 8 & Oxff) << 0x10 | (uVar3 >> 0x10 & Oxff) << 8 |
uVar3 >> 0x18)) {
return -1;
}
return 1;
}
}
}

The CHECKSIGNATURE function starts with a binary OR operation on paraml
and param2. We need this calculation to be equal to 0 in order for the CHECKSIGNA-
TURE function to return 1 or -1. If the returned ErrorStatus from CHECKSIGNATURE
is not 0, the function logs the error message MSG Hash error and returns 0. This
seems like a proprietary hashing function. The following function call is again to the
CHECKSIGNATURE function, but with parameters that are variables in dataStruct
and crypStruct structures. This seems to perform a comparison between the hash of
the incoming file and data in the dataStruct.

The remaining code in the 0x65 block has a check on some malformed decompiled
data to check the direction and frame length. There is a while-loop that allocates
memory and adds processed data to the function ADD-MSG-OUT-LIST. The function
ADD-MSG-OUT-LIST is called by many functions related to PDHM, and error strings
show that it is supposed to load or add a message to an export list for outgoing
messages.

In the other mode, the header is checked and if it does not equal 0xA the function
logs unknown layer and returns 0. Then there is a call to a CRC function. It is
similar to the CRC16 function we found in the PDHM-RX-HANDLER except that
this function only takes two input parameters, length and input. The result variable
is initiated and declared to O inside the function before the computation. The result
is compared to the same hardcoded hexadecimal CRC16 number from the previous
CRC16 function in the transport layer. Hence, there is a CRC check on the message
format to confirm its validity.
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Finding 26. There is a CRC16 check on the data within the message, that is
compared to a hardcoded 2 byte value

The 0xA block then has an if-statement with two binary shifting operations and

comparisons that the data stored in input2, which is (dataStruct + 8). If the result

of (input2 » 4 !=5) (input2 » 4 !=3) is true, then we either get a invalid source or

tnvalid target error message. The input2 has a cast to uint and int which stores 4

bytes. Since we do not have access to the values in these four bytes we cannot know
how these operations show anything related to a source or target. It is possible that
there are addresses or identification numbers after the header and length fields, but

this is an educated guess based on the serial number field found in the protocol used

for an older HMU [54]. Based on the debugging strings there appears to be some

logic to handle valid source and target of the data from the data transmission.

There is another call to the MSG-CRC16 function with a related error message in

the else-clause that states invalid container. The inputs to the CRC function is again

compared to the same hardcoded hexadecimal number we found earlier. The last
parts of PDHM-PROCESSDATAFROMMESSAGELAYER are calls to a couple functions
and adding crypStruct data to the ADD-MSG-OUT-LIST.

PDHM-TX-Handler

PDHM-TX-HANDLER is the transceiver function for the HMU’s outgoing messages.
It is called directly in PDHM__OPEN with a OSTHREADCREATE call. To get an
initial overview of the PDHM-TX-HANDLER and its functionality we look at its
debugging strings.

"PDHM: pdhm_decode_tx_handler - adding frame: frm=}d, len=)d\r\n"
"PDHM: pdhm_decode_tx_handler - skip result: dropping frm=Jd\r\n"
"PDHM: pdhm_decode_tx_handler - frame error\r\n"

"PDHM: pdhm_decode_tx_handler - no message available\r\n"

The PDHM-TX-HANDLER starts by checking if the variable CRYP_ KeyInitStructure

is equal to 0, and sets the ErrorStatus return value to 0. The function starts by

checking if the char value, one byte, in crypStruct+0x81 is not equal to 0. If this is

true, then the function checks for available messages and tries to allocate memory. If

memory is allocated, the functions sets values into the dataStruct array at different

indexes. The functions does not clearly state the values inserted into dataStruct, but

it is clear that this is the data which is encapsulated in the following calls to the
COMPRESSION and ENCRYPTION-HANDLER functions.

The following code section in has two similar code blocks, which can be seen
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below. A distinct difference between them is the values in line 6 and line 20 of the
code snippet. There are references to two of the transport headers we found in the
receiver function. It looks like the HMU is capable of constructing data transmissions
with two transport headers, while it accepted three types.

if (x(char *)(crypStruct + 0x6c) == '\x01') {
uVar7 = dataStruct[4] + Oxc;
iVar4 = dataStruct[2];
dataStruct[2] = (undefined *)(iVar4 + -Oxc);
dataStruct[4] = uVar7;
*(undefined *)(iVar4 + -0Oxc) = 0x33;
*(uint *) (iVar4 + -0xb) =
uVar7 * 0x1000000 | (uVar7 >> 8 & Oxff) << 0x10 | (uVar7 >> 0x10 & Oxff) << 8 |
uVar7 >> 0x18;
*(undefined *)(iVar4 + -7) = *(undefined *) ((int)dataStruct + 0x21);
*(char *)(iVar4 + -6) = (char) ((uint)*(ushort *)(crypStruct + 0x73) >> 8);
*(char *)(iVar4 + -5) = (char)*(undefined2 *) (crypStruct + 0x73);
*(short *) (crypStruct + 0x73) = *(short *) (crypStruct + 0x73) + 1;
*(uint *x) (iVar4 + -4) = crypStruct[8];
i
else {
iVar4 = dataStruct[4];
iVar5 = dataStruct[2];
puVar6 = (undefined *)(iVar5 + -10);
*puVar6é = 0x5;
*(char *)(iVar5 + -9) = (char) ((uint) (iVar4 + Oxc) >> 8);
*(char *)(iVar5 + -8) = (char)iVar4 + '\f';
*(undefined *) (iVar5 + -7) = *(undefined *)((int)dataStruct + 0x21);
*(char *)(iVar5 + -6) (char) ((uint)*(ushort *) (crypStruct + 0x73) >> 8);
*(char *)(iVar5 + -5) = (char)*(undefined2 *) (crypStruct + 0x73);
*(short *) (crypStruct + 0x73) = *(short *) (crypStruct + 0x73) + 1;
*(uint **) (iVar5 + -4) = crypStruct[8];
local_2c = FUN_081251a8(iVar4 + OxaU & Oxffff,puVar6);
puVar6[iVar4 + OxaU] = (char)((uint)local_2c >> 8);
puVar6[iVar4 + Oxb] = (char)local_2c;
dataStruct[2] = puVar6;
dataStruct[4] = iVar4 + Oxc;

In the code snippet we also see that the code inside the if-statement, that is
for the 0x33 header, has a field which seems to perform a hashing or cryptographic
operation in line 7-9. This is not present for the 0x5 in the else-clause. Which
means that the 0x33 transmission might contain an additional field of a hash or
something cryptographic which is not present in the 0x5 transmission. Both of the
transmission types also have a counter variable in lines 13 and 26 for 0x33 and 0x5
respectively, in the above code snippet. Ghidra recognizes this variable as a short
data type, which has a length of 2 bytes. A counter field was also found in the
protocol of the older HMU, however they found it had a length of 3 bytes [54]. The
decompiled code suggests that the data transmissions of PDHM protocol in this
HMU can count packets to the number 65535 - less than the previous protocol. It is
also interesting to note that the data is compressed and encrypted in the PDHM-
TX-HANDLER before the two modes, 0x33 and 0x5, in the code snippet is selected.
In the PDHM-RX-HANDLER, only the 0x33 header had code calling decryption and
decompression. Hence, the 0x5 header is encapsulating encrypted and compressed
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data in the outgoing transmission. The PDHM-RX-HANDLER receiver function did
not call the data processing functions in the 0x5 code section, however it did seem to
add the data to allocated memory. The first code block in PDHM-RX-HANDLER
did not look for a transport header, and checked for available messages internally.
Since there is a CHECKMESSAGE function call on the top of the receiver function, I
think it is likely that the data encapsulated by the transport headers 0x5 and OxAA
might be processed there after they have been allocated memory.

The version of the protocol found on the older HMUs also had the same 0x5
transport header, and it encapsulated encrypted data. It would seem likely that this is
also the case for the data encapsulated in the protocol found in the CardioMessenger
Smart 3G. It also seems reasonable to assume that the incoming 0x5 transmission
is similar to the outgoing 0x5 transmission. The decompilation might also have
interpreted the code inaccurately, and therefore not shown the 0x5 calls to decryption
and decompression in the receiver function. It is also interesting to note that the
HMU supports three incoming transport layer headers, but only seems to be capable
of transmitting with two of the headers. Finally, the PDHM-TX-HANDLER calls the
ADD-MSG-OUT-LIST function with crypStruct and the memory allocation variables to
load them into the export list.

Finding 27. The HMU’s PDHM communication protocol support two of the three
transport layer headers for outgoing transmissions
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The PDHM Communication Protocol of the Biotronik CardioMessenger
Smart 3G

This is our final illustration of all the known layers and fields of the PDHM protocol
in the Biotronik CardioMessenger Smart 3G version 1.20.

LAYERS
1 Byte ?Bytes 4Bytes ?Bytes 2Bytes
TRANSPORT THEADER | LENGTH | COUNTER | DATA | cRCI6 |
‘18 B/16B 7B 18
ENCRYPTION ETYPE | I | EDATA | LENGTH
16 18 18 16 18 48 16 18 28+78 7B B 46 4B
COMPRESSION CHEADER | ID1 [ID2 | CM | FLG | MTIME | XFL | OS | XEXTRA | FNAME | FCOMMENT | C.DATA| cre32 | isize
18 4B \?B
ESSALE MHEADER | LENGTH | MESSAGE

Figure 4.25: The identified layers and fields of the PDHM communication protocol

The known length of each field is written in bytes. The letters in front of the
headers and data fields are shortened, and represents transport, encryption, com-
pression, and message. The size of the IV field in the encryption layer is dependent
on the selected encryption algorithm. (T)DES uses 8 bytes, and AES uses 16
bytes. There might also be a padding field in some of the layers similarly to the
older protocol, but that was not clear from our reverse engineering. The reverse
engineering did also not show that there is a source or target address, but the
PDHM_ PROCESSDATAFROMMESSAGE layer did have a computation of the second
byte of dataStruct that would log invalid source or target. It did not compare to
hardcoded values from a specific field. We also do not know the specific use cases for
each of the transport headers and message headers. However, based on our reverse
engineering we should be able create a valid transmission in structure that will be
processed at every layer.
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4.4.6 Additional Findings

In the process of identifying the function hierarchy and those related to the PDHM
protocol, we also found functions that are part of the HMU’s other communication
interfaces such as USB, ULP-AMI, and GSM. These interfaces either share a common
caller function or depend on shared underlying functions. Even though these inter-
faces are outside the scope of our research goal, the functions of the other interfaces
are occasionally related to the PDHM protocol.

4.4.7 USB Interface

The extent of our analysis have not shown that the USB interface is used for commu-
nication. We have found that the function in charge of monitoring and managing the
charging of the HMU, is the Chg_Handler. We have also been able to identify the
names of many of the underlying charging functions based on their many debugging
strings. Of the debugging strings in the Chg_Handler there appears to be function-
ality to detect abnormal charging, changing the input current, checking the status
and state of the battery and the charging, and fault recovery.

4.4.8 ULPAMI Interface

We have also been able to identify many of the functions related to the ULP-AMI
interface. This is the interface between the HMU and the IMD. We identified the UL-
PAMISTARTRX function which initiates the receiver function ULPAMI-RX. This func-
tion contains debugging strings about an ULPAMI-string, a CRC, Raw-data, RSSI,
syncflags, ULPAMI termination, and a call to the UrLPAMI-RX-CONFIG function that
sets RSSI and frequency offset. However, these values are not hardcoded anywhere
in the decompiled code. We also identified the transceiver function ULPAMI-TX
function. The ULPAMI interface has a search mode function ULP__SM that initiates
the ULP function and the waiting function ULP-WM. The ULP function contains
many debugging strings and seems to log all the queried information from the IMD.
This fits because ULP is the last function that is called in the searching function
ULP-SM. The data is retrieved and logged on the HMU. The waiting mode function
ULP-WM is in charge of pairing and has functionality to postpone connection for
either 5 minutes or 4 hours. The conditions and extent of the back-off functionality
is unknown. There also appears that there are multiple pairing states with the IMD,
as well as soft- and hard-pairing. A function call graph of the supporting ULPAMI
function can be seen below.
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ULP_SM ULP-WM  ULP-Update-Pairing Message_GeneratellpamiStatus

Figure 4.26: ULPAMI function for searching and pairing

4.4.9 GSM Interface

Given the name of the HMU model, CardioMessenger Smart 3G, we would expect to
find the third generation telecommunication network interface UMTS. The HMU
user manual appendix also specifies that the CardioMessenger Smart 3G supports
UMTS W-CDMA. However, we only found telecommunication functionality related
to GSM.

The handler function for GSM is the MMI_ GSMSTATEHANDLER. The incoming
function call trees shows that the GSMSTATEHANDLER can be initiated by many
function, and it can be traced up to the USBINTERFACEHANDLER and the MMI-
INIT function. MMI-INIT also starts other mmi threads such as the on-screen GSM
signal and battery icons. There is also a GSM__SM, i.e statemachine, that deals
with power on/off and timeouts. It also calls to other GSM subfunctions such as
GSM__STATEMACHINEINIT, which in turn calls GSM__INIT and GSM__PARSER.

We also see the GSM function GSM__HANDLEPDPCONTEXT, but Ghidra is not
able to find its incoming call reference. Hence, we do not know where it is initiated.
However, it contains a couple interesting debug strings such as wrong APN and au-
thentication_ failure. It seems that there is some kind of authentication implemented
into their GSM functions.

4.4.10 MMI - PhysicianlconHandler

The MMI__PHYSICIANICONHANDLER is the function which we believe to be the
physician callback function that is described in the HMU’s technical manual [9]. It
is initiated by a OSTHREADCREATE in the MMI-INIT. The call back functionality
is used by the physician to turn on a blinking icon on the HMU display. This icon
indicates that the patient should contact their physician.
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4.4.11 Updating Feature: InstallFile

While analyzing the CHECKSIGNATURE function we found in PDHM__ PROCESSDATA
-FROMMESSAGELAYER, we found that it is called from five functions. One of
them is called MESSAGE__INSTALLFILE. MESSAGE_ INSTALLFILE is only called
from MESSAGE__ HMSCINTERFACEHANDLER which is initiated by an OSTHREAD-
CREATE in Message_ Init, right after the initiation of USBINTERFACEHANDLER.
MESSAGE__INSTALLFILE starts by checking if a variable in crypStruct is equal to a
hardcoded magic number. If this is not the case, the functions logs the error message
"Message InstallFile: invalid magic number”. If the magic number is set correctly,
then the functions calls HASH-SHA1 and CHECKSIGNATURE. If the signature check
returns 0, the function proceeds to process the incoming file from the PDHM file list.
It is also interesting to note that the value in crypStruct is set to 3 if successful, and
either 0x81 or 0x82 if the processing fails.

Based on the contents of the MESSAGE__INSTALLFILE function, it appears that
the HMU has the ability to install files over the PDHM protocol. There is no mention
of the file type in the code, and the user manual has no information about file
installation. Our assumption is that the file installation is related to a firmware
update. However, this There is also a hardcoded magic number which needs to be
set at the offset 0xC before the signature is checked.

4.5 Limitations of the Results

Most of our work is done on decompiled code in Ghidra, and this is also where most
of the limitation are present. The code we are analyzing is computer generated,
decompiled code of the flash memory section in the HMU. This section contains the
compiled code Biotronik installed during production. As we discussed in section
3.4, a lot of information is lost in the compilation process and this is apparent when
attempting to reverse engineer the firmware. After we extracted the code through
the debugging interfaces and imported it into Ghidra, Ghidra’s decompiler generated
an interpretation of the executed code. The code we are analyzing is therefore far
from the original source code developed by Biotronik. This posed several limitations
and issues during the reverse engineering process.

One of the limitations was the presence of duplicated functions. In the full
flash memory file we found 2 or 3 duplications of many functions, which tripled
the workload of the function hierarchy identification. Remembering the three code
blocks from the entropy and the duplicated string findings, we assumed that the
flash might have three operational modes. However, cutting out one of the code
blocks later showed to be a mistake because a few functions in the top of the function
hierarchy were removed as well. Some overlapping work was therefore necessary
while reverse engineering and occasionally the duplications had minor differences
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in values or offsets. Certain findings and values may therefore be imprecise. An
example of such a difference is the decompilation of the USBINTERFACEHANDLER
in the entire flash file and the decompilation of the one larger code block. The
decompilation of the large code block said that the crypStruct was located in the
SRAM. By using the offsets, we suggested that the encryption keys and initialization
vector was located and hardcoded in memory. However, in the decompilation of the
entire flash file there was no reference to a location in SRAM. The imported memory
and the decompilation can therefore be inconsistent and misleading. In the case
of the suggested encryption keys, this finding is probably not accurate. Since the
16 bytes in the supposed K2 and K3 key registers were identical on all three HMU
devices, it would imply that their encryption key is shared between the devices and
hardcoded in memory. In a previous private conversation between my supervisors
and Biotronik representatives, they claimed that keys were no longer hardcoded in
memory. Therefore the suggested encryption key finding is likely an inaccuracy in
the decompilation.

While identifying the function hierarchy and all of the PDHM functions, we found
that Ghidra was not always able to find the incoming function call references. An
example of this is how we found the incoming call to the PDHM__RX__HANDLER.
Thankfully, Ghidra has a feature called Search Program Text which can find strings,
comments, and instructions. Ghidra also has the ability to find references to a specific
memory address which is how we found the incoming call to MESSAGE__ INSTALLFILE
from the MESSAGE HMSCINTERFACEHANDLER. Sometimes Ghidra does not find
the incoming reference call in the Function Call Trees feature, however it is able to
lookup calls to a memory address.

The decompilation does also not always accurately represent the data types of
each variable. In our analysis of the PDHM protocol we tried to identify the fields in
each layer, the the sizes of each field. Since Ghidra interprets the data types, and
often performs multiple casts between data types which can be confusing, it can be
difficult to determine the fields lengths and exact position compared to the other
fields in the layer.
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4.6 Conclusion of Analysis

The end goal of our analysis as we defined in the scope in section 1.2, was to find and
document the functionality of the HMU’s communication protocol to the data servers.
We achieved this goal by analyzing the code from the memory files and focusing
on the cryptographic implementations. This was our defined research objective
RO1. With this approach we were able to identify the cryptographic functions which
enabled us to explore the function hierarchy, and find the PDHM communication
protocol functions. By following the objective stated in RO2, we found similarities
in the layered structure of the protocol and one identical transport layer header. We
also found similarities in compression and encryption standards. In our analysis we
found added functionality of the PDHM protocol, which has not been identified by
previous research. It is therefore unknown whether the communication protocol had
these operational modes in the previous HMU models CardioMessenger 11-S and
TLine, or if it is an updated version of the protocol. There has not been performed a
reverse engineering of the previous models similarly to my research on this HMU
model. Therefore a similar reverse engineering approach is necessary to confirm if
other operational modes exist in the older HMU models. The PDHM protocol in
the CardioMessenger Smart 3G has additional header values in the transport and
message layer, compared to those found on the older HMUs. These headers seem to
indicate that the HMU supports different transmission modes. However the explicit
use cases for each mode is unknown, and an experimental proof of concept is needed
to explore their operational differences. Still, our analysis reveals the specific fields
and their accepted values that is necessary for the HMU to process an incoming
transmission.

Throughout our analysis we found vulnerabilities and indications of plausible
security weaknesses, that might impact the HMU through its PDHM communication
protocol. Since much of the internal data processing in the HMU is unknown, proof of
concepts are needed to verify if the HMU is susceptible to these vulnerabilities. Since
the vulnerabilities uncovered in our analysis are not conclusively proven to adversely
affect the HMU, a CVD process was not deemed necessary by my supervisors at this
time. An example of a proof of concept would be to transmit a customized compres-
sion payload, similar to the CVEs we discovered, and observe if the HMU crashes.
The implications of the findings are explored in the mitigations chapter 5, and sce-
narios in section 6.1.2. They answer the remaining objectives stated in RO2 and ROS3.






Mitigation

5.1 Mitigation of Findings

The results of our security analysis on the CardioMessenger Smart 3G show that
it has inadequate security measures. The HMU is easily obtained online from a
multitude of marketplaces, its PCB and components are easily accessible, and its
internal security measures in the software is not conforming to modern best-practice.
Our findings show that the HMU is vulnerable in several aspects. The HMU should
be updated and replaced with new hardware and hardware protection mechanisms,
and a software update addressing the described vulnerabilities below. The following
sections describe the necessary mitigation in detail.

5.1.1 Mitigation of Hardware
Disable Debugging Interfaces

Our entire project is based on retrieving the memory files from the HMU. Having
access to the debugging interfaces JTAG and SWD enables us to connect to the
microcontroller and access its memory sections. Without the access through these
interfaces we would not be able to analyze and reverse engineer the firmware from the
flash memory. The debugging interfaces should be disabled post-production. This
can be achieved either in software or physically.

Use Trusted Platform Module

Using a hardware-based secure crypto-processor such as a TPM, will be able to se-
curely generate, store, and handle cryptographic keys, certificates, and operations [58].
A hardware-based TPM also usually has a tamper-proof physical design. The TPM
has a unique RSA key which can be used for device authentication. The TPM can
also be configured to detect if valid software is used when the system boots.

95
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5.1.2 Mitigation of Software
Memory Protection

Since the debugging interfaces were enabled, it enables us to dump the code from mul-
tiple memory sections. Another form of mitigating this procedure is by implementing
memory protection. STMicroelectronic’s System Memory Protections provide this
exact functionality. It provides read and write protection on the flash, sram, and
registers to prevent dumping of code, accidentally erased data, and protects their
intellectual property [59].

The firmware should also be encrypted. Since the debugging interfaces were
accessible and the memory was unencrypted, we were able to reverse large parts of
the firmware. Encrypting the firmware with keys stored in the previously mentioned
TPM chip, would complicate any effort to reverse the firmware. This is a layered
approach to security.

Discontinue the use of DES & TDES

After initially discovering the low-level function related to the cryptographic processor,
we discovered that the firmware supported three encryption standards - DES, TDES,
and AES. DES is insecure in modern applications due to its short key size of 56-
bit [60]. It has also been discontinued as a standard by NIST. TDES and AES are the
only two block ciphers approved by NIST. NIST also emphezises that in TDES, three
unique keys shall not be used to encrypt more than 22° blocks of 64-bit data [61].
AES is therefore the preferred encryption standard.

Update the Compression Library

The firmware uses version 1.2.1 of the Zlib compression library which has two known
CVEs. The consequence of these CVEs has the potential to cause Denial-of-Service
on the HMU [50]. Hence, the compression library should be updated to the latest
stable version.

Use Digital Signatures

The firmware has a function called MESSAGE__INSTALLFILE which checks the input
for a magic number in the header, calculates the SHA-1 hash of the input, and then
call the CHECKSIGNATURE function. Based on the contents of the CHECKSIGNATURE
function it seems that they are calculating another hash value instead of checking a
digital signature on the downloaded file. We encourage the use of digital signatures
which can be used to verify the authenticity of the sender, and the integrity of the
received file. The previously mentioned TPM should also be useful to verify the
provided digital signature of the received file.
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ULPAMI Interface: Implement Encryption & Whitelisting

In our analysis we did not find any encryption on the transmissions over the UL-
PAMI interface. Based on the string analysis of the ULPAMI functions, the data
transmissions appear to be sent raw with an appended CRC field. To protect the
privacy of the patient, the monitoring data of the IMD should be encrypted before
it is transmitted. The IMD has limited battery capacity, therefore a trade-off on
complexity versus power consumption needs to be assessed by the manufacturer.
The HMU and IMD should also implement whitelisting as a feature of its pairing
functionality. Whitelisting will exclude invalid interactions that may excessively
drain the battery power.

Migrate to SHA-2 or SHA-3

In the firmware we found the hashing algorithm SHA-1. It is used at three different
stages of the PDHM functions and for the MESSAGE__INSTALLFILE function. It
is used closely with the implemented CHECKSIGNATURE function, and we suspect
that SHA-1 is somehow used in their proprietary signature checks. SHA-1 has been
deprecated due to a demonstrated collision and successful brute-force attack, and it
is not allowed to be used for digital signatures by NIST [62]. NIST recommends the
migration to SHA-2 or SHA-3. These hashing algorithms can be used with digital
signatures.

Transport Layer Security: TLS or SSH

The communication protocol between the HMU and the data servers consists of
multiple layers with identifiers in the header field of each layer. The only security
measure of the protocol is the selected encryption type on the encapsulated data. To
improve the security of the protocol we suggest an implementation of SSL/TLS or
SSH to prevent eavesdropping and message tampering.

Mutual Authentication

In our analysis we did not find an implementation of mutual authentication. However,
we were not able to determine the functionality of the different transmission modes,
and these might have functionality that performs authentication. Since the presence of
authentication is unknown and that the HMU sends sensitive data in its transmissions,
it is essential to implement mutual authentication. For the data server it is equally
important to authenticate that a transmission originates from a valid HMU. Therefore
we suggest that mutual authentication is implemented in the HMU’s communication
protocol. This can also be achieved through the implementation of SSL/TLS or SSH.
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Implement Intrusion Detection System

The devices of the pacemaker ecosystem is highly sensitive. The main task of the
HMU is to relay the monitored data that is transmitted from the IMD towards the
data servers. Based on the many research papers that have been published in the
recent years, discovering vulnerabilities in most devices in the pacemaker ecosystem,
we suggest that the HMU is implemented with an intrusion detection system (IDS).
An attack on the HMU can potentially cause a Man-in-the-middle on the IMD. To
prevent the HMU of becoming an attack surface, we suggest that it is equipped with
an IDS that can detect anomalies in its incoming transmission. By extension, the
IDS could also detect malicious activity and anomalies in the IMD’s behavior.

This could be an addition to the HMU’s physician callback functionality. Where
an icon is displayed and blinking on the HMU’s display to notify the patient to seek
medical aid.

5.1.3 Mitigation in Development/Business-level

The following suggestions are mitigations the manufacturer should implement in
their continuous development life-cycle. It is unknown whether the manufacturer has
implemented any of these systems or not, but based on the lacking security measures
we question the effectiveness of their current internal processes.

Implement Threat Identification, Risk Assessment & Vulnerability
Scoring System

The pacemaker ecosystem is a sensitive system where devices have a direct impact on
a patients health and well-being. As a preemptive measure the manufacturer should
conduct a continuous process of threat identification to monitor the current threat
landscape and modern major trends. This also includes assessing the emerging CVEs
and their impact on their systems. The ability to identify threats before they can
impact the ecosystem will improve the safety of the patients overall.

The manufacturer should also implement a risk assessment framework to ensure
that they are analyzing and evaluating the risks they are facing throughout their
device ecosystem. The risk assessment should include assessment of their network
infrastructure, the personal monitoring devices, and their software. The risks should
be associated with the loss or impact of a security criteria such as those describes in
section 3.2.

When a vulnerability is found within the ecosystem, the manufacturer should use
a vulnerability scoring system such as the Common Vulnerability Scoring System
(CVSS). The scoring system is used to get a metric value of the severity of a
vulnerability. The value can be used by the manufacturer to assess and prioritize the
needed mitigation of a vulnerability.
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Return Policy of Decommissioned & EOL Home Monitoring Devices

The manufacturer of pacemaker equipment and home monitoring devices should
implement a policy for the return of decommissioned and devices that have reached
its End-of-Life. The sale of home monitoring devices on public online marketplaces
enables access of secondhand sensitive devices which can pose threat to the entire
ecosystem, and can be used to perform malicious activities. A return policy of decom-
missioned home monitoring devices will restrict the ease of access to these devices,
thus complicate the process for an adversary’s and serve as another preemptive
security measure.

5.2 Legislation & Best Practice

In recent years new regulation have been entered into force, which manufacturers
of medical devices have to conform to. Additionally, government agencies publish
recommendations on security implementation and management which manufacturers
should utilize in their development process.

5.2.1 Legal

The MDR and IVDR state that manufacturers of (in-vitro) medical devices need to
implement and maintain a risk management system. The systems needs to adhere to
security in their product designs, implement adequate security measures for identified
threats, and provide detailed information about their products. The manufacturers
are also responsible for implementing a quality management system which needs to
satisfy various safety and performance requirements defined in the regulations [26, 27].
The regulation also state that the manufacturers need to design the software of their
medical devices to ensure performance and reliability, and in accordance with modern
development, risk management, and security. The manufacturer also needs to obtain
a certification of conformity to sell their medical devices on the European market.
If a device is found to not conform to the regulations specified within the MDR or
IVDR, they may be withdrawn from market until the necessary corrective mitigations
have been performed.

Additionally to the European legislation, the medical devices sold in Norway
need to conform to national legislation. The Norwegian Security act states that the
undertaking that impacts the basic security of the population shall be responsible
for and implement a management system for protective security work [28]. The
undertaking is also responsible for implementing an appropriate level of security to
reduce the identified risks. They are also required to notify the national security
agency (NSA) of suspicious activity that may impact infrastructure or personal
security.



100 5. MITIGATION

5.2.2 Recommendations from Authorities

To ensure the reliability and security of the pacemaker ecosystem, the manufacturer
should take advantage of all the available resources published by government agencies,
research organizations, and large industry organizations. The European union agency
for cybersecurity (ENISA) have published guideline documents for threat and risk
management which include a landscape report of the most prevalent threats and
trends, good practices to perform risk management, and to responsibly disclose
vulnerabilities !.

The National Institute of Standards and Technology (NIST) have resources such
as frameworks, FAQs, events, presentations, and newsroom of the latest updates on
their webpage 2. One of these frameworks are the Cybersecurity framework which
has a guide for conducting risk assessments and a risk management framework for
information systems and organizations. NIST also has resources such as a privacy
framework, cybersecurity guidelines for IoT devices, and guidelines for every aspect
of cryptography - e.g cryptographic key management guidelines 3.

The National Security Agency (NSA) publish advisories and guidance documents
to handle security controls and commonly exploited CVEs 4°. The NSA has an
extensive guide for network infrastructure security which should be used by the
manufacturers to solidify their private networks®.

All these resources should be used in the daily operations and every stage of the
development cycle. This will ensure security at every layer and mitigate many of the
identifiable threats. Pursing security by design is also a great approach to save time
and resources in the long run.

! Available at https://www.enisa.ecuropa.eu/topics/threat-risk-management

2 Available at https://www.nist.gov/cyberframework /identify

3 Available at https://csrc.nist.gov/publications/detail /sp/800-57-part-1/rev-5/final

4 Available at https://media.defense.gov/2022/May/17/2002998718/-1/-1/0/CSA_ WEAK_S
ECURITY_CONTROLS_PRACTICES_EXPLOITED_FOR_ INITIAL__ACCESS.PDF

5 Available at https://media.defense.gov/2022/Apr/27/2002984949/-1/-1/0/JOINT__CSA_ 202
1_ROUTINELY_EXPLOITED__CVES_20220427.PDF

6 Available at https://media.defense.gov/2022/Jun/15/2003018261/-1/-1/0/CTR_NSA_NET
WORK_INFRASTRUCTURE_SECURITY_GUIDE_20220615.PDF



Discussion

6.1 Implications of our work

The following sections summarizes and highlights the implications of our findings.
Firstly, we discuss the applicability of our scripts and their contribution to the
reverse engineering community. We have described some attack scenarios that are
possible on the HMU and some attack scenarios that are theoretically plausible,
based of our findings in the HMU analysis. Most of the attack scenarios are related
to findings from the software because the majority of our analysis was focused on
the decompiled code. The severity of our findings are reflected and described in the
proposed scenarios.

6.1.1 Contributions

Our main contributions to the reverse engineering community are the two scripts,
our custom version of the svd-loader and the GhidraFunctionFinder.

Developed Scripts to Ghidra’s open-source Community

The SVD-loader we developed is customized to automatically define peripherals and
all their registers at their defined memory locations in the Ghidra project. The SVD-
loader is applicable for any Ghidra project that analyzes an ARM microprocessor
and that has a defined .svd (System View Description) file in the XML format. It is
therefore useful for most projects related to an ARM microprocessor, not just the
STM32F417 which we analyzed. Being able to define the peripheral and register
names within Ghidra eases the reverse engineering process, since it removes the need
for a continuous lookup in the reference manual and datasheet.

The GhidraFunctionFinder is also applicable for most Ghidra projects. We used
it to locate the CRYP register such that we could identify the low-level cryptographic
functions, and we used it to locate all the decompiled functions that contained the
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sting PDHM. The script decompiles and interprets every function as a long string,
and it searches through every function for every term in our defined search list. In
our case the list only contained the CRYP or PDHM, however it is applicable for
more multiple search terms. The use cases for the script is thus far larger than our
requirements in this project. The script could even be used to search for an entire
line of code within a function, or or multiple programming terms. The script does
not modify any of the functions, and can therefore be used at all stages throughout
the reverse engineering. The script can therefore be used to locate functions with
user-defined variables and function names. The script prints its progress as a per-
centage continuously in the console, and outputs a list of the function names that
matches the search terms to the Ghidra console.

The applicability of the two script aided my reverse engineering process, and they
will hopefully be a valuable tool for further research at the Pacemaker Project at
SINTEF and NTNU, but the scripts will also be published on Github as a contribu-
tion for the open-source Ghidra reverse engineering community.

6.1.2 Attack Scenarios

The following subsection defines the currently possible attack scenarios on the Car-
dioMessenger Smart 3G version 1.20, that are possible based of the findings in my
analysis.

Connecting to the Private Data Servers

In the preliminary string analysis of the memory files we found that the memory was
unencrypted, and that naming convention was clearly visible from the debug/error
logs. Among these strings were also credentials such as a serial number, username,
password, and a pin code for the device which was hardcoded in memory. The first
attack scenario is based on the available credentials to connect to the Biotronik’s
private data servers. The HMU uses these credentials to authenticate against the
server and to deliver the transmitted user monitoring data, which will be available for
the patient’s physician. Using the HMU’s credentials we should be able to connect
and authenticate with the manufacturers data servers. However, we do not know
the extent of the HMU’s capabilities connecting to the manufacturer’s data servers.
However, even if the credentials are still valid, we might not be able to connect to
their servers since the HMU’s SIM card might not be accepted anymore [24]. If we
were to connect to the data servers with the obtained credentials, that would be
unethical and illegal - considered as a data breach and hacking. It would also be
outside the mandate and scope of our research purposes.
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Passive Communication with the HMU - i.e Eavesdropping

In our analysis we discovered the layered PDHM protocol and its expected header
values, as well as some of the other expected fields in each layer. We also know that
the HMU communicates its PDHM protocol transmissions over the GSM interface.
Previous research in home monitoring devices have shown that the GSM interface
is susceptible of eavesdropping attacks, which enables us to passively listen to the
HMU’s transmissions and analyze the data contents of its transmissions. A simulated
eavesdropping attack with an illegitimate base station can uncover the remaining
fields of the layered PDHM protocol, and serve as a proof-of-concept to reproduce
and validate my findings. However, this is dependent on finding the encryption key.
A real-world eavesdropping attack can enable an adversary to obtain the monitored
data from the patient’s HMU and their IMD. Thus, having access to the personal
health data breaching their privacy.

Active Communication with the HMU

Our findings also enable the scenario of multiple active attacks against the HMU.
Since we know the internal code structure and conditionals of the receiver functions,
we should be able to create a customized transmission to the HMU that will be
accepted and processed.

The first active attack scenario is the battery depletion attack. Unlike older
HMU devices, this HMU can be carried around in the patient’s daily life similarly to
a regular smart phone. The CardioMessenger Smart 3G is a mobile device, and can
be used either in stationary operation or mobile operation [9]. If it is used in mobile
operation mode without being connected to the power brick, the HMU runs on its
internal rechargeable battery. Similar to previous research on IMDs, our findings on
the PDHM protocol opens the possibility of depleting its battery if a vast amount
of messages are received and processed by the HMU. Since we know the necessary
headers at the transport, encryption, and compression layer, we can craft a large
amount of data transmissions which the HMU will need to decrypt and decompress.
The data processing on a large number of incoming transmissions will theoretically
replenish its battery rapidly, and effectively render the HMU device useless. This will
effect the patient’s ability to transmit health monitoring data, and possibly disable
the HMU’s ability to alert a physician about occurring health issues.

The second possible attack scenario is the remote DoS attack which is also
enabled by our knowledge of the PDHM protocol. In our analysis we also discovered
that the implemented compression library contains two known CVEs that has the
potential to cause Denial-of-Service - i.e a device crash. The zlib compression library
version 1.2.1 is vulnerable to the known CVEs CVE-2005-2096 and CVE-2004-0797
[50]. The former is caused by a crafted stream that has an incomplete code description
and length greater than 1. This causes a buffer overflow and has been demonstrated
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by a crafted PNG file . It is therefore plausible that an attacker might be able to
cause a DoS attack on the HMU by sending a crafted PNG file in the compressed
payload in the PDHM transmission. This still needs to be tested because the internal
data processing is not completely understood, and there might be restrictions on the
compression payload - e.g payload size limit.

6.1.3 Potential Attack Scenarios

The following subsection defines the potential and unconfirmed attack scenarios that
are plausible on the CardioMessenger Smart 3G version 1.20, based of the findings
in my analysis. These attacks are active and theoretically require extensive efforts to
confirm.

The first potential attack scenario is an install modified file attack. In our
analysis we found that the PDHM protocol is able to download a file and install it
through its Message InstallFile function. We found that the incoming file needs to
have a magic number in the header, and that the CheckSignature functions seems to
perform a hashing calculation. If an attacker were able to craft a custom file with
the magic number in the header and the correct hash signature, then the HMU could
potentially be weaponized and turned into an attack vector, used against the data
servers or the patient’s IMD. This potential attack requires extensive effort and might
be plausible based on our protocol knowledge and the hashing-based CheckSignature
function. This attack is also enabled by the lack of a digital signature, and the fact
that SHA-1 is not collision resistant [62]. The lack of collision resistance is also a
reason for our suggested migration to SHA-2 or SHA-3 in section 5.1.2.

The second potential attack scenario is a MitM illegitimate BTS attack be-
tween the HMU and the backend data server. This can be achieved by an extension
of the previously mentioned modified firmware attack, or by setting up a software-
defined illegitimate base station. The latter has been proven by others as well [22, 48],
however with our added knowledge of the CardioMessenger Smart 3G it is possible
to extend the functionality of the BTS. The modified HMU or the illegitimate BTS
can act as an intermediary that forwards forged data, or it might eavesdrop and run
other malicious actions in the background.

6.1.4 Implications for Patients & the Manufacturer

From the perspective of the patient, the medical devices are a life-saving solution to
their medical condition. They are only given to patients in a particularly vulnerable
situation, and the patient trusts that these devices can reliably protect them if a
medical emergency occurs. Our findings show that some of the implementations in

L Available at https://www.cvedetails.com/cve/CVE-2005-2096/
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the medical devices can potentially pose a threat to the patient’s security and safety,
however this still needs to be conclusively proved with a proof of concept.

The manufacturers of medical devices are responsible for patients in an extremely
vulnerable situation. They are not just responsible for a fully functioning IMD that
performs its heart-sustaining and monitoring tasks, they are also responsible for the
device doing its tasks in a secure manner. The patients gets an IMD and monitoring
devices because they have no other option. If the medical devices fail or are non-
functioning, the patient’s life is threatened. The manufacturer has an additional
layer of added responsibility. The failure or unavailability of medical devices are
more critical than any other system, and they should be treated accordingly. The
manufacturers of medical devices therefore needs to proactively assess their software,
and continuously identify the current threats and vulnerabilities that can affect every
part the pacemaker ecosystem.

6.2 Ethical Considerations

The purpose of our research is to assure and confirm that proper security mechanism
are implemented in the medical devices. Due to the sensitive nature of the medical
devices, I have entered a confidentiality agreement with SINTEF to not disclose
any information related to our findings in the devices. The devices have also been
handled cautiously, and only been kept and used inside the SINTEF lab.

Our findings are related to both hardware and software. While software is easier
to update on distributed devices, there are solutions which can make up for the lack
of certain hardware components. We also intent to disclose our findings with the
manufacturer. We also hope the manufacturer is able to appreciate the feedback and
our genuine and ethical attempt to strengthen the security of medical devices in the
future, which will benefit both the company and their patients.

6.3 Future Work

Our work in this thesis is the latest of multiple projects on the HMU. The other
projects have performed an outside analysis of the hardware and of its communi-
cations, while in this project we tried a new approach from the inside of the HMU
and reversing certain code sections. The PDHM communication protocol has now
been analyzed both from the outside with a software-defined base station, and on
the inside with my reverse engineering of the decompiled code in the HMU’s memory.
Still, the entire functionality of the communication protocol and its different modes
are not yet fully understood. To document the protocol in its entirety, further reverse
engineering and developing a practical proof-of-concept is needed.

The USB interface of the CardioMessenger Smart 3G has also not been analyzed.
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In my project I only found functionality related to charging and charging safety
measures, but it might be a communication interface which has not been identified
yet.

Since the HMU has been the primary research objective of multiple of the latest
projects, there is also the option of focusing on another device in the ecosystem,
either the IMD or the programmer. For the IMD there is the ULPAMI communi-
cation interface which has not been explored by any of us at the SINTEF project.
Other researchers have analyzed the ULPAMI communication interface on devices
from other manufacturers, however not on Biotronik’s devices to our knowledge.
Understanding the ULPAMI interface might also be useful to understand its relation
to the PDHM protocol and the interaction between them in the HMU. However, the
IMD is hard to come by and it needs to have sufficient battery power remaining to
perform the analysis. The IMDs available in SINTEF’s lab do not have have enough
battery power remaining. Thus, a new IMD is needed to perform the ULPAMI
analysis with a software-defined radio. Alternatively, the ULPAMI interface can
be analyzed from the inside by continuing the reverse engineering efforts from my
project. I only did minimal function identification of the ULPAMI functions while
exploring the function hierarchy, but since ULPAMI was not my main objective it
was not heavily analyzed.

All the projects so far have all focused on the home monitoring devices of Biotronik.
The lab has a couple of older devices from other manufacturers, but it is possible to
obtain newer models from other vendors and perform a security analysis comparing
the hardware or software between the vendors. Some devices from other vendors also
have a Bluetooth communication interface which can connect to the patients smart
phone. Bluetooth was not available in any of Biotroniks devices, and could be an
interesting interface to analyze.



Conclusion

In this thesis we have followed a black box method to reverse engineer the communi-
cation protocol of the Biotronik CardioMessenger Smart 3G Home Monitoring Unit.
We started our analysis by formulating research questions relating to what extent
the HMU is preserving and protecting the patients safety, privacy, and personal
data. In the process of identifying the communication protocol, we found that
the HMU lacks the necessary security mechanism to securely protect itself and its
data transmissions. The scenarios in section 6.1.2 describe multiple severe vulner-
abilities which needs to be mitigated to maintain security in the pacemaker ecosystem.

« We never compromise on safety—it is and will remain our number one priority. We
invest the time and resources necessary to ensure that every product we bring to market is
one we can stand by confidently—and cybersecurity is no exception.» - Biotronik

It is clear from Biotronik’s statement that patient safety and cybersecurity are
their main priorities. These priorities are essential to ensure the security of their
medical devices, which enable patients all around the globe to live a normal life.
However, to ensure security of the medical devices it is important to keep up with
a dynamic threat landscape, implement security best-practices throughout their
devices, and continuously seek to improve the security of their product in every
aspect. Feedback from the research community should also be regarded as a well-
intended input to confirm and improve the security and reliability of their medical
devices.

L Available at https://www.biotronik.com/en-de/patients/cybersecurity
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Binary Extraction

Extracting the device memory, i.e binary files, from the embedded HMU device is a
prerequisite to reverse engineer the code. The extraction/dumping of the binaries
was already performed by Guillaume Bour previously in the Pacemaker project at
SINTEF. This chapter thoroughly describes the process of reproducing his findings
with the same tools, in the same environment. As described in the methodology,
reproducing findings from previous work is fundamental, both to validate his work,
my own and future work done by others.

The following subsections in this appendix will describe the connection setup
to communicate with the HMUs microcontroller through a raspberryPi running
OpenOCD. The OpenOCD script for establishing connection and dumping to the
microcontroller through JTAG is created by Guillaume Bour. I replicated the memory
dumping over JTAG, and I did modifications to the configuration scripts to show
that also the SWD interface is accessible. T was also able to establish a connection
and dump the memory through the SWD interface.

The connection to the embedded HMU devices is done by connecting my laptop
wirelessly to the wireless access point generated on the rasperryPi Zero. An SSH
connection is then established on top from the laptop over WiFi. Enabling the
possibility to remotely execute code from the raspberryPi device on the HMU.

The raspberryPi uses OpenOCD to provide debugging and programming func-
tionality on the embedded HMU device. OpenOCD configuration files are customized
on the pi to specify the used transport protocols and commands to be executed on
the HMU device’s microprocessor. The physical connection between the raspberryPi
and the HMU is connected through the PCBite wire kit - a solder-free, and flexible
system with wire arms to connect onto circuit boards.
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A.1 OpenOCD Installation

To install OpenOCD on the Raspberry Pi Zero running Linux, only a few lines
of commands are necessary. As described in Bour’s project, we run the following
commands:

&

sudo apt-get update

$ sudo apt-get install git autoconf libtool make pkg-config libusb-1.0-0
libusb-1.0-0-dev

$ git clone http://openocd.zylin.com/openocd

$ cd openocd

$ ./bootstrap

$ ./configure --enable-sysfsgpio --enable-bcm2835gpio

$ make

$ sudo make install

A.2 Experiment Setup

READMEmd ’

Connecting to the device

ero.
19177

£ we are
ft pinout.

et Ems that not
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e o Co

Never @ Onlyondeanext B e for

Basic connection

nect to the device using JTAG, you can use the simple_config.cfg file. Then you can connect to your remote gdb session using
er session for instance. This will not halt the device (neither set a target). But you can issue some commands ik scan_chain to
get an idea of the JTAG-enabled devices that are in the chain.

- 5 o3
H £ Type here to search it - 2 = Documents A 6:C Raincoming A E1 0 @ dx Nos 00 B

Figure A.1: SSH connection on laptop to raspberryPi over WiFi

In figure A.1 the setup of the SSH protocol in PuTTy is setup. Firstly, we connect
to the wireless AP on the Pi Zero. We then check our IP address and connect to the
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Pi using sintef@192.168.1.1; port 22. This gives us access to the Raspberry Pi and
to navigate its directories and run code remotely.

PHR™ I

R A
s I Ii

Figure A.2: RaspberryPi connecting wires on GPIO pins

The RaspberryPi Zero is also connected to the HMU circuit board with electrical
wires from the PCBite kit. The wires are connected to specific GPIO pins which
is defined in the OpenOCD configuration files, see becm2835gpio_jtag nums and
bem2835gpio__swd_nums in algorithms in Protocols & Scripts on raspberryPi. The
pin numbers and GPIO pins used to connect the jtag and swd protocol correctly for
the OpenOCD configuration can be found through the github project Pinout.zyz[3].
For example, in figure A.2 we can see the jtag connection on the Raspberry Pi Zero.
The jtag numbers used in the configuration file is 11, 25, 10, and 9. These numbers
corresponds to GPIO pins 23, 22, 19, and 21, as seen in figure A.3. For the swd
protocol the pin numbers in configuration is 11 and 10 for SWDIO and SWCLK,
which corresponds to GPIO pins 23 and 19.
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Figure A.3: Raspberry Pi pinout [3]
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Figure A.4: PCBite JTAG connection on the HMU circuit board
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Figure A.5: PCBite SWD connection on the HMU circuit board

A.3 Microprocessor Capabillities

Running the following commands while connected to the corresponding interface
establishes a connection to the microprocessor:

# for a JTAG connection:
sudo openocd —-f simple_config 3g.cfg

# for a SWD connection:
sudo openocd -f simple_config 3g_swd.cfg

After setting up the simple connection on either jtag or swd, we launch another
terminal session with NetCat:

$ nc 127.0.0.1 4444
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Running the following commands while connected to the corresponding interface
establishes dumps the memory from the microprocessor:

# for a JTAG connection:
sudo openocd -f dump_memory.cfg

# for a SWD connection:
sudo openocd -f dump_memory_swd.cfg

The memory addresses can be found in the STM32 microprocessor datasheet [4].
Its memory map section defines the name, base memory address, and size for each
memory block. The memory map is added below in figure A.6 for reference.

flash.img 0x08000000 1048575
ccm_ram.img 0x10000000 65535
system_memory_OTP.img Ox1FFFO0000 31247
sram.img 0x20000000 131071

ram.img 0x60000000 2097152
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Figure A.6: The memory map of the STM32F4xxx microprocessor [4]
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A.4 Protocols & Scripts on raspberryPi

These are the scripts used in OpenOCD on the RaspberryPi communicating over
JTAG and SWD, described in Background. The JTAG scripts in A.4 are developed
by Guillaume Bour, and the SWD scripts in A.4 are my modifications of the JTAG
scripts to support the SWD interface [48].

Algorithm A.1 simple_ config_ 3g.cfg: Establishing JTAG connection to microcon-

troller
# Script used to establish a simple connection to a CardioMessenger 3g Smart using a JTAG acces.

# INTERFACE

interface bcm2835gpio
bcm2835gpio_peripheral_base 0x20000000
bcm2835gpio_speed_coeffs 113714 28
bcm2835gpio_jtag_nums 11 25 10 9
bcm2835gpio_srst_num 24

reset_config srst_only srst_push_pull
adapter_khz 500

# TRANSPORT
transport select jtag

# TARGET

set WORKAREASIZE 0O

set CHIPNAME stm32f4x

source [find target/stm32f4x.cfg]
reset_config srst_only srst_nogate
adapter_nsrst_delay 100
adapter_nsrst_assert_width 100

# EXEC
init
targets
halt
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Algorithm A.2 dump_ memory.cfg: Establishing JTAG connection to microcon-
troller and dumping memory

# Script used to establish a simple connection to a CardioMessenger 3g Smart using a JTAG acces.

# INTERFACE

interface bcm2835gpio
bcm2835gpio_peripheral_base 0x20000000
bcm2835gpio_speed_coeffs 113714 28
bcm2835gpio_jtag_nums 11 25 10 9
bcm2835gpio_srst_num 24

reset_config srst_only srst_push_pull
adapter_khz 500

# TRANSPORT
transport select jtag

# TARGET

set WORKAREASIZE O

set CHIPNAME stm32f4x

source [find target/stm32f4x.cfg]
reset_config srst_only srst_nogate
adapter_nsrst_delay 100
adapter_nsrst_assert_width 100

# EXEC
init
targets
halt

echo "Dumping flash..."
dump_image flash.img 0x08000000 1048575
echo "Done!"

echo "Dumping CCM RAM..."
dump_image ccm_ram.img 0x10000000 65535
echo "Done!"

echo "Dumping system memory OTP..."
dump_image system_memory_OTP.img Ox1FFF0000 31247
echo "Done!"

echo "Dumping SRAM..."
dump_image sram.img 0x20000000 131071
echo "Done!"

echo "Dumping RAM..."
dump_image ram.img 0x60000000 2097152
echo "Done!"
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Algorithm A.3 simple_ config 3g swd.cfg: Establishing SWD connection to mi-

crocontroller
#Script used to estabish a simple connection to a CM 3G Smart using SWD access

# interface

interface bcm2835gpio
bcm2835gpio_peripheral_base 0x20000000
bcm2835gpio_speed_coeffs 113714 28
bcm2835gpio_swd_nums 11 10

#Is this (below) needed?
bcm2835gpio_srst_num 24

reset_config srst_only srst_push_pull
adapter_khz 500

# transport
transport select swd

# target

set WORKAREASIZE 0O

set CHIPNAME stm32f4x

source [find target/stm32f4x.cfg]
reset_config srst_only srst_nogate
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Algorithm A.4 dump_memory_swd.cfg: Establishing SWD connection to micro-
controller and dumping memory

#interface

interface bcm2835gpio
bcm2835gpio_peripheral_base 0x20000000
bcm2835gpio_speed_coeffs 113714 28
bcm2835gpio_swd_nums 11 10

#

#

adapter_khz 500

#transport
transport select swd

#target

set WORKAREASIZE 0O

set CHIPNAME stm32f4x

source [find target/stm32f4x.cfg]
#reset_config srst_only srst_nogate
#adapter_nsrst_delay 100
#adapter_nsrst_assert_width 100

#exec
init
targets
halt

echo "Dumping flash..."
dump_image flash.img 0x08000000 1048575
echo "Done!"

echo "Dumping CCM RAM..."
dump_image ccm_ram.img 0x10000000 65535
echo "Done!"

echo "Dumping system memory OTP..."
dump_image system_memory_OTP.img Ox1FFF0000 31247
echo "Done!"

echo "Dumping SRAM..."
dump_image sram.img 0x20000000 131071
echo "Done!"

echo "Dumping RAM..."
dump_image ram.img 0x60000000 2097152
echo "Done!"




Binwalk Installation

To install Binwalk we followed the installation procedure from the Binwalk github
repository under the INSTALL.md[34]. We already had Python version 3.8.10 in-
stalled on a virtual image of Linux Ubuntu 20.04.3. These are the series of commands
executed in the Linux terminal to install all the standard dependencies for Binwalk.
We did not need the additional dependencies listed from their github repository.

$ sudo pip install nose coverage
$ sudo pip install pycryptodome

$ sudo apt-get install libqt4-opengl python3-opengl python3-pyqté
python3-pyqt4.qtopengl python3-numpy python3-scipy python3-pip

$ sudo pip3 install pyqtgraph
$ sudo pip install capstone
$ sudo apt-get install mtd-utils gzip bzip2 tar arj lhasa p7zip

p7zip-full cabextract cramfsprogs cramfsswap squashfs-tools
sleuthkit default-jdk lzop srecord

To use Binwalk, open a terminal window and type:

# Commands in Binwalk are formulated like this:
binwalk [option(s)] [file(s)]

# To run an entropy scan on the flash file:
binwalk --entropy flash.img
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Ghidra Installation & Setup

This chapter explains the steps to install and setup Ghidra. In our project we started
out using Ghidra version 10.0.4 released in October 2021. However, because of the
Log4j vulnerability the project was migrated to Ghidra version 10.1.4 released 20th
May 2022.

# SHA-256 checksum:
91556c¢77c7b00£376cal101a6026c0d079efbf24a35b09daaf80bda897318c1f1l

C.1 Installation & Dependencies

Ghidra supports Microsoft Windows 7 and 10 (64bit), Linux (64bit), and macOS
10.8.3 or newer. Ghidra only has one software dependency which is Java 11 64-bit
Runtime and Development Kit (JDK): OpenJDK 11 (LTS)[63].

After clicking on Ghidra 10.1.4, a list of assets appear and we download the
ghidra__10.1.4 _PUBLIC 20220519.zip. This zip-file contains the entirety of Ghidra.
After extracting the zip-file, double click the ghidraRun.bat file to launch Ghidra.

C.2 Setting up the Project & adding Binaries

After launching the Ghidra, a window will open where you can see your open projects,
create and modify your projects, and select a few different tools.

C.2.1 Adding the Binary

When opening Ghidra the first time, we need to create a new project and import
the file we are analyzing. In this case, the file is one of the memory dump binaries
what we extracted from the CardioMessenger Smart 3G. The STM32F417 datasheet
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defines the base addresses for the microprocessor main memory is the same addresses
we used during the memory dumping of the flash section [4]. The main memory starts
at 0x0800 0000-hex and ends at 0x080F FFFF-hex, which translates to a length of
1048575-decimal. It is important to define these addresses correctly because they
will be used by Ghidra when executing its different analysis tools.

.
@ Ghidra: CardicMessenger-Smart-3G - ]
File Edit Project Tools Help

LERE K LIRS

Toal Chest

L EX

Active Project: CardioMessenger-Smart-3G
b CardioMessenger-Smart-3G

@

Format:  Raw Binary - @
Language: |ARM:LE:32:Cortex:default
Destination Folder: |CardioMessenger-Smart-3G:/

Program Name: |flash.img

@ Options >
Block Name |flash

S 1 I =
PR L Base Address |0x08000000 L )

Tree View Table View File Offset |0x0

Running Tools Length | 1048575

Apply Processor Defined Labels [ Workspace ol

Anchor Processor Defined Labels (8

Feleted local file flash.img Cancel =

Figure C.1: Import a memory file to a Ghidra project

C.2.2 Ghidras Workspace

Double-clicking the imported file, or clicking on the tiny green dragon icon in the
Tool Chest, starts up Ghidra and adds the file to the workspace. The image below
shows how Ghidras workspace looks after opening the project file.
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C.3 Running Scripts in Ghidra/Ghidra Plugins
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Figure C.2: Ghidra initially
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Developed Tools & Scripts for
Ghidra

D.1 Ghidra .svd loader

Algorithm D.1 SVD Loader for Ghidra

import xml.etree.ElementTree as ET

from ghidra.program.model.data import Structure, StructureDataType, UnsignedIntegerDataType,

— DataTypeConflictHandler

from ghidra.program.model.data import UnsignedShortDataType, ByteDataType,

— UnsignedLongLongDataType

from ghidra.program.model.mem import MemoryBlockType

from ghidra.program.model.address import AddressFactory, Address, AbstractAddressSpace,\
AddressSpace

from ghidra.program.model.symbol import SourceType

from ghidra.program.model.mem import MemoryConflictException

from compiler.ast import TryExcept

class MemoryBlock:
def __init__(self, name, start, end, peripheral):
self .name = name
self.start = start
self.end = end
self.peripheral = peripheral

def length(self):
return self.end - self.start

svdfile = askFile("Choose .svd", "Load .svd")
ET.parse(str(svdfile))
root = tree.getroot()

tree

#Get ghidra variables

listing = currentProgram.getListing()

symbolTable = currentProgram.getSymbolTable()

dataTypeManager = currentProgram.getDataTypeManager ()

addressSpace = currentProgram.getAddressFactory() .getDefaultAddressSpace()

namespace = symbolTable.getNamespace("Peripherals.Registers", None)

if not namespace:
namespace = currentProgram.getSymbolTable().createNameSpace(None, "Peripherals.Registers",
< SourceType.ANALYSIS)

interruptnamespace = symbolTable.getNamespace("Peripherals.Interrupts", None)
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35 if not interruptnamespace:
36 interruptnamespace = currentProgram.getSymbolTable() .createNameSpace (None,
—s "Peripherals.Interrupts", SourceType.ANALYSIS)

38  memoryblocks = []
39 for peripherals in root:

40 for peripheral in peripherals:

41 try:

42 name = peripheral.find("name").text

43 start = int(peripheral.find("baseAddress").text, 16)

44 try:

45 length = int(peripheral.find("addressBlock").find("size").text, 16)
46 #Length is changed if memory overlap is detected

47 end = start+length

48 except:

49 end = start+1024

50 memoryblocks.append (MemoryBlock (name, start, end, peripheral))
51 except:

52 print(name+" failed")

53

54 for blockl in memoryblocks:

55 for block2 in memoryblocks:

56 if blockl!=block2:

57 if blockl.start>block2.start and blockl.start<block2.end:

58 block2.end=blockl.start-1

59

60  print("Generating memory blocks:")
61 for block in memoryblocks:

62 print(block.name)

63 name = block.name

64 address = addressSpace.getAddress(block.start)

65 temp = currentProgram.memory.createUninitializedBlock(block.name, address, block.length(),
— False)

66 temp.setRead(True)

67 temp.setWrite(True)

68 temp.setExecute(False)

69 temp.setVolatile(True)

70 temp.setComment ("Generated by andnilse script")

71

72 #Generate labels for registers
73 print ("Generating peripherals.register labels..")
74 for peripheral in peripherals:

75 print(peripheral.find("name") .text)
76 peripheralBaseAddress = peripheral.find("baseAddress") .text
7 for registers in peripheral:
78 for register in registers.findall("register"):
79 length = int(register.find("size") .text, 16)
80 register_start = int(peripheralBaseAddress,
— 16)+int(register.find("addressOffset").text, 16)
81 addr = addressSpace.getAddress(register_start)
82 labelname = peripheral.find("name").text+"."+register.find("name").text
83 print("\t"+register.find("name") .text)
84 symbolTable.createLabel (addr, labelname, namespace, SourceType.USER_DEFINED)
85

86 print ("Generating peripherals.interrupts labels..")
87 for peripheral in peripherals:

88 for interrupt in peripheral:

89 try:

90 peripheralname = peripheral.find("name").text
91 interruptname = interrupt.find("name").text
92 fullname = peripheralname+"."+interruptname

93 value = "0x000000"+interrupt.find("value") .text
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except:
continue
print (fullname+" "+value)
try:
address = addressSpace.getAddress(value)
temp = currentProgram.memory.createUninitializedBlock(fullname, address, 1, False)
# interrupt is of length 1 bit
temp.setRead(True)
temp.setWrite(True)
temp.setExecute (False)
temp.setVolatile(True)
temp.setComment ("Generated by andnilse script")
except:
print("Could not create uninitialized block for "+fullname+" "+str(address))
symbolTable.createlLabel (address, fullname, interruptnamespace, SourceType.USER_DEFINED)

D.2 Ghidra Function Identification Script

Algorithm D.2 GhidraFunctionFinder.py

from
from
s

from
from
from
from

curr
curr
fm =
func
list

ghidra.program.flatapi import FlatProgramAPI

ghidra.program.model.listing import FunctionManager, Function, Variable, VariableStorage,
Listing, InstructionIterator

ghidra.program.model.symbol import Namespace

ghidra.app.plugin.core import instructionsearch

ghidra.app.decompiler import DecompInterface

ghidra.util.task import ConsoleTaskMonitor

entprogram = currentProgram

entprogram_name = currentprogram.getName ()
currentprogram.getFunctionManager ()

tionlist = fm.getFunctions(True)

ing = currentprogram.getListing()

decompinterface = DecompInterface()
decompinterface.openProgram(currentprogram)

sear
foun
file

inde

chlist = ["CRYP"1#, "HASH"]
dlist = []
= open("GhidraFunctionFinder.txt", "a")

x=0

print "Number of functions:'"+str(fm.getFunctionCount())

for

function in functionlist:
index+=1

print str(round(100*float(index)/float(fm.getFunctionCount()), 2))+"%"
results = decompinterface.decompileFunction(function, 0, ConsoleTaskMonitor())
compiled = results.getDecompiledFunction().getC()
found = True
for item in searchlist:
if (str(compiled) .find(item)==-1):
found=False

if (found==True) : #last element in searchlist( and searchlist.indez(item)==len(searchlist)-1)
print "Found function:"+str(function.getName())
foundlist.append(str(function.getName()))
file.write(str(compiled)+"\n")
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38 print foundlist
39  print str(len(foundlist))



Entropy of Memory Files
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Figure E.2: Entropy of flash.img
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Figure E.3: Entropy of ram.img
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Figure E.4: Entropy of sram.img
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